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Abstract

The Community Atmosphere Model (CAM), which serves as the atmosphere component of the Com-

munity Climate System Model (CCSM), is currently the most computationally expensive CCSM com-

ponent in typical configurations. Improving performance scalability in CAM has been a challenge, due

largely to algorithmic restrictions necessitated by the polar singularities in its latitude-longitude com-

putational grid. Nevertheless, through a combination of exploiting additional parallelism, implementing

improved communication protocols, and eliminating scalability bottlenecks, we have been able to more

than double the maximum throughput of CAM on production platforms. We describe these improve-

ments and present results on the Cray XT4/XT5, IBM BG/P, and an Opteron/Infiniband cluster. This

improved performance will enable the CCSM research community to use its computing resources more

effectively, allowing additional and more computationally expensive experiments to be run in support of

the upcoming Intergovernmental Panel on Climate Change (IPCC) fifth assessment.

1 Introduction

The Community Climate System Model [3, 1] is one of the world’s leading global climate models. It was

an important contributor to the Fourth Assessment Report of the Intergovernmental Panel on Climate
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Change [15] and is expected to play an important role in the upcoming fifth assessment. CCSM contains

several model components interconnected through a coupler: the Community Atmosphere Model (CAM), the

Community Land Model (CLM), the Parallel Ocean Program (POP), and the Community Ice Code (CICE).

Contributions to the fourth assessment were typically run with computational grids at an atmosphere/land

resolution of 1.4 degrees and an ocean/sea-ice resolution of 1 degree.

CCSM has been undergoing rapid improvement, both in the breadth of its science and as a computational

science tool. Through the improved representation of atmospheric aerosols, ocean biogeochemistry and the

associated emissions, and land biogeochemistry within a dynamic vegetation model, CCSM is evolving from a

climate system model into an earth system model. There is the desire as well to increase both the horizontal

and vertical resolution of the grids used in climate simulations. With additional process representation

and increased resolution comes increased cost - up to orders of magnitude or more, depending on scenario.

The challenge is to improve the computational science capability of CCSM so that by taking advantage

of increased capabilities of the evolving computational platforms, the same level of throughput (roughly 5

simulated years per computing day) can be maintained. With increases in raw processor speed approaching

technical limits, we look toward being able to utilize a much greater number of computational processors -

up to hundreds of thousands.

The least scalable model component of the Community Climate System Model is the atmosphere [5].

Reasons for this will be discussed below, but a contributing factor is the polar singularities of the traditional

latitude-longitude grid - whereas the ocean and sea-ice models use modified grids whose poles are within

the land areas and hence not part of the computational domain. New numerical methods based on grids

that do not suffer from the scalability disadvantages of the latitude-longitude are under consideration for

the atmosphere[10, 12], but these will not be available for use in the fifth assessment mentioned above. In

consequence, it is vital that the performance scalability of the current version of CAM be improved as much

as possible.

Our focus is on the performance and scalability of the Community Atmosphere Model (CAM), which

when run in stand-alone mode includes the land component CLM. In section 2 we give an overview of

CAM and discuss CAM’s parallelization approach and how scalability has been limited heretofore. In

section 3 we describe the versions of CAM, benchmark configurations, and computing platforms used in

this work. In sections 4, 5, and 6 we present our recent improvements to performance and scalability of

CAM. Empirical studies documenting the impact of these modifications are described in section 7. Section

8 provides additional discussion and looks toward the future.
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2 Community Atmosphere Model

The Community Atmosphere Model (CAM) [2] has been developed at the National Center for Atmospheric

Research (NCAR), with contributions from external National Science Foundation (NSF), Department of

Energy (DOE), and National Aeronautics and Space Administration (NASA) funded researchers. CAM

is characterized by two computational phases: the dynamics, which advances the evolutionary equations

for the atmospheric flow, and the physics, which approximates subgrid phenomena such as precipitation

processes, clouds, long- and short-wave radiation, and turbulent mixing. The dynamics assumes the hy-

drostatic approximation, which allows a partial decoupling into a two-dimensional horizontal portion and a

one-dimensional vertical (columnar) portion. The approximations in the physics are referred to as the phys-

ical parameterizations and are columnar in nature. Control moves between the dynamics and the physics

during each model simulation timestep.

