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Abstract 

Many geoscientific applications involve boundary value problems arising in simulating 

electrostatic and electromagnetic fields for geophysical prospecting and subsurface imaging of 

electrical resistivity. Modeling complex geological media with three-dimensional finite 

difference grids gives rise to large sparse linear systems of equations. For such systems, we have 

implemented three common iterative Krylov solution methods on graphics processing units and 

compare their performance with parallel host-based versions. The benchmarks show that the 

device efficiency improves with increasing grid sizes. Limitations are currently given by the 

device memory resources. 
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1 Introduction 

Modern graphics processing units (GPUs) are designed for efficiently manipulating computer 

graphics. Their highly parallel architecture makes them also suitable for compute-intensive 

scientific applications. To provide access to the multithreaded computational resources and 

associated memory bandwidth of GPUs, graphics hardware manufacturers have introduced new 

application programming interfaces enabling numerical calculations in a fashion similar to 

parallel computing paradigms. 

A large class of geo-scientific applications involves boundary value problems arising in 

simulating electromagnetic (EM) and magnetotelluric (MT) fields for geophysical prospecting 

and subsurface imaging of electrical resistivity. Often the need is to simulate such fields in 

complex three-dimensional (3D) geological media. Finite difference techniques have been our 

methods of choice for complex simulation problems of this sort (Commer and Newman, 2008), 

and give rise to large sparse linear systems of equations of the form 

 N N A x b . (1) 

The non-singular matrix A is either real-symmetric, 
N NA , or complex-symmetric, 

N NA , and the solution and right-hand-side vectors are , /N Nx b , respectively. The size 

of such systems arising from 3D EM simulations prohibits usage of direct solvers. Thus, iterative 

Krylov subspace techniques are commonly used.  

1.1 Iterative Krylov subspace methods 



Krylov subspace methods are defined as projection (Galerkin) or generalized projection (Petrov-

Galerkin) methods for the solution of the linear system (1). The solution involves constructing 

the Krylov subspace Km, 

    1

0 0 0 0, , , , m

m mK K span  A r r Ar A r  (2) 

Starting with the residual vector, 0 0 r b Ax , Krylov methods compute the optimal 

approximation 0m mK x x  to the solution of (1) in an iterative manner, where at each iteration 

the dimension m of K is updated. Krylov methods are named after the Russian applied 

mathematician and naval engineer Alexei Krylov, who published a paper on this topic in 1931 

and formed the basis from which all Krylov methods later developed. 

1.2 Krylov solvers used in geophysical resistivity prospecting 

A common near-surface application is the DC resistivity method, where a DC (or a very low-

frequency) current is introduced as a means of studying earth electrical resistivity, for example in 

groundwater mapping. Time-harmonic EM prospecting methods with larger penetration depths 

use transmitter frequencies below roughly 100 kHz. The Krylov solvers of interest for these 

applications are designed to handle linear systems where A is real/complex symmetric. For the 

real symmetric case, the conjugate gradient (CG) method of Hestenes and Stiefel (1952) is the 

method of choice. While in practice rounding errors introduce a loss of orthogonality in the 

conjugate directions, CG performs excellently when solving sparse linear systems that are 

reasonable well conditioned. CG can also be applied to any Hermitian (complex) linear system 

that is symmetric positive definite. For the complex symmetric case, where the matrix is non-

Hermitian, the bi-conjugate gradient (BiCG) method first proposed by Lanczos (1952) and quasi 



minimum residual (QMR), more recently proposed by Freund and Nachtigal (1991) and Freund 

(1992), are effective and cost efficient solvers.  

The main computational burden of Krylov methods lies in a sparse matrix – vector (SpMV) 

product that occurs hundreds to thousands of times and is needed to iteratively construct the 

Krylov subspace. This subspace forms the basis from which the solution to equation (1) is 

constructed. The remaining operations with a significant computing percentage are dense linear 

algebra operations on vectors. To exploit the GPU throughput, a key point is parallelizing these 

operations in a way that fits the highly parallel device hardware architecture.  

For the present performance study, we have developed three iterative solvers relevant for solving 

electrostatic, frequency-domain EM, and MT modeling problems on GPUs. In Section 2, we 

briefly introduce the relevant underlying equations, and describe their solution with a finite-

difference (FD) technique. In Section 3, the GPU-specific methodology is introduced, before 

comparing the performance of our GPU Krylov solvers against different parallel CPU 

counterparts in Section 4. 

