
Efficient parallelization of a regional ocean model for the
western Mediterranean Sea

M Luisa Córdoba1, Antonio García Dopico1, M Isabel García1, Francisco Rosales1,

Jesús Arnaiz1, Rodolfo Bermejo2 and Pedro Galán del Sastre2

Abstract
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architec­
tures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used.
To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the
hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization;
secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to
distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each
parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean
Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show
the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus
using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and commu­
nication times as well as the communication and synchronization overhead due to parallelization.

1. Introduction
For an in-depth study of climate change, models are being
developed that reproduce the main processes that take place
in the five components of the climate system: atmosphere,
hydrosphere, geosphere, biosphere and the exchange of
mass and energy between them. These models are validated
by comparing their results with the observations made in
recent decades and the results of other models.

This paper describes a regional climate model, devel­
oped by some of the authors (Gallardo-Andre´s et al.
(2010), with a high temporal and spatial resolution centred
on the western Mediterranean basin. This basin is character­
ized by complex coastlines and strong topographical features
such as the Alps, the Pyrenees, the Apennines, the Balkan
mountain ranges, the Italian and Hellenic peninsulas and
large islands (Balearic islands, Sicily, Sardinia, Corsica,
Crete and Cyprus). Together these all contribute to the
existence of strong air–sea interactions in the region, with
considerable influence on the Mediterranean circulation.
This climate model has two main components: an ocean
model, MOSLEF, and an atmospheric model, PROMES.
As they are coupled by OASIS, a coupler software, they must

advance at the same pace. Both are memory-demanding and
computationally very expensive, due to the complexity of
the simulated system, the huge time intervals involved and
their high spatial resolution. This results in unacceptably
high simulation execution times which increase even
more depending on the temporal and spatial resolution or
time interval required. This calls for parallelization and
although an atmospheric model using parallelization
already exists (Garrido et al. 2009), its accompanying
ocean model was still sequential.

Most of the ocean models developed have been paral­
lelized (Sannino et al., 2001; Luong et al., 2004; Fringer
et al., 2006; Cowles, 2008; Henshawa and Schwende-
manb, 2008; Wang et al., 2010; Tseng and Chien,

1 Computer Architecture, Universidad Polite´cnica de Madrid, Spain
2 Applied Mathematics ETSII, Universidad Polite´cnica de Madrid, Spain

Corresponding author:
M Luisa Co´rdoba, Computer Architecture, Universidad Polite´cnica de
Madrid, Spain.
Email: mcordoba@fi.upm.es

mailto:mcordoba@fi.upm.es

2011). Each of these has its own characteristics such as the
type of mesh used, how the mesh is divided, how the dif­
ferent submeshes overlap, how the workload is distributed
between the processing units, if they are models for dis­
tributed or shared memory computers, and the program­
ming model used.

The initial objectives of the parallelization of the ocean
model described in this paper were i) to efficiently exploit
the characteristics of the most common parallel architec­
tures used in high performance computing: multicore pro­
cessors and clusters; ii) to demonstrate the viability of
parallelization, which was not obvious due to possible
adverse effects of data dependencies on final speedup (see
Wang et al., 2010); iii) to study its scalability for different
architectures; iv) to combine or use different paralleliza­
tion techniques simultaneously; and most importantly,
v) to achieve the highest possible speedup.

For parallelization on multicores the authors have cho­
sen OpenMP (2013) because it introduces few changes in
the source code, addressing the parallelization of the com­
putationally most demanding mathematical functions. For
parallelization on clusters the authors have chosen MPI
(2012) as it is the most commonly used for this environ­
ment, addressing parallelization by distributing data. In
addition, one of the initial premises was to use both tech­
niques simultaneously as all modern clusters are composed
of multicore nodes. All the different versions, sequential,
OpenMP, MPI and MPI-OpenMP, share the same source
code avoiding typical mistakes when several source codes
must be maintained simultaneously.

To evaluate the performance of the parallelized applica­
tion we have worked with two meshes for the western Med­
iterranean Sea. The first one is a medium-size mesh that
consists of 35 depth layers in the vertical coordinate and
a horizontal triangular mesh with 24, 495 mesh points: this
yields a total of 857,255 mesh points in the three-
dimensional mesh that it translates into 6 x 106 unknowns
to be calculated every time step. The second mesh is a finer
and larger mesh, particularly in the vertical coordinate,
consisting of 69 depth layers and 33,275 mesh points in the
horizontal triangular mesh: this yields 1.6 x 107 unknowns
to be calculated every time step. One year of simulation
with the sequential application takes 253.5 hours of CPU
time with the medium-size mesh and 4518.6 hours with the
large mesh; however, using the parallelized application
these CPU times are reduced to 7.6 hours for the medium
mesh with 128 processors, and 61.6 hours for the large
mesh with 256 processors.

The rest of this paper is organized as follows: Sections 2
and 3 are devoted to the mathematical and numerical ocean
model respectively; Section 4 describes the strategies used
for parallelization of the ocean model; Section 5 explains
the main details of the distributed version; Section 6 shows
the results obtained with these parallelizations; Section 7
studies the performance and scalability of the paralleliza­
tion strategies used in the paper; and finally, Sections 8 and
9 describe the conclusions and future work.

2. The ocean model equations

The ocean is a stratified and slightly compressible Newto­
nian fluid in a rotating Earth driven by the wind stress and
fluxes of heat and freshwater acting on the sea surface. The
governing equations of the model, which are known as the
primitive equations (PEs) of the ocean circulation, describe
the temporal evolution of the flow velocity, temperature
and salinity of the seawater plus the equation of state for the
density as a function of the temperature, salinity and depth.
The equations for the flow velocity are a reformulation of
the three-dimensional Navier-Stokes equations under the
Boussinesq and hydrostatic approximations; the tempera­
ture and salinity are governed by convection-diffusion
equations. Following Temam and Ziane 2004) we formu­
late the PEs for our regional model in a Cartesian coordi­
nate system (0,x,y, z). Let V3 be the three-dimensional
velocity vector of the flow and let (e1, e2, £3) be an ortho-
normal vector basis; then we set V3 = u + W{a)e3, where
u = we1 + ve2 is the horizontal velocity and W(u) denotes
the vertical velocity. Thus, letting D be the ocean domain
and Ts the ocean surface, we have for (x,y, z) e D and time
t > 0:

Momentum equation:

< % + u^ + v^+W^ +fu + 1 ^ ^ u H (^ + f2) + ^ z # 2
\ ot ox oy oz p0 oy \ ^x <v / "z

