
Lawrence Berkeley National Laboratory
LBL Publications

Title
ExaSAT: An exascale co-design tool for performance modeling

Permalink
https://escholarship.org/uc/item/12r566sn

Journal
The International Journal of High Performance Computing Applications, 29(2)

ISSN
1094-3420

Authors
Unat, Didem
Chan, Cy
Zhang, Weiqun
et al.

Publication Date
2015-05-01

DOI
10.1177/1094342014568690

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12r566sn
https://escholarship.org/uc/item/12r566sn#author
https://escholarship.org
http://www.cdlib.org/

ExaSAT: An Exascale Co-Design Tool for

Performance Modeling

Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan,

John Bell, and John Shalf

Lawrence Berkeley National Laboratory

dunat, cychan, weiqunzhang, swwilliams, jdbachan, jbbell, jshalf @lbl.gov

Abstract

One of the emerging challenges to design HPC systems is to understand and project the require-

ments of exascale applications. In order to determine the performance consequences of di�erent

hardware designs, analytic models are essential because they can provide fast feedback to the

co-design centers and chip designers without costly simulations. However, current attempts to an-

alytically model program performance typically rely on the user manually specifying a performance

model. We introduce the ExaSAT framework that automates the extraction of parameterized per-

formance models directly from source code using compiler analysis. The parameterized analytic

model enables quantitative evaluation of a broad range of hardware design trade-o�s and soft-

ware optimizations on a variety of di�erent performance metrics, with a primary focus on data

movement as a metric. We demonstrate the ExaSAT framework's ability to perform deep code

analysis of a proxy application from the DOE Combustion Co-design Center to illustrate its value

to the exascale co-design process. ExaSAT analysis provides insights in the hardware and soft-

ware tradeo�s and lays the groundwork for exploring a more targeted set of design points using

cycle-accurate architectural simulators.

1

1 Introduction

The design of exascale systems are faced with challenges introduced by system cost and power con-

sumption (Shalf et al., 2010). In order to improve delivered performance for large-scale applications

within practical cost and power budgets, it is essential to move towards a hardware/software co-design

process where the hardware design space is explored in tandem with software optimizations. The US

Department of Energy co-design centers (Cesar, 2013; Exact, 2013; ExMatEx, 2013) are performing

multi-disciplinary research to iteratively design various aspects of applications including core algo-

rithms, programming models, compilers, and runtimes to ensure that they will meet the requirements

of future scienti�c simulations. Co-design requires a performance framework to rapidly evaluate the

proposed hardware and software changes and provide end-to-end analysis of an application.

In order to evaluate the hardware-software design trade-o�s, we introduce a compiler-based perfor-

mance modeling framework, ExaSAT (Exascale Static Analysis Tool), that enables rapid exploration

of hardware design space and helps bridge the communication gap between the application developers

and hardware designers. Because many exascale architectural speci�cations are currently unde�ned,

our performance model is parameterized to help explore di�erent design choices. Additionally, our

framework explores a parameterized software optimization space (e.g. cache blocking, fusion, etc.) to-

gether with the hardware design space so that we do not base conclusions about hardware requirements

on unoptimized codes.

The ExaSAT framework focuses on structured problems from combustion codes. Combustion

currently provides 85% of the nation's energy needs and is a key driver for exascale computing (U.S.

Energy Flow Trends, 2012). Economic and environmental concerns are driving the development of

new combustion systems targeted toward clean and e�cient use of alternative fuels. Developing these

systems requires simulations with su�cient chemical �delity to di�erentiate behavior of candidate

fuels in realistic engine conditions. Exascale computing o�ers the promise of enabling the underlying

science to design fuel e�cient, clean burning vehicles, planes, and power plants for electricity generation

(Exascale Research PI Meeting (2012)). For example, exascale computing will enable the development

of new Homogenous Charge Compression Ignition (HCCI) engine designs that lead to lower emissions,

cleaner combustion and 25-50% increase in e�ciency. It is predicted that HCCI will require 20 days

2

runtime at billion way concurrency, 3 PB memory to hold the simulation state, and will generate

1.0 EB of data for analysis. Thus, studying performance requirements of combustion applications on

potential exascale designs are extremely valuable.

By restricting the framework to structured grid problems, we improve the accuracy of the perfor-

mance model. For example, while the compiler front-end gathers the read/write properties of streaming

arrays, the cache model takes into account the reuse in stencil arrays when estimating the memory traf-

�c. Since the access pattern of such applications operating on dense arrays can be statically inferred,

we can quickly derive fast analytic performance models. Our approach does not support analysis for

irregular or graph-based codes where the access pattern is only available at runtime. It is important

to note that ExaSAT is not intended to replace architectural simulations. Rather it is intended to

be used in conjunction with those other tools to prune the search space. Our framework provides a

missing capability in the co-design toolset where fast evaluation is needed at the expense of accuracy.

Simulations are slow, leading to very narrow, yet highly detailed analysis of a small kernel or a sub-

component of a system. For example, it would take a hardware simulator (e.g. RAMP (Krasnov et al.,

2007; Wawrzynek et al., 2007)) a few hours to generate a single con�guration of a multicore processor,

though the application on the con�gured architecture would then run in real-time. It is easier to con-

�gure a cycle-accurate software simulator (e.g. gem5 (Binkert et al., 2011)), but it would take several

hours to run an application to get meaningful results. In comparison, ExaSAT can evaluate hundreds

of hardware/software con�gurations per minute on a desktop machine. Thus, ExaSAT complements

hardware and software simulators in the co-design process by serving as a design space pruning tool.

This paper makes the following contributions:

• We developed the ExaSAT framework to statically analyze an application and automatically

gather key characteristics about the computation, communication, data access patterns and

data locality that are important in characterizing performance of combustion codes.

• We designed an XML internal representation to represent the application workload and an XML

machine speci�cation to represent the exascale machine con�guration. The XML serves as a

medium and an interface for our framework to work with other tools, such as PIN tools or

architectural simulators.

3

• We implemented a performance model that can combine both hardware and software parameters

to bound performance, rapidly explore design trade-o�s, and extrapolate these requirements to

potential hardware realizations in the exascale timeframe (2020).

• We performed deep code analysis of SMC, a proxy implementation of a production combustion

code, and used our results to address key co-design questions acquired from our industry partners.

Finally, we quanti�ed the SMC performance on exascale proxy architectures using ExaSAT.

The rest of the paper is organized as follows. Section 2 provides background on related work and

explains how ExaSAT di�ers from existing performance modeling tools. Section 3 introduces the Exa-

SAT framework including the compiler-based front-end, XML speci�cation for the code description

and abstract machine model, and performance modeling component. Validation of the framework is

provided at the end of the section. Section 4 provides an overview on the characteristics of combustion

applications and gives details about a proxy application used to conduct performance analysis for this

paper. We present performance analysis and results in Section 5. Section 6 makes projections on an

exascale machine, evaluates the implications of our �ndings, and provides feedback to hardware/soft-

ware designers for exascale systems. The section includes discussion on limitations and future work.

We conclude the paper in Section 7.

2 Related Work

The overarching goal of the co-design centers is to understand the interplay between hardware and

software design trade-o�s. Given the uncertainty in exascale architecture, co-design centers need an

application characterization tool to iteratively perform a hardware/software optimization process envi-

sioned for the co-design of HPC systems. GEM5 (Binkert et al., 2011), CACTI (Thoziyoor et al., 2008),

or SST (Rodrigues et al., 2011) are software simulators that parameterize the machine speci�cations

but they are slow, leading to narrow analysis of small kernels or isolated components of the system

such as the interconnect. FPGA-based cycle-accurate, circuit-level emulators such as RAMP (Krasnov

et al., 2007; Wawrzynek et al., 2007) and the CoDEx emulator (Shalf et al., 2011) can capture very

detailed behavior of the architecture, but are not as easily con�gurable as software simulators. For

4

example, if the number of cores in the emulator is changed from 64 to 128, every single module will

need to be manually adjusted for the new cache sizes, address spaces, and network sizes. Furthermore,

very �ned grained circuit level design introduces the danger of missing general performance trends be-

cause of the extraneous amounts of data generated. Benchmarking provides immediate response, but

limits the analysis to current hardware architectures and the results can be biased toward particular

implementation or compiler options used because we cannot separate implementation-speci�c results

from performance opportunities.

Given the cost of setting up both simulations and emulations, analytic models play a complementary

role in design space exploration to identify the subset that is of interest for further study with simu-

lation and emulation. Higher level analytic models such as the Roo�ine model (Williams et al., 2009)

provide a speed-of-light (cannot-exceed) performance expectations, but o�er a very coarse-grained de-

scription of performance in terms of �ops rates and DRAM bandwidth. Convolution-based approaches

such as PMAC tools (Snavely et al., 2002; Carrington et al., 2003) provide coarse-grained performance

analysis through correlation and generate models by convolving application characteristics (the �sig-

nature") through instrumentation with a vector describing the target machine attributes. Similar to

ExaSAT, Pbound (Narayanan et al., 2010) mixes static and runtime data to estimate upper perfor-

mance bounds. However, ExaSAT is designed to understand performance requirements of structured

grid applications, thus can give a tighter bound. In addition, ExaSAT combines software optimizations

into the performance model. For more rapid construction of analytic models, pseudo-languages have

been proposed. For example Aspen (Spa�ord and Vetter, 2012) is a domain speci�c language that

enables a user to describe the parallelism, arithmetic operation counts, and data movement to build a

model. Specifying the model in Aspen still requires a lot of work, and the quality of the model depends

on the ability of the user to accurately capture the application signature.

Our ExaSAT framework has adopted a compiler-based approach to automate the process of gen-

erating the performance model. Compiler-based approaches have the dual advantages of being less

labor-intensive (thus more easily applied to large codes) and providing more accurate description of

codes to the analytic model. We acknowledge that static analysis cannot capture the dynamic be-

havior of the application; however, metrics gathered by dynamic traces or binary instrumentation are

5

very sensitive to compiler �ags and machine con�guration, which can obscure conclusions during the

analysis. Moreover, existing machines do not re�ect the characteristics of exascale machines and early

prototypes of exascale hardware are not available for evaluation. Instead, in ExaSAT we parameterize

the hardware con�gurations to support the static compiler analysis and increase the �exibility of the

framework to support exascale machine models. The model is not completely agnostic of inputs either.

Rather it is parameterized by a number of runtime parameters such as problem size. These parameters

are extracted from the input deck for the various applications so that the model sees the resultant

performance impact.