2 Method 

The BiCG and QMR methods are widely applied for modeling time-harmonic eddy current 

problems (e.g., Sarkar, 1987; Smith et al., 1990; Wang and Jin, 1998; Gersem et al., 1999). In 

contrast to typical engineering applications, geophysical EM responses involve the solution of 

Maxwell‟s equation in the quasi-static limit, where EM diffusion dominates (Alumbaugh et al., 

1996). Simulations with both an AC and DC transmitter type can involve a real or a complex 

tensor for describing the earth‟s electrical resistivity. Therefore, we also consider complex 

arithmetic for the electrostatic problem. We choose the FD method over the integral equation 

method because of the ability to employ fast iterative solvers. Finite elements (FE) are superior 



for simulating topographically complex structures, an aspect which becomes more important 

with higher excitation frequencies (as in radar methods). While this may be open to debate, 

considering the diffusive domain of our applications, we have concluded that the FD method 

offers more advantages over FE. Using our solvers in computationally expensive imaging 

methods, efficient grid separation strategies play a key role in keeping computing times at bay, 

where the regularity of 3D Cartesian FD meshes allows for a straightforward implementation of 

an elaborate material averaging scheme (Commer et al., 2008). In our case, the complex 

conductivity (reciprocal of resistivity) tensor for a 3D Cartesian FD grid cell is the diagonal 

tensor 
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σ , (3) 

where xx, yy, and zz denote the directional (real or complex) conductivities sampled on a FD 

grid cell‟s x-, y-, and z- edges. 

2.1 Finite-difference solution of wideband electromagnetic problems 

The time-harmonic EM field simulation leads to the vector Helmholtz equation, where the 

unknowns are given by the components of the vector electric field, E, 

 0 0i i    E σE J  (4) 

In this formulation, 0 and =2f denote the free-space magnetic permeability and angular 

frequency, where f is measured in Hz. The FD discretization of (4) is illustrated in Figure 1, 

where each node has three designated field components Ex, Ey, and Ez, as depicted for the center 

node (i,j,k). Hence, given a mesh size (in nodes) of NxNyNz, the size of ANN resulting from (4) 



is N=3 NxNyNz. The FD discretization of the curl-curl operator results in a maximum number 

of 13 nonzeros per row. For example, all black arrows in Figure 1 are the field components 

involved in forming Equation (4) for the component Ex at the center node (i,j,k). Similarly, the 

red and blue arrows pertain to Ey(i,j,k) and Ez(i,j,k), respectively. This scheme leads to a sparse 

pattern as exemplified in Figure 2a.  

Higher order difference schemes produce similarly sparse systems that can also be effectively 

solved using Krylov methods, but will come at added expense because of increased matrix 

bandwidths. For EM type problems, the need to go to higher order schemes is mitigated because 

calculations are performed out to several wavelengths, hence grid dispersion problems, which 

can be treated with higher order schemes, do not typically arise. 

2.2 Finite-difference solution of electrostatic problems 

The electrostatic problem gives rise to the Poisson equation, a partial differential equation of 

elliptic type, 

    σ φ J , (5) 

where J represents the DC source current distribution impressed by a galvanic source type. The 

numerical solution of (5) on a 3D FD grid is also illustrated in Figure 1. Here, the unknowns are 

given by the potential field vector  and are node-based, thus leading to a matrix size of 

N=NxNyNz. Exemplified by the green nodes, updating  at the central node (i,j,k) involves a 7-

point stencil, with a maximum of 7 nonzeros per row. The sparse structure resulting from 

Equation (5) is shown in Figure 2b. 

3 Parallel iterative Krylov solvers 



For low-level GPU access, we employ CUDA from NVIDIA, a parallel computing architecture 

that provides low-level access to GPUs through a C/C++-type programming language with 

NVIDIA extensions. All CUDA implementations of the three employed Krylov methods, namely 

CG, BiCG, and QMR, were reprogrammed from our original parallel FORTRAN90 EM 

modeling algorithms. The reader is referred to the works of Alumbaugh et al. (1996) and 

Commer et al. (2008) for details related to the massively parallel aspect of these simulators. Our 

FORTRAN90 versions, also referred to as CPU solvers in the following, do not rely on any 

external libraries. We found that the flexibility of general purpose library packages often comes 

at the expense of not achieving the optimal performance for specific problems. Nevertheless, we 

also provide timing results from external (CPU) solvers in order to relate our benchmarks to 

commonly applied library packages. Specifically, we employ the CG solver contained in the 

parallel solver library Aztec, version 2.1, (Tuminaro, 1999). For the BiCG and QMR methods, 

we employ the Portable Extensible Toolkit for Scientific Computation (PETSc, version 3.1) 

(Balay et al., 2010). Note that we did not make use of any external GPU library for SpMV. 