CAM includes multiple options for the dynamics, referred to as dynamical cores or dycores, one of which is

selected at compile-time. Three dycores are currently supported, and several additional dycores are currently

undergoing development and testing and may be included in the future. In this study, we discuss only the

dycore that will be used in the fifth assessment: a finite-volume flux-form semi-Lagrangian (FV) dynamical

core that uses a tensor product latitude× longitude×vertical-level grid over the sphere. An explicit interface

exists between the dynamics and the physics, and the physics data structures and parallelization strategies

are independent from those in the dynamics. A dynamics-physics coupler moves data between data structures

representing the dynamics state and the physics state.

The finite-volume dycore [8] was constructed originally by Lin and Rood when at NASA Goddard Space

Flight Center in the late 1990s. A Lagrangian vertical coordinate is used to define flux volumes, within which

the horizontal dynamics evolve. Vertical transport is modeled through evolution of the geopotential along

each vertical column. A conservative Lagrangian surface remap is performed each model time step. A flux

form semi-Lagrangian approach to the horizontal dynamics overcomes the stringent Courant stability condi-

tion in the neighborhood of the polar singularities, with polar filtering limited to a handful of intermediate

variables; no prognostic variables are filtered.

The approach to parallelization is domain decomposition, where each subdomain is assigned to a sin-

gle MPI [6] process; when available, OpenMP [4] is used for additional parallelization. The dynamics and

physics each use separate decompositions. The physics utilizes a fine-grain 2-D latitude-longitude decom-

position. Each subdomain, referred to as a chunk, is a collection of vertical columns [17]. Chunk sizes are

chosen to optimize cache utilization, or in the case of a vector machine, vector length. While there are no
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inherent restrictions on how the vertical columns are partitioned, typical decompositions either minimize

communication costs (when transposing to/from the dynamics decomposition) or load imbalance (typically

by combining daytime and nighttime regions).

The dynamics utilizes multiple block decompositions. The finite-volume dycore uses a latitude-vertical

decomposition for the main dynamics and a latitude-longitude decomposition for the Lagrangian surface

remapping and (optionally) geopotential calculation [11].

The various decompositions are connected by transpose routines. In cases where the physics decom-

position is not equivalent to the connecting dynamics decomposition, the transposes are accomplished by

either collective MPI routines or point-to-point communications, depending on which performs best on the

given architecture. The transposes connecting the dynamics decompositions for the finite-volume dycore

utilize the Pilgrim and Mod Comm libraries [13], which were originally based on non-blocking point-to-point

communications.

There are a number of limitations to scalability. Climate models are notorious for their coarse meshes, a

requirement derived from the need to integrate out to hundreds of simulated years. Present day simulations

with CAM and the finite-volume dycore typically use a latitude/longitude/vertical computational grid of size

96× 144× 26; this amounts to roughly 360 thousand grid points, which is a very modest number for a 3-D

grid. The most ambitious horizontal grid size currently under consideration for upcoming studies, including

the fifth assessment, would represent an eight-fold refinement in each horizontal direction, or 768 × 1152;

the number of levels might increase to 30, and, for whole atmosphere chemistry scenarios, to 66. Since the

dynamics domain decomposition is grid-based, the relatively modest grid size limits the size of the domain

decomposition, hence the number of MPI tasks. The implementation of the finite-volume dynamics requires

subdomains to have at least 3 points in latitude, 3 points in longitude, and (until recently) 3 in the vertical;

with only 26 levels in the vertical, this has limited the size of the vertical decomposition to 8 subdomains.

With the requirement (until recently) that all phases of the calculation utilize the same-sized decomposition,

the limitations on dynamics scalability has limited scalability of the overall code.

The left graph in Figure 1 shows throughput on a 1.9×2.5 degree horizontal grid (96×144) for a sequence

of ever more expensive physical process options under consideration for use in the fifth assessment. Data

were collected in March 2007 on a Cray XT4 with quad-core Opteron processors using CAM development

version 3.5.27, and both MPI and OpenMP parallelism were used. The figure shows both the maximum

throughput rate and the maximum processor count that CAM was capable of before implementation of the

optimizations described in this paper. Note that the new physical processes increase the cost of the model
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Figure 1: Throughput of the Community Atmosphere Model on a 96 × 144 grid with a sequence of ever
more expensive physical process options, and on a 384× 576 grid with the current default physical process
options.

signficantly, and throughput rate may be an issue even for this very coarse grid resolution.

