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Abstract 
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architec­
tures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. 
To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the 
hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; 
secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to 
distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each 
parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean 
Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show 
the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus 
using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and commu­
nication times as well as the communication and synchronization overhead due to parallelization. 

1. Introduction 
For an in-depth study of climate change, models are being 
developed that reproduce the main processes that take place 
in the five components of the climate system: atmosphere, 
hydrosphere, geosphere, biosphere and the exchange of 
mass and energy between them. These models are validated 
by comparing their results with the observations made in 
recent decades and the results of other models. 

This paper describes a regional climate model, devel­
oped by some of the authors (Gallardo-Andre´s et al. 
(2010), with a high temporal and spatial resolution centred 
on the western Mediterranean basin. This basin is character­
ized by complex coastlines and strong topographical features 
such as the Alps, the Pyrenees, the Apennines, the Balkan 
mountain ranges, the Italian and Hellenic peninsulas and 
large islands (Balearic islands, Sicily, Sardinia, Corsica, 
Crete and Cyprus). Together these all contribute to the 
existence of strong air–sea interactions in the region, with 
considerable influence on the Mediterranean circulation. 
This climate model has two main components: an ocean 
model, MOSLEF, and an atmospheric model, PROMES. 
As they are coupled by OASIS, a coupler software, they must 

advance at the same pace. Both are memory-demanding and 
computationally very expensive, due to the complexity of 
the simulated system, the huge time intervals involved and 
their high spatial resolution. This results in unacceptably 
high simulation execution times which increase even 
more depending on the temporal and spatial resolution or 
time interval required. This calls for parallelization and 
although an atmospheric model using parallelization 
already exists (Garrido et al. 2009), its accompanying 
ocean model was still sequential. 

Most of the ocean models developed have been paral­
lelized (Sannino et al., 2001; Luong et al., 2004; Fringer 
et al., 2006; Cowles, 2008; Henshawa and Schwende-
manb, 2008; Wang et al., 2010; Tseng and Chien, 
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2011). Each of these has its own characteristics such as the 
type of mesh used, how the mesh is divided, how the dif­
ferent submeshes overlap, how the workload is distributed 
between the processing units, if they are models for dis­
tributed or shared memory computers, and the program­
ming model used. 

The initial objectives of the parallelization of the ocean 
model described in this paper were i) to efficiently exploit 
the characteristics of the most common parallel architec­
tures used in high performance computing: multicore pro­
cessors and clusters; ii) to demonstrate the viability of 
parallelization, which was not obvious due to possible 
adverse effects of data dependencies on final speedup (see 
Wang et al., 2010); iii) to study its scalability for different 
architectures; iv) to combine or use different paralleliza­
tion techniques simultaneously; and most importantly, 
v) to achieve the highest possible speedup. 

For parallelization on multicores the authors have cho­
sen OpenMP (2013) because it introduces few changes in 
the source code, addressing the parallelization of the com­
putationally most demanding mathematical functions. For 
parallelization on clusters the authors have chosen MPI 
(2012) as it is the most commonly used for this environ­
ment, addressing parallelization by distributing data. In 
addition, one of the initial premises was to use both tech­
niques simultaneously as all modern clusters are composed 
of multicore nodes. All the different versions, sequential, 
OpenMP, MPI and MPI-OpenMP, share the same source 
code avoiding typical mistakes when several source codes 
must be maintained simultaneously. 

To evaluate the performance of the parallelized applica­
tion we have worked with two meshes for the western Med­
iterranean Sea. The first one is a medium-size mesh that 
consists of 35 depth layers in the vertical coordinate and 
a horizontal triangular mesh with 24, 495 mesh points: this 
yields a total of 857,255 mesh points in the three-
dimensional mesh that it translates into 6 x 106 unknowns 
to be calculated every time step. The second mesh is a finer 
and larger mesh, particularly in the vertical coordinate, 
consisting of 69 depth layers and 33,275 mesh points in the 
horizontal triangular mesh: this yields 1.6 x 107 unknowns 
to be calculated every time step. One year of simulation 
with the sequential application takes 253.5 hours of CPU 
time with the medium-size mesh and 4518.6 hours with the 
large mesh; however, using the parallelized application 
these CPU times are reduced to 7.6 hours for the medium 
mesh with 128 processors, and 61.6 hours for the large 
mesh with 256 processors. 

The rest of this paper is organized as follows: Sections 2 
and 3 are devoted to the mathematical and numerical ocean 
model respectively; Section 4 describes the strategies used 
for parallelization of the ocean model; Section 5 explains 
the main details of the distributed version; Section 6 shows 
the results obtained with these parallelizations; Section 7 
studies the performance and scalability of the paralleliza­
tion strategies used in the paper; and finally, Sections 8 and 
9 describe the conclusions and future work. 