0
-Hdx ' dy

jr + 7rdz = 0, W(u)(x,y,z, t) = f jr-\-jrdz
OX (TV ' \ J \ 1 1 1 J Jz ox ov

z dx dy

(1)

Conservation equations for temperature, 61, and salinity,

d6i d6i d6i d6i

at ox oy oz
Ai — + ——

ox2 oy2

State equation for the density:

P — p(9ijz)

d 6t
+ h ?T 1 ! = 1, 2

oz2

(2)

3)

At t = 0, the velocity, temperature and salinity are pre­
scribed. Next, we explain the meaning of the symbols
which appear in the equations: p 0 is a constant reference
density,

p(x,y,z,t) — ps(x,y,i) + g / pdz
z

g being the modulus of the acceleration of gravity and ps

the surface pressure. Further, (—Jv,fu) denote the compo­
nents of the Coriolis force due to the rotation of the Earth.
At mid-latitudes, we can accurately approximate the t e r m /
byf=f0+[3(y— J 0) where j 0 is the y-component of the
latitude of reference 90, f0 = 2\W\ sin#0, /3 = 2\W\
cos 00/R, R being the radius of the Earth. The coefficients
VH, At denote the horizontal eddy viscosity coefficients for
the horizontal velocity, temperature and salinity respec­
tively, which we assume to be constant, and vz, kt are the

vertical eddy viscosity coefficients that are also assumed to
be constant.

Boundary conditions:
(1) On the top surface Ts (z = 0),

z OZ n

p0C„k1 dz

and W — 0

QT and f2 ^ — P?

where TW (X, y, t) denotes the wind stress vector, QT is the
net surface heat flux, Cp is the specific heat capacity and
Qs is the total surface flux due to evaporation, precipitation
and river runoff.

(2) At the bottom of the ocean (z = —H(x,y)) and on the
lateral solid boundaries,

u — v — W — 0,
d91 802

=
dii1 9ii2

0

where n,- = Ai(n1e1 + ^262) + kin3^3 and (n1 ,112, n3) is the
outward unit normal vector.

3. Numerical method

The main difficulties of equations (1) to (3) are the non­
linear convection terms u • V # u + W{a)d\i/dz and the
non-local character of the divergence constraint. We pro­
pose, in the framework of finite elements, a modified
Lagrange-Galerkin method introduced in Bermejo and
Saavedra (2012) and Bermejo et al.(2012), to integrate the
nonlinear convection terms, combined with a fractional
step projection method to deal with the divergence con­
straint. Let

DA c)A c)A c)A c)A
Dt ot ox oy oz

be the total derivative of A, where A may represent either
the velocity vector or the temperature and the salinity. The
Lagrange-Galerkin method approximates DA/Dt at time
instant tn+1 by the formula

DA(x,t)
Dt \t=tn

A(x, tn+1) — ACXix, tn+1; t„), t„)
A;

(4)

where X(x/„+1; tn) denotes the position at time tn of a par­
ticle that, moving with the flow velocity V3, will reach the
point x at the time instant tn+1. X(\,tn+1; tn) is called the
departure point at time tn associated with the point x. We
must note that X(x, tn+1; t) is the solution of the initial value
problem

dX(x, tn+1; t)
dt

— V3(X(x, tn+1; t), t), X(x, tn+1; tn+1) — x (5)

Next, making use of the approximation (4) in (2) we
approximate the temperature and salinity at time tn+1 by the
equations

ff! +1 9"(X 73,73+1

A;

x)) J (d2ff]
— Aj +

dx2 dy2 + h
2m+1

dz2 (6)

and the boundary conditions B(9"+1) on 3D. Projection
methods were proposed by Chorin (1968) and Temam

(1969) in the late 1960s to integrate the Navier-Stokes equa­
tions; see Guermond et al. (2006) for a recent overview of
projection methods for incompressible flows. Thus, follow­
ing this methodology we calculate the numerical solution to
(1) by the following two-step procedure.

(1) Viscous step.

Given u", u"_ 1 , W", Wn~1 and p", calculate u"+ 1 =
(w"+1, V " + 1) by solving the system

|.fj+1 / a2..fi+1 a2..fi+1 \ a2..fH-1 /-"•- I « I 1
A . l^l-f I ?T^ ~T~ ?T2 I i '7 ?T^ / 11
At J J \ OX2 Cjy J z (7Z2

 J At

nH(X(x,fH+1;fH))

At

Bun+1indD

-7^HPn
s-fVH

n « + 1 fly (7a)

2) Poisson equation step.
For all n > 1, calculate p"+1 by solving in Ts

(VH • {H(x,y)VH(p»+1 -fi)) = £ V* • S-mx,) «"+1 dz

H{x,y)-VH^ ' 8T

The velocity u"+ 1 is calculated by

II = = II
A;

p0
VH(P:

(7b)

(7c)

where V # = (d/dx, d/dy) is the gradient operator and
V/ r = (d/dx + d/dy) is the divergence operator. The ver­
tical velocity Wn+1 (u) is calculated by substitution of u"+1

into (1).

Remark 1 Note that if (p"+1 — p") is a solution of (7b) so is
(p"+1 —p") + K, where K is an arbitrary constant, so that,
in order to uniquely determine the solution p"+1 — p" we
require that f,. (p"+1 — p")dx dy = 0.

For space discretization of equations (6) to (7c) we use
finite elements because this method can easily work with
variable meshes that allow a better representation of the
irregular coastline and bottom topography as well as the
regions of strong variation of the flow. The finite element
mesh is composed of tetrahedra and we represent the velo­
city, temperature and salinity by piecewise quadratic poly­
nomials so that their values are calculated at the vertices
and mid-points of the edges of the tetrahedra, whereas the
vertical component of the velocity and the density are rep­
resented by piecewise linear polynomials and calculated at
the vertices. The surface pressure, represented by piecewise
linear polynomials, is calculated at the triangular faces of
the tetrahedra intersecting the upper surface. The finite ele­
ment formulation yields the following system of linear
equations.