The right graph in Figure 1 shows throughput and maximum parallelism on a 0.47×0.63 degree horizontal

grid (384 × 576) with 26 vertical levels, using the current default physical processes. Again, these results

demonstrate the capability of the code prior to the performance improvements reported herein. Data were

collected on a Cray XT5 with dual quad-core Opteron SMP nodes and on an IBM BG/P, both using CAM

development version 3.6.27. Data are presented separately for pure MPI, 4-way OpenMP parallelism, and

8-way OpenMP parallelism, to demonstrate that OpenMP parallelism helps improve scalability, but has its

limits for this code. The memory requirements for this problem size were too large to run on the BG/P

in pure MPI mode. Some of our optimizations were already implemented in version 3.6.27, so we used a

modified version with these optimizations removed.

The throughput demonstrated in Figure 1 represents a marked improvement over what was possible in

even earlier versions of CAM [11, 17]. However, limitations on performance scalability are still evident. In

particular, the number of MPI processes for this high-resolution (for climate) 0.47 × 0.63 degree grid has

been limited to roughly 1000, and these limitations cannot be addressed simply by moving to ever larger

OpenMP parallelism. Fortunately, we have been able to overcome several of these limitations and extend

scalability and capability, as described in Sections 4, 5, and 6.
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3 Experiment Particulars

The primary development platforms and target architectures for this work have been a series of Cray XT

systems at Oak Ridge National Laboratory (ORNL), IBM BG/P systems at ORNL and at Argonne Na-

tional Laboratory (ANL), and an Infiniband-connected cluster of 8-way (4 socket, dual-core Opteron) nodes

at Lawrence Livermore National Laboratory (LLNL). This latter system is called Atlas. While not an is-

sue on these platforms currently, hybrid MPI/OpenMP parallelism has been problematic in the past. In

consequence, optimizing for MPI-only parallelism has been retained as a goal during this work. For large

MPI process counts there is also limited OpenMP parallelism to exploit, and efficient MPI-based parallel

algorithms and efficient MPI communication protocols are likewise important on the current target systems.

As we are attempting to address performance of CAM as it is to be used in the fifth assessment, we

have used internal development versions. Most of the data presented here is based on version 3.6.27, tagged

on Feb. 2, 2009. Two modified versions are used, one without the optimizations described in the paper

(previous), and one with a few optimizations that were added to CAM in versions after 3.6.27 (current).

CAM continues to be a moving target, and the physical processes that will be used in production with

the next release are still to be decided. These choices will impact the quantitative aspects of the results

described, but the performance characteristics should remain similar qualitatively.

For simplicity of presentation, the majority of the performance data presented here will be for the

0.47 × 0.63 degree resolution horizontal grid with 26 vertical levels. Other resolutions, both coarser and

finer, have been and are being used during development. The CCSM community intends to include some

0.47 × 0.63 degree resolution configurations in its submission to the fifth assessment, so this resolution

is particularly relevant. The 0.47 × 0.63 degree resolution is also expensive enough that efficient parallel

performance is critical.

Finally, the data described in this paper were from runs of CAM with the output of 2-D and 3-D

fields disabled. Most I/O in CAM goes through a single process currently. The cost of I/O from/to disk

is approximately constant as the process count increases, and the cost of the associated interprocessor

communication between the I/O process and the other processes increases with process count. While not

significant at small to medium process counts, this I/O overhead would mask some of the impact of the

modifications described here at large process counts. By disabling the I/O, we are also able to use shorter

benchmark runs without having to adjust the timings to take into account what would otherwise be incorrect

I/O frequencies. The CCSM developer community is actively working on a parallel I/O layer that is expected

to reduce the I/O overhead at scale significantly.
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horizontal vertical maximum MPI
resolution longitude latitude levels process count
1.9× 2.5 144 96 26 256
1.9× 2.5 144 96 30 320
0.94× 1.25 288 192 26 512
0.94× 1.25 288 192 30 640
0.47× 0.63 576 384 26 1024
0.47× 0.63 576 384 30 1280
0.23× 0.31 1152 768 26 2048
0.23× 0.31 1152 768 30 2560

Table 1: Maximum MPI parallelism available in CAM previously

4 Improving Algorithmic Scalability

As indicated in section 2, the parallel scalability of CAM has been limited at the algorithmic level in a

number of important ways. Table 1 lists the maximum number of MPI processes that could be used for a

range of problem resolutions, including the current production resolution of a 1.9 × 2.5 degree horizontal

grid with 26 vertical levels and the largest problem resolution currently under consideration for the fifth

assessment.

In contrast, the physics can, algorithmically, support up to longitude × latitude parallel threads of exe-

cution. For the largest problem resolution in Table 1, this is 884,736, or over 300 times larger than what is

available in CAM as a whole. OpenMP parallelism can be used to increase the parallelism throughout the

code for systems on which it is available. In our experience, this is not a complete solution, nor is it available

on all platforms of interest.