Another aspect that di�erentiates our approach from others is that our framework uses unconven-

tional performance metrics to quantify performance. Most existing performance analysis and instru-

mentation focus on �op counts, cache hit rates, and other processor-based metrics. We focus on data

movement as a key metric because it has become one of the most challenging hardware constraints for

the design of future systems. Since �ops have become cheaper, the energy of data movement dominates

the energy cost (Shalf et al., 2010). Thus, our analysis of both on-node and o�-node data movement

not only provides valuable feedback to hardware designers, but also to exascale programming model,

compiler and runtime designers.

Finally, in addition to a parameterized machine model, our modeling approach includes a parame-

terized model for software optimizations. Previous work (Mohiyuddin et al., 2009; Chan et al., 2013)

showed that estimating hardware requirements on an unoptimized software led to incorrect conclu-

sions. Similarly, tuning software without taking into account the hardware choices did not result in

an optimal solution. These �ndings motivated us to incorporate a parameterized set of software opti-

mizations into our framework. Our approach holds a substantial advantage over studies (Balaprakash

et al., 2013) that measure code bandwidth and �op utilization without considering software transfor-

mations. As more detail emerges on hardware design proposals, the upper bounds provided by the

analytic models produced by ExaSAT should be examined together with lower bounds supplied by

binary instrumentation on current machines to provide a complete picture of theoretical vs. achievable

performance.

6

Input	

Code	

	

Compiler	
 Analysis	

	

	

	

	

	

Func5on	
 and	
 Loop	
 	

A7ribute	
 Analysis	

Arithme5c	
 Ops,	
 Read/Write,	

Stencil	
 Access	
 Analysis	

Performance Spreadsheet

Dependency Graph

Exascale	
 Machine	

Config	
 <XML>	

ROSE	

Frontend	

AST

ExaSAT Framework

User	
 Parameters	

Code	
 Descrip5on	

<XML>	

	

Performance	
 Model	

	

	

	

	

	

Working	
 Set	
 and	

Memory	
 Traffic	
 Modeling	

Loop	
 Dependency	

Memory	
 Footprint	
 Analysis	

 Optimized HW/SW
configurations

(reduced space)

Figure 1: Work�ow in ExaSAT Framework

3 ExaSAT Framework

As illustrated in Figure 1, the ExaSAT framework is composed of two main components � the front-

end compiler analysis and back-end performance model. The front-end component collects procedural

and loop level information to create a pro�le of the code, which is stored in an XML �le. The XML

code description is then fed into the back-end analysis, which produces dependency graphs, generates

performance models, and produces statistical summaries of the code's characteristics. The performance

model is parameterized with (1) machine speci�cations such as cache size, (2) user parameters such as

problem size, and (3) software optimizations such as loop fusion and blocking. The optimized hardware

con�gurations provide the reduced design space for the architecture simulators and the optimized

software con�gurations provide feedback to application developers and programming system tools.

As a result of interactions with application experts and industry partners participating in the

DOE Fast Forward program (Fast Forward, 2013), we assembled a set of performance metrics that

re�ect the characteristics of the exascale applications and made these metrics the center of ExaSAT.

Figure 2 shows the list of metrics that we used for evaluating various hardware components and

software optimizations. The �rst metric that quanti�es the bene�ts of data movement optimizations is

the byte-to-�op ratio (B:F ratio), which expresses the balance between the application's required �ops

and memory tra�c. We use this ratio as an indicator of energy and performance improvement for

optimization strategies. Since the degree of reuse enabled by the on-chip memory con�guration can

signi�cantly impact memory tra�c, we also measure working set sizes.

Another metric related to data movement concerns state variables and registers. We analyze state

7

Metric Corresponding Analysis
Memory Traffic &
B:F Ratio Sensitivity to the memory bandwidth as a result of

data movement optimizations
Working Set Size Data reuse strategies for filtering memory bandwidth
State Variables Effect of number of registers to avoid register spilling
Arithmetic Operations FP instruction mix, special hardware, & benefits of

vectorization
Read/Write Ratio &
Write Access Rate Candidate streaming data for secondary nonvolatile

memory
Fraction of Communication On-node vs off-node data movement

Figure 2: Subset of performance metrics captured

variables to estimate the impact of the architectural register count on the number of spills, which cause

additional loads and stores and pipeline bubbles. Although the majority of our analysis focuses on data

movement, ExaSAT provides estimates of arithmetic costs as well. We analyze the instruction mix,

the use of expensive transcendental functions such as exponentials, and the impact of vectorization.

ExaSAT enables us to investigate alternative technologies such as non-volatile memory (NVRAM)

and integrated network controllers (NIC). NVRAM is considered to be a cost-e�ective alternative that

can serve as a high capacity, secondary memory (Lee et al., 2009), however the writes to NVRAM are

costly both in terms of dynamic energy consumption and performance. In order to assess what data

to put into NVRAM, we use the community standard, read/write ratios (Li et al., 2012), and a new

metric write access rate, which is the fraction of write references to a particular variable. Lastly, we

use the fraction of communication time to assess the impact of o�-node communication on application

performance. This metric helps us evaluate whether there is a strong justi�cation for custom NICs,

which integrate the network controller on chip to increase injection bandwidth. Next, we explain how

we extract these metrics with compiler analysis and how we employ them in performance model.

3.1 Compiler Analysis

The compiler analysis for ExaSAT was built on top of the ROSE compiler framework (Quinlan et al.,

2002), which is an open-source compiler infrastructure developed at Lawrence Livermore National

8

Laboratory. ROSE parses C, C++, and Fortran source to convert it into an abstract syntax tree

(AST) that we can manipulate and analyze. Our compiler analysis currently accepts Fortran inputs;

however, it can be extended to support C/C++ inputs.

3.1.1 Procedure and Loop Attributes

The analysis of the AST begins by querying the procedure de�nitions (subroutines and functions) in a

module. For each procedure, we collect a list of variable symbols used in the procedure body and classify

them into two categories: L: locally declared variable symbols and, U : variables symbols referenced

within a procedure. The set di�erence (U \L) of these two gives us the non-local variables, which can

be global, de�ned in another module, or passed as an argument to the procedure. Fortran presents a

special case because of its pass-by-reference semantics for subroutine arguments; procedure arguments

that are declared with an intent type modi�er are not technically local, and must be excluded from

the L list.

After completing the live variable analysis1 and locality analysis for the procedure, we collect

detailed loop level information. The loop analysis handles perfectly and imperfectly nested loops and

is carried out inclusively on the entire loop body without excluding child loops.

When we generate the XML output, we make the loop level information exclusive (not including

attributes in the subloops). This is important to accurately estimate performance because both the

arithmetic and memory operations are multiplied by the iteration space in the performance model.

For each loop, we gather loop attributes such as iteration bounds and strides, which are later

used by the performance model to reason about the iteration space. Loop bounds typically depend

on application parameters that are determined at runtime; therefore, we track symbolic rather than

actual values and later perform symbolic replacement based on the user's parameters. Maintaining a

symbolic representation of the iteration space also enables the performance model back-end to analyze

the e�ect of software transformations such as loop blocking and fusion.

In order to estimate the total arithmetic workload, we count the �oating point arithmetic operations

(addition, subtraction, multiplication and division) in the loop body. In addition, we count math

intrinsic functions (e.g. exp() or log()) because they can be signi�cantly more costly to execute. The

1A variable is live if it holds a value that may be used in the future (thus it cannot be deallocated or overwritten).

9

compiler analysis searches for function reference expressions in the loop body and uses a lookup table

to identify such functions.

3.1.2 Data Access Analysis

Array access analysis is one of the crucial parts of the compiler analysis because the read/write prop-

erties of arrays are utilized by the performance model to compute on-chip data movement and memory

footprint. ROSE provides an interface to get lists of the read references (R list) and write references

(W list) for a given statement. This interface partially serves our needs by enabling us to classify vari-

ables as read-only, write-only or both. In scienti�c codes, some array dimensions may not represent

spatial dimensions, but rather di�erent physical properties or quantities such as density, temperature,

pressure, or energy. We di�erentiate such dimensions by representing each array as a array-component

pair. For example, the two references to the array Q in Q, (i, j, k, imx) and Q(i, j, k, imy) refer to two

di�erent array-component pairs: (Q, imx) and (Q, imy). The location of such dimension is tunable.

However, we require all the arrays in the application have the physical property represented in the

same index location. The user can identify which indices represent spatial dimensions and which are

non-spatial parameters. The di�erentiation of arrays at the component level is necessary because the

reuse pattern, and thus the working set size, is di�erent for each component. We group references

by array-component pairs and return separate lists for the read-only variables (R \ W), write-only

variables (W \R), and the arrays that are both read and written (R ∩W).

In order to model data reuse in the cache, we need more information with respect to the array access

patterns. We support the read/write property analysis by examining all the references to an array-

component pair in a basic block. The array references are broken into individual subscript expressions

to extract their relative o�sets to the loop indices. This helps us determine the distance between two

references to the same array. Another important property is whether the �rst reference to an array

is a load or a store. If the �rst reference is a load followed by a store, the load requires the data to

be brought into cache from memory before it is written. On the other hand, if a load is preceded by

a store, then the load may be carried out from the cache without incurring any additional memory

tra�c. Our tool conducts the �rst reference analysis within a loop to more accurately model cache

10

reuse and support the analysis of advanced memory instructions such as non-temporal stores.

If the program expands into multiple �les, we require the user to generate a separate XML per

�le. The XML code description contains the function call information such as module:function name

and argument-parameter mapping. The performance model will take the XML of the �le of interest

with its dependent XML �les as an input. When estimating the performance, if a function call is

encountered, the compute cost of that function will be added to the compute time of the callee.

Because of the nesting nature of function calls, this complicates the performance analysis particularly

for the read/write properties of arrays. We are still investigating how to improve the analysis and

currently conservatively assume that arrays are modi�ed if we cannot automatically determine if the

function has side e�ects. We made an exception for the side e�ect analysis of Fortran intrinsics and

assume the arguments for such functions are read-only. In addition to arrays, we conduct a similar

analysis for the scalar variables referenced in each loop to help estimate register usage, though the

read/write property analysis for scalar variables is much simpler.

3.2 XML Description

The ExaSAT compiler analysis outputs the results in an XML intermediate representation (XML-IR)

to interface with the back-end performance modeling component of the framework. This enables the

utilization of the performance model directly from the high-level XML-IR, bypassing the compiler

analysis step. In this way, program variants or hypothetical code formulations can be evaluated with-

out having to write the actual code. Similarly, the XML output of the compiler analysis can be fed to

another tool such as an architecture simulator bypassing the performance model step. We currently

provide the XML description of the communication patterns in the codes to the SST simulator (Ro-

drigues et al., 2011) to simulate di�erent interconnection topologies. A more detailed design document

for the XML-IR can be found in (ExaSAT XML Speci�cation, 2013).