(1) Temperature and salinity 6"+ = (6"+ , . . . , 9"^) :

(M + At(AiS1 + kiS2M +1 ?«+1 (8)

(2) Velocity U"+1 — ([/"+) :~ U"+1, • UCN

V
' CN

71 + 1 T

z

0

T

V1

(M + At(vnS1 + vA) AtF \ (Un+1 \ I Kit1 \
I I '*•-• I ~~ I i 1 I

—AtF M + At{VffS1 + vzS2) I V Vn+1 I Ry

(9)

(3) Pressure increment g j + 1 = PJ+1 - Pn
s := {pit1, .. . ,P"NP)T-

(n n \ T
{Ps1! . . . iPsNP)

AQ"s = D1 =*• P"S = Ql +p" (10)

(4) Velocity Un+1 = (Un+1, Vn+1) := ((U"+1,..., U^1) .
(n+1 / « + 1 \ T ^
IV1 ! . . . ! VCN)

M 0
0 M

U n+1
yn+1

M 0
0 M

U n+1
yn+1

(G n+1 \
+ I nn+1) (11)

(5) Vertical component of the velocity W := (W"

MiW n+1 T+1 (12)

M, S1, S2, F and A are all symmetric and sparse square
matrices, and ML is a diagonal matrix which is obtained
by row sum of the elements of the linear mass matrix.
We solve system (9) by a preconditioned Bi-CGSTAB
method with a diagonal preconditioner because it is a well
conditioned non-symmetric system so that this precondi­
tioner may yield an efficient parallel solver. The rest of the
systems are symmetric and solved by a preconditioned
Conjugate Gradien (CG) method with diagonal precondi­
tioner system (11) since the matrix is also very well condi­
tioned, and by the incomplete Choleski conjugate gradient
system (10); the solution of the latter system is calculated
by a single processor.

The scheme to calculate the solution (u"+1, Wn+1(u),
p"+1, 6"n+1) at time instant tn+1 is the following:

(1) Generate the grid and calculate the matrices of the
systems once and for all at time instant t = 0.

(2) For n = 1,2,... ,N do:
(2.1) For each vertex x, of the tetrahedra calculate

the departure point X(x(, tn+1; t„) by numeri­
cally solving the ordinary differential equa­
tions (5).

(2.2) Calculate the right-hand side of the systems
(8) to (12).

(2.3) Solve system (8).
(2.4) Calculate p"+1 by the equation of state.
(2.5) Solve the systems (9)–(12).

Several remarks are in order.

Remark 2 The Lagrange-Galerkin (LG) method used in the
model yields integrals of the form

K
0y(X(x, tn+1; £H))0,-(X(x, tn+1; t„)) (13)

that have to be approximated with high accuracy for the
method to maintain the theoretical stability and conver­
gence properties studied in Bermejo and Saavedra (2012)
and Bermejo et al. (2012). Here K is the tetrahedron

whose vertices are the points X(x,-, tn+1; t„) and {<f>i} is the
set of global basis functions of the finite element space. The
important point (in terms of CPU time savings) is that
the number of departure points to be calculated now is
M, M being the number of interior mesh points, instead
of NE x NCP, which is the number of the departure points
to be calculated in the conventional LG as presented in
Douglas and Russell (1982) and Pironneau(1982). Here,
NE is the number of elements in the mesh and NCP is the
number of quadrature points per element. The integrals on
rpn,n+1

A are approximated by high order quadrature rules in
the usual way of finite element technology. It can be proved
that our LG-projection method is unconditionally stable in
the Z,2-norm.
Remark 3 The calculation of the departure points
X(x,-,?n+1; t„) is done by the second-order implicit scheme
of Gonzalez Gutierrez LM and Bermejo (2005) using the
algorithm of Allievi and Bermejo (1997) to search the
points in the fixed mesh. The model can also use the
Runge-Kutta methods of order two and four of Xiu and
Karniadakis (2001).

Remark 4 An accurate calculation of the integrals (13)
yields a very small error fr.A

n(X(x,tn+1,tn) — fr.A
n(x),

in other words, the method has good global conservation
properties; nevertheless, we can improve the conservation
property, in other words, fr.A

n(X(x,tn+1,tn) = fr.A
n(x)

by adapting the conservative quasi-monotone semi-
Lagrangian scheme of Bermejo and Conde (2002) to the
LG finite element framework.

Remark 5 Since the LG-projection method is uncondition­
ally stable in the Z,2-norm, the model supports CFL num­
bers greater than one. This has an influence on the width
of the halo region because it has to contain the backtracked
elements {A" ' }; see Malevsky and Thomas (1997). In
fact, one may have two halo regions, namely, one halo for
the calculation of the integrals

/ <Ai(X(x, tn+1; £H))<A,-(X(x, tn+1; tn))
K

which depends on the CFL number, and another halo for
the solution of the elliptic problems. In the actual imple­
mentation of our model both halo regions are the same.

4. Parallelization strategy
The strategy chosen (Crainic and Toulouse, 2010) for par­
allelizing the sequential ocean model was to obtain maxi­
mum speedup while safeguarding the portability of the
parallel code as well as maintaining consistency with the
results obtained with the sequential version. This implied
efficient use of the resources of current cluster architectures
based on shared memory nodes (multicore processors). In
these systems, two levels of parallelism can be exploited:
parallelism between the nodes of the cluster and parallelism
between the multiple cores of a node. To exploit these

levels of parallelism, a previous exhaustive study of the
sequential application code was performed to find the main
sources of parallelism, emphasizing its two main compo­
nents, the processing task and the data to be processed. This
resulted in two possible and compatible approaches:

• Data decomposition. In this approach, the data to be
processed are decomposed so that each parallel task
processes a portion of the data. This solution allows
exploitation of the inter-node and intra-node paralle­
lism available in modern high performance comput­
ers, that is, distributing the data to be processed
among the cluster nodes and exploiting the multiple
cores available in each node.

• Functional decomposition. In this approach, the
focus is on the processing task rather than on the data
to be processed. The main idea is to break down the
processing task into multiple subtasks performing a
portion of the overall work to be executed in parallel.

The next step is to combine these approaches, as sug­
gested by other authors (Rabenseifner et al., 2009), to
obtain good performance in current hybrid architectures.
This involves employing a hybrid programming model,
that is, using OpenMP for parallelization inside each node
and MPI for passing messages between nodes.

4.1 Data decomposition: Inter-node parallelization

The data used to model the Mediterranean Sea consist of a
three-dimensional mesh with thousands of points on the
horizontal and several vertical levels. Unstructured grids
are also used in Fringer et al. (2006) and Cowles (2008)
while Sannino et al.(2001), Henshawa and Schwendemanb
(2008), Wang et al.(2010) and Tseng and Chien (2011) use
regular meshes and Luong et al. (2004) use a multiblock
grid, with rectangular and curvilinear grids. The advantage
of irregular meshes with respect to regular meshes is their
variable resolution. This allows refining of the mesh in
selected regions in order to solve small-scale dynamics and
strong topographical gradients. It also enables a better rep­
resentation of the topographical features of the ocean basin,
such as the Strait of Gibraltar and the Strait of Messina,
offering high resolution for specific areas. Some regular
meshes try to solve this problem by using an unstructured
mesh refinement to locally increase the resolution (Hen­
shawa and Schwendemanb, 2008).