The basic approach that we have taken to exploit additional parallelism is based on the concept of

inactive and auxiliary processes. Recall the previous limitation that each phase of the code invoke the same

number of MPI tasks. That limitation has been relaxed. Processes may be inactive during either the physics

phase, the dynamics phase, or both. In the case of the physics, those processes are merely assigned zero

chunks. The ability of Fortran 90 compilers to support empty loops and the existence and allocation of zero-

sized arrays has been crucial in keeping the source code simple. Support for inactive processes during the

dynamics phase has required conditional statements, but fortunately only a limited number. The support for

inactive processes then opens the door for those processes to be used as auxiliary processes, to be activated

for specific phases of the calculation. The ability to invoke auxiliary processes is crucial to some of the

scalability extensions described below.

One of the simplest extensions to scalability has been removal of the constraint that subdomains contain

at least 3 vertical levels for the finite-volume dynamics. This required that only several lines of code be
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modified. Another extension has been to allow using more processes in the physics than in the dynamics.

For purposes of minimizing physics load imbalance, CAM already had the capability to support any physics

decomposition provided its size was the same as that for the dynamics. Given the added capability for inactive

processes, supporting more physics than dynamics processes required, for the most part, only generalizing

the dynamics-physics transpose to allow the domain and range to have different numbers of processes.

Recall that the finite-volume dynamics uses two domain decompositions: a latitude-vertical decomposi-

tion for the main dynamics and a latitude-longitude decomposition for the Lagrangian surface remapping

and (optionally) geopotential calculation. Those parts of the algorithm that utilize the latitude-longitude

decomposition are columnar; hence they support a much greater number of subdomains longitudinally than

the vertical decomposition supports vertically. We have added the ability to have a larger latitude-longitude

than latitude-vertical decomposition. This required generalizing the transposes that connect the two dy-

namics decompositions to support unequal-sized decompositions as well as adding conditional execution to

certain code sections.

Increasing the number of subdomains (and the MPI parallelism) in the latitude-longitude decomposition

also increases the amount of parallelism in the physics. For certain problems and computer systems, this

improves performance over that of using additional MPI processes only in the physics. In other instances

it can be slower. This latter situation is due to an increase in communication costs that outweighs the

improved throughput during the latitude-longitude decomposition execution phase. Since load balancing is

implemented during the communication between the physics and the dynamics, the additional communi-

cation cost in the transposes between the latitude-longitude and latitude-vertical decompositions does not

necessarily decrease the overhead of communication in the transposes between the dynamics and the physics.

The final parallelism enhancement is relevant for finite-volume dynamics with large numbers of advected

quantities, such as when simulating chemistry scenarios. We refer to these advected quantities as tracers.

Chemistry scenarios will be important for the fifth assessment, and recent versions of CAM have a chemistry

package with 25 tracers enabled by default. Without a chemistry package, CAM requires only 3 tracers. Full

tropospheric chemistry requires use of 103 or more tracers.

Each tracer is advected within the dynamics each timestep. While partially a function of the chemistry

package, our experience has been that each chemistry package tracer adds between 2% and 2.5% to the

overall run time. Hence as few as 40 tracers will double the overall run time compared to running without a

chemistry package. Approximately one-third of this cost increase is due solely to tracer advection. The next

largest portions are in the dynamics-physics coupling and the physics itself.
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We have added the capability to decompose the tracer advection with respect to tracer index - that is, to

advect multiple tracers simultaneously. We decompose the tracer population into T groups. We define T-1

auxiliary latitude-vertical decompositions; this requires (T-1)*M auxiliary processes, where M is the size of

the latitude-vertical decomposition. In other words, we hold in reserve an additional set of (T-1)*M inactive

processes. These processes are brought in as auxiliary processes during the tracer advection phase. The tracer

advection requires Courant numbers, mass fluxes, pressure thicknesses, and tracer values. These quantities

are communicated to the auxiliary processes using nonblocking communications, overlapping computation

to the extent possible.

To summarize, additional parallelism has been exposed by decoupling the parallel algorithms in the

different phases of the code (the physics, and the latitude-vertical and longitude-latitude decompositions in

the dynamics). In the cases where processes are idle during the latitude-vertical decomposition, these can

be used to decompose over the tracer index, introducing another direction of domain decomposition. None

of these modifications change the asymptotic nature of the parallel algorithms, but, as will be shown, they

do lead to practical improvements in performance. Before describing the performance improvements, two

other categories of performance optimizations must be described. Exploiting additional parallelism is not

productive unless the communication overhead can be controlled. Similarly, unscalable algorithms that can

be ignored for small process counts will prevent the efficient exploitation of large numbers of processes.