3.2.1 Machine Con�guration

The machine con�guration used as an input to the performance model can be speci�ed in a separate

XML. ExaSAT focuses on the aggregate performance of the computational throughout and memory

11

Figure 3: XML-IR element node hierarchy

bandwidth between the CPU and the DRAM. It considers the bandwidth �ltering capability of last

level cache, which is determined by the total amount of exclusive on-chips memory per thread or group

of cooperating threads. An example machine con�guration XML, shown in Listing 1, represents an

exascale extrapolation of a many-core architecture. The example shows a 1000 core machine with 10

TF aggregate computational throughput, 1 TB/s aggregate memory bandwidth and 64kB cache per

core. The XML also allows us to specify other parameters, such as number of registers, DRAM size,

network latency, and network bandwidth. Section 3.3 explains the e�ects of these properties in greater

detail.

1 <machine>

2 <prop key="Cores" val="1000" />

3 <prop key="Gflop/s/core" val="10" />

4 <prop key="GB/s/core" val="1" />

5 <prop key="Cache/core (kB)" val="64" />

6 <prop key="Division Cost" val="39" />

7 <prop key="Transcendental Cost" val="125" />

8 <prop key="NIC BW (GB/s)" val="100" />

9 ...

10 </machine>

Listing 1: Example XML Machine Description (partial)

Additionally, some software parameters that a�ect performance, such as the use of cache-bypassed

writes and non-temporal memory accesses, may be con�gured in our performance model through XML

input or at runtime.

12

3.3 Performance Model

Our performance model takes the characteristics of the computational workload speci�ed as an XML

and generates performance metrics and execution estimates. For simplicity, we adopt a hardware model

abstraction consisting of a collection of parallel hardware cores alongside a parameterized memory on

the chip. The CPU is connected to main memory by a bandwidth-limited o�-chip network. Our

CPU model does not capture the behavior of individual cores or on-chip network, but rather takes the

aggregate computational throughput as an input parameter. Similarly, the memory model takes the

aggregate DRAM bandwidth connecting the CPU to memory (i.e. the stream bandwidth) as an input.

Since modeling the e�ects of on-chip access latency would require a detailed on-chip network design

analysis, we focus on the bandwidth �ltering capability of the on-chip memory, i.e. the reduction in

memory tra�c from capturing temporal locality. Thus, we are primarily interested in the size of the

(non-inclusive) on-chip memory capacity per thread or group of threads cooperating on a working set.

Our model focuses on capturing the costs of the computational workload and data movement, while

taking into account the degree of data reuse enabled by the on-chip memory.

Application performance is estimated using the following method: let α be the aggregate compu-

tational throughput of the machine and β be the aggregate memory bandwidth. Let C represent the

program's �oating-point arithmetic workload and D be the necessary o�-chip data movement between

the CPU and DRAM. Our model estimates the program execution time as T = max(Tc, Td), where

Tc =
C
α is the CPU time and Td = D

β is the DRAM time. This performance metric assumes the full

throughput and bandwidth are achievable, which may not always be the case for a complex application

code. The purpose of our framework is not to make exact performance predictions, but instead provides

a performance upper-bound in the spirit of the Roo�ine model (Williams et al., 2009), and is useful

to make relative comparisons between di�erent hardware/software con�gurations. Lastly, we modeled

the o�-node communication time by assuming an ideal interconnection network. Our model estimates

the communication time as m
b + l, where m represents the aggregate message size, b is the network

injection bandwidth, and l is the network latency. Thus, for large messages, the network latency is

negligible. The model also computes the fraction of communication time over total execution time,

which depends on the Tc (on a memory bandwidth limited kernel and Td (on a compute bound kernel.

13

3.3.1 Floating-point Computation

In order to estimate C, the �oating-point (FP) arithmetic workload, we examine the FP operation dis-

tribution present in the code. Current �oating-point logic is typically optimized towards FP additions

and multiplications, thus exhibit their peak throughput on workloads that only consist of a balance

of those two operations. However, there are other types of FP operations present in scienti�c codes

that can only sustain a fraction of the peak. For example, on the Intel Sandy Bridge architecture, the

throughput of scalar FP division is 39 times slower than SIMD FP adds or multiplies, while scalar

exponentiation is 125 times slower (Vladimirov, 2012). ExaSAT weighs operations such as divides

and transcendentals according to their costs speci�ed by the user in the machine con�guration to de-

termine a weighted computational workload. Further, the model is parameterized to allow exploring

optimizations such as vectorized operations.

3.3.2 State Variables, Registers, and Spills

The number of accesses to both state variables (scalars and non-streamed arrays) and streamed arrays

can be used to determine how many registers need to be reserved to hold these values during each of

the loops in the program. Since state variables are accessed during every iteration of a loop, an optimal

allocation for these variables would place the variables with the most number of accesses into registers,

while spilling the rest into the next tier of memory (e.g. L1 cache or local memory). Assuming an

architecture with an L1 cache, our performance model can compute the tra�c that results from spilled

state variables based on the user speci�ed register parameters. In addition, it can compute mandatory

tra�c that results from streamed variable access to estimate total L1 tra�c. This information can be

used to analyze the trade-o� that results between the number of available registers and L1 bandwidth.

3.3.3 Working Sets and Memory Tra�c

The performance model analyzes every array accessed in each loop of the input XML code description.

Each array may have a di�erent access pattern, so the tool computes working set and bandwidth

usage for each array independently given the array's access pattern. An array that is written will

typically only require access to the current grid element (no neighbors), while arrays that are read

14

Cell Pencil Plane

X

Y

Z

X

Y

Z

X

Y

Z

Figure 4: Working sets required for di�erent levels of reuse for a 7-point 3D stencil. The grid is swept
in a triply nested loop with the X dimension �rst, then Y and then Z.

may require multiple grid elements. Our memory and cache model is targeted to the reuse pattern

that occurs in stencil computations because stencils constitute the most prevalent operator in our

target application codes. The cache is assumed to be an ideal, fully-associative LRU cache, which is

optimistic in the sense that if the working set �ts into cache, full reuse of that working set is assumed.

Real caches with random replacement policies are likely to under-perform due to con�ict misses and

imperfect replacement. However, our model provides a performance ceiling and a starting point for

more detailed analysis using dynamic instrumentation and simulators.

Figure 4 shows the potential reuse cases captured by our model for the canonical 7-point stencil. If

the cache is large enough to hold the cell working set, then there will be reuse between cell iterations.

Similarly, the �gure shows the working set sizes needed for reuse between pencil iterations (all points

in x for a given y and z) and plane iterations (all points in x and y for a given z). For each stencil

access pattern encountered in the code, our model computes the working set sizes required for each of

these reuse cases.

If there are gaps in the stencil access pattern, partial reuse may occur near the calculated boundaries

between reuse cases. Our model can compute the working sets sizes that bound the transitions from

no reuse to partial reuse to full reuse between pencil and plane sweeps. For an LRU cache, no reuse

will occur if the cache is smaller than the number of elements accessed in the pattern, while full reuse

requires a working set equal to the span of the pattern plus the maximum gap size. For example, a

stencil pattern that accesses planes -2, -1, 0, +1, +2, has a working set of 5 planes because there's

15

no gap, but a pattern of -2, +2 requires a working set of 8 planes (5 for span, 3 for gap) for reuse

even though it only touches 2 planes per sweep. It may seem counter-intuitive that accessing fewer

planes can increase the working set size, but gaps in the pattern require the cache to hold data for

a longer period of time without evicting it. For a software-managed local store, the memory can be

managed more e�ciently, requiring only the span of the access pattern to �t into the store. Since we

are interested in establishing a performance upper bound, the model optimistically assumes full reuse

is possible for certain situations where only partial reuse would occur. Future work will take these

e�ects into consideration to increase the tightness of the bound.

The machine con�guration speci�es the cache line size, which determines the minimum granularity

of access in the unit-stride dimension used for working set and bandwidth calculations. Our model

rounds the number of contiguous elements within the accessed region up to the next multiple of the

cache line size (assuming optimistic alignment), to compute the resulting working set and memory

tra�c estimates. Also, the con�guration allows the user to specify whether cache bypass is utilized

for array writes, reducing memory tra�c and cache pollution. Non-temporal array reads can also be

enabled in the con�guration to further reduce cache pollution from arrays with no reuse.

Once the working set and memory tra�c estimates are computed, they are compared to the cache

size speci�ed in the hardware con�guration to determine what reuse scenario will occur for each loop,

thus determining the required memory tra�c for the whole program. Note that this type of analysis

can be conducted at every level of the cache hierarchy. For example, if we speci�ed the cache size

available at L1, then the computed memory tra�c would be that required between L1 and L2. Using

our methodology, we could conduct a multi-level analysis that computes the bandwidth requirements

and performance at every level of cache.

3.3.4 Block Execution Schemes

Cache blocking (Rivera and Tseng, 2000) reduces cache capacity misses by tiling the loop iteration

space, thus shrinking the working set to the point where it �ts in cache. ExaSAT incorporates two

di�erent block execution schemes to analyze the performance impacts of cache blocking. In the tra-

ditional blocking scheme, each loop runs over the entire domain before proceeding to the next loop.

16

Loop Nest 1

Loop Nest 2

a) b)

Loop Nest 3

Loop Nest 4

Loop Nest 1

Loop Nest 2

Loop Nest 3

Loop Nest 4

Blocked Iteration Space Blocked Iteration Space

Figure 5: Comparison between a) traditional blocked execution order and b) the alternative block
execution order

In an alternative scheme (Woodward et al., 2010) all of the loops are run on a block before moving

to the next block as illustrated in Figure 5. Each large rectangle represents the iteration space at

di�erent points of progress (indicated by shading), and each sub-rectangle represents a block of the

iteration space that �ts into local memory. While traditional blocking allows reuse of data within loop

nests, the alternative scheme schedules loops such that reuse of data across loop nests is also possi-

ble. The potential disadvantages of the alternative scheme are larger working set sizes and redundant

overlapping computation needed to satisfy any necessary spatial dependencies between blocks. If the

blocks are sized appropriately, all temporary arrays can remain in cache or local store throughout the

computation until the �nal output is produced. If there is su�cient on-chip memory, the only DRAM

tra�c required would be for reading and writing each function's inputs and outputs.