A domain decomposition method has been used to dis­
tribute the simulation processing tasks among available
processors, that is, computing each variable for each mesh
point at each time step. Thus, the Mediterranean computa­
tional mesh has been horizontally decomposed into a set
of smaller submeshes which are distributed among the clus­
ter nodes. This is the classical approach to parallelize ocean
models on clusters (Sannino et al., 2001; Luong et al., 2004;
Fringer et al., 2006; Cowles, 2008; Wang et al., 2010; Tseng
and Chien, 2011), and it is also used for other similar

problems such as reservoir simulations (Shuttleworth et al.,
2009), although in our case the use of an unstructured mesh
makes it more difficult to distribute the mesh among the
cluster and to achieve good load balancing between all the
cluster nodes.

Each cluster node runs a copy of the processing task code
on its allocated submesh, while all the numerical algorithms
used are almost the same as in the sequential version. These
algorithms compute the values of each mesh point taking
into account the values of their neighbouring points. Thus,
to obtain the same results as with the sequential version, the
processor responsible for each submesh needs to be able to
consult points from neighbouring submeshes. Therefore an
overlapping domain decomposition method has been used:
a data slice has been added at the boundaries of each sub-
mesh, corresponding to neighbouring submeshes, in such a
way that all the submeshes overlap. An important difference
with respect to the classical approach is that each submesh is
updated in an almost independent way, in other words, the
initial linear equation system is substituted by N linear equa­
tion subsystems, one for each submesh, using almost the
same numerical algorithms in each node as in the sequential
version but applied to its submesh.

In order to guarantee a balanced workload between the
cluster nodes, a separate application has been implemented
that decomposes the overall computational mesh taking into
account the number of points in the horizontal model domain
and the number of requested processors, so that each cluster
node has a similar amount of work to do at each simulation
time step. Figure 1 displays a possible decomposition of the
Mediterranean basin into 32 submeshes.

This parallelization strategy has been implemented
using a message-passing programming model, through the
MPI library, as this model fits naturally into the distributed-
memory target architecture, which is effectively a cluster of
processors. The choice of MPI guarantees the portability of
the parallel code. The details of this distributed implemen­
tation are shown in Section 5.

4.2 Data decomposition: Intra-node parallelization

The study of the processing task has been performed using
the profiling tool Callgrind (Valgrind, 2012), and the pro­
file data visualization tool KCachegrind (KCachegrind,
2013), used for sequential and multi-threaded applications
performance analysis. These tools provide information
about the functions called during application execution and
display it as a call graph, including data about the caller–
callee relationship between functions, the number of calls
and the cost of each function.

A summary of the results obtained for a two-step simula­
tion of the ocean model is shown in Figure 2. This graph
shows the functions consuming more than 10% of the total
execution time. As can be seen Matrix_Vector_Product is
the most time-consuming function (83.85% of the total exe­
cution time) and therefore efficient parallelization of this
function has been taken into account to improve overall

Figure 1 . Decomposition of the western Mediterranean basin into 32 submeshes.

execution time. This function is employed in a special ver­
sion of the conjugate gradient method, and consists of a loop
that processes all the elements, one by one, used in the ocean
model and accumulating the obtained results in an array
representing the data domain. Mathematical libraries that
support BLAS (basic linear algebra subprograms) cannot
be used to implement this CG method as the ocean grid
is supported by a data structure representing the vicinity
of each node, instead of a traditional two-dimensional
matrix. The advantage of using this data structure is that
each element can be solved individually. This avoids clog­
ging up memory with huge matrices.

To deal with the parallelization of this function, a loop
parallelization approach has been implemented, following
a previous in-depth analysis of possible loop-carried depen­
dencies as well as the data used on each iteration. As there
are no loop-carried dependencies, loop-level parallelism
has been exploited using a shared memory programming
model, with OpenMP as the programming interface. Paral-
lelization was achieved using OpenMPdirectivestodistribute
the loop iterations among the threads, where the number of
threads corresponds to the number of CPUs available oneach
cluster node. Regarding the data used in the loop, the data
structure where values are accumulated on each iteration is
shared. Therefore, auxiliary private data structures have been
defined for each thread to avoid race conditions, and a critical
section has been declared where all the auxiliary data are
accumulated in the shared data structure.

This parallelization approach provides two advantages.
The first is that the use of OpenMP compiler directives
avoids the need to maintain separate sequential and parallel
code versions, and also provides different scheduling stra­
tegies for parallel loops and a portable code. The second
advantage is that it exploits the current multicore processor
characteristics, that is, multithreading and a shared memory

model that allows sharing of the common data used on each
loop iteration with a minimum latency cost (sharing cache
at L2 and L3 levels). The results obtained in terms of
speedup and scalability are shown in Section 7.

4.3 Functional decomposition

This approach has been analysed studying the sequential
dependencies between the different computations performed
in each simulation step, trying to break them down into multi­
ple subtasks that could be executed in pipeline mode. The time
consumed by these computations has also been measured,
resulting in an unbalanced solution. This is mainly due to the
velocity computation which employs most of the simulation
time (92%). Therefore this approach has been discarded.

5. Distributed implementation
The scheme to calculate the mathematical solution to the
physical model was described at the end of the Section 3.
The skeleton of the procedure to advance the simulation
one time step is the following:

1. Calculate the convective terms using the method of
characteristics, equations (5).

2. Calculate the temperature and the salinity, conserva­
tion equations (8).

3. Calculate the density, state equation (3).
4. Calculate an approximation of the horizontal velo­

city components, viscous step equations (9).
5. Calculate the pressure increment, Poisson equation

(10). As previously statedin Remark 1 (p. 6), the over­
all pressure for the full mesh should be conserved.

6. Calculate the final horizontal velocity components,
equations (11).

Figure 2. Sequential ocean model application call-graph view.

