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ABSTRACT

In this paper, we take a concrete step towards materializing our long-term goal of provid-
ing a fully automatic end-to-end tuning infrastructure for arbitrary program components

and full applications. We describe a general-purpose offline auto-tuning framework and
apply it to an application benchmark, SMG2000, a semi-coarsening multigrid on struc-
tured grids. We show that the proposed system first extracts computationally-intensive
loop nests into separate executable functions, a code transformation called outlining.

The outlined loop nests are then tuned by the framework and subsequently integrated
back into the application. Each loop nest is optimized through a series of composable
code transformations, with the transformations parameterized by unbound optimization
parameters that are bound during the tuning process. The values for these parameters
are selected using a search-based auto-tuner, which performs a parallel heuristic search
for the best-performing optimized variants of the outlined loop nests. We show that our
system pinpoints a code variant that performs 2.37 times faster than the original loop

nest. When the full application is run using the code variant found by the system, the
application’s performance improves by 27%.
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1. Introduction

Currently, the burden of tuning codes largely falls on the shoulders of application

programmers. Programmers spend countless hours modifying their codes to exploit

performance enhancing architectural features. These features vary between different

platforms. As a result, codes tuned for one platform often face performance problems

when ported to another platform. Therefore, this process of tuning has to be mostly

repeated while moving from one platform to the other.

Auto-tuning software (auto-tuners) help programmers automate this painful and

error-prone process of tuning and porting application codes. Domain-specific auto-

tuners such as ATLAS [31] for dense linear algebra, OSKI [30] for sparse linear

algebra, FFTW [10] and SPIRAL [32] for signal processing, etc. have been very

successful in producing highly-optimized architecture-specific codes. This success

has sparked a general interest in extending the search-based empirical auto-tuning

methodology to arbitrary program components and whole programs. Shifting the

focus from empirically tuning a few kernels to tuning whole programs will certainly

help avoid the enormous productivity costs associated with tuning and retargeting

applications to the next generation exascale systems. However, the shift also comes

with its own set of challenges. In this paper, we discuss these challenges and describe

a general-purpose offline auto-tuning framework for whole programs. The proposed

framework integrates performance analysis tools, compiler frameworks and auto-

tuners that are under development within the PERI [1,3] communitya. These com-

ponents make significant contributions towards materializing PERI’s longer term

auto-tuning vision of developing and deploying a fully automated (or as fully au-

tomated as practical) tool-chain that can provide an end-to-end tuning for full

programs.

We should note that domain-specific specialized libraries, in most cases, are

better suited to handle domain-specific computations. Our goal is to provide a

general-purpose compiler based framework, which can generate and evaluate differ-

ent optimizations that can be applied on arbitrary application codes. In the absence

of a general-purpose framework, manual exploration of possible optimizations can

be prohibitively time consuming and painful for a programmer.

The remainder of this paper is organized as follows: section 2 describes the

challenges that auto-tuners face in designing a whole program tuning infrastructure.

This section also describes the three main components (ROSE outliner, CHiLL and

Active Harmony) of the auto-tuning system presented in this paper. In section 3,

we give an overview of the tuning workflow in our framework. Section 4 describes

the subject application benchmark. Empirical evaluation of our system using the

benchmark is presented in section 5. We discuss related work in section 6. Finally,

section 7 provides concluding remarks and future implications of this work.

aPERI (Performance Engineering Research Institute) is a DOE SciDAC institute developing tools
and techniques to help application teams effectively use leadership class computing systems.
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2. Full Application Tuning — Challenges & Enabling Components

In this section, we review some key issues that we faced while designing our system.

(i) Compute intensive loop nests in full applications are often wedged in the middle

of large monolithic code sections. Code outlining tools are needed to extract

these loop nests to separate standalone functions. These outlined codes can be

more easily managed, analyzed and transformed by loop-transformation tools.

(ii) The number of code variants for a complete application can be enormous.

Strategies to judiciously select what transformation techniques to apply to dif-

ferent sections of the application code are needed to keep the tuning time at

manageable levels. Our compiler experts work with the application developers

to make these decisions. Furthermore, compiler-based auto-tuning requires a

code-transformation framework that is able to generate different variants of the

source code rapidly during the search by adjusting code transformation param-

eters. It also demands that the compiler have a clean interface to a separate

parameter search engine.

(iii) As the number of tuning parameters increases, the search space becomes high

dimensional and exponential in size. Search algorithms that can cope with ex-

ponential spaces and deliver results within a few search iterations are needed.

In the next three sections, we describe PERI-components that help us address

these issues.