We use Jacobi scaling as a default preconditioner for all Krylov solvers employed here. Being 

called only once before the call of the Krylov solver, it has proved good efficiency over a 

number of other preconditioners investigated for wideband EM problems (Alumbaugh et al., 

1996). Even with Jacobi scaling, solving equation (4) in the low-frequency range - f<0.1 Hz is 

common in MT applications - is hindered by a badly conditioned system due to the null space of 

the curl-curl operator. Removing this null space can be accomplished by a preconditioning step 

which decomposes the electric field into curl-free and divergence-free projections using the 

Helmholtz theorem. However, owing to additional memory overhead, this low-induction-number 

preconditioner (Newman and Alumbaugh, 2002) is not part of our current GPU implementations. 



3.1 Sparse matrix-vector multiplication on GPU 

Owing to the relatively low operation count versus memory access count in SpMV involved in 

the solution of (4) and (5), memory bandwidth is a major limiting factor in the iterative Krylov 

solver performance. Poor cache utilization and extra load operations due to non-optimal matrix 

storage can decrease the performance of SpMV, because with modern hardware, cache miss 

latencies dominate latencies due to operations. While with irregular sparsity patterns, the number 

of cache misses can increase significantly, the matrix types of our applications are characterized 

by a regular sparse structure (Figure 2). For such types, where the number of non-zeros per row, 

K, is almost constant, the sparse ELLPACK (or ELL) storage format is particularly suited (Bell 

and Garland, 2009). The ELLPACK format stores the nonzero values in column-major order, 

filling a dense N-by-K data array, where rows with less than K non-zeros, pertaining to mesh 

boundaries, are zero-padded. The corresponding column indices are stored in another column-

major ordered integer array, with the padding entries pointing to zeros.  

Each thread of the GPU carries out the multiplication of one matrix row. Because the 

overwhelming majority of the rows have the same number of non-zero elements, almost no 

threads sit idle waiting for the rest of the warp to complete. By using a column-major ordering of 

the data, contiguous threads in a warp access contiguous global memory banks, thus maximizing 

memory throughput and avoiding memory bank conflicts. Other multiplication strategies were 

tested, including the schemes outlined by Bell and Garland (2009), where the one described 

above was the most efficient. We found no performance advantage when assigning multiple rows 

to one thread. 

3.2 Other optimizations for iterative solvers 



The Krylov solvers involve other dense linear algebra operations such as vector sum, vector 

scaling, and dot products. Table 1 lists the number of operation counts for each solver. To further 

reduce the memory bandwidth, several BLAS calls were fused into a single kernel whenever 

possible, such as vector scaling followed by a dot product. This cuts the number of memory 

accesses roughly in half. Speeding up these vector operations, becomes beneficial for more 

complex algorithms such as QMR, where the computing effort spent outside the matrix vector 

multiplication is significant. The kernels were optimized for the NVIDIA Tesla C2050 (Fermi); 

in particular no attempt was made to load the input vector to shared memory, instead relying on 

the L1 cache to limit the number of accesses to global memory. The kernels were configured to 

prefer L1 cache over shared memory. This provides 48KB of L1 cache per Streaming 

Multiprocessor instead of the default 16KB, but the performance improvement obtained was 

marginal. 

While not pursued further in this work, cache utilization can be further optimized by matrix 

bandwidth reduction techniques and alternative data structures (Pɪnar and Heath, 1999; Toledo, 

1997; Xu et al., 2010). To estimate the potential of reducing the bandwidth of A for our 

implementations, we run the QMR solver for a number of grid sizes ranging from N=3.810
5
 to 

N=6.610
6
. The matrix column indices were arbitrarily reordered to reach the theoretically lowest 

bandwidth of 13. While obviously not leading to solution convergence, we are only interested in 

the computing speedup compared to the actual matrix profile. Figure 3 indicates that the speedup 

becomes more significant with increasing N. However, it remains relatively modest given that 

the shown computing times pertain to the lowest bandwidth possible. For our CPU QMR solver 

(a), we obtain an average speedup of 3.4%. For the GPU QMR solver (b), the average is 10.8% 

which is in accordance with similar findings by Xu et al. (2010).  