7. Calculate the vertical velocity component, equation
(12).

To achieve maximum scalability this initial sequential
implementation has been adapted to execute on clusters
of multicore processors through data decomposition. The
original input data of the full mesh are preprocessed and
divided into as many submeshes as needed. Then the clas­
sic master-slave approach has been applied. A special pro­
cess called ‘master’ coordinates the calculations performed
by a set of worker processes called ‘slaves’, each slave
being responsible for one of the submeshes the data was
divided into. There are several reasons for choosing this
approach rather than other more decentralized parallel
implementation approaches (Crainic and Toulouse, 2010):

• The master obtains a global state at the end of each
simulation step, providing a suitable point to easily
implement an application-snapshot mechanism. This

allows the execution point to be recovered in case of
system failure which is something that could happen
on long-term executions of days or weeks.
The one time-step simulation procedure is adapted to the
slaves reusing most of the original code but applying it
only to a subset of the original data. Code for data
exchanges between the slaves and the master is required
at specific points, but collective communication mechan­
isms are used to introduce as little delay as possible.
Thereisatleast one fundamentalcalculationineach simu­
lation step that needs to be solved globally for the entire
mesh as one unit, the calculation of the pressure incre­
ment. The proposed model provides a simple solution.
Good scalability. It scales well as long as the computa­
tion performed by the slaves compensates for the com­
munication needed between the master and the slaves in
order to distribute the input data, coordinate their work
and collect the output data.

Figure 3. Points used by a slave to calculate its submesh: kernel
points, belonging to that submesh, and halo points, width 1, which
are copies of points belonging to neighbouring submeshes.

The final performance of the simulation largely depends
on the slaves working over a set of well balanced submeshes,
because a synchronization barrier is needed at the end of
each simulation step and therefore the overall performance
depends on the slowest slave. This is the main goal of the
mesh division preprocessing, which is also a computation­
ally intensive application, though fortunately its resulting
division (see example in Figure 1) is computed only once for
each mesh and then reused many times. This is why it was
designed as an independent application.

The mesh division algorithm used adapts the k-means
(MacQueen, 1967) and Kernighan–Lin (Kernighan and Lin,
1970) algorithms to work on irregular meshes with non-
uniform point density. As in the case of other authors (Rivera
et al., 2010) our algorithm uses the Kernighan–Lin for local
refinement trying to simultaneously balance the number of
mesh points in each submesh and to minimize the boundaries
between the submeshes,in other words, balancingthe compu­
tational requirements for each submesh and minimizing the
communication needed. Other models use a different strategy
to balance the workload, such as that in Henshawa and
Schwendemanb (2008) which uses a bin packing algorithm,
the best-fit decreasing bin packing algorithm, or Luong
et al. (2004), which uses OpenMP to balance the workload
in a dual-level parallel code with MPI. Other authors rely
on libraries, such as Cowles (2008) who uses the METIS
library (METIS, 2013), or Fringer et al. (2006) who use the
parallel version, ParMETIS library (ParMETIS, 2013).

Aggregating the simulation results of each submesh does
not yield the same result as simulating the original full mesh,
in other words, completely separate calculations for each sub-
mesh are not possible. As shown in Figure 3 every slave also
needs to consult and compute points around its submesh,
known as ghost points (Luong et al., 2004; Henshawa and
Schwendemanb, 2008; Tseng and Chien, 2011) orhalo points
(Sannino et al., 2001; Cowles, 2008; Wang et al., 2010). This
implies not only more redundant computationin the slaves, as
can be seen in the following algorithm description, but also
the need to exchange some data between neighbouring slaves
through the master at every time step.

The widthofthe halo around each submesh is a fundamen­
tal parameter (Wang et al., 2010) for simulation accuracy but,

Figure 4. Master–slave system and intercommunication.

at the same time, has a significant impact on the amount of
both computation and communication required in the slaves,
as shown in Section 6.2.To improve load balancing and over­
all application performance a further refinement of the mesh
division algorithm was introduced, taking into consideration
the number of ghost points.

The following diagram (Figure 4) shows the interrelation
between the master and each slave in terms of algorithm
steps and communication. M1 to M5 are the messages ex­
changed with each other.

The basic algorithms followed by the master and the
slaves are the following.

Master algorithm

1. Application initialization. Send message M1 to each
slave with its submesh description and the corre­
sponding kernel points data.

2. Send message M2 to each slave with updated infor­
mation for its submesh ghost points corresponding
to the overlapping areas.

3. The pressure increment should be computed centra­
lized at the master and messages M3 and M4 are
exchanged.

4. Wait to receive message M5 from each slave with
the new state of its kernel points, and merge them
to compose the state of the global mesh. Here a
recovery snapshot is periodically saved.

5. Go back to step 2.

Figure 5. MPI functions used to transfer the halo points of all the submeshes, S1, . . . , S4, from the master to the corresponding slaves,
and the kernel points of all submeshes from the slaves to the master.

Slave algorithm

1. Wait to receive message M1 from the master with its
assigned submesh and the corresponding initial data.

2. Wait to receive message M2 from the master with
updated model information about the ghost points
around its submesh.

3. Compute one time step of the simulation applying
the original sequential procedure to its submesh,
including the ghost points.

4. The pressure increment should be computed centra­
lized at the master and messages M3 and M4 are
exchanged.

5. Send message M5 to the master with the new model
state corresponding to its kernel points.

6. Go back to step 2.

The master-slave system has been implemented using the
MPI standard. Thus, the application can be executed both on
distributed and shared memory cluster architectures. The first
MPI process plays the role of master. It performs the whole
initialization and then executes the coordination loop using the
collective transfer operations MPI_Scatterv and MPI_Gatherv
to efficiently communicate with the slaves (see Figure 5).

This kind of distributed parallelization is compatible
with other levels of parallelism within the multiple cores
or processors in each cluster node (with OpenMP or using
SIMD operations on those cores). The resulting speedup
obtained with all these parallelization strategies is shown
in the following section.

6. Methodology and viability

6.1 Methodology

The performance analysis of the different parallelization
techniques used in this paper for both shared and distributed
memory computers has been carried out on the supercompu­
ter Magerit at the CesViMa Supercomputing Center, whose
main characteristics are:

• 1036 eServer BladeCenter JS20 nodes, each one with
two PowerPC processors at 2.2 GHz (8.8 GFlops)

and 4 GB of RAM. There were up to 256 nodes avail­
able for our experiments.

• 168 eServer BladeCenter JS21 nodes, each one with
four PowerPC processors at 2.3 GHz (9.2 GFlops)
and 8 GB of RAM.

• The nodes are connected by a high performance opti­
cal fibre Myrinet. Gigabit auxiliary nets are also pro­
vided for control and management.