5 Communication Optimizations

The MPI communication protocols used in the physics/dynamics transposes [17] and in the Pilgrim and

Mod Comm libraries [13] have been optimized over a number of years and proven adequate up until now.

However, MPI communication at increased scale, especially when between phases with significantly different

numbers of active processes, sometimes performs poorly, and sometimes fails, on our target systems. In

response to this, we re-examined the existing algorithms, reworking some of the implementations and adding

new optimization options to better support the wide variety of problem and machine configurations for which

CAM will be used.

MPI collectives. With one exception, the transposes between the different decompositions are not full

all-to-all communication patterns. Rather, each MPI process sends to a subset of the processes and receives

from a (usually different) subset of processes. On some systems and for some of these transposes, an imple-

mentation of this communication pattern using MPI point-to-point commands achieves better performance
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than one calling MPI Alltoallv. Conversely, MPI alltoallv is the most efficient on other systems or for other

transposes. The important issue here is that the performance difference between the point-to-point and

MPI Alltoallv implementations can be very large, and that one choice is not suitable in all situations. To

address this, we systematically added support for both point-to-point and MPI collective implementations to

each of these transposes, and the choice is made at runtime. We have, however, determined and implemented

reasonable defaults based on our experiences.

As will be explained below, we also support both point-to-point and MPI collective implementations of

the gather and allgather operators.

Combining. The original implementation of communication in the FV dynamics utilized nonblocking

point-to-point commands and attempted to overlap communication with computation. Overlap has proven

difficult to achieve on many systems, especially at scale when the amount of intervening work is small

and the communication costs are large. In these situations, combining communication requests, in order

to minimize the number of communication requests and to possibly improve the efficiency of underlaying

memory copies, can be more effective. We have added options to combine communication requests where

possible, in particular when advecting tracers. The amount of combining to use is a runtime parameter and

reflects a tradeoff between latency minimization and memory usage.

Flow control. The original implementation of communication in the FV dynamics preposted all receive

requests, issued all (nonblocking) send requests, then waited for the receive requests to be satisfied. At scale,

this has the potential of overwhelming any given process with messages for which it has not yet posted receive

requests. This can cause failures if the system can not allocate sufficient system buffer space to handle all of

the requests, and will degrade performance in any case with all of the additional buffer copying. With the

introduction of different numbers of active processes in different phases of the code, the likelihood of this

situation to occur has increased significantly. It also is a common problem with the gather collective, and

can even affect performance and robustness of MPI Gather for some vendor implementations.

To address this, we added support for handshaking messages. These are used to eliminate all unexpected

messages of size greater than zero. After each nonblocking receive is posted, a zero-byte message is sent to

the source process. Upon receipt of this signal, the source process can send the message (using MPI Rsend

or MPI Irsend, since it is now safe to use the ready variant of the MPI send command). This has proven

more efficient than using MPI Sendrecv or the synchronous variants of the MPI send commands. Again, the

use of handshaking is enabled at runtime, and can be enabled for use in specific transposes or gathers.
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There is still a potential problem in preposting more nonblocking receive requests than are supported

on a given system (with any given MPI environment variable settings). There may also be a performance

impact from having a large number posted, if only in the cost of matching receive requests with the incoming

messages. There is also a potential problem of overwhelming a given process with the zero-byte handshaking

messages. To address these issues, we have also added a throttle parameter, specifying the maximum number

of outstanding send and receive requests to allow. Again, this is a runtime parameter, and can be set

separately for specific transposes, gathers, and scatters.

For throttling to work, we also implemented a dimensional-exchange ordering of the messages. With this,

in a total ordering of possible sends and receives between processes, process i and process j will exchange

data at the same step. This ordering does a reasonable job of minimizing contention and hotspots, and

is now used for all point-to-point implementations of collective communication within CAM, replacing the

original ordering used in the FV dynamics.

The options described so far allow us to address problems within a single collective operation. Prob-

lems can also arise from communication demands of a series of collective requests, for example a series of

scatter requests, even though any single collective request may not cause a problem. Moreover, invoking

a handshaking protocol in a scatter may replace one problem with another. We have found that replacing

the nonblocking send requests with blocking sends in the point-to-point implementations can slow down the

rate at which message requests are generated, slow enough to avoid problems arising from multiple collective

calls. The choice of nonblocking (the default) and blocking sends in the point-to-point implementation of

message-passing algorithms CAM is yet another runtime parameter that can be set separately for specific

collectives.