2.1. Code-outlining via ROSE

We use the ROSE outliner [17] to extract computational hotspots (kernels) from

large scale applications into separate and manageable functions. This process helps

reduce the challenging whole program tuning problem into a set of manageable

kernel tuning tasks. The outliner is built using the ROSE [23] source-to-source

compiler. Compared to other outlining tools [14, 15, 34], the ROSE outliner is

designed to handle multiple input languages such as C, C++ , Fortran and OpenMP.

Moreover, a set of program analyses, including side-effect and liveness analyses, are

leveraged to reduce the performance impact caused by the kernel extraction.

ROSE is an open source compiler infrastructure aimed to allow programmers

without expertise in compiler internals to build customized source-to-source pro-

gram transformation and analysis tools for large-scale applications. With the help

from the Edison Design Group (EDG) C++ front-end [9] and the Open Fortran

Parser (OFP) [24], ROSE presents a common object-oriented, open source inter-

mediate representation (IR) for C/C++ and Fortran applications. The ROSE IR

includes an abstract syntax tree (AST), symbol tables, a control flow graph, etc. A

wide range of programming interface functions are developed to support AST query,

traversal, construction, consistency checking, file I/O, visualization, and symbol ta-

ble lookup. As a result, both generic and custom program analysis and transforma-

tion can be easily built on top of the ROSE IR. Representative program translations
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developed with ROSE are partial redundancy elimination, constant folding, inlin-

ing, loop transformations, and automatic parallelization [18]. Finally, a vendor com-

piler is optionally called to continue the compilation of the generated (transformed)

source code, generating a final executable.

The ROSE outliner was initially started as an internal component for the

OpenMP implementation [16] of ROSE to generate functions from OpenMP parallel

regions. It has since evolved to a standalone kernel extraction tool to support auto-

tuning. The outliner uses a preprocessing phase to support outlining code portions

with complex control flow due to return, goto and break statements. A control

parameter is generated to pass in (for multiple entry points) and out (for multi-

ple exit points) the jump targets of the outlined function. In addition, the ROSE

outliner supports passing parameters one by one or wrapping all parameters into a

single data structure parameter. This is necessary to work with some APIs (such as

PThreads) which allow a function type with only one parameter.

Moreover, we use a novel method, referred to as variable cloning, to reduce

the number of pointer dereferences during outlining. This feature was specifically

developed for supporting whole program auto-tuning. For a written C/C++ variable

that is classically passed as a pointer type and accessed via pointer-dereferencing,

we check the actual use of such a variable within the code portion to be outlined.

If it is not used by its address, a temporary clone variable (using TYPE clone;)

can be introduced to substitute its uses within the outlined function. For the C

language, using a variable by address occurs when the address operator is used

with the variable (e.g. &X). In C++, associating a variable with a reference type

(TYPE & Y = X; or using the variable as a function argument of a reference type)

introduces a use by address. The value of a clone variable has to be initialized

properly (using clone = ∗ parameter;) before the clone participates in computation,

if the original variable is live-in. After the computation, the original variable must

be set to the clone’s final value (using ∗parameter = clone;), if the original variable

is live-out. Therefore, the kernels extracted by the ROSE outliner usually has much

less pointer usage and can be more friendly to compiler analyses and facilitate

further optimizations (e.g., loop translations). More details on the ROSE outliner

can be found in a previously published paper [17].

2.2. Code Generation via CHiLL

Once outlined, we generate optimized variants of the code using CHiLL, a poly-

hedral loop transformation and code generation framework [6, 7, 25, 29]. CHiLL’s

polyhedral framework mathematically represents loop iteration spaces and array ac-

cess expressions, facilitating robust composition of iteration space transformations

and code generation. It is therefore well-suited for an auto-tuning framework in

which optimization parameters will be varied to adjust performance. An external

script interface, called a transformation recipe, describes the composable transfor-

mation sequence to be applied to the loop nest computation. CHiLL’s high-level
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transformation recipes enable compiler algorithms or application programmers to

use a common interface to describe parameterized code transformations to be ap-

plied to a computation. For each code transformation, the parameters control the

semantics of the code transformation so that different parameter values lead to dif-

ferent generated code, freeing application developers from managing the significant

complexity of writing this code manually.

The transformation recipe also provides an interface to the external auto-tuning

search engine to instantiate the parameter values to find the best-performing im-

plementation. An example recipe is shown in Table 1 in the next section. Besides

making it easy to interface with the code-generation utility, these code transforma-

tion recipes offer an additional advantage. Unlike traditional compiler optimizations

which must be coded into the compiler, these recipes can be evolved and reused over

time. A recipe library, created by compiler experts and developers based on their

experience working with real codes, can then be consulted by auto-tuners to tune

arbitrary loop nests.