2. The ocean model equations 

The ocean is a stratified and slightly compressible Newto­
nian fluid in a rotating Earth driven by the wind stress and 
fluxes of heat and freshwater acting on the sea surface. The 
governing equations of the model, which are known as the 
primitive equations (PEs) of the ocean circulation, describe 
the temporal evolution of the flow velocity, temperature 
and salinity of the seawater plus the equation of state for the 
density as a function of the temperature, salinity and depth. 
The equations for the flow velocity are a reformulation of 
the three-dimensional Navier-Stokes equations under the 
Boussinesq and hydrostatic approximations; the tempera­
ture and salinity are governed by convection-diffusion 
equations. Following Temam and Ziane 2004) we formu­
late the PEs for our regional model in a Cartesian coordi­
nate system (0,x,y, z). Let V3 be the three-dimensional 
velocity vector of the flow and let (e1, e2, £3) be an ortho-
normal vector basis; then we set V3 = u + W{a)e3, where 
u = we1 + ve2 is the horizontal velocity and W(u) denotes 
the vertical velocity. Thus, letting D be the ocean domain 
and Ts the ocean surface, we have for (x,y, z) e D and time 
t > 0: 

Momentum equation: 
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State equation for the density: 
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At t = 0, the velocity, temperature and salinity are pre­
scribed. Next, we explain the meaning of the symbols 
which appear in the equations: p 0 is a constant reference 
density, 

p(x,y,z,t) — ps(x,y,i) + g / pdz 
z 

g being the modulus of the acceleration of gravity and ps 

the surface pressure. Further, (—Jv,fu) denote the compo­
nents of the Coriolis force due to the rotation of the Earth. 
At mid-latitudes, we can accurately approximate the t e r m / 
byf=f0+[3(y— J 0 ) where j 0 is the y-component of the 
latitude of reference 90, f0 = 2\W\ sin#0, /3 = 2\W\ 
cos 00/R, R being the radius of the Earth. The coefficients 
VH, At denote the horizontal eddy viscosity coefficients for 
the horizontal velocity, temperature and salinity respec­
tively, which we assume to be constant, and vz, kt are the 



vertical eddy viscosity coefficients that are also assumed to 
be constant. 

Boundary conditions: 
(1) On the top surface Ts (z = 0), 

z OZ n 

p0C„k1 dz 

and W — 0 
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where TW (X, y, t) denotes the wind stress vector, QT is the 
net surface heat flux, Cp is the specific heat capacity and 
Qs is the total surface flux due to evaporation, precipitation 
and river runoff. 

(2) At the bottom of the ocean (z = —H(x,y)) and on the 
lateral solid boundaries, 

u — v — W — 0, 
d91 802 
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where n,- = Ai(n1e1 + ^262) + kin3^3 and (n1 ,112, n3) is the 
outward unit normal vector. 

3. Numerical method 

The main difficulties of equations (1) to (3) are the non­
linear convection terms u • V # u + W{a)d\i/dz and the 
non-local character of the divergence constraint. We pro­
pose, in the framework of finite elements, a modified 
Lagrange-Galerkin method introduced in Bermejo and 
Saavedra (2012) and Bermejo et al.(2012), to integrate the 
nonlinear convection terms, combined with a fractional 
step projection method to deal with the divergence con­
straint. Let 

DA c)A c)A c)A c)A 
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be the total derivative of A, where A may represent either 
the velocity vector or the temperature and the salinity. The 
Lagrange-Galerkin method approximates DA/Dt at time 
instant tn+1 by the formula 

DA(x,t) 
Dt \t=tn 
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where X(x/„+1; tn) denotes the position at time tn of a par­
ticle that, moving with the flow velocity V3, will reach the 
point x at the time instant tn+1. X(\,tn+1; tn) is called the 
departure point at time tn associated with the point x. We 
must note that X(x, tn+1; t) is the solution of the initial value 
problem 

dX(x, tn+1; t) 
dt 

— V3(X(x, tn+1; t), t), X(x, tn+1; tn+1) — x (5) 

Next, making use of the approximation (4) in (2) we 
approximate the temperature and salinity at time tn+1 by the 
equations 
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and the boundary conditions B(9"+1) on 3D. Projection 
methods were proposed by Chorin (1968) and Temam 

(1969) in the late 1960s to integrate the Navier-Stokes equa­
tions; see Guermond et al. (2006) for a recent overview of 
projection methods for incompressible flows. Thus, follow­
ing this methodology we calculate the numerical solution to 
(1) by the following two-step procedure. 

(1) Viscous step. 

Given u", u"_ 1 , W", Wn~1 and p", calculate u"+ 1 = 
(w"+1, V " + 1 ) by solving the system 
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2) Poisson equation step. 
For all n > 1, calculate p"+1 by solving in Ts 

( VH • {H(x,y)VH(p»+1 -fi)) = £ V* • S-mx,) «"+1 dz 

H{x,y)-VH^ ' 8T 

The velocity u"+ 1 is calculated by 
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A; 
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where V # = (d/dx, d/dy) is the gradient operator and 
V/ r = (d/dx + d/dy) is the divergence operator. The ver­
tical velocity Wn+1 (u) is calculated by substitution of u"+1 

into (1). 

Remark 1 Note that if (p"+1 — p") is a solution of (7b) so is 
(p"+1 —p") + K, where K is an arbitrary constant, so that, 
in order to uniquely determine the solution p"+1 — p" we 
require that f,. (p"+1 — p")dx dy = 0. 

For space discretization of equations (6) to (7c) we use 
finite elements because this method can easily work with 
variable meshes that allow a better representation of the 
irregular coastline and bottom topography as well as the 
regions of strong variation of the flow. The finite element 
mesh is composed of tetrahedra and we represent the velo­
city, temperature and salinity by piecewise quadratic poly­
nomials so that their values are calculated at the vertices 
and mid-points of the edges of the tetrahedra, whereas the 
vertical component of the velocity and the density are rep­
resented by piecewise linear polynomials and calculated at 
the vertices. The surface pressure, represented by piecewise 
linear polynomials, is calculated at the triangular faces of 
the tetrahedra intersecting the upper surface. The finite ele­
ment formulation yields the following system of linear 
equations. 