4 Krylov solver performance comparisons 
 

All following CPU benchmarks were performed on a general purpose GPU testbed with 8 cores 

per compute node and a node configuration as follows: 2 Intel 5530 processors, 2.4 GHz, 8MB 

cache, 5.86GT/sec QPI Quad core Nehalem, where QPI stands for QuickPath Interconnect by 

Intel for high interconnect performance. Table 2 summarizes hardware and software 

specifications. The employed CPU solvers use 8 cores (one node) of the parallel cluster. Note 

that a higher memory bandwidth and thus faster solution can be achieved by distributing the 

problem across the same number of nodes, using one core per node. However, we restrict 

ourselves to the case that would be more realistic in a multi-user environment. The employed 

compute node is connected to an NVIDIA Tesla C2050 (Fermi) GPU with 3 GB of memory and 

448 parallel CUDA processor cores.  

It is our experience that, depending on the spectral norm of the underlying matrix, the three 

employed Krylov methods require several hundreds to thousands of iterations for achieving 

acceptable solution accuracies for typical EM modelling problems. Therefore, we use a fixed 

number of 1000 solver iterations for each timing data point and report the actual solution times in 

seconds. For our applications, this measure is preferable, owing to more practicality for 

geophysical imaging applications, where one imaging experiment requires a large number of 

solutions of equation (1) (Commer et al., 2008). 

4.1 CG solver for electrostatic simulations 

We first compare our GPU implementation of a CG solver with benchmarks obtained from two 

different CPU implementations. In addition to our original FORTRAN90 version of the CG 

method, we also compare our GPU implementation against the CG solver provided by the Aztec 



library (Tuminaro et al., 1999). Because ELLPACK is not supported by Aztec, the chosen matrix 

storage format is the distributed modified sparse row format, which is a generalization of the 

modified sparse row format. 

Figure 4a shows that the performance difference between CPU and GPU solvers becomes more 

prominent with increasing matrix size, N, shown on the abscissa in units of millions. Here, the 

matrix results from a sample modeling problem that involves solution of Equation (4). The 

largest matrix size shown here would represent a 3D FD grid of node size 250  250  250. The 

GPU solver achieves a 2.8 fold speedup compared to its CPU equivalent. Furthermore, compared 

to the library version (named Aztec-CPU in Figure 4a), the speedup factor is 5. With 8 CPU 

cores, these factors would amount to 22.4 and 40, respectively, when expressed in terms of a 

single core. Also shown is the memory consumption by the square symbols. At the same time, 

these symbols denote sample points where actual calculations for the timing data were carried 

out. The parallel efficiency can be assessed in Figure 4b by the achieved memory throughput 

(black symbols).  Relating the bandwidth to its peak, one observes that for the CG solver, 

because of L1 caching, we exceed the theoretical bandwidth for matrix sizes with more than 10
6
 

matrix rows. 

4.2 BiCG and QMR solver for frequency-domain EM simulations 

The BiCG solution times are presented in Figure 4c. The sample modeling problems considered 

here were taken from a CSEM imaging experiment involving data measured over the Troll gas 

reservoir in the North Sea (Commer and Newman, 2008). The biggest sample problem fitting 

into the memory of the employed GPU device is exemplified by a mesh size of 132  132  132. 

For the marine CSEM data simulation of the Troll survey, the GPU‟s resources are absolutely 



sufficient. Figure 4c exhibits a performance trend similar to the CG solution times for the three 

different BiCG solvers. Again, the results indicate an increasing performance difference with 

larger meshes. Note that the PETSc benchmark was obtained from the performance-optimized 

(non-debugging) build for complex double precision. Because of a higher operation count, 

compared to CG, the peak bandwidth is not exceeded, however does get close to the theoretical 

maximum (Figure 4d). 

At last, we summarize QMR performance measurements in Figure 4e. The QMR solver is 

favorable because it combines the advantage of BiCG, namely the relatively low memory and 

computational overhead, with smoother convergence properties. The convergence behavior of 

QMR follows from a least-square solution of the reduced tridiagonal system produced by the 

Lanczos process; this is similar to the approach followed in the generalized minimal residual 

method (GMRES). Since the constructed basis for the Krylov subspace is biorthogonal, rather 

than orthogonal as in GMRES, the obtained solution is viewed as a quasi-minimal residual 

solution, which explains the name. QMR also exploits look-ahead techniques to avoid 

breakdowns in the underlying Lanczos process. This makes it more robust than the BiCG method 

at the expense of a slightly higher computational overhead. Like CG, both BiCG and QMR 

solvers use short recurrences, as opposed to long ones in GMRES.  To avoid the loss of 

orthogonality, longer term recurrence relations, at higher computational expense, could be used 

as in GMRES, which renormalizes the conjugate directions against a subset of pre-determined 

ones through a Gram-Schmidt orthogonalization process. 