ExaSAT automatically generates parameterized performance models for both schemes, facilitating

the exploration of optimal strategies for di�erent machine con�gurations in the co-design process.

Using liveness analysis, our performance model can estimate the total memory footprint needed at

each computation step, giving the on-chip memory size required for each block execution scheme and

an estimate of the total memory tra�c.

3.4 ExaSAT Outputs

3.4.1 Dependency Graph Description

The ExaSAT framework outputs a dependency graph indicating the dependencies between loops in a

procedure. Flow, anti, and output dependencies are considered across all arrays read and written in

17

Figure 6: Dependency subgraph for the SMC dynamics code

Table 1: Example loop analysis table (top) and array access and occupancy table (bottom) generated
by the ExaSAT tool for a subset of SMC dynamics code

Procedure
Loop Line Flop's/cell State Var Working Memory FP Computation B:F Execution
Number Add Mul Div Exp Int FP Set (kB) Tra�c (GB) (Weighted GFlop's) Ratio Times (ms)

advance 418 128 174 0 0 17 5 356 0.69 0.63 1.16 0.67

advance 533 2 2 0 0 7 2 0.03125 0.11 0.01 12.00 0.11

advance 720 32 39 0 0 13 8 132 0.19 0.15 1.39 0.19

advance 771 18 27 9 0 17 0 0.4375 1.41 1.00 1.52 1.37

advance 1529 860 959 18 0 30 70 818 1.44 5.33 0.29 1.41

ctoprim 85 3 17 1 0 24 32 0.375 1.54 0.15 11.12 1.50

ctoprim 136 4 4 2 1 14 22 0.1171875 0.23 0.44 0.57 0.23

Total/Max 818 5.61 7.71 0.78 5.48

Variable Name Copies
Loop Line Number Totals

274 418 515 767 771 791 1139 1160 1508 1529 1877 1921 Reads Writes Live

Fdif.iryn 53 W L L L RW L RW L RW R 212 212 265

Fhyp.iryn 53 W RW L L L L L L L L L R 106 106 477

Hg.iryn 53 W R W R W R 159 159 0

Q.qhn 53 R R L R L R 212 0 106

Q.qpres 1 R L L R R L R L R 5 0 4

Q.qtemp 1 R L R L R 3 0 2

Q.qxn 53 R R L R L R 212 0 106

U.iryn 53 L R L L L L L L L L L R 106 0 530

Unew.iryn 53 L L L L L L L L L L L RW 53 53 583

dpe 1 W RW R L R L R 4 2 2

dpy.n 53 WR R L R L R 159 53 106

Number of Arrays Resident 159 160 213 214 373 427 427 427 427 427 265 212

18

each loop. Figure 6 shows an example dependency graph generated by ExaSAT where boxes represent

data arrays, ovals represent loops, and arrows indicate which arrays are read and written by each

loop. The dependency graph illustrates the code's inherent concurrency and allows us to reason about

how the computation can be rearranged for enhanced locality, task co-scheduling, and parallel load

distribution. We explore the impact of loop fusion for enhanced locality on our motivating application

in Section 5.1.4. Future work will study the use of intelligent runtime analysis for task co-scheduling

and load balancing.

3.4.2 Spreadsheet Description

ExaSAT outputs a performance spreadsheet for the user to further examine the performance of the

application. The spreadsheet contains a table of user-modi�able parameters, which allows the user to

change the initial XML software and machine con�gurations. The rest of the spreadsheet automatically

updates itself via formulas to re�ect the changes made in the parameter table.

The main section of the spreadsheet is a summary table listing properties for each loop in each

procedure in the code. Table 1 shows a part of the summary table generated by our tool, including �op

counts, state variable count, working set size, memory tra�c, and execution time. Aggregate statistics

are also included in the table to summarize whole program performance.

The spreadsheet contains an array access and occupancy table which shows the liveness of arrays

through the progression of the program. This analysis is used for memory capacity calculations and

NVRAM feasibility studies. Table 1 also shows an example occupancy table generated by our tool.

The rows in the table correspond to arrays, while the columns correspond to loops in the program,

allowing the table to be read left-to-right to correspond to a possible program execution. The number

of copies indicate the number of components of the arrays. Each cell in the table contains one of the

following values: read (R), written (W), read-then-written (RW), written-then-read (WR), live (L), or

non-resident (). Summary columns are given to show the number of reads and writes to each array

as well as the total number of live arrays, which is used to compute the memory footprint.

Other sections in the spreadsheet include tables that summarize the inter-node communications

that must occur during the program execution and state variable accesses to help model the cache tra�c

19

2	

2.5	

3	

3.5	

4	

4.5	

5	

5.5	

6	

6.5	

8	
 32	
 128	
 512	
 2048	
 8192	
 32768	

M
em

or
y	

Tr
affi

c	

(G
B)
	

Cache	
 Size	
 (kB)	

Pin	
 Tool	

ExaSAT	

Figure 7: Comparing memory tra�c modeled by ExaSAT and simulated by Pin for the CNS code
(1283 problem)

resulting from spilled registers. A summary table and histogram are generated for each loop showing

the number of state and streaming variables located in registers versus cache and the corresponding

number of register hits and misses.

3.5 Model Validation

We validated our results against data collected through dynamic instrumentation and benchmarking.

Validation against Pin: First, we used the publicly available Pin tool (Luk et al., 2005) to

validate instruction counts and memory tra�c. Pin analyzes an application at the instruction level and

uses dynamic compilation to instrument executables while they are running. By attaching callbacks

around every instruction reading or writing to memory we can extract a stream of load and store

addresses from the program as it runs. This stream is then piped into a LRU cache simulator that

we implemented on top of Pin, which aggregates the relevant statistics such as cache hit, miss, and

line writebacks for a given cache size. Floating point instructions are also monitored to retrieve �op

counts.

20

16.00	

32.00	

64.00	

128.00	

32	
 64	
 128	
 256	
 512	

Ex
ec
u&

on
	
 T
im

e	

(m

s)
	

Block	
 Size	

Measured	
 Gradient	

ExaSAT	
 Gradient	

Measured	
 Divergence	

ExaSAT	
 Divergence	

Measured	
 Laplacian	

ExaSAT	
 Laplacian	

Figure 8: Measured and modeled execution times for blocking sizes for three simple stencil benchmarks

The FP instruction counts predicted by ExaSAT match with those measured by the Pin tool. Loads

and stores of the variable under study also match those reported by the Pin tool. Figure 7 compares

the memory tra�c modeled by ExaSAT with the memory tra�c captured by the Pin tool for the CNS

code for various cache sizes. CNS2 is a combustion proxy (Exact, 2013) that integrates the compressible

Navier-Stokes equations assuming constant transport. It is a simpli�ed (single species) version of the

SMC code (Emmett et al., 2013), which will be discussed in more detailed in Section 4. The analytical

performance model in ExaSAT correctly captures the amount of data reuse and resulting trend of

memory tra�c as cache size is varied, though the memory tra�c modeled by ExaSAT is slightly lower

than the Pin tool's because it is providing a lower bound. Initially, the number of L1 cache hits

measured by Pin was abnormally higher than what ExaSAT estimates considering only array access

tra�c, which led us to investigate the proportion of L1 cache tra�c due to spilled state variables.

When there is not enough number of registers to hold all the state variables in a loop, accesses to

these variables will be spilled to the next level memory. This introduces more cache tra�c, which will

give the impression that there is a higher hit rate. When we separated array accesses from the state

variable accesses to the cache in the Pin tool, then the loads and stores estimated by ExaSAT match

with those measured by Pin. More discussion on register spills will be described in Section 5.1.3.

Block Size Validation: Second, we measure the e�ect of blocking with three simple stencil

benchmarks, namely gradient, divergence and Laplacian and compare their performance against the

2CNS is available for download at the ExaCT co-design center's website (Exact, 2013).

21

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

16.0	

L1	
 L1	
 L2	
 L1	
 L2	
 L3	
 L1	
 L2	
 L3	
 L4	
 L5	
 L6	
 L7	

update()	
 ctoprim()	
 hypterm()	
 di<erm()	

Ti
m
e	

by
	
 L
oo

p	

N
es
t	
 (
m
s)
	

Measured	
 Performance	

ExaSAT	
 bound	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

Hypterm	
 before	

opImizaIon	

L1+L2+L3	
 	

Hypterm	
 fused	

and	
 opImized	
 	

Figure 9: Measured and modeled execution times for each loop in a single Runge-Kutta step in the
CNS code. L# indicates the loop numbers.

estimates by ExaSAT. We manually blocked three simple stencil benchmarks, namely gradient, diver-

gence and Laplacian and collected the execution time with 24 threads on a single node on NERSC

Hopper Cray XE6. No software prefetcher or cache bypass is enabled. The results in Figure 8 show

that the measured execution times and optimal blocking size correlate well with ExaSAT's. Where

the block size is small, the model predicts much better performance than the measured because in

the measured code, hardware prefetchers cannot hide the load latencies for small blocks. There are

also situations that the model exceeds the measured execution time. The model has a sharp transi-

tions at the points where the working set grows larger than the available cache. In reality, the cache

replacement policy leads to a smoother transition than ExaSAT.

Optimization Opportunities: Third, we collected running times for the CNS code (single

species) and SMC code (multiple species) and compared them against the ExaSAT estimated bounds.

The purpose of comparing ExaSAT with the benchmark is not to measure how close the estimated

22

and actual running times are but to point to the parts of the code where there are opportunities for

optimization since ExaSAT highlights parameter sensitivities subject to the user-speci�ed constraints

rather than giving a performance prediction.

Figure 9 compares the performance bounds by ExaSAT and the actual running times by loop nests

collected on the NERSC Hopper machine3. As clearly seen from the results, some of the loops have

a big performance gap between the two and these have the potential to gain some of the performance

back through data movement optimizations. In particular, the hypterm function exhibits the highest

discrepancies between the measured and estimated bound. ExaSAT bounds the running time for the

hypterm function to 8.1ms, which is 3.3x better than what is measured (26.6ms). ExaSAT estimates

that this bound for hypterm can be further reduced to 3.3ms from 8.1ms if all the three loops are fused.

We aggressively optimized the hypterm function by applying vectorization, cache blocking, and

loop fusion optimizations and the results are shown in the inset graph in the same �gure. The �rst bar

in the inset graph shows the total time spent in three loops in hypterm and the second bar shows the

measured performance as a result of optimizations and compares it with the new bound by ExaSAT

after the loop fusion. The manual optimizations achieved 6.7x the initial performance, reducing the

measured running time from 26.6ms to 4.0ms, which is much closer to what ExaSAT predicts (3.3ms).