To illustrate the usability of CHiLL, to optimize SMG2000 (in Table 1) we use

three common loop transformations: permutation, tiling and unrolling. Permutation

reorders the loop nest so that the data in the computation is being accessed in an

order that more closely matches the organization of the data in memory, and fa-

cilitates subsequent optimizations. Tiling partitions the loop nest’s iteration spaces

into small blocks and then iterates through those blocks in sequence. It maintains

a small data footprint for the sub-loop nests for cache optimization or to partition

the computation across parallel threads. In CHiLL, the only required parameters

to the tile transformation are the sub-loop nest of interest, its tile size, and the

position of the tile controlling loop created by the transformation. The parame-

ters are the same even for an imperfect loop nest, or loop nest with complex loop

bounds. Even though the generated code can be quite complex, the tiling algorithm

implemented in CHiLL handles those differences seamlessly. Further, unrolling in

CHiLL implements unroll-and-jam, which explicitly duplicates even an outer loop

in a nest and fuses together the copies of the inner loop bodies that are created by

the transformation. The result of unroll-and-jam is a long sequence of straightline

code in the innermost loop body. Through simplifying control flow, exposing inde-

pendent computations to the scheduler, and reused data to the register allocator,

unroll-and-jam improves instruction-level parallelism and register utilization. The

only required parameters to unrolling are the sub-loop nest of interest and the unroll

factor for the specified loop. A special feature of CHiLL’s unroll-and-jam transfor-

mation is that it manages the complexity of unrolling triangular loops, where the

number of iterations of the inner loop varies across iterations of the outer loop.

2.3. Search-based Auto-tuning via Active Harmony

We use the Active Harmony system [28, 29], which is a search-based auto-tuning

framework, to drive the overall tuning workflow. Active Harmony allows applica-
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tion programmers, library writers, and compilers to describe and export a set of

performance related tunable parameters. These parameters define a tuning search-

space. More often than not, this search-space is high-dimensional and exponential

in size and thus, cannot be explored manually. Our system monitors the program

performance and makes adaptation decisions. The decisions are made by a central

controller (henceforth referenced as the Active Harmony server) using a parallel

search algorithm — Parallel Rank Ordering (PRO) algorithm [27]. PRO leverages

parallel architectures to simultaneously search across a set of optimization param-

eter values. Different nodes of a parallel system evaluate different configurations at

each timestep.

The success of Active Harmony is largely driven by how well the search algorithm

navigates the parameter space. The advantages of the parallel search algorithm

that the auto-tuner uses has been demonstrated in earlier results [29]. Those results

showed the benefits of using PRO to navigate compiler-generated search spaces. For

well-defined benchmark kernels such as matrix multiplication, the search algorithm

was able to find code variants that delivered significant improvements over the

optimizations offered by native compilers.

We combine Active Harmony’s parallel search backend with ROSE outliner and

CHiLL compiler transformation framework to do empirical optimization — a sys-

tematic search over a collection of automatically generated code variants. As we

discussed in section 2.2, each code transformation exposes its own set of parameters

(for example, loop-unrolling exposes loop-unroll factors). Parameter configurations

for loop-transformations serve as points in the search space and the objective func-

tion valuesb associated with the points are gathered by running the code variants

generated by CHiLL on the target architecture.

3. Overall Workflow

Figure 1 shows the overall workflow of our system. The tuning process starts by first

using application profiling tools (such as HPCToolkit [2], TAU [26], etc.) to identify

computationally intensive loop nests (not shown in the figure). The ROSE outliner

extracts the kernels to separate and independently compilable C source files. Code-

outlining is a one-time process — outlined kernels can be reused in subsequent

auto-tuning runs.

Application developers make simple modifications to the driver code that we

provide as part of the Active Harmony software release package. These changes are

made to export application-specific tuning options to the Active Harmony server.