(1) Temperature and salinity 6"+ = (6"+ , . . . , 9"^ ) : 
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(3) Pressure increment g j + 1 = PJ+1 - Pn
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(5) Vertical component of the velocity W := (W" 

MiW n+1 T+1 (12) 

M, S1, S2, F and A are all symmetric and sparse square 
matrices, and ML is a diagonal matrix which is obtained 
by row sum of the elements of the linear mass matrix. 
We solve system (9) by a preconditioned Bi-CGSTAB 
method with a diagonal preconditioner because it is a well 
conditioned non-symmetric system so that this precondi­
tioner may yield an efficient parallel solver. The rest of the 
systems are symmetric and solved by a preconditioned 
Conjugate Gradien (CG) method with diagonal precondi­
tioner system (11) since the matrix is also very well condi­
tioned, and by the incomplete Choleski conjugate gradient 
system (10); the solution of the latter system is calculated 
by a single processor. 

The scheme to calculate the solution (u"+1, Wn+1(u), 
p"+1, 6"n+1) at time instant tn+1 is the following: 

(1) Generate the grid and calculate the matrices of the 
systems once and for all at time instant t = 0. 

(2) For n = 1,2,... ,N do: 
(2.1) For each vertex x, of the tetrahedra calculate 

the departure point X(x(, tn+1; t„) by numeri­
cally solving the ordinary differential equa­
tions (5). 

(2.2) Calculate the right-hand side of the systems 
(8) to (12). 

(2.3) Solve system (8). 
(2.4) Calculate p"+1 by the equation of state. 
(2.5) Solve the systems (9)–(12). 

Several remarks are in order. 

Remark 2 The Lagrange-Galerkin (LG) method used in the 
model yields integrals of the form 

K 
0y(X(x, tn+1; £H))0,-(X(x, tn+1; t„)) (13) 

that have to be approximated with high accuracy for the 
method to maintain the theoretical stability and conver­
gence properties studied in Bermejo and Saavedra (2012) 
and Bermejo et al. (2012). Here K is the tetrahedron 

whose vertices are the points X(x,-, tn+1; t„) and {<f>i} is the 
set of global basis functions of the finite element space. The 
important point (in terms of CPU time savings) is that 
the number of departure points to be calculated now is 
M, M being the number of interior mesh points, instead 
of NE x NCP, which is the number of the departure points 
to be calculated in the conventional LG as presented in 
Douglas and Russell (1982) and Pironneau(1982). Here, 
NE is the number of elements in the mesh and NCP is the 
number of quadrature points per element. The integrals on 
rpn,n+1 

A are approximated by high order quadrature rules in 
the usual way of finite element technology. It can be proved 
that our LG-projection method is unconditionally stable in 
the Z,2-norm. 
Remark 3 The calculation of the departure points 
X(x,-,?n+1; t„) is done by the second-order implicit scheme 
of Gonzalez Gutierrez LM and Bermejo (2005) using the 
algorithm of Allievi and Bermejo (1997) to search the 
points in the fixed mesh. The model can also use the 
Runge-Kutta methods of order two and four of Xiu and 
Karniadakis (2001). 

Remark 4 An accurate calculation of the integrals (13) 
yields a very small error fr.A

n(X(x,tn+1,tn) — fr.A
n(x), 

in other words, the method has good global conservation 
properties; nevertheless, we can improve the conservation 
property, in other words, fr.A

n(X(x,tn+1,tn) = fr.A
n(x) 

by adapting the conservative quasi-monotone semi-
Lagrangian scheme of Bermejo and Conde (2002) to the 
LG finite element framework. 

Remark 5 Since the LG-projection method is uncondition­
ally stable in the Z,2-norm, the model supports CFL num­
bers greater than one. This has an influence on the width 
of the halo region because it has to contain the backtracked 
elements {A" ' }; see Malevsky and Thomas (1997). In 
fact, one may have two halo regions, namely, one halo for 
the calculation of the integrals 

/ <Ai(X(x, tn+1; £H))<A,-(X(x, tn+1; tn)) 
K 

which depends on the CFL number, and another halo for 
the solution of the elliptic problems. In the actual imple­
mentation of our model both halo regions are the same. 

4. Parallelization strategy 
The strategy chosen (Crainic and Toulouse, 2010) for par­
allelizing the sequential ocean model was to obtain maxi­
mum speedup while safeguarding the portability of the 
parallel code as well as maintaining consistency with the 
results obtained with the sequential version. This implied 
efficient use of the resources of current cluster architectures 
based on shared memory nodes (multicore processors). In 
these systems, two levels of parallelism can be exploited: 
parallelism between the nodes of the cluster and parallelism 
between the multiple cores of a node. To exploit these 



levels of parallelism, a previous exhaustive study of the 
sequential application code was performed to find the main 
sources of parallelism, emphasizing its two main compo­
nents, the processing task and the data to be processed. This 
resulted in two possible and compatible approaches: 

• Data decomposition. In this approach, the data to be 
processed are decomposed so that each parallel task 
processes a portion of the data. This solution allows 
exploitation of the inter-node and intra-node paralle­
lism available in modern high performance comput­
ers, that is, distributing the data to be processed 
among the cluster nodes and exploiting the multiple 
cores available in each node. 

• Functional decomposition. In this approach, the 
focus is on the processing task rather than on the data 
to be processed. The main idea is to break down the 
processing task into multiple subtasks performing a 
portion of the overall work to be executed in parallel. 

The next step is to combine these approaches, as sug­
gested by other authors (Rabenseifner et al., 2009), to 
obtain good performance in current hybrid architectures. 
This involves employing a hybrid programming model, 
that is, using OpenMP for parallelization inside each node 
and MPI for passing messages between nodes. 