This illustrates how ExaSAT can be used to identify performance opportunities for the programmer

and guide application tuning.

Similarly, ExaSAT suggested that tiling the SMC code would provide 37% improvement in per-

formance on Hopper and 41% speedup on SDSC's Trestles4. We have implemented a tiled version of

SMC and observed a 30% improvement on Hopper and 32% on Trestles. We suspect that the lower

measured performance can be attributed limitations with the hardware prefetchers since the SMC code

accesses a large number of arrays in its solvers. Consequently, there is room for improvement and we

are still investigating the SMC performance. We did not manually implement the fused version of SMC

because of its complexity. We plan to use the Chill compiler framework to automate loop fusion.

3using six core Opteron 6172 with 6MB L3 cache.
4using four AMD MangyCours with 4MB L3 cache.

23

4 Motivating Application: SMC

We demonstrate the abilities of the ExaSAT framework by applying the tool to the SMC code, which

contains over 10K lines of code, making the manual analysis impractical for this code. SMC is de-

veloped by the Combustion Co-design Center (Exact, 2013) and is a proxy for the production direct

numerical combustion codes such as S3D (Chen et al., 2009). SMC represents structured grid prob-

lems, which play an important role in numerical simulations, particularly in stencil-based PDE solvers.

Understanding the SMC performance provides insights into requirements of the family of combustion

codes on exascale machines.

SMC integrates the multicomponent reacting compressible Navier-Stokes equations with detailed

models for chemical species di�usion and kinetics. It contains the key elements of both the dynamical

core5 and the chemical kinetics components of S3D; however, SMC is restricted to gas phase problems

and a restricted set of boundary conditions. SMC also uses a simpler temporal integration algorithm

that does not include automatic error control. The methodology is based on high-accuracy solution of

a system of partial di�erential equations of the form

∂U

∂t
+∇ · F(U) = ∇ · D(U) + S .

The terms F , D, and S correspond to hyperbolic transport, nonlinear di�usive processes and

chemical source terms, respectively. U is a vector of unknowns, representing density, energy and

three components of momentum with an additional density for each chemical species (e.g. octane),

for a total of 5 + Ns unknowns per point where Ns is the number of species in the problem. The

number of chemical species and the number of reactions have a strong e�ect on overall computational

costs of the algorithm; typical applications will range from as few as 9 species to more than 100.

The chemical kinetics model used by SMC is speci�ed at compile time using code that is generated

automatically from a tabular description of the reaction mechanism. This mechanism-speci�c �le also

includes thermodynamic data needed for the simulation. Transport coe�cients are computed using

EGLIB (Ern and Giovangigli, 1995).

5The part of the code that computes �uid dynamics.

24

We focus on two important aspects of SMC: the chemical source term evaluation and the dynamical

core. The chemical source term of SMC is a computationally intensive, element-wise computation

that uses a large number of transcendental operations. The dynamical core uses high-order stencil

computations to approximate spatial derivatives, converting the system into a large system of ordinary

di�erential equations. These ordinary di�erential equations are then integrated using a third-order,

low-storage, TVD Runge-Kutta scheme (Gottleib and Shu, 1998; Qiu and Shu, 2005).

The spatial discretization uses a �nite di�erence approximation on a uniform grid. There are

essentially three types of terms we need to approximate: �rst-order derivatives needed to approximate

∇ · F and terms of the form (aux)y and (aux)x, both of which arise in discretizing D. We �rst

de�ne a �rst-order derivative operator in the x direction, D1,x using an eighth-order �nite di�erence

discretization

ux,i,j,k ≈ D1,xui,j,k =
∑
`=1,4

α`(ui+`,j,k − ui−`,j,k)

with analogous operators in the y and z directions. These discrete derivative operators are used to

evaluate the terms for discretization of F . They are also used to evaluate mixed derivative terms. For

example,

(ηux)y ≈ D1,y(ηD1,xu) .

The second derivative terms are discretized using an eighth-order extension of the narrow stencil

discretization of Kamakoti and Pantano (Kamakoti and Pantano, 2009). In particular, we approximate

variable coe�cient second derivative terms in the form

∂

∂x

(
a
∂u

∂x

)
i

≈ D2,x(a, u) =
∑

`,m=−4,...,4

β`,mai+`,j,kui+m,j,k

A more detailed discussion of the discretizations in SMC can be found in (Emmett et al., 2013).

The parallel grid decomposition for the SMC code requires ghost cell exchanges for the vector U .

Ghost cells are the data residing in neighboring grid blocks that are required to compute the stencil

operations. Figure 10 shows the stencil access pattern and ghost region that needs to be communicated.

The depth of the ghost region is four grid cells in each dimension with 5 +Ns values per point.

25

+y

+x

+z

U(x,y,z,t)

(a) (b)

Figure 10: (a) 3D grid with its ghost cells (b) stencil access pattern for SMC

Descrip(on	
 	
 #	
 of	

Species	
 	

#	
 of	

Reac(ons	

#	
 of	
 Reac(ons/
Species	

LiDryer	
 	
 Hydrogen	
 	
 9	
 	
 21	
 	
 2.3	

Drm19	
 	
 Reduced	
 reac7on	
 sets	
 natural	
 gas	
 	
 21	
 	
 84	
 	
 4.0	

Grimech30	
 	
 Natural	
 gas	
 combus7on	
 	
 53	
 	
 325	
 	
 6.1	

Hai	
 	
 Tri-­‐carbon	
 fuel	
 combus7on	
 	
 71	
 	
 469	
 	
 6.6	

Prf_ethanol	
 	
 Ethanol	
 	
 107	
 	
 529	
 	
 4.9	

Figure 11: Number of species, number of reactions and the description of chemistry component of the
SMC codes modeled

5 Results

5.1 Analysis of SMC with ExaSAT

In order to capture the e�ect of increasing number of species, we modeled the SMC code for 9, 21,

53, 71 and 107 species, representing simulations ranging from hydrogen to natural gas to biofuels.

Figure 11 provides more descriptions about the species modeled in this paper. Note that only certain

values for the number of species are meaningful. Unless stated otherwise, the baseline performance

estimates are based on a domain decomposition (box) size of 1283 per node with 53 species using the

machine con�gurations speci�ed in Listing 1.

5.1.1 Arithmetic Operations

Scienti�c applications are biased heavily towards �oating point operations, although address arithmetic

is often a large component of the instruction mix. The preponderance of �oating point operations are

26

Table 2: Relative throughput of divide and exponential compared to vectorized ADD on Intel Sandy
Bridge E5-2680 with Turbo Boost

Relative throughput Baseline Fast-div Fast-exp
Division 1/39 1/20 -
Exponentials 1/125 - 1/42

addition and multiplication operations. A small number of division and transcendental functions that

appear in the codes contribute signi�cantly to the running time since they execute one or two orders

of magnitude slower.

ExaSAT can examine the �oating point(FP) operation mix per loop iteration and provides the

�exibility to change the arithmetic operation throughput. Figure 12 shows the operation analysis for

both the chemistry and dynamics kernels of the SMC code for a 1283 problem size with 53 species.

The two kernels exhibit substantially di�erent arithmetic operation distributions. The chemistry kernel

contains transcendental operations, mainly exponentials (92.5%) and logarithms (7%). Even though,

a small number of division and transcendental functions appear in both kernels, these operations

contribute signi�cantly to the running time since they execute roughly one to two orders of magnitude

slower. Figure 12 shows the estimated contribution of each FP operation to the CPU time when we

assume vectorized addition and multiplication, and low throughputs6 for division and transcendental

functions (1/39th and 1/125th of peak, respectively). Note that the CPU time (Tc) is computed

based on the compute throughput and does not include the DRAM time. Even though transcendental

functions in the chemistry kernel are a small fraction of the total �ops, they dominate the CPU time

(75%). Similarly, the number of divisions in the dynamics kernel seems insigni�cant but contributes

one third of the CPU time.

5.1.2 Fast Transcendantals and Division

Vectorization is one of the main sources of parallelism within a processor that can enable fast execution

of �oating-point division and transcendental arithmetic. Besides parallelism bene�ts, it can also lower

energy and control complexity. The downside is that it takes chip surface area and requires programmer

assistance. An alternative approach to vectorization is software pipelining, which can hide functional

6Based on the benchmarks we conducted and by (Vladimirov, 2012).

27

adds,	

3620	

muls,	

4303	

divs,	

540	

trans,	

710	

Instruc8on	
 Mix	

adds	

3%	
 muls	

4%	

divs	

18%	

trans	

75%	

Breakdown	
 of	
 CPU	
 Time	

adds,	

14509	

muls,	

16447	

divs,	

387	

sqrt,1	
 	

Instruc8on	
 Mix	
 	

adds	

34%	

muls	

34%	

divs	

32%	

Breakdown	
 of	
 CPU	
 Time	

Chemistry Dynamics

Figure 12: Floating point operation mix and breakdown of CPU time Tc modeled by ExaSAT for
chemistry and dynamics kernels.

unit latency but also requires more programming e�ort and more registers.

Table 2, shows benchmarked (not modeled) performance results gathered on the Intel Sandy Bridge

E5-2680. Fast-div shows the performance improvements for division using the SSE instruction (AVX

provides no further performance gain) and Fast-exp shows the performance improvement for the expo-

nential function with the AVX Short Vector Math Library. The benchmark results indicate that SSE

provides 1.95x improvement on division and AVX provides 2.98x improvement on exponentials.

ExaSAT allows a user to weight instructions based on their relative throughput to the peak compute

rate. The weights can re�ect the longer execution times of certain instructions such as division, or they

can re�ect the potential speedup derived from more pervasive use of intrinsics through improvements

to the compilers or hardware. The speedup due to the use of intrinsics may not be proportional to the

increased weight of the instruction speed because the compiler might fail to generate code that uses

intrinsics due to the complex loop body or divergence e�ects.