• 256 hard disks of 750 GB organized as a fault-
tolerant distributed file system (GPFS).

• SLURM/Moab job queue systems that guarantee
exclusive processor assignment to each job.

All the processing nodes operate independently and with
the same software configuration.

For the viability and precision study, simulations with
100 steps were executed. As the behaviour of the applica­
tion after initialization was quite similar for all the simula­
tion steps, the number of steps was reduced from 100 to 12
to evaluate the speedup, scalability and efficiency of the
parallel version, in order to reduce the huge number of
hours of simulation needed, as every simulation was exe­
cuted several times to avoid spurious data.

We tested the scalability by working with two meshes, as
mentioned in Section 1. In the first mesh the number of
unknowns to be calculated at every time step was 6 x 106,
whereas in the second mesh this number was 1.6 x 107.
Each data set was executed for 24 hours of simulated time,
corresponding to 12 simulation steps. Although the simu­
lated time is short, it is sufficient taking into account the
required number of repetitions of all experiments. The MPI
performance tests have been carried out using the MPICH
implementation and the xlc (IBM C) compiler. Execution
time, speedup and efficiency have been analysed in our
experiments, increasing the number of processors involved
in the ocean model simulation from 1 to 256.

6.2 Viability

It was expected that execution time would improve by
using a higher number of processors and a smaller submesh

Figure 6. Percentage of error-free points for horizontal velocity u and different halo widths (two, four and eight), with 16 submeshes
and after 100 simulation steps.

Figure 7. Precision of results versus number of submeshes (submesh size) shows that the halo width is the most important factor.

size. On the other hand, reducing the submesh size is also a
potential source of errors in the results. Correct results were
ensured by using enough ghost points around each submesh
to obtain the same results as with the sequential version.
However, introducing more ghost points also increases exe­
cution time as they need to be updated at every simulation
step. Experiments with different ghost strip widths (halo
widths) were performed and the influence of the submesh
size was also studied. Figure 6 shows the percentage of
error-free points (relative error < 1%) obtained at each
depth level for calculating the horizontal component of
velocity u for a halo width of two, four and eight rows of
points, 16 submeshes and 100 simulation steps. Tests in this
case consisted of more extended simulations to allow the

detection of cumulative precision errors. We tested the hor­
izontal velocity u because it has been demonstrated to be
the most sensitive to errors. It can be seen from this figure
that a halo width of two is clearly insufficient, as a signif­
icant part of the results includes errors, whereas a width of
four avoids this problem. A halo of eight rows shows
exactly the same behaviour as one with four, but the execu­
tion time is higher (see Figure 8).

Figure 7 shows the influence of the number of sub-
meshes on the precision of the results. For a halo width
of two rows of points around the submesh, the percentage
of error-free points decreases considerably as the number
of submeshes increases. For a width of four, the results are
almost free of error, even for a high number of small

Figure 8. Speedup obtained for different halo widths, using the
medium-size mesh with 16 submeshes and after 100 simulation
steps.

partitions (128 partitions). Results in this case are clearly
better than the best partition configuration using a ghost
area width of two rows. Thus, halo width is more important
for correct results than submesh size or number of parti­
tions. It can also be concluded that the minimum halo width
needed is four. Using this halo width, the simulation results
are the same as those obtained with the sequential applica­
tion, independent of the number or size of the submeshes.

It should be noted that as the halo width increases, the
computation and synchronization needed for every submesh
are also higher, and therefore the speedup decreases (see Fig­
ure 8). Therefore, halo widths above four do not improve the
quality of the results, but considerably decrease speedup.

A further conclusion is that ghost nodes are relevant for
effective load balancing, and have therefore been taken into
account in the mesh division algorithm as it was seen in
Section 5.

7. Performance and scalability
Performance results are presented considering speedup as
the performance gain achieved by the parallelization, that
is, the ratio of sequential execution time over the parallel
execution time. This classical definition of speedup differs
from other definitions which consider the serial time as the
execution time of the parallel application running on just
one processor of the parallel system. Efficiency is consid­
ered as the ratio of speedup to the number of processors,
and measures the fraction of time during which a processor
is usefully employed.

To analyse the speedup, several experiments varying the
number of processors have been conducted for the two par-
allelization strategies described in Section 4. First, the
speedup with shared memory multiprocessors was tested
using OpenMP, with configurations of two and four cores.
Then, the speedup with distributed memory was analysed
with configurations of 16, 32, 128 and 256 processor archi­
tectures. One processor played the master role, and the oth­
ers were working in parallel with each submesh (7, 15, 31,
127 and 255) as slave processors. And finally, the speedup

Figure 9. Speedup reached with OpenMP for two and four
processors after 12 simulation steps.

obtained combining both shared memory and distributed
memory strategies was examined.

7.1 Speedup

OpenMP. In Figure 9 the speedup obtained through paral-
lelization with shared memory multiprocessors can be seen
for different numbers of processors. This figure shows the
good performance obtained with this parallelization strat­
egy, as a speedup of 3.51 was reached using just four pro­
cessors for the large-size mesh. A lower speedup was
reached with the medium-size mesh, 2.55, due to the lack
of parallelism.

MPI. Figure 10 shows the speedup obtained with distrib­
uted memory multiprocessors using MPI, as the number of
processors increases from 1 to 256. This version offers
good scalability even up to 256 processors, reaching a
speedup of 53.09 for the large-size mesh. The speedup
obtained with the medium-size mesh is lower, 25.3, as the
computation time for each simulation step is shorter. The
limiting factor in this case is communication, as informa­
tion exchanges take almost the same time for both meshes.
Also, the performance does not scale at the same rate as the
number of processors, due to the following factors: commu­
nication overheads; some code regions such as the pressure
computation are naturally sequential; higher proportion of
ghost points with respect to kernel points at each submesh
and hence increased computational requirements; workload
balancing becomes more difficult with decreasing submesh
size; and the partitions produced by the division algorithm
are less uniform as the number of submeshes increases,
resulting in a higher workload. Therefore, there is no need
for the computational power offered by 256 processors when
dealing with small data submeshes.

Figure 10. Speedup obtained using MPI for 16 to 256 processing
nodes (15 to 255 submeshes) after 12 simulation steps.

Combining OpenMP and MPI. Figure 11 shows the
overall speedup obtained combining the two parallelization
techniques for different cluster configurations, achieving a
maximum speedup of 73.3 with 256 processors. This
hybrid parallelization strategy offers the best performance
as it exploits parallelism at different hardware levels and
enables more efficient use of the available resources in a
cluster using OpenMP for the processors in one node and
MPI for the different cluster processing nodes.