Summary. Common, and efficient, communication protocols for the transposes, gathers, and tracer ad-

vection communication in CAM can break down at scale, by either performing poorly or failing. The

communication logic has been re-engineered to add new options that can be used to avoid these problems.

Most of the basic communication algorithms were imported from existing code used in the physics/dynamics

tranposes [17], but all were re-implemented and optimized to take into account the specific issues being

addressed.
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6 Performance Scalability Bottlenecks

In the process of increasing the number of MPI processes that CAM can use, a number of performance

bottlenecks were identified (and eliminated). These were typically code fragments with complexity O(N)

or O(N2), where N is the size of the computational grid, O(P ), where P is the number of MPI processes,

or O(NP ). Most of these qualify as “performance bugs” in that much new code is being written at the

moment, and the performance implications of the code were simply not examined sufficiently closely. It does

point out, however, the importance of testing the code at scale periodically as these performance bottlenecks

were not evident in smaller performance benchmark runs. One modification of more significance is described

below.

Reproducible distributed sums At least 4 distributed sums, some global and some over specific ge-

ographical regions, are computed each timestep. CAM requires reproducibility in its numerics, that is,

that the computed solution be invariant to the number of processes and threads used in the computation.

Heretofore, the distributed means were calculated first by summing over the undecomposed dimension (if a

three-dimensional field), then sending the resulting two-dimensional field to process 0 for final determination.

Both at large problem sizes and at large process counts, this serialization degrades performance scalability.

(For large problem sizes the memory requirements also become burdensome.) A number of solutions were

considered, but the one we implemented is a variable-precision algorithm that calls MPI ALLREDUCE twice,

once with the MAX operator to determine the correct normalization and required precision and once to sum

the integer vector representing local sums. If a reasonable upper bound on the summands is already known,

the first call to MPI ALLREDUCE can be eliminated. (Note that the obvious algorithm of computing in quad-

precision is not generally viable in that compilers on many of our target systems do not support REAL*16.

Importing public domain quadruple or higher precision packages presented other difficulties, leading us to

implement our own special-purpose algorithm.)

7 Empirical Results

Figure 2 summarizes the impact of our work to date. The left graph in Figure 2 compares (green) the

maximum throughput when running the current version of CAM restricted to the runtime options that

are available in the previous version with (blue) the throughput when using the current optimal settings

and approximately 4.9 times more MPI processes. Data are presented for three grid resolutions, all with
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Figure 2: Increased throughput from recent performance optimizations to CAM for model resolutions with
26 vertical levels

26 vertical levels, run on a Cray XT4 with quad-core Opteron nodes. Only one MPI process is assigned to

each node, and 4 OpenMP threads are used per process. The MPI process counts for the green data are the

maxima listed in Table 1.

The right graph in Figure 2 compares throughput for the 0.47×0.63 horizontal grid with 26 vertical levels

on a Cray XT5 with eight processor cores per node (two quad-core Opteron processors). Data are presented

for MPI-only runs (8 processes per node), 4 OpenMP threads per process (2 processes per node, 1 process

per socket), and 8 OpenMP threads per process (1 process per node). The red bars indicate maximum

throughput when using the previous version of CAM. The green bars indicate throughput when using the

current version of the code, but run using only the parallel algorithm options available in the previous

version. The blue bars indicate throughput when using all of the new optimization options and 9.75 times

as many MPI processes.

The data in Figure 2 demonstrate capability. The parallel efficiencies are poor as we move to such extreme

process counts. However, performance has not rolled over yet for any of these cases. That is, performance is

maximized by using all of the processes in the blue data experiments. From these data it is clear that these

optimizations are most effective for larger grid resolutions and for fewer OpenMP threads per process. More

than 4 OpenMP threads is not efficient at large MPI process counts in any case, so this is not as significant.

The current version of the code, even when restricted to the previous algorithm options and maximum

MPI process counts, is between 15% and 20% faster than the previous version. Note, however, that these

optimizations are most critical at scale. Without them, we could not use additional parallelism effectively.

Figure 3 presents one view of how the additional throughput is attained. In the labels, the first two

numbers are the size of the virtual process grid used to decompose the computational grid in the dynamics.
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Figure 4: Importance of tracer advection parallelization and of new reproducible distributed sum algorithm,
respectively, in improving CAM throughput at scale.