Figure 13 shows the estimated speedup for the SMC code including both the chemistry and dy-

28

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

9	
 species	
 21	
 species	
 53	
 species	
 71	
 species	
 107	
 species	

Sp
ee
du

p	

ov
er
	
 B
as
el
in
e	

SIMDizing	
 Division	
 and	
 Transcendentals	
 	

SIMD16	

SIMD8	

SIMD4	

SIMD2	

Sandy	
 Bridge	

Figure 13: Estimated overall SMC speedup over baseline as a result of simdizing division and tran-
scendental functions using di�erent vector lengths. Baseline indicates vectorized addition and multi-
plication operations running with at the peak compute throughput but no vectorization for division
or trancendentals.

namics codes as a result of di�erent SIMD lengths. Here, the baseline performance assumes SIMDized

addition and multiplication, and low throughputs for division and transcendental functions (�rst col-

umn in Table 2). Figure 13 also shows the estimated speedup for SMC on the Sandy Bridge (indicated

as a line) using the benchmarked costs for division and transcendentals shown in Table 2. Our per-

formance model takes the maximum of CPU time and DRAM time for each kernel independently to

compute the execution time. Both vectorized division and transcendentals greatly improve the execu-

tion time of the chemistry code; however, there is no bene�t for the dynamics code since its execution

time is limited by DRAM bandwidth. As a result, there is a diminishing return as we increase the

SIMD length. For example, for 53 species, the SSE instruction (SIMD2) provides 25%, while SIMD4,

SIMD8 and SIMD16 give 43%, 54%, and 60% improvement over the baseline, respectively. The im-

provement di�ers between di�erent number of species because of the number of reactions, thus the

number of divisions and transcendentals di�er. Both 53 and 71 species have a high number of reac-

tions per species, which means more arithmetic operations and higher bene�t from vectorization for

the chemistry component.

29

1	

4	

16	

64	

256	

1024	

4096	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

N
um

be
r	
 o

f	
 A
cc
es
se
s	

Unique	
 Variable	
 IDs	
 (sorted	
 by	
 number	
 of	
 accesses)	

ExaSAT	
 State	
 Variable	
 Analysis	
 	

9	
 Species	

21	
 Species	

53	
 Species	

71	
 Species	

107	
 Species	

Figure 14: Number of accesses for each �oating point state variable sorted by their access frequency
in the chemistry kernel

5.1.3 State Variables

The state variable analysis provided by ExaSAT is valuable in the co-design process because it exposes

a hardware trade-o� between register count and L1 cache tra�c (or local memory tra�c). In order

to measure how many registers the SMC code requires, we collected all the state variables and their

access frequencies for each loop using compiler analysis. Based on the number of registers speci�ed by

the user, the performance model allocates the state variables to available registers and computes the

L1 cache tra�c resulting from the register spilling. Figure 14 shows the number of accesses for each

�oating point state variable sorted by number of accesses in the SMC chemistry kernel. For example,

in a 9-species simulation, the variable # 22 is accessed 15 times. In the best case scenario, the compiler

will allocate the variables with the highest number of accesses to the available registers. Assuming 16

�oating point named registers (as in SSE or AVX), the vertical dashed line shows the cut-o� between

variables that would be allocated to registers (left of the line) and those that are spilled to cache (right

of the line).

Figure 15 shows the percent of state variable accesses spilled to the next level memory as the number

30

0	

10	

20	

30	

40	

50	

60	

16	
 32	
 64	
 128	
 256	

Pe
rc
en

ta
ge
	

Number	
 of	
 FP	
 Registers	

Percent	
 of	
 State	
 Variable	
 Accesses	
 to	
 L1	
 Cache	

9	
 Species	

21	
 Species	

53	
 Species	

71	
 Species	

107	
 Species	

Figure 15: L1 cache tra�c chemistry state variables as number of the registers is varied. Having more
registers can �lter cache tra�c for state variables.

of available registers is varied. In the 16 register example, about half of the accesses are ful�lled from

registers and half go to cache for each of the �ve chemistry species shown. In the dynamics kernel

(not shown in the �gure), even though the total number of state variables is much smaller, assigning

the top 16 variables to registers only reduces the number of cache accesses by about half since access

rates remain fairly high for the top 30 to 40 variables for many loops. Since the chemistry code has a

relatively low streaming data requirement compared to the dynamics code, spilled state variables make

up greater than 95% of the L1 cache tra�c if there are 16 registers. It is possible to �lter additional

cache tra�c by adding registers to the architecture, which would move the cut-o� line in Figure 14 to

the right. Having 256 registers per thread (as in NVIDIA's Kepler GPU7) would �lter 88% or more

of L1 cache tra�c due the state variable for the SMC chemistry code, and 94% or more for the SMC

dynamics code. It is important to note that the spills must be balanced against performance cost of

large register �le. The optimal performance point may be reached at an earlier point.

7Kepler has 255 32-bit registers.

31

0.5	

1	

2	

4	

2	
 4	
 8	
 16	
 32	
 64	
 128	

By
te
s	
 p

er
	
 F
lo
p	

Block	
 Size	

Cache	
 Blocking	
 on	
 Dynamics	
 Kernel	
 (53	
 species)	

No	
 Cache	

16	
 kB	
 Cache	

64	
 kB	
 Cache	

Unlimited	
 Cache	

4	
 MB	
 Cache	

1	
 MB	
 Cache	

256	
 kB	
 Cache	

Figure 16: Optimal blocking factor depends on the available cache size.

5.1.4 Memory Tra�c and Working Sets

Cache Blocking: ExaSAT can model the e�ect of cache blocking on the working set size and

memory tra�c without manually implementing this optimization. Blocking the iteration space shrinks

the size of the working set to enable temporal data reuse. If the reduced working set �ts within the

available on-chip storage, capacity misses, thus the memory tra�c can be greatly reduced. A trade-o�

of cache blocking is the induced memory tra�c for the ghost cells. As the block size is decreased,

the redundant tra�c to pull the ghost zone increases. Finding the optimal blocking factor on a given

cache size is an optimization problem for compilers, auto-tuners and runtime environments. In this

context, ExaSAT can guide other programming tools to reduce to search space for blocking factor.

We are also interested in illustrating the co-design trade-o� of blocking, more speci�cally the trade-o�

between cache size and memory bandwidth. For a given cache con�guration, ExaSAT can determine

a blocking strategy that balances the capacity misses against the additional tra�c for the ghost zone.

Figure 16 highlights the change in byte:�op ratio of the dynamics kernel computed by ExaSAT as

a result of blocking for various cache sizes speci�ed by the user. The byte:�op ratio represents the

required number of bytes to be transferred o�-chip divided by the required �ops. The cache size

32

0.125	

0.25	

0.5	

1	

2	

2	
 8	
 32	
 128	
 512	
 2,048	
 8,192	
 32,768	
 131,072	
 524,288	

By
te
s	
 p

er
	
 F
lo
p	

Cache	
 Size	
 (kB)	

Various	
 So8ware	
 Op;miza;ons	
 modeled	
 by	
 ExaSAT	
 (53	
 species)	

Baseline	

Cache	
 Blocking	

Loop	
 Fusion	
 with	
 Blocking	

AlternaCve	
 Blocking	

Figure 17: Various software optimizations modeled by ExaSAT for the 53 species SMC dynamics code
and their byte-to-�op ratio achievable for various on-chip memory sizes

indicates the amount of on-chip memory available per group of threads/cores collaborating on the

same working set. Blocking the iteration space reduces the working set size and enables greater reuse.

The in�ection points in the plot show the points when the working sets no longer �t into the cache.

However, the trade-o� for using smaller block sizes is additional memory tra�c from redundant

ghost cell storage and accesses. This e�ect can be seen even in the unlimited cache case because it

is independent of capacity misses. Thus, ExaSAT predicts that blocking with an inappropriate factor

could incur more data tra�c than necessary. With an optimal blocking factor, a small cache can

beat the performance of an unblocked reference implementation on a large cache. Consequently, the

compiler or auto-tuner has to �nd the optimal block size to take full advantage of available cache,

while chip designer has to �nd a balance between the cache size and memory bandwidth.

Software Optimizations: ExaSAT also allowed us to evaluate the performance impact of software

optimizations such as loop fusion and the alternative block execution scheme described in Section 3.3.4.

Even though loop fusion can reduce memory tra�c, it increases the resulting loop's working set,

exposing a co-design trade-o� between memory bandwidth and cache size. Loop fusion was done by

33

hand, guided by the data dependency graphs generated by the framework, while the cache blocking

and alternative block execution schemes were computed automatically from the XML code description.

Figure 17 shows e�ects of applying various software optimizations on the trade-o� space between cache

size and the resulting B:F ratio. For small cache sizes, no blocking is used, but there is still some bene�t

from applying loop fusion to loops that touch the same data. For medium cache sizes, some loops are

able to take advantage of reuse within loops in the non-fused case, but there is not enough cache to

hold the increased working sets required for fused loop bodies. Once the caches are large enough to

contain the increased working sets of the fused loops, fusion becomes bene�cial again. For 53 species,

the breakpoint is about 2MB.

The alternative block execution scheme requires the largest working sets because an entire block

of data per array must �t in cache (as opposed to a small number of planes per array) to enable reuse

across loops. However, the bene�t from such reuse is a signi�cantly lower byte-to-�op ratio (roughly

half for the largest cache sizes in the �gure). This execution scheme may be most relevant to situations

with processing capabilities co-located with large memory banks such as with Processor-in-Memory and

Processor-Near-Memory architectures (Saulsbury et al., 1996). The studied optimizations emphasize

the power of software transformations on the byte-to-�op ratio and their relation to cache size. Not

surprisingly as we increase the number of chemical species, the working set size increases (not shown

in the �gure), requiring a larger cache for fusion to become advantageous. Please see (Chan et al.,

2013) for a further analysis of software optimizations on combustion co-design.