4.1 Data decomposition: Inter-node parallelization 

The data used to model the Mediterranean Sea consist of a 
three-dimensional mesh with thousands of points on the 
horizontal and several vertical levels. Unstructured grids 
are also used in Fringer et al. (2006) and Cowles (2008) 
while Sannino et al.(2001), Henshawa and Schwendemanb 
(2008), Wang et al.(2010) and Tseng and Chien (2011) use 
regular meshes and Luong et al. (2004) use a multiblock 
grid, with rectangular and curvilinear grids. The advantage 
of irregular meshes with respect to regular meshes is their 
variable resolution. This allows refining of the mesh in 
selected regions in order to solve small-scale dynamics and 
strong topographical gradients. It also enables a better rep­
resentation of the topographical features of the ocean basin, 
such as the Strait of Gibraltar and the Strait of Messina, 
offering high resolution for specific areas. Some regular 
meshes try to solve this problem by using an unstructured 
mesh refinement to locally increase the resolution (Hen­
shawa and Schwendemanb, 2008). 

A domain decomposition method has been used to dis­
tribute the simulation processing tasks among available 
processors, that is, computing each variable for each mesh 
point at each time step. Thus, the Mediterranean computa­
tional mesh has been horizontally decomposed into a set 
of smaller submeshes which are distributed among the clus­
ter nodes. This is the classical approach to parallelize ocean 
models on clusters (Sannino et al., 2001; Luong et al., 2004; 
Fringer et al., 2006; Cowles, 2008; Wang et al., 2010; Tseng 
and Chien, 2011), and it is also used for other similar 

problems such as reservoir simulations (Shuttleworth et al., 
2009), although in our case the use of an unstructured mesh 
makes it more difficult to distribute the mesh among the 
cluster and to achieve good load balancing between all the 
cluster nodes. 

Each cluster node runs a copy of the processing task code 
on its allocated submesh, while all the numerical algorithms 
used are almost the same as in the sequential version. These 
algorithms compute the values of each mesh point taking 
into account the values of their neighbouring points. Thus, 
to obtain the same results as with the sequential version, the 
processor responsible for each submesh needs to be able to 
consult points from neighbouring submeshes. Therefore an 
overlapping domain decomposition method has been used: 
a data slice has been added at the boundaries of each sub-
mesh, corresponding to neighbouring submeshes, in such a 
way that all the submeshes overlap. An important difference 
with respect to the classical approach is that each submesh is 
updated in an almost independent way, in other words, the 
initial linear equation system is substituted by N linear equa­
tion subsystems, one for each submesh, using almost the 
same numerical algorithms in each node as in the sequential 
version but applied to its submesh. 

In order to guarantee a balanced workload between the 
cluster nodes, a separate application has been implemented 
that decomposes the overall computational mesh taking into 
account the number of points in the horizontal model domain 
and the number of requested processors, so that each cluster 
node has a similar amount of work to do at each simulation 
time step. Figure 1 displays a possible decomposition of the 
Mediterranean basin into 32 submeshes. 

This parallelization strategy has been implemented 
using a message-passing programming model, through the 
MPI library, as this model fits naturally into the distributed-
memory target architecture, which is effectively a cluster of 
processors. The choice of MPI guarantees the portability of 
the parallel code. The details of this distributed implemen­
tation are shown in Section 5. 

4.2 Data decomposition: Intra-node parallelization 

The study of the processing task has been performed using 
the profiling tool Callgrind (Valgrind, 2012), and the pro­
file data visualization tool KCachegrind (KCachegrind, 
2013), used for sequential and multi-threaded applications 
performance analysis. These tools provide information 
about the functions called during application execution and 
display it as a call graph, including data about the caller– 
callee relationship between functions, the number of calls 
and the cost of each function. 

A summary of the results obtained for a two-step simula­
tion of the ocean model is shown in Figure 2. This graph 
shows the functions consuming more than 10% of the total 
execution time. As can be seen Matrix_Vector_Product is 
the most time-consuming function (83.85% of the total exe­
cution time) and therefore efficient parallelization of this 
function has been taken into account to improve overall 



Figure 1 . Decomposition of the western Mediterranean basin into 32 submeshes. 

execution time. This function is employed in a special ver­
sion of the conjugate gradient method, and consists of a loop 
that processes all the elements, one by one, used in the ocean 
model and accumulating the obtained results in an array 
representing the data domain. Mathematical libraries that 
support BLAS (basic linear algebra subprograms) cannot 
be used to implement this CG method as the ocean grid 
is supported by a data structure representing the vicinity 
of each node, instead of a traditional two-dimensional 
matrix. The advantage of using this data structure is that 
each element can be solved individually. This avoids clog­
ging up memory with huge matrices. 

To deal with the parallelization of this function, a loop 
parallelization approach has been implemented, following 
a previous in-depth analysis of possible loop-carried depen­
dencies as well as the data used on each iteration. As there 
are no loop-carried dependencies, loop-level parallelism 
has been exploited using a shared memory programming 
model, with OpenMP as the programming interface. Paral-
lelization was achieved using OpenMPdirectivestodistribute 
the loop iterations among the threads, where the number of 
threads corresponds to the number of CPUs available oneach 
cluster node. Regarding the data used in the loop, the data 
structure where values are accumulated on each iteration is 
shared. Therefore, auxiliary private data structures have been 
defined for each thread to avoid race conditions, and a critical 
section has been declared where all the auxiliary data are 
accumulated in the shared data structure. 