The first number is the number of processes used to decompose the latitude dimension. The second number

is the number of processes used to decompose the vertical and longitude dimensions. The third number,

when present, indicates the total number of MPI processes when this is larger than the number indicated by

the virtual process grid. These auxiliary processes are used to parallelize the tracer advection and to further

parallelize the physics. The left graph describes results for MPI-only runs. The right graph describes results

when using 4-way OpenMP parallelism. The results are qualitatively very similar, with the only difference

being that using a 128× 26 process grid was optimal when using a total of 3328 processes for the MPI-only

runs, while using 128 × 13 process grid with auxiliary processes was optimal for the 4-way OpenMP runs.

The important point here is that each increment to the number of processes increases throughput a nontrivial

amount. We have not yet identified the maximum parallelism than can be used for this problem. This is a

promising result when considering scenarios with more expensive physics and/or more tracers.
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Figure 4 looks at the performance impact of specific optimizations. The left graph compares (green)

performance of the current version run with the old optimizations, (red) the current version using more

processes in the vertical and auxiliary processes in the physics, but not the tracer advection, and (blue) the

current version also parallelizing the tracer advection. These data come from runs using full tropospheric

chemistry, requiring almost 4 times as many tracers as in the default chemistry used in the earlier experiments,

on the Cray XT4 using 4-way OpenMP parallelism. These data describe the separate contributions from

exploiting additional parallelism in the physics and in the tracer advection. They also demonstrate the

importance of exploiting additional parallelism for such computationally demanding scenarios, as it is only

by increasing the processor count by a factor of over 6 that we achieve the targeted 5 simulated years per

day.

The right graph in Figure 4 compares the performance achieved with and without the new reproducible

distributed sum. The data were collected on a Cray XT4 using 4-way OpenMP parallelism. The number

at the top of each bar is the number of MPI processes used. The current experiments for the 1.9 × 2.5

grid used a 32 × 13 virtual process grid and 1248 total MPI processes. The current experiments for the

0.47×0.63 grid used a 128×26 virtual process grid and no auxiliary MPI processes. It is clear that, at scale,

the new distributed sum is a critical component to achieving improved throughput.

As noted previously, posting a large number of send requests during a short period of time runs the

risk of overwhelming the target processes with messages that they are not yet ready to receive. This has

been observed in both gather and scatter operations on the Cray XT system (using both MPI collective calls

and equivalent point-to-point implementations), resulting in runs terminating with error messages indicating

that, for example, MPI has “run out of unexpected buffer space” or that an event was “dropped”. The first

error message occurred on an XT5 during a gather associated with writing a restart file for a problem on

a 0.47 × 0.63 grid. The run used 4-way OpenMP parallelism and 256 MPI processes. The second error

message occurred on an XT5 during a series of scatters as part of the initialization for a problem with full

tropospheric chemistry on a 0.47× 0.63 grid. This was an MPI-only run on 3328 processors.

Setting appropriate MPI environment variables to larger values does eliminate the errors in these exam-

ples. However, this is a fragile approach because a sufficient value is a function of the process count and

problem size, and is difficult to predict. In some circumstances we have not been able to set the environment

variable large enough, as it exhausts the available memory. We are also concerned about the performance

and memory impacts of preposting very large numbers of requests, though we have not yet observed this to

be a problem. In any case, by specifying handshaking and a maximum number of requests in logical gather
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operators and by using blocking send protocols in the scatter operators, we have been able to eliminate the

need to modify the default settings of MPI environment variables on the Cray XT4 and XT5.

Similar problems can occur with other irregular communication patterns, such as those arising from

transposes connecting different sized decompositions. We first noticed anomalously large communication

times when transposing from a latitude-longitude decomposition to a latitude-vertical decomposition that

was three times smaller. In this instance, the runtime for the model was 50% to 100% slower than when using

one-third as many processes (with the same size latitude-vertical and latitude-longitude decompositions).

Similar behavior was observed on the Cray XT4, the IBM BG/P, and the Atlas cluster. The performance

degradation was traced to extremely large communication times involving one-third of the MPI tasks (5

times larger than the communication times for the other two-thirds). The algorithm in place at that time

was that each task would post all of its nonblocking receive requests followed by all of its nonblocking send

requests. We believe that early arrival of messages from the otherwise idle two-thirds of the processes at the

one-third active processes was causing the performance anomaly. By enabling handshaking - delaying send

requests until the receiver was ready to receive them - this performance problem was eliminated. On the

BG/P system, use of the MPI Alltoallv command also eliminated the problem, and is generally somewhat

faster than using a point-to-point implementation of these transposes in all situations. On the Cray XT4

and XT5, MPI Alltoallv decreases the performance anomaly, but the point-to-point implementation with

handshaking is still approximately twice as fast for transposes between the two decompositions, resulting in

a 10% improvement in model runtime in typical cases as compared to the implementation using the MPI

collective.