5.1.5 Memory Footprint Analysis

ExaSAT can compute the memory required for an application. For SMC, the memory requirement

increases linearly with the number of species. A 53 species simulation needs 678 three dimensional

arrays, translating into approximately 13 elements per species per grid point. Out of 678 arrays, 505

of them have a ghost cell region. Including message bu�ers, a box size of 1283 occupies 12.33GB of

memory, which means a 16GB node can only hold one 1283 box. In order to minimize the surface to

volume ratio of each node's subdomain, there is a motivation to run as large a problem as possible on a

node. Hence, combustion codes that use adaptive mesh re�nements and implicit time stepping schemes

34

0.00%	

0.10%	

0.20%	

0.30%	

0.40%	

0.50%	

0.60%	

0.70%	

0.80%	

0.90%	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

U
.ir
yn
	

Q
.q
v	

U
.ie
ne

	

U
.im

y	

m
u	

Q
.q
pr
es
	

U
ne

w
.ie
ne

	

U
ne

w
.im

y	

Q
.q
te
m
p	

Dd
ia
g.
n	

vs
m
	

dx
e.
n	
 ux
	

vy
	

U
.ir
ho

	

uy
	

vx
	

w
x	

Q
.q
rh
o	

Fd
if.
im

x	

Fd
if.
im

z	

Fd
if.
irh

o	

Fh
yp
.ie
ne

	

Fh
yp
.im

y	

Fh
yp
.ir
ho

	

Hg

.ie
ne

	

Hg

.im
y	

Hg
.ir
yn
	

U
pr
im

e.
im

x	

U
pr
im

e.
im

z	

U
pr
im

e.
iry

n	
 xi
	

	
 W
rite	
 Access	
 Rate	

	

Re

ad
/W

rit
e	

Ra

.o
	

Read/Write	
 RaKo	
 Write	
 Access	
 Rate	

Figure 18: Read/write ratio (left axis) and write access rate (right axis) of arrays in SMC code

exhibit huge workload diversity in chemical reactions rates, requiring multiple subdomains running

on a node for load balance. Exascale memory capacity is predicted to be primarily constrained by

cost (Kogge et al., 2008) which encourages vendors to look for cheaper but denser memory technologies

such NVRAM. NVRAM is a cost e�ective alternative technology that can serve as a high capacity,

secondary memory. It o�ers higher density and scalability than DRAM, and uses nearly zero power

when in standby mode (Lee et al., 2009). On the other hand, the NVRAM memory cells tend to have

a short lifetime. Compared to DRAM, the dynamic write energy is 4 to 40 times worse and the write

access latency is an order of magnitude slower (Caul�eld et al., 2010; Lee et al., 2009; Qureshi et al.,

2009). Nevertheless, without focusing on the details of the NVRAM designs, we investigate whether

there is su�cient low-write memory tra�c for certain variables to justify inclusion of NVRAM in an

exascale node since the speci�cs of NVRAM designs regarding memory endurance, write-voltage and

write speed are highly dependent on the technology and are likely to change.

In order to study the NVRAM opportunities in the application, ExaSAT computes the read/write

ratio and write access rate of arrays since writes to NVRAM are costly both in terms of performance

and energy. In SMC (see Figure 18), there are a number of arrays with low read and low write

access rates. We are primarily interested in arrays rather than scalar variables because the idle power

35

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

9	
 21	
 53	
 71	
 107	

%
	
 T
im

e	

fo
r	
 C

om
m
un

ic
a9

on
	

Number	
 of	
 Species	

δ	
 =	
 40	

δ	
 =	
 20	

δ	
 =	
 10	

δ	
 =	
 2.5	

Memory BW

NIC BW
 δ =

Figure 19: Fraction of communication time for di�erent Memory Bandwidth/NIC Bandwidth ratios.
δ = 10 is an expected value for an exascale node. δ = 2.5 represents a relatively fast network bandwidth
and δ = 40 represents a relatively fast memory.

consumption is proportional to the memory footprint. If a write access rate of ≤ 0.11% is chosen, then

a larger fraction of data (75%) quali�es for storage in NVRAM. This would translate into roughly

75% idle power saving. On the other hand, the the dynamic energy for these arrays would go up by a

factor of 40. Even if a conservative read/write ratio of 5 or higher were chosen, the case for NVRAM

would be weak because only 35% of the data would reside in NVRAM. Unfortunately, this is where

our analytic model has its limits. To assess whether the dynamic energy consumption overshadows the

idle energy savings, power simulators such as NANDFlashSim (Jung et al., 2012) are needed, which is

a part of our future work.

5.1.6 Communication Analysis

The interprocess communication time as a percentage of total execution time depends on the DRAM

time on a memory bandwidth limited kernel (or CPU time on a compute bound kernel). Figure 19

shows the fraction of communication time for the bandwidth limited SMC code as the memory band-

width to network bandwidth ratio, δ, is varied. For example, a con�guration with 1 TB/s of memory

bandwidth and 100 GB/s of NIC bandwidth would correspond to δ = 10, which is an expected value

at exascale. The �gure varies δ from 2.5 (a relatively fast network bandwidth) to 40 (a relatively fast

memory). According to the analytic results shown in Figure 19, communication time accounts for less

than 13% of the total time in the worst case and diminishes as we increase the number of species for

36

the SMC code. Because the communication time does not appear to be a performance bottleneck for

SMC, there is no strong justi�cation for integrating NIC on the processor chip to increase the injec-

tion bandwidth and reduce latency. Future work will study adaptive mesh re�nement codes, where

messages tend to be smaller but more frequent. In those cases, we expect there might be more need

for on-chip NICs.

The analytic performance analysis is agnostic about network topology and assumes an idealized

network for o�-node communication, considering only network latency and injection bandwidth as the

performance metrics. However, factors that are hard to capture in an analytic model such as network

topology, routing, network contention, and job placement can have a signi�cant impact on performance.

We are currently collaborating with Sandia National Laboratory to employ the SST/macro simulator

(Rodrigues et al., 2011) to assess the network performance of SMC. ExaSAT serves as a stepping stone

for such e�ort and is used to verify the simulation results. For example, the 3D torus with a optimal

job placement matches with the idealized network scenario by our analytic model, seeing no network

congestion with pure nearest-neighbor communication.

6 Discussions

6.1 Projections on an Exascale Machine

Figure 20 shows the cumulative e�ect of the hardware and software improvements modeled by ExaSAT.

The estimated e�ective baseline performance is slightly over 0.5 T�ops using the machine con�gurations

speci�ed in Listing 1, which is a 10 T�op node with 1 TB/s memory bandwidth. The SMC code is

severely limited by memory bandwidth. Both cache blocking and loop fusion make more e�cient

use of memory bandwidth, doubling the baseline performance. However, the estimated performance

indicates that software optimizations must be supported by hardware improvements at the expense of

increased cost and power for the sake of higher performance. If the memory bandwidth is increased

from 1 to 4 TB/s, ExaSAT suggests a 2.5-3x speedup in the performance is possible. We also modeled

the e�ect of vectorization of division and exponentials for the SMC code. Fast-div represents the

predicted performance improvements as a result of improved throughput (2x) using the SSE instruction

37

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

9	
 21	
 53	
 71	
 107	

Te
ra
flo

ps
	

Number	
 of	
 Species	

Es3mated	
 Performance	
 Improvements	

+Fast	
 NIC	
 (400	
 GB/s)	

+Fast-­‐exp	

+Fast-­‐div	

+Fast	
 memory	
 (4	
 TB/s)	

+Loop	
 fusion	

+Cache	
 blocking	

Baseline	

Figure 20: Modeled SMC performance as a result of successive hardware and software optimizations

and Fast-exp represents the improvement for the exponential function by a factor of 3 with the AVX

SVML.While the vectorized division provides a modest performance increase, the chemistry component

greatly bene�ts from the improved cost for exponential. Finally, we change the network injection

bandwidth from 100 to 400 GB/s, which represents a custom NIC. Custom NIC integrates the network

controller onto the chip to reduce power and increase throughout by a factor of 4. Even after the

software optimizations and hardware improvements, SMC is still limited by memory bandwidth. In

the exascale timeframe, it is unlikely that machines will support bandwidths higher than 4 TB/s,

thus more aggressive software optimizations will be needed to reduce data movement and deliver the

performance improvements necessary to reach exascale.

6.2 Implications for Hardware Design

We evaluated the impact of utilizing vector intrinsics for division and transcendental functions and

realized that they can greatly improve the CPU-bound chemistry code provided that compilers or code

generators can support vectorization. On the other hand, SIMD lengths more than four do not provide

signi�cant performance bene�ts because the dynamics part of the SMC code is severely limited by the

38

performance of the memory subsystem. For the baseline code with optimal cache blocking, we see very

little bene�t derived from larger on-chip caches. However, if we adopt a more aggressive approach

with loop fusion, we can achieve an order-of-magnitude reduction in memory bandwidth requirements

provided there are much larger on-chip memory and register �les. For SMC, fusion can reduce tra�c

by up to 60% versus baseline provided that there is large enough cache. Having 256 registers per

thread would �lter 88% or more of the register spills due to the state variables.

In our assessment of data accesses, given that technology allows NVRAM write performance to

improve, we see some opportunities to utilize NVRAM to increase memory capacity with low cost.

However, the NVRAM technology has to mature before an investment in software support can be

justi�ed. In order to determine which data to place to NVRAM, we argue that write access rate rather

than read/write ratio should be used as a metric. There is a modest performance bene�t from the

reduced latency and increased bandwidth of on-chip NICs because the network injection bandwidth

does not appear to be a performance bottleneck, and the SMC application is insensitive to interconnect

latency.

6.3 Implications for Software Design

ExaSAT is a lightweight model, which can be integrated into other tools and serve as a cost model.

In particular, our analysis of data movement both on-chip and o�-chip provides valuable feedback

to application, programming model, compiler, and runtime developers. The results emphasize the

importance of reduction in memory tra�c both for performance and energy reasons. In fact, one of

the co-authors of this paper implemented a new blocking optimization in SMC based on our ExaSAT

analysis, which yielded an 86x speedup over 1 thread on a 61-core Xeon Phi each running 4 hardware

threads (Emmett et al. (2013)).

ExaSAT can also provide performance ceilings for compute-bound kernels. Simply having vector

units on the chip is not su�cient to increase performance because the compiler also has to generate the

appropriate instructions. Current compilers can convert scalar codes into SIMDized programs with

some programmer assistance, such as ensuring address alignment and providing compiler directives.

Automatic vectorization often fails for complicated loops because other code optimizations may inter-

39

fere with vectorization or the loop body may be too long to analyze. The highly irregular structure and

single-point implementation of the chemistry code currently prevent the compiler from inserting vector

intrinsics, especially on GPU-like architectures. The ExaSAT results encouraged the SMC developers

to restructure the chemistry component in way to facilitate vectorization by the vendor compiler and

resulted in 2.2x faster chemistry on the Edison machine that include 256-bit SIMD (AVX) vector �oat-

ing point. The chemical reactions in the SMC code were previously auto-generated in order of species

appeared in the input �le. Two reactions which have the same number of reactants and the same

number of products execute the same instructions with di�erent values. The revised version groups

reactions based on the number of reactants and products, which helps vectorization. Similarly, the

dynamical core is annotated to hint the compiler for vectorization. The improvement on the dynamical

core is about 1.75x because its performance is mainly limited by the memory bandwidth as predicted

by ExaSAT.

In addition, we would like to leverage the lessons learned through ExaSAT for the development of a

programming model for combustion codes. The new programming model will focus on data structure

support for tiling optimizations for data locality and the use of functional semantics to help the runtime

reason about data �ow and memory use. The goal is to tune the aggressiveness of tiling and fusion

optimizations on a given architecture and minimize data movement.