The driver, which can be run on the login nodes of a parallel machine, connects to a

given Active Harmony server and requests candidate parameter configurations. The

driver then invokes CHiLL to generate variants of the outlined kernel based on the

bThe objective function values associated with points in the search space can be any desired metric

of performance (for example - time per timestep, MFLOPS, cache utilization etc.). In this paper,
the metrics is always time per representative execution (i.e. time of a few typical timesteps).
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Fig. 1. Overall workflow: SMG2000 Tuning

code transformation parameters supplied by the Active Harmony server. The code

generated on-demand is compiled into a shared library. Once the new code is ready,

the application is run on the target machine. The application dynamically loads

the transformed kernel by using the dlopen/dlsym mechanism. Once the execution

is complete, the driver collects performance measurement and sends them to the

Active Harmony server. The process continues for a specified number of iterations

or until the search algorithm converges to a point in the search space. For parallel

search algorithm, we run multiple copies of the driver. The number of copies is

determined by the number of tunable parameters and the simplex size (which is, in

turn, determined by the available resources). The use of the shared library mecha-
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nism helps to keep the tuning time short because only the outlined and transformed

code has to be recompiled between successive search steps.

4. Subject Application: SMG2000

We consider the SMG2000 [4] benchmark as a subject application. SMG2000 is a

parallel semi-coarsening multigrid solver for the linear systems arising from finite

difference, finite volume, or finite element discretizations of the diffusion equation

on logically rectangular grids (equation 1).

▽ · (D ▽ u) + σu = f (1)

The code solves both 2D and 3D problems with discretization stencils of up to

nine points in 2D and up to twenty seven points in 3D. SMG2000 was developed

at Lawrence Livermore National Labs (LLNL) of Department of Energy (DOE).

SMG2000 was picked because it is a representative numerical computation applica-

tion used at LLNL. This shows that the work presented in this paper is relevant to

DOE and can actually make impact on real lab applications.

The most time-consuming kernel (approximately 55% of the execution time on

the target system used in this paper) in the SMG2000 benchmark is shown in

Table 1. The kernel consists of sparse matrix vector multiplication expressed in

four-deep loop nestc. The kernel performs a stencil computation by sweeping the

same array data (accessed using the inner i, j, and k indices) multiple times for

each stencil element (the outermost s index). Thus, the kernel lacks data reuse and

causes excessive cache misses [17].

To minimize the time required for tuning, offline auto-tuners often use “represen-

tative short application executions”. We use this methodology in the work presented

here. In this technique, the application being tuned is run with a meaningful input

data for a short period of time and tuning modifications are made between succes-

sive short executions [8]. Recall that the objective function values associated with

different parameter configurations are derived by running the application on the

target machine. Therefore, representative short runs help reduce the overall time

required for offline auto-tuning. SMG2000 execution is divided into three distinct

phases — initialization, setup and solve. All three phases make several calls to

the outlined function — the function being tuned. We disable the third phase and

record the total time spent in just the outlined kernel in the first two phases. This

timing measurement is used by Active Harmony to drive the search process. Since

the first two phases make significant number of calls to the outlined function, the

measured timings are still representative of the overall time spent in the outlined

kernel in full application execution.

cThe outlined kernel shown is a simplified version. Actual code is less clean.
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5. Empirical Results

The auto-tuning experiments were performed on a 64-node Linux cluster. Each

node is equipped with dual-core Intel Xeon 2.66 GHz (SSE2) processor. L1- and

L2-cache sizes are 128 KB and 4096 KB respectively. Active Harmony uses the Par-

allel Rank Ordering (PRO) algorithm to navigate the search space. Short executions

of SMG2000 are done in parallel on the target machine, with each execution instance

using a different code variant. Transformation parameters are adjusted and corre-

sponding new code variants are generated between successive runs of SMG2000.

The search uses a 24-point simplex, which means up to 23 new code variants are

evaluated in parallel at each search-step.

Table 1. SMG2000 Optimization: Original Code, CHiLL Recipe, Search Space Constraints

Original Recipe Constraints

for (s = 0; s < stencil_size; s++)

for (k = 0; k < hypre_mz; k++)

for (j = 0; j < hypre_my; j++)

for (i = 0; i < hypre_mx; i++)

rp[((ri+i)+(j*hypre_sy3))+(k*hypre_sz3)]-=

((Ap[((i+(j*hypre_sy1))+ (k*hypre_sz1))+

(((A->data_indices)[i])[s])])*

(xp[((i+(j*hypre_sy2))+(k*hypre_sz2))+

((*dxp_s)[s])]));

permute([2,3,1,4])

tile(0,4,TI)

tile(0,3,TJ)

tile(0,3,TK)

unroll(0,6,US)

unroll(0,7,UI)

0 ≤ TI ≤ 122

0 ≤ TJ ≤ 122
0 ≤ TK ≤ 122
0 ≤ UI ≤ 16

0 ≤ US ≤ 10
comp ∈
{gcc, icc}

The optimization strategy (expressed in terms of a CHiLL-recipe) and con-

straints on transformation parameters are provided in Table 1. The recipe tiles the

i, j and k loops (with TI, TJ and TK tiling factors) to improve data reuse in caches.