This parallelization approach provides two advantages. 
The first is that the use of OpenMP compiler directives 
avoids the need to maintain separate sequential and parallel 
code versions, and also provides different scheduling stra­
tegies for parallel loops and a portable code. The second 
advantage is that it exploits the current multicore processor 
characteristics, that is, multithreading and a shared memory 

model that allows sharing of the common data used on each 
loop iteration with a minimum latency cost (sharing cache 
at L2 and L3 levels). The results obtained in terms of 
speedup and scalability are shown in Section 7. 

4.3 Functional decomposition 

This approach has been analysed studying the sequential 
dependencies between the different computations performed 
in each simulation step, trying to break them down into multi­
ple subtasks that could be executed in pipeline mode. The time 
consumed by these computations has also been measured, 
resulting in an unbalanced solution. This is mainly due to the 
velocity computation which employs most of the simulation 
time (92%). Therefore this approach has been discarded. 

5. Distributed implementation 
The scheme to calculate the mathematical solution to the 
physical model was described at the end of the Section 3. 
The skeleton of the procedure to advance the simulation 
one time step is the following: 

1. Calculate the convective terms using the method of 
characteristics, equations (5). 

2. Calculate the temperature and the salinity, conserva­
tion equations (8). 

3. Calculate the density, state equation (3). 
4. Calculate an approximation of the horizontal velo­

city components, viscous step equations (9). 
5. Calculate the pressure increment, Poisson equation 

(10). As previously statedin Remark 1 (p. 6), the over­
all pressure for the full mesh should be conserved. 

6. Calculate the final horizontal velocity components, 
equations (11). 



Figure 2. Sequential ocean model application call-graph view. 

7. Calculate the vertical velocity component, equation 
(12). 

To achieve maximum scalability this initial sequential 
implementation has been adapted to execute on clusters 
of multicore processors through data decomposition. The 
original input data of the full mesh are preprocessed and 
divided into as many submeshes as needed. Then the clas­
sic master-slave approach has been applied. A special pro­
cess called ‘master’ coordinates the calculations performed 
by a set of worker processes called ‘slaves’, each slave 
being responsible for one of the submeshes the data was 
divided into. There are several reasons for choosing this 
approach rather than other more decentralized parallel 
implementation approaches (Crainic and Toulouse, 2010): 

• The master obtains a global state at the end of each 
simulation step, providing a suitable point to easily 
implement an application-snapshot mechanism. This 

allows the execution point to be recovered in case of 
system failure which is something that could happen 
on long-term executions of days or weeks. 
The one time-step simulation procedure is adapted to the 
slaves reusing most of the original code but applying it 
only to a subset of the original data. Code for data 
exchanges between the slaves and the master is required 
at specific points, but collective communication mechan­
isms are used to introduce as little delay as possible. 
Thereisatleast one fundamentalcalculationineach simu­
lation step that needs to be solved globally for the entire 
mesh as one unit, the calculation of the pressure incre­
ment. The proposed model provides a simple solution. 
Good scalability. It scales well as long as the computa­
tion performed by the slaves compensates for the com­
munication needed between the master and the slaves in 
order to distribute the input data, coordinate their work 
and collect the output data. 



Figure 3. Points used by a slave to calculate its submesh: kernel 
points, belonging to that submesh, and halo points, width 1, which 
are copies of points belonging to neighbouring submeshes. 

The final performance of the simulation largely depends 
on the slaves working over a set of well balanced submeshes, 
because a synchronization barrier is needed at the end of 
each simulation step and therefore the overall performance 
depends on the slowest slave. This is the main goal of the 
mesh division preprocessing, which is also a computation­
ally intensive application, though fortunately its resulting 
division (see example in Figure 1) is computed only once for 
each mesh and then reused many times. This is why it was 
designed as an independent application. 

The mesh division algorithm used adapts the k-means 
(MacQueen, 1967) and Kernighan–Lin (Kernighan and Lin, 
1970) algorithms to work on irregular meshes with non-
uniform point density. As in the case of other authors (Rivera 
et al., 2010) our algorithm uses the Kernighan–Lin for local 
refinement trying to simultaneously balance the number of 
mesh points in each submesh and to minimize the boundaries 
between the submeshes,in other words, balancingthe compu­
tational requirements for each submesh and minimizing the 
communication needed. Other models use a different strategy 
to balance the workload, such as that in Henshawa and 
Schwendemanb (2008) which uses a bin packing algorithm, 
the best-fit decreasing bin packing algorithm, or Luong 
et al. (2004), which uses OpenMP to balance the workload 
in a dual-level parallel code with MPI. Other authors rely 
on libraries, such as Cowles (2008) who uses the METIS 
library (METIS, 2013), or Fringer et al. (2006) who use the 
parallel version, ParMETIS library (ParMETIS, 2013). 

Aggregating the simulation results of each submesh does 
not yield the same result as simulating the original full mesh, 
in other words, completely separate calculations for each sub-
mesh are not possible. As shown in Figure 3 every slave also 
needs to consult and compute points around its submesh, 
known as ghost points (Luong et al., 2004; Henshawa and 
Schwendemanb, 2008; Tseng and Chien, 2011) orhalo points 
(Sannino et al., 2001; Cowles, 2008; Wang et al., 2010). This 
implies not only more redundant computationin the slaves, as 
can be seen in the following algorithm description, but also 
the need to exchange some data between neighbouring slaves 
through the master at every time step. 