The GPU QMR solver achieves an acceleration factor of 2.4 and 4, compared to the CPU 

counterpart and the solver provided by PETSc, respectively (again, using 8 CPU cores). PETSc 

provides two types of QMR solvers, where we used the transpose-free QMR method, being the 



most comparable to our implementation. Compared to CG and BiCG, QMR has the highest 

operation count, which reflects in a lower memory throughput (Figure 4f). 

5 Conclusions 

We have implemented efficient Krylov subspace methods for the iterative solution of linear 

systems with a large sparse matrix on GPUs. Our solvers are suitable for the simulation of 

electrical and electromagnetic simulation problems that arise in geophysical resistivity 

prospecting. All shown timing comparisons clearly indicate the increasing efficiency of the GPU 

solvers for increasingly larger matrix sizes. For the largest problems exemplified, the GPU 

performance is equivalent to almost 23 (CG) and 19 (BiCG, QMR) CPU cores, when comparing 

to the faster CPU solvers that do not use external libraries.  

As outlined in detail in a previous work (Commer and Newman, 2008), our EM field simulation 

code achieves computational efficiency by a FD grid optimization scheme for the underlying 

forward modeling operator. This scheme optimizes grid spatial extension and sampling, taking 

the survey characteristics of a given modeling scenario into consideration. However, to address 

both computing and memory needs of systems arising from typical large-scale exploration 

applications, we still need to distribute the solution of (1) across the order of 100 CPU cores or 

more. 

We are exploring a corresponding GPU approach, i.e. solving one system on multiple GPUs.  

CUDA‟s direct GPU-to-GPU communication is one approach. However, it is limited to the 

number of GPUs connected to one host node, as communication is not possible across the 

network. Therefore, a non-blocking MPI device-host-device communication will also be 

investigated. 
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Tables 

 

              Operation     CG  BiCG  QMR  

Matrix-Vector multiply    1                         1                      1     

Vector dot product     3      3                 4      

Vector addition/subtraction    3      3                      6       

Vector constant multiply    3                         3                      9 



 

Table 1: Operation counts per iteration for the three Krylov solvers. 

 

 

 CPU GPU 

Node configuration 2 Intel 5530 2.4 GHz, 8MB 

cache, 5.86GT/sec QPI Quad 

core Nehalem, 8 cores per 

node 

NVIDIA Tesla C2050 (code 

named Fermi), 448 parallel 

CUDA processor cores 

Memory 24GB DDR3-1066 Reg ECC  3GB 

Compiler pgf90 –O2 nvcc –O2 –arch sm_20 

Programming language FORTRAN90 with MPI 

library OpenMPI 1.4.2 

CUDA 3.2 with CUBLAS 

library 

 

Table 2: Hardware and software specifications of the GPU testbed used for the Krylov solver 

performance tests. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 



 
Figure 1: The staggered finite-difference grid for discretization of the 3D Helmholtz and Poisson 

equations. Electric field components are assigned to each grid node and are shown by arrows. 

The center node (i,j,k) has the three designated components Ex, Ey, and Ez shown by three-

colored arrows. All black, red, and blue arrows mark the field components which go into 

constructing the matrix rows corresponding to Ex, Ey, and Ez, respectively, at (i,j,k). The seven-

point stencil for the discrete Poisson equation is shown by the green-bordered circles. Electrical 

conductivities are assigned to individual grid nodes. The conductivity tensor (3) is then derived 

through a proper material averaging scheme (Commer and Newman, 2008). 
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Figure 2: Sparse structure of matrix A in Equation (1) resulting from Helmholtz (a) and Poisson 

equation (b). 



 
 

Figure 3: Performance improvement for different matrix sizes, where the sparse matrix resulting 

from Equation (4) has the ideal bandwidth of 13 (blue), compared against the actual bandwidth 

(grey). CPU (a) and GPU (b) computing times are for 1000 QMR iterations. 

 

 

 

 

 

 

 



 

 

Figure 4: Solution times for the three different iterative Krylov solvers, CG (a), BiCG (c), and 

QMR (e). The solid lines correspond to the left y-axis and show the computing times in seconds 

required for 1000 Krylov iterations. The symbols pertain to the right y-axis and denote the 

requirements for storing all Krylov solver data structures in memory. Each GPU implementation 

is compared against its original parallel FORTRAN90 version, as well as a parallel solver 

provided by an external library. All CPU solvers were run on 8 processor cores. The 

corresponding memory throughput for each GPU solver is shown in the lower row (b,d,f). 
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