In contrast, when using 2-way or 4-way OpenMP parallelism on the Cray XT and Atlas systems the

handshaking protocol increased model runtime for this same example by 10% to 30% compared to the original

algorithm, and the MPI Alltoallv-based implementation exhibited similarly poor performance compared

to the original point-to-point implementation. The BG/P performance was relatively insensitive to the

communication protocol when using OpenMP parallelism. So, it has been important for us to retain the

flexibility of chosing the communication protocol for different phases at runtime, empiricially determining

with short test runs which protocols are most efficient. Note that MPI Alltoallv on the Cray XT systems

does perform well when all processes are sending and receiving from all other processes. It is only in cases

when processes are receiving from subsets and sending to subsets that we have observed the point-to-point

implementations to be superior, and this could change in the next update to the MPI library.

To the Reviewers: The work described here took place on all three target platforms: XT, BG/P, and the
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LLNL Atlas system, and performance data from all three platforms drove our development efforts. We do

not as yet have a set of final evaluation studies on the BG/P and Atlas comparable to that for the XT4/XT5.

If the paper is accepted, we will add summary performance data for these other systems as well.

8 Discussion and Future Directions

We have made a number of improvements to the performance and scalability of the Community Atmosphere

Model. Central to this has been support for inactive and auxiliary computational processes. The ability to

have some processes inactive during the dynamics but active during the physics is relevant to all dynamical

cores, and its importance increases for scenarios of intense physics, such as atmospheric chemistry and cloud

superparameterization [7]. The ability to harness these auxiliary processes to parallelize tracer advection

within the finite-volume dycore has also proven to be important, especially for scenarios with significant

numbers of tracers such as found with atmospheric chemistry. Another important algorithmic modification

was adding the ability to assign fewer vertical levels per subdomain for the finite-volume dynamics.

Exploiting additional parallelism exposed a number of performance limiters heretofore unrecognized or

deemed unimportant. Among these were algorithms with unscalable computational complexities, algorithms

with unnecessarily high communication overheads, and communication protocols that were more prone to

contention than the alternatives. Addressing each of these was critical for effective utilization of the high

process counts demonstrated in this paper.

While this work has focused on increasing the number of computational processes (MPI tasks), utilizing

additional processors through OpenMP is relevant as well. The CAM physics utilizes OpenMP at the chunk

level; that is, chunks are assigned to threads executing in parallel, and this scales well. The main portion

of the finite-volume dynamics advances multiple vertical levels within an OpenMP loop. The additional

MPI parallelism introduced in the vertical eliminates almost all of the OpenMP parallelism in the dynamics

when running at scale. Several years ago we experimented with nested latitudinal threading within the finite-

volume dynamics, but the resulting overhead worsened performance. With only one or two vertical levels per

subdomain (when maximizing process count), we are currently revisiting inner OpenMP threading, either

as the sole threading within the main dynamics or in conjunction with outer threading, if supported. Even

so, this may have its limitations, as at maximum process count there are only 3 latitudes per subdomain.

As mentioned before, our current work is meant to address the immediate performance needs of the fifth

assessment. However, we believe that significant additional improvements in performance scalability will
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require moving to a more scalable dynamics solver. Three such solvers are currently being evaluated.

The first candidate is a finite-volume dynamical core on a cubed sphere grid [12]. The cubed sphere grid

consists of six horizontal logically rectangular patches, connected in a manner that is topologically equivalent

to a cube [14]. This approach avoids the polar singularity at the expense of special treatment at the cubes’

edges and corners. It has been implemented in the atmospheric model of the Geophysical Fluid Dynamics

Laboratory and shown to scale well to large process count [9]. The cubed sphere finite-volume approach has

been implemented in NASA’s GEOS model.

The cubed sphere is also the geometry of choice for the other two candidate dycores, one based on a

spectral element discretization and one utilizing a discontinuous Galerkin approach. Both of these are being

developed within a framework called HOMME [16]. HOMME supports two-dimensional horizontal domain

decomposition via space-filling curves. The spectral element-based solver has been shown to scale efficiently

to tens of thousands of processors for relevant atmospheric resolutions.
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