The widthofthe halo around each submesh is a fundamen­
tal parameter (Wang et al., 2010) for simulation accuracy but, 

Figure 4. Master–slave system and intercommunication. 

at the same time, has a significant impact on the amount of 
both computation and communication required in the slaves, 
as shown in Section 6.2.To improve load balancing and over­
all application performance a further refinement of the mesh 
division algorithm was introduced, taking into consideration 
the number of ghost points. 

The following diagram (Figure 4) shows the interrelation 
between the master and each slave in terms of algorithm 
steps and communication. M1 to M5 are the messages ex­
changed with each other. 

The basic algorithms followed by the master and the 
slaves are the following. 

Master algorithm 

1. Application initialization. Send message M1 to each 
slave with its submesh description and the corre­
sponding kernel points data. 

2. Send message M2 to each slave with updated infor­
mation for its submesh ghost points corresponding 
to the overlapping areas. 

3. The pressure increment should be computed centra­
lized at the master and messages M3 and M4 are 
exchanged. 

4. Wait to receive message M5 from each slave with 
the new state of its kernel points, and merge them 
to compose the state of the global mesh. Here a 
recovery snapshot is periodically saved. 

5. Go back to step 2. 



Figure 5. MPI functions used to transfer the halo points of all the submeshes, S1, . . . , S4, from the master to the corresponding slaves, 
and the kernel points of all submeshes from the slaves to the master. 

Slave algorithm 

1. Wait to receive message M1 from the master with its 
assigned submesh and the corresponding initial data. 

2. Wait to receive message M2 from the master with 
updated model information about the ghost points 
around its submesh. 

3. Compute one time step of the simulation applying 
the original sequential procedure to its submesh, 
including the ghost points. 

4. The pressure increment should be computed centra­
lized at the master and messages M3 and M4 are 
exchanged. 

5. Send message M5 to the master with the new model 
state corresponding to its kernel points. 

6. Go back to step 2. 

The master-slave system has been implemented using the 
MPI standard. Thus, the application can be executed both on 
distributed and shared memory cluster architectures. The first 
MPI process plays the role of master. It performs the whole 
initialization and then executes the coordination loop using the 
collective transfer operations MPI_Scatterv and MPI_Gatherv 
to efficiently communicate with the slaves (see Figure 5). 

This kind of distributed parallelization is compatible 
with other levels of parallelism within the multiple cores 
or processors in each cluster node (with OpenMP or using 
SIMD operations on those cores). The resulting speedup 
obtained with all these parallelization strategies is shown 
in the following section. 

6. Methodology and viability 

6.1 Methodology 

The performance analysis of the different parallelization 
techniques used in this paper for both shared and distributed 
memory computers has been carried out on the supercompu­
ter Magerit at the CesViMa Supercomputing Center, whose 
main characteristics are: 

• 1036 eServer BladeCenter JS20 nodes, each one with 
two PowerPC processors at 2.2 GHz (8.8 GFlops) 

and 4 GB of RAM. There were up to 256 nodes avail­
able for our experiments. 

• 168 eServer BladeCenter JS21 nodes, each one with 
four PowerPC processors at 2.3 GHz (9.2 GFlops) 
and 8 GB of RAM. 

• The nodes are connected by a high performance opti­
cal fibre Myrinet. Gigabit auxiliary nets are also pro­
vided for control and management. 

• 256 hard disks of 750 GB organized as a fault-
tolerant distributed file system (GPFS). 

• SLURM/Moab job queue systems that guarantee 
exclusive processor assignment to each job. 

All the processing nodes operate independently and with 
the same software configuration. 

For the viability and precision study, simulations with 
100 steps were executed. As the behaviour of the applica­
tion after initialization was quite similar for all the simula­
tion steps, the number of steps was reduced from 100 to 12 
to evaluate the speedup, scalability and efficiency of the 
parallel version, in order to reduce the huge number of 
hours of simulation needed, as every simulation was exe­
cuted several times to avoid spurious data. 

We tested the scalability by working with two meshes, as 
mentioned in Section 1. In the first mesh the number of 
unknowns to be calculated at every time step was 6 x 106, 
whereas in the second mesh this number was 1.6 x 107. 
Each data set was executed for 24 hours of simulated time, 
corresponding to 12 simulation steps. Although the simu­
lated time is short, it is sufficient taking into account the 
required number of repetitions of all experiments. The MPI 
performance tests have been carried out using the MPICH 
implementation and the xlc (IBM C) compiler. Execution 
time, speedup and efficiency have been analysed in our 
experiments, increasing the number of processors involved 
in the ocean model simulation from 1 to 256. 

6.2 Viability 

It was expected that execution time would improve by 
using a higher number of processors and a smaller submesh 



Figure 6. Percentage of error-free points for horizontal velocity u and different halo widths (two, four and eight), with 16 submeshes 
and after 100 simulation steps. 

Figure 7. Precision of results versus number of submeshes (submesh size) shows that the halo width is the most important factor. 

size. On the other hand, reducing the submesh size is also a 
potential source of errors in the results. Correct results were 
ensured by using enough ghost points around each submesh 
to obtain the same results as with the sequential version. 
However, introducing more ghost points also increases exe­
cution time as they need to be updated at every simulation 
step. Experiments with different ghost strip widths (halo 
widths) were performed and the influence of the submesh 
size was also studied. Figure 6 shows the percentage of 
error-free points (relative error < 1%) obtained at each 
depth level for calculating the horizontal component of 
velocity u for a halo width of two, four and eight rows of 
points, 16 submeshes and 100 simulation steps. Tests in this 
case consisted of more extended simulations to allow the 

detection of cumulative precision errors. We tested the hor­
izontal velocity u because it has been demonstrated to be 
the most sensitive to errors. It can be seen from this figure 
that a halo width of two is clearly insufficient, as a signif­
icant part of the results includes errors, whereas a width of 
four avoids this problem. A halo of eight rows shows 
exactly the same behaviour as one with four, but the execu­
tion time is higher (see Figure 8). 