Using a large numberofsubmeshes limits the speedup due
to the low computation times needed for such small sub-
meshes as the parallelization overheads increase with the
number of submeshes. Using only MPI, with 256 processors
over 256 nodes, yields a speedup of 53.09 for the large mesh
(see Figure 10) whereas when using a smaller number of sub-
meshes (64) the speedup reachesupto 73.3 for the same mesh
and number of processors, 256 processors over 64 nodes. A
smaller number of submeshes means lower communication
costs and thus lower global computational requirements, and
a better ratio of kernel points/ghost points and therefore less
redundant computation and better workload balance.

Finally, Figure 12 shows the overall performance
obtained in the Magerit supercomputer with different cluster
configurations, considering all the parallelization techniques
proposed: both OpenMP and MPI alone and combined.

These global results show that the performance can be
considerably improved as the number of processors
increases, and therefore the ocean model simulation should
scale well when finer spatial and temporal resolution mod­
els are used. The medium mesh seems to reach the best per­
formance executing with 32 processing nodes and four
execution threads at each processing node, reaching a
speedup of 33.05. The graph suggests further potential
speedup for the large-size mesh if more than the 256 avail­
able processors are used.

Figure 11. Speedup using OpenMP and MPI simultaneously.

7.2 Efficiency

As the number of processors increases, efficiency decreases
as expected, but within levels that still allow high scalabil­
ity, as can be seen in Figure 13. Performance results show
that combining OpenMP and MPI not only yields better
speedup, but also improves efficiency. This hybrid
approach therefore seems to be the best choice to execute
the simulation application. Figure 13 shows how, for the
same number of processors, different parallel configura­
tions yield different levels of efficiency. For 64 processors
the best parallel option is MPI and OpenMP with two
threads when the medium mesh is used, but MPI and
OpenMP with four threads is better for the large-size mesh.
For 128 and 256 processors, using MPI and OpenMP with
four threads is the best solution.

7.3 Scalability of the master–slave model

The master–slave model used for the distributed memory
approach has some synchronization and communication
overheads that could limit scalability. As stated in Section
5 the master processor collects partial results from the
slaves, composes the global mesh and distributes results
among slave processors. Therefore, the performance of
the master is critical for global application performance,
as computations are performed sequentially, and the slave
processors have to wait. Figure 14 shows the average mas­
ter processor utilization versus average communication
and waiting times for 128 processors (127 submeshes).
The master utilization is only 28.19% and there are
no bottlenecks. Its rate of increase is smooth and there is
still room for further increase.

8. Conclusions

In this paper we have described and evaluated the paralle-
lization of an ocean model with an irregular computational
mesh for current cluster architectures based on multicore

Figure 12. Global speedup obtained using only OpenMP, only MPI and combining both paradigms.

Figure 13. Efficiency obtained for the two meshes using only MPI and combining MPI and OpenMP, with different numbers of processors.

processors. This parallelization simultaneously exploits all
the hardware levels of a cluster: intra-processor-level paral­
lelism using vectorization; the shared memory level on
each cluster node using OpenMP; and the distributed mem­
ory level between nodes using MPI. These techniques can
easily be adapted to suit different architectures, using
OpenMP to exploit the multiple cores of a computer or MPI
for clusters or a combination of both.

The speedup obtained is 3.51 using OpenMP with four
processors (Figure 9). Using MPI the speedup is 53.09 with
256 processors (Figure 10). The maximum speedup
obtained, by combining MPI and OpenMP, is 73.3 with
256 processors, using the large-size mesh, as can be seen
in Figure 11. These figures show that the parallelization
is very scalable and the limiting factor for reaching the
maximum speedup is the number of processors, in other
words, a higher speedup could be obtained using additional

processors. The best speedup is obtained by using MPI and
OpenMP together because the number of messages
between MPI processes needed to compute the model is
lower with OpenMP, and it also reduces the number of sub-
meshes needed, thus improving load balancing. Moreover
it reduces the ratio of halo points versus kernel points,
avoiding redundant computation.

The high speedup obtained offers scope for improving
both the model and the simulations, by increasing the tem­
poral and/or spatial resolution of the model to improve its
reliability and by performing much longer simulations to
analyse more realistic scenarios.

9. Future work
The first task at hand is to couple the new parallel ocean
model with the existing parallel atmosphere model, using a

Figure 14. Percentage CPU and communication time at master processor.

higher temporal and spatial resolution in order to exploit the
new performance of the parallel ocean model.

The authors are at present working on the complete Med­
iterranean basin model, and extending the parallelization
performance analysis to the complete basin is also planned.

The future scope for improvement of the proposed par-
allelization includes several options. A major improvement
would be to replace the current central algorithm for com­
puting the pressure with a distributed one, thereby avoiding
synchronization between each time step and the resulting
loss of speedup.

Another possible improvement is to use an N-workers
strategy instead of the master–slave approach. This offers
the advantage of removing the master as the indispensable
node for sending and receiving messages, thus making the
application more scalable. Currently the master is not a
bottleneck, but in the future, with an increased number
of processors, it could become a bottleneck and in this
way reduce the performance.

Another alternative to be explored is the use of parallel
mathematical libraries that support BLAS in order to solve
the linear equation systems by implementing typical algo­
rithms from the literature, such as the conjugate gradient,
to increase the portability and perhaps the performance.
In this way all the code of the Matrix_Vector_Product func­
tion could be replaced by a parallel and optimized library,
such as ACML (AMD Core Math Library), ATLAS
(Automatically Tuned Linear Algebra Software, from
Sourceforge), MKL (Intel Math Kernel Library) or the
Performance Library (from Oracle), adapting the data
structures to the chosen library.

Finally, an interesting alternative to explore is the use of
graphics processing units (GPUs) to execute the more expen­
sive computations, as GPUs offer enormous computing

power at quite a reasonable price. The use of GPUs would
offer very high performance for certain matrix calculations
required by the model. This could be achieved by imple­
menting certain particularly time-consuming routines at
GPU level. This solution could also be integrated into the
current solution, combining MPI, OpenMP and GPUs.

Acknowledgements

The authors thankfully acknowledge the computer resources,
technical expertise and assistance provided by the Centro de
Supercomputacio´n y Visualizacio´n de Madrid (CeSViMa)

Funding

This work has been developed thanks to the financial sup­
port of the Spanish Ministry of Science and Education
through the I+D national project CGL2007-66440-C04-
04/CLI.