The stencil loop and the innermost loop are unrolled (with US and UI unrolling fac-

tors) to improve reuse in registers. The search-space is six-dimensional and includes

a parameter that chooses between two compilers to compile the transformed kernel

— gcc and icc.

The search converges in 20 steps. The search-evolution (performance of the best-

point at each search-step) is shown in Figure 2. The y-axis shows the total time spent

in the outlined kernel(in seconds) per short representative SMG2000 execution. The

x-axis shows the PRO search steps. The configuration that PRO converges to is:

TI=122, TJ=106, TK=56, UI=8, US=3, comp=gcc d. The performance improvement

is 2.37X of the time for the outlined kernel. We then use the code variant associ-

ated with this parameter configuration to do a full run of SMG2000 (with input

parameters -n 120 120 120 -d 3). The results from full SMG2000 run are sum-

marized in Table 2. Full application execution improves by 27.2% (average of five

full application executions).

dThis was gcc version 4.1.2 and icc version 10.0.026, where icc has been known to have poor
performance.
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Most scientific applications exhibit similar characteristics to SMG2000 in that

the majority of the computational time is spent in a few core loops. In this paper,

we showed that our auto-tuning system can extract such computationally intensive

loops into separate functions. The outlined loop nests are then tuned by our system

and subsequently integrated back into the application. Thus, our system can be

easily applied to other scientific applications.
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Table 2. SMG2000 Full Run Performance

Auto-tuned Original Improvement

49.86s 68.52s 27.2%

6. Related Work

There are many research projects working on empirical optimization of linear al-

gebra kernels and domain specific libraries. ATLAS [31] uses the technique to gen-

erate highly optimized BLAS routines. The OSKI (Optimized Sparse Kernel In-

terface) [30] library provides automatically tuned computational kernels for sparse

matrices. FFTW [10] combines the static models with empirical search to optimize

FFTs. SPIRAL [32] generates empirically tuned Digital Signal Processing (DSP)

libraries. Chandramowlishwaran et al [5] look into single-node performance opti-

mization, tuning and analysis of the fast multipole method (FMM) on a diverse set

of multi-core systems. They consider numerous performance enhancing strategies

for FMM — SIMD vectorization and scheduling, numerical approximation, data

structure transformations, OpenMP-based parallelization, etc. Rather than focus-

ing on one particular domain, our framework aims at providing a general-purpose
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compiler based approach for tuning arbitrary application codes.

Several compiler frameworks that support flexible and tunable code transforma-

tion have been put forth in the literature. WRaP-IT [11] is a polyhedral framework

that provides a scripting interface to describe code transformations. However, ad-

justing parameters in this framework may require costly verification process and/or

script change. The work on iterative compilation [20, 21] searches one- or multi-

dimensional scheduling represented in the polyhedral model using heuristics or ge-

netic algorithms. This approach is limited in that scheduling can not express tiling

or unroll-and-jam directly. Another approach is to use high-level user-friendly an-

notations. Two noticeable examples are Orio [12] and POET [33]. Although they

are not based on the polyhedral model, they provide sophisticated transformations

in their frameworks and some are beyond the capabilities of the polyhedral model.

Different projects have considered search techniques to explore compiler gener-

ated parameter spaces. Kisuki et al [13] address the problem of selecting tile sizes

and unroll factors simultaneously. Different search algorithms are used to search

the parameter space - Genetic algorithms, Simulated Annealing, Pyramid search,

Window search and Random search. Qasem et al [22] use a modified version of

pattern-based direct search algorithm to explore the same search space. Kisuki et

al report converging to a solution in hundreds of iterations. By effectively utilizing

the parallel infrastructure, we converge to solutions in a few tens of iterations.

7. Conclusion

In this paper, we combined three tools from the PERI research project – the ROSE

outliner, the CHiLL transformation and code generation framework, and Active

Harmony – to create a general-purpose offline auto-tuner that can handle arbitrary

program components and full applications. We demonstrated the benefits of the

system on a real scientific application benchmark — SMG2000. We showed how

these three components complement each other and work together to create an

integrated framework that supports automatic compilation and parallel search and

finds code variants that perform 2.37 times faster than the original code.

In the future, we plan to extend this work to production-sized applications.

Currently, we are working with the PFLOTRAN [19] developers to apply our system

to tune their code. We also plan to extend this work to provide online tuning for

large-scale scientific applications.
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