Figure 7 shows the influence of the number of sub-
meshes on the precision of the results. For a halo width 
of two rows of points around the submesh, the percentage 
of error-free points decreases considerably as the number 
of submeshes increases. For a width of four, the results are 
almost free of error, even for a high number of small 



Figure 8. Speedup obtained for different halo widths, using the 
medium-size mesh with 16 submeshes and after 100 simulation 
steps. 

partitions (128 partitions). Results in this case are clearly 
better than the best partition configuration using a ghost 
area width of two rows. Thus, halo width is more important 
for correct results than submesh size or number of parti­
tions. It can also be concluded that the minimum halo width 
needed is four. Using this halo width, the simulation results 
are the same as those obtained with the sequential applica­
tion, independent of the number or size of the submeshes. 

It should be noted that as the halo width increases, the 
computation and synchronization needed for every submesh 
are also higher, and therefore the speedup decreases (see Fig­
ure 8). Therefore, halo widths above four do not improve the 
quality of the results, but considerably decrease speedup. 

A further conclusion is that ghost nodes are relevant for 
effective load balancing, and have therefore been taken into 
account in the mesh division algorithm as it was seen in 
Section 5. 

7. Performance and scalability 
Performance results are presented considering speedup as 
the performance gain achieved by the parallelization, that 
is, the ratio of sequential execution time over the parallel 
execution time. This classical definition of speedup differs 
from other definitions which consider the serial time as the 
execution time of the parallel application running on just 
one processor of the parallel system. Efficiency is consid­
ered as the ratio of speedup to the number of processors, 
and measures the fraction of time during which a processor 
is usefully employed. 

To analyse the speedup, several experiments varying the 
number of processors have been conducted for the two par-
allelization strategies described in Section 4. First, the 
speedup with shared memory multiprocessors was tested 
using OpenMP, with configurations of two and four cores. 
Then, the speedup with distributed memory was analysed 
with configurations of 16, 32, 128 and 256 processor archi­
tectures. One processor played the master role, and the oth­
ers were working in parallel with each submesh (7, 15, 31, 
127 and 255) as slave processors. And finally, the speedup 

Figure 9. Speedup reached with OpenMP for two and four 
processors after 12 simulation steps. 

obtained combining both shared memory and distributed 
memory strategies was examined. 

7.1 Speedup 

OpenMP. In Figure 9 the speedup obtained through paral-
lelization with shared memory multiprocessors can be seen 
for different numbers of processors. This figure shows the 
good performance obtained with this parallelization strat­
egy, as a speedup of 3.51 was reached using just four pro­
cessors for the large-size mesh. A lower speedup was 
reached with the medium-size mesh, 2.55, due to the lack 
of parallelism. 

MPI. Figure 10 shows the speedup obtained with distrib­
uted memory multiprocessors using MPI, as the number of 
processors increases from 1 to 256. This version offers 
good scalability even up to 256 processors, reaching a 
speedup of 53.09 for the large-size mesh. The speedup 
obtained with the medium-size mesh is lower, 25.3, as the 
computation time for each simulation step is shorter. The 
limiting factor in this case is communication, as informa­
tion exchanges take almost the same time for both meshes. 
Also, the performance does not scale at the same rate as the 
number of processors, due to the following factors: commu­
nication overheads; some code regions such as the pressure 
computation are naturally sequential; higher proportion of 
ghost points with respect to kernel points at each submesh 
and hence increased computational requirements; workload 
balancing becomes more difficult with decreasing submesh 
size; and the partitions produced by the division algorithm 
are less uniform as the number of submeshes increases, 
resulting in a higher workload. Therefore, there is no need 
for the computational power offered by 256 processors when 
dealing with small data submeshes. 



Figure 10. Speedup obtained using MPI for 16 to 256 processing 
nodes (15 to 255 submeshes) after 12 simulation steps. 

Combining OpenMP and MPI. Figure 11 shows the 
overall speedup obtained combining the two parallelization 
techniques for different cluster configurations, achieving a 
maximum speedup of 73.3 with 256 processors. This 
hybrid parallelization strategy offers the best performance 
as it exploits parallelism at different hardware levels and 
enables more efficient use of the available resources in a 
cluster using OpenMP for the processors in one node and 
MPI for the different cluster processing nodes. 

Using a large numberofsubmeshes limits the speedup due 
to the low computation times needed for such small sub-
meshes as the parallelization overheads increase with the 
number of submeshes. Using only MPI, with 256 processors 
over 256 nodes, yields a speedup of 53.09 for the large mesh 
(see Figure 10) whereas when using a smaller number of sub-
meshes (64) the speedup reachesupto 73.3 for the same mesh 
and number of processors, 256 processors over 64 nodes. A 
smaller number of submeshes means lower communication 
costs and thus lower global computational requirements, and 
a better ratio of kernel points/ghost points and therefore less 
redundant computation and better workload balance. 

Finally, Figure 12 shows the overall performance 
obtained in the Magerit supercomputer with different cluster 
configurations, considering all the parallelization techniques 
proposed: both OpenMP and MPI alone and combined. 