References

Allievi A and Bermejo R (1997) A generalized particle search-
locate algorithm for arbitrary grids. Journal of Computational
Physics 132: 157–166.

Bermejo R and Conde J (2002) A conservative quasi-monotone
semi-Lagrangian scheme. Monthly Weather Review 130:
423–430.

Bermejo R and Saavedra L (2012) Modified Lagrange–Galerkin
methods of first and second order in time for convection–dif­
fusion problem. Numerical Mathematics 120: 601–638.

Bermejo R, Gala´n del Sastre P and Saavedra L (2012) A second
order in time modified Lagrange-Galerkin-finite element
method for the incompressible Navier-Stokes equations. SIAM
Journal on Numerical Analysis 50: 3084–3109.

Chorin AJ (1968) Numerical solution of the Navier-Stokes equa­
tions. Mathematics of Computation 22: 745–762.

Cowles GW (2008) Parallelization of the FVCOM coastal ocean
model. International Journal of High Performance Computing
Applications 22(2): 177–193.

Crainic TG and Toulouse M (2010) Parallel meta-heuristics. In: M
Gendreau and J-Y Potvin (eds) Handbook of Metaheuristics
(International Series in Operations Research & Management
Science, vol. 146). New York: Springer, pp. 497–541.

Douglas J and Russell TF (1982) Numerical methods for convection-
dominated diffusion problems based on combining the method of
characteristics with finite element or finite difference procedures.
SIAM Journal on Numerical Analysis 19: 871–885.

Fringer OB, Gerritsen M and Street RL (2006) An unstructured-
grid, finite-volume, nonhydrostatic, parallel coastal ocean
simulator. Ocean Modelling 14: 139–173.

Gallardo-Andre´s C, Gala´n del Sastre P and Bermejo R (2010)
PROMES-MOSLEF: An atmosphere-ocean coupled regional
model. Coupling and preliminary results over the Mediterra­
nean basin. In: 4th HYMeX workshop.

Garrido JE, Arias E, Cazorla D, et al. (2009) PROMESPAR: A
parallel implementation of the regional atmospheric model
PROMES. In: Proceedings of the world congress on engineer­
ing, London, UK, 1–3 July.

Gonza ĺez Gutie´rrez LM and Bermejo R (2005) A semi-Lagrangian
level set method for incompressible Navier-Stokes equations
with free surface. International Journal for Numerical Methods
in Fluids 49: 1111–1146.

Guermond JL, Minev P and Shen J (2006) An overview of projec­
tion methods for incompressible flows. Computer Methods in
Applied Mechanics and Engineering 195: 611–645.

Henshawa WD and Schwendemanb DW (2008) Parallel computa­
tion of three-dimensional flows using overlapping grids with
adaptive mesh refinement. Journal of Computational Physics
227(16): 7469–7502.

KCachegrind (2013) Profile data visualization. Available at: http://
kcachegrind.sourceforge.net (accessed 7 November 2013).

Kernighan BW and Lin S (1970) An efficient heuristic procedure for
partitioning graphs. Bell Systems Technical Journal 49: 291–307.

Luong P, Breshears CP and Ly LN (2004) Application of multi-
block grid and dual-level parallelism in coastal ocean circula­
tion modeling. Journal of Scientific Computing 20(2): 257–275.

MacQueen JB (1967) Some methods for classification and analysis of
multivariate observations. In: Proceedings of 5th Berkeley sympo­
sium on mathematical statistics and probability, pp. 281–297.

Malevsky AV and Thomas SJ (1997) Parallel algorithms for semi-
Lagrangian advection. International Journal for Numerical
Methods in Fluids 25: 455–473.

METIS (2013) Serial graph partitioning and fill-reducing matrix
ordering. Available at: http://glaros.dtc.umn.edu/gkhome/
metis/metis/overview (accessed 7 November 2013).

MPI (2012) MPI forum. Available at: http://www.mpi-forum.org/
(accessed 7 November 2013).

OpenMP (2013) OpenMP specifications. Available at: http://openmp.
org/wp/openmp-specifications/ (accessed 7 November 2013).

ParMETIS (2013) ParMETIS – Parallel graph partitioning and
fill-reducing matrix ordering. Available at: http://glaros.dtc.
umn.edu/gkhome/metis/parmetis/overview.

Pironneau O (1982) On the transport-diffusion algorithm and its
applications to the Navier-Stokes equations. Numerische
Mathematik 38: 309–332.

Rabenseifner R, Hager G and Jost G (2009) Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In:
17th Euromicro international conference on parallel, distrib­
uted and network-based processing.

Rivera CA, Henichea M, Glowinskib R, et al. (2010) Parallel
finite element simulations of incompressible viscous fluid
flow by domain decomposition with Lagrange multipliers.
Journal of Computational Physics 229(13): 5123–5143.

Sannino G, Artale V and Lanucara P (2001) An hybrid OpenMP-
MPI parallelization of the Princeton ocean model. In: Parallel
computing: Advances and current issues, pp. 222–229.

Shuttleworth R, Maliassov S and Zhou H (2009) Partitioners for
parallelizing reservoir simulations. In: Society of Petroleum
Engineers reservoir simulation symposium, The Woodlands,
Texas, 2–4 February.

Temam R (1969) Sur l’approximation de la solution des e´quations
de Navier-Stokes par la method des pas fractionnaires (II).
Archive for Rational Mechanics and Analysis 33: 377–385.

Temam R and Ziane M (2004) Some mathematical problems in
geophysical fluid dynamics. In: S Friedlander and D Serre
(eds). Handbook of Mathematical Fluid Dynamics. North-
Holland: Elsevier.

Tseng Y and Chien M (2011) Parallel domain-decomposed Tai­
wan multi-scale community ocean model. Computers & Fluids
45(1): 77–83.

Valgrind (2012) Instrumentation framework for building dynamic
analysis tools. Available at: http://www.valgrind.org/ (accessed
7 November 2013).

Wang G, Qiao F and Xia C (2010) Parallelization of a coupled
wave-circulation model and its application. Ocean Dynamics
60(2): 331–339.

Xiu D and Karniadakis GE (2001) A semi-Lagrangian high order
method for Navier-Stokes equations. Journal of Computa­
tional Physics 172: 658–684.

http://kcachegrind.sourceforge.net
http://kcachegrind.sourceforge.net
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.mpi-forum.org/
http://openmp.org/wp/openmp-specifications
http://openmp.org/wp/openmp-specifications
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.valgrind.org/