These global results show that the performance can be 
considerably improved as the number of processors 
increases, and therefore the ocean model simulation should 
scale well when finer spatial and temporal resolution mod­
els are used. The medium mesh seems to reach the best per­
formance executing with 32 processing nodes and four 
execution threads at each processing node, reaching a 
speedup of 33.05. The graph suggests further potential 
speedup for the large-size mesh if more than the 256 avail­
able processors are used. 

Figure 11. Speedup using OpenMP and MPI simultaneously. 

7.2 Efficiency 

As the number of processors increases, efficiency decreases 
as expected, but within levels that still allow high scalabil­
ity, as can be seen in Figure 13. Performance results show 
that combining OpenMP and MPI not only yields better 
speedup, but also improves efficiency. This hybrid 
approach therefore seems to be the best choice to execute 
the simulation application. Figure 13 shows how, for the 
same number of processors, different parallel configura­
tions yield different levels of efficiency. For 64 processors 
the best parallel option is MPI and OpenMP with two 
threads when the medium mesh is used, but MPI and 
OpenMP with four threads is better for the large-size mesh. 
For 128 and 256 processors, using MPI and OpenMP with 
four threads is the best solution. 

7.3 Scalability of the master–slave model 

The master–slave model used for the distributed memory 
approach has some synchronization and communication 
overheads that could limit scalability. As stated in Section 
5 the master processor collects partial results from the 
slaves, composes the global mesh and distributes results 
among slave processors. Therefore, the performance of 
the master is critical for global application performance, 
as computations are performed sequentially, and the slave 
processors have to wait. Figure 14 shows the average mas­
ter processor utilization versus average communication 
and waiting times for 128 processors (127 submeshes). 
The master utilization is only 28.19% and there are 
no bottlenecks. Its rate of increase is smooth and there is 
still room for further increase. 

8. Conclusions 

In this paper we have described and evaluated the paralle-
lization of an ocean model with an irregular computational 
mesh for current cluster architectures based on multicore 



Figure 12. Global speedup obtained using only OpenMP, only MPI and combining both paradigms. 

Figure 13. Efficiency obtained for the two meshes using only MPI and combining MPI and OpenMP, with different numbers of processors. 

processors. This parallelization simultaneously exploits all 
the hardware levels of a cluster: intra-processor-level paral­
lelism using vectorization; the shared memory level on 
each cluster node using OpenMP; and the distributed mem­
ory level between nodes using MPI. These techniques can 
easily be adapted to suit different architectures, using 
OpenMP to exploit the multiple cores of a computer or MPI 
for clusters or a combination of both. 

The speedup obtained is 3.51 using OpenMP with four 
processors (Figure 9). Using MPI the speedup is 53.09 with 
256 processors (Figure 10). The maximum speedup 
obtained, by combining MPI and OpenMP, is 73.3 with 
256 processors, using the large-size mesh, as can be seen 
in Figure 11. These figures show that the parallelization 
is very scalable and the limiting factor for reaching the 
maximum speedup is the number of processors, in other 
words, a higher speedup could be obtained using additional 

processors. The best speedup is obtained by using MPI and 
OpenMP together because the number of messages 
between MPI processes needed to compute the model is 
lower with OpenMP, and it also reduces the number of sub-
meshes needed, thus improving load balancing. Moreover 
it reduces the ratio of halo points versus kernel points, 
avoiding redundant computation. 

The high speedup obtained offers scope for improving 
both the model and the simulations, by increasing the tem­
poral and/or spatial resolution of the model to improve its 
reliability and by performing much longer simulations to 
analyse more realistic scenarios. 

9. Future work 
The first task at hand is to couple the new parallel ocean 
model with the existing parallel atmosphere model, using a 



Figure 14. Percentage CPU and communication time at master processor. 

higher temporal and spatial resolution in order to exploit the 
new performance of the parallel ocean model. 

The authors are at present working on the complete Med­
iterranean basin model, and extending the parallelization 
performance analysis to the complete basin is also planned. 

The future scope for improvement of the proposed par-
allelization includes several options. A major improvement 
would be to replace the current central algorithm for com­
puting the pressure with a distributed one, thereby avoiding 
synchronization between each time step and the resulting 
loss of speedup. 

Another possible improvement is to use an N-workers 
strategy instead of the master–slave approach. This offers 
the advantage of removing the master as the indispensable 
node for sending and receiving messages, thus making the 
application more scalable. Currently the master is not a 
bottleneck, but in the future, with an increased number 
of processors, it could become a bottleneck and in this 
way reduce the performance. 

Another alternative to be explored is the use of parallel 
mathematical libraries that support BLAS in order to solve 
the linear equation systems by implementing typical algo­
rithms from the literature, such as the conjugate gradient, 
to increase the portability and perhaps the performance. 
In this way all the code of the Matrix_Vector_Product func­
tion could be replaced by a parallel and optimized library, 
such as ACML (AMD Core Math Library), ATLAS 
(Automatically Tuned Linear Algebra Software, from 
Sourceforge), MKL (Intel Math Kernel Library) or the 
Performance Library (from Oracle), adapting the data 
structures to the chosen library. 

Finally, an interesting alternative to explore is the use of 
graphics processing units (GPUs) to execute the more expen­
sive computations, as GPUs offer enormous computing 

power at quite a reasonable price. The use of GPUs would 
offer very high performance for certain matrix calculations 
required by the model. This could be achieved by imple­
menting certain particularly time-consuming routines at 
GPU level. This solution could also be integrated into the 
current solution, combining MPI, OpenMP and GPUs. 
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