6.4 Future Work

An area of future work will be to expand the framework's functionality to cover a broader range

of applications besides structured grid problems. For example, we have interest in studying dense

linear algebra and N-body problems, which can be statically analyzable. However, the analysis by the

compiler and cache model in ExaSAT must be extended to cover their reuse patterns.

One of the current limitations of the framework is how it handles conditionals Vera and Xue (2002).

Conditionals come in di�erent �avors and each �avor needs to be handled di�erently. In the codes we

analyzed, the branches contain the same number of memory accesses and only the values assigned to

the variables are di�erent. Thus, we only need to analyze one of the if-clauses. When conditionals

lead to thread divergence (gaps in the iteration space), we would like to be able compute the data

40

movement by weighting each branch. If the branches introduce workload imbalance, the model can be

parameterized by a branch-taken probability computed from sample runs or provided by the user.

Although we have made substantial progress in identifying several hardware design trade-o�s,

there are still a number of co-design questions that remain to be answered. We formulated plans for

comparing analytic model estimates with dynamic analysis and architectural simulators to obtain more

accurate results. Some of these plans include more detailed core model, on-chip network, NVRAM

power modeling and network job placement strategies. Another exascale co-design challenge that we

have already started evaluating is whether the software or hardware should take responsibility for

fault tolerance. Hardware-managed resilience mechanisms increase the overall system cost and power

consumption. We are extending our analysis of data access patterns to compute data movement

requirements of di�erent checkpoint schemes for software-managed resilience. Finally, given that our

methodology allows us to address hardware requirements for the SMC combustion code, we would like

to extend the ExaSAT framework to examine the requirements for adaptive mesh re�nement codes,

such as the Low Mach number Combustion code (Day and Bell, 2000).

7 Conclusions

We developed the ExaSAT framework to rapidly evaluate exascale proxy applications and accelerate

the iterative co-design process. ExaSAT complements more detailed architectural simulation tools

through rapid generation of abstract analytic models. It is our belief that analytic models are essential

to quickly identify the most productive areas for exploring a complicated multi-dimensional design

space, including both hardware and software optimizations. ExaSAT parameterizes both the machine

model and software optimizations to conduct a sensitivity analysis to guide the co-design process.

We demonstrated ExaSAT's ability to perform end-to-end analysis on a combustion proxy application

(SMC). The SMC results show substantial opportunities to reduce memory bandwidth requirements

by increasing chip area for more registers and on-chip memory. Our analysis illustrates to hardware

and software designers the need for higher memory bandwidth and more aggressive software optimiza-

tions to reduce data movement. This information can be combined with architectural simulations to

understand how our design recommendations interplay with the energy costs of feasible implementa-

41

tions. Future work will expand the scope of analysis to a wider range of applications and improve the

coupling of analytic models with architectural simulation environments.

Acknowledgements

Authors would like to thank Weishen Mead and Matthew Cordery for their contribution to the PinTool

validation. All authors from Lawrence Berkeley National Laboratory were supported by the O�ce

of Advanced Scienti�c Computing Research in the Department of Energy O�ce of Science under

contract number DE-AC02-05CH11231. This work is part of the DOE Center for Exascale Simulation

of Combustion in Turbulence (ExaCT) and the DOE Co-Design for Exascale (CoDEx) projects.

References

Balaprakash, P., Buntinas, D., Chan, A., Guha, A., Gupta, R., Narayanan, S. H. K., Chien, A.,

Hovland, P., and Norris, B. (2013). Exascale workload characterization and architecture implications.

In 21st High Performance Computing Symposia, HPC.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J., Hower,

D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M. D., and Wood,

D. A. (2011). The gem5 simulator. SIGARCH Computer Architecture News, 39(2):1�7.

Carrington, L., Snavely, A., Gao, X., and Wolter, N. (2003). A performance prediction framework for

scienti�c applications. In ICCS Workshop on Performance Modeling and Analysis, PMA03, pages

926�935.

Caul�eld, A. M., Coburn, J., Mollov, T., De, A., Akel, A., He, J., Jagatheesan, A., Gupta, R. K.,

Snavely, A., and Swanson, S. (2010). Understanding the impact of emerging non-volatile memories

on high-performance, io-intensive computing. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis, SC '10, pages 1�11,

Washington, DC, USA. IEEE Computer Society.

42

Cesar (2013). CESAR: Center for exascale simulation of advanced reactors. Website. http://cesar.

mcs.anl.gov/.

Chan, C., Unat, D., Lijewski, M., Zhang, W., Bell, J., and Shalf, J. (2013). Software design space

exploration for exascale combustion co-design. Proceedings of the International Supercomputing

Conference.

Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K.,

Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., and Yoo, C. S. (2009).

Terascale direct numerical simulations of turbulent combustion using S3D. Computational Science

and Discovery, 2(1):015001.

Day, M. S. and Bell, J. B. (2000). Numerical simulation of laminar reacting �ows with complex

chemistry. Combustion Theory and Modelling, 4:535�556.

Emmett, M., Zhang, W., and Bell, J. (2013). High-order algorithms for compressible reacting �ow

with complex chemistry. under revision on Combustion Theory and Modelling.

Ern, A. and Giovangigli, V. (1995). Fast and accurate multicomponent transport property evaluation.

Journal of Computational Physics, 120(1):105 � 116.

Exact (2013). ExaCT: Center for exascale simulation of combustion in turbulence. Website. http:

//exactcodesign.org.

ExaSAT XML Speci�cation (2013). Website. http://crd.lbl.gov/projects/

combustion-codesign-2/.

Exascale Research PI Meeting (2012). Combustion Co-Design Center:Exascale Simulation of

Combustion in Turbulence Application/Proxy Deep Dive. http://exactcodesign.org/main/

wp-content/uploads/ExaCT-Deep-Dive-Intro.pdf.

ExMatEx (2013). ExMatEx: Exascale co-design center for materials in extreme environments. Website.

http://exmatex.lanl.gov/.

43

Fast Forward (2013). FastForward: DOE exascale technology acceleration. Website. https://asc.

llnl.gov/fastforward/.

Gottleib, S. and Shu, C. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of

Computation, 67(221):73�85.

Jung, M., Wilson, E. H., Donofrio, D., Shalf, J., and Kandemir, M. T. (2012). Nand�ashsim: Intrinsic

latency variation aware nand �ash memory system modeling and simulation at microarchitecture

level. In IEEE 28th Symposium on Mass Storage Systems and Technologies, MSST 2012, April

16-20, 2012, Asilomar Conference Grounds, Paci�c Grove, CA, USA, pages 1�12.

Kamakoti, R. and Pantano, C. (2009). High-order narrow stencil �nite-di�erence approximations

of second-order derivatives involving variable coe�cients. SIAM Journal on Scienti�c Computing,

31(6):4222�4243.

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzen, P.,

Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli,

A., Scott, S., Snavely, A., Sterling, T., Williams, R. S., and Yelick, K. (2008). ExaScale computing

study: Technology challenges in achieving exascale systems. Technical report, DARPA.

Krasnov, A., Schultz, A., Wawrzynek, J., Gibeling, G., and Droz, P.-Y. (2007). Ramp blue: A message-

passing manycore system in fpgas. In Field Programmable Logic and Applications, 2007. FPL 2007.

International Conference on, pages 54�61.

Lee, B. C. et al. (2009). Architecting phase change memory as a scalable DRAM alternative. SIGARCH

Computer Architecture News, 37(3):2�13.

Li, D., Vetter, J. S., Marin, G., McCurdy, C., Cira, C., Liu, Z., and Yu, W. (2012). Identifying

opportunities for byte-addressable non-volatile memory in extreme-scale scienti�c applications. In

Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium,

IPDPS '12, pages 945�956, Washington, DC, USA. IEEE Computer Society.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V. J., and

Hazelwood, K. (2005). Pin: building customized program analysis tools with dynamic instrumenta-

44

tion. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and

implementation, PLDI '05, pages 190�200, New York, NY, USA. ACM.

Mohiyuddin, M., Murphy, M., Oliker, L., Shalf, J., Wawrzynek, J., and Williams, S. (2009). A design

methodology for domain-optimized power-e�cient supercomputing. In SC '09: Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, pages 1�12, New

York, NY, USA. ACM.

Narayanan, S. H. K., Norris, B., and Hovland, P. D. (2010). Generating performance bounds from

source code. 2012 41st International Conference on Parallel Processing Workshops, 0:197�206.

Qiu, J. and Shu, C. (2005). Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM

Journal on Scienti�c Computing, 26(3):907�929.

Quinlan, D. J. et al. (2002). Treating a user-de�ned parallel library as a domain-speci�c language. In

Proceedings of the 16th International Parallel and Distributed Processing Symposium, IPDPS '02,

pages 324�. IEEE Computer Society.

Qureshi, M. K. et al. (2009). Scalable high performance main memory system using phase-change

memory technology. SIGARCH Computer Architecture News, 37(3):24�33.

Rivera, G. and Tseng, C.-W. (2000). Tiling optimizations for 3d scienti�c computations. In Proceedings

of the 2000 ACM/IEEE conference on Supercomputing, Supercomputing '00, Washington, DC, USA.

IEEE Computer Society.

Rodrigues, A. F., Hemmert, K. S., Barrett, B. W., Kersey, C., Old�eld, R., Weston, M., Risen, R.,

Cook, J., Rosenfeld, P., CooperBalls, E., and Jacob, B. (2011). The structural simulation toolkit.

SIGMETRICS Performance Evaluation Review, 38(4):37�42.

Saulsbury, A., Pong, F., and Nowatzyk, A. (1996). Missing the memory wall: The case for proces-

sor/memory integration. In Proceedings of the 23rd Annual International Symposium on Computer

Architecture, Philadelphia, PA, USA, May 22-24, 1996, pages 90�101. ACM.

Shalf, J. et al. (2010). Exascale computing technology challenges. In VECPAR, volume 6449 of Lecture

Notes in Computer Science, pages 1�25. Springer.

45

Shalf, J. et al. (2011). Rethinking hardware-software codesign for exascale systems. IEEE Computer,

44(11):22�30.

Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., and Purkayastha, A. (2002). A frame-

work for performance modeling and prediction. In Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, Supercomputing '02, pages 1�17, Los Alamitos, CA, USA. IEEE Computer Society

Press.

Spa�ord, K. L. and Vetter, J. S. (2012). Aspen: a domain speci�c language for performance model-

ing. In Proceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis, SC '12, pages 84:1�84:11, Los Alamitos, CA, USA. IEEE Computer Society

Press.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H., and Jouppi, N. P. (2008). CACTI 5.1. Technical Report

HPL-2008-20, HP Labs.

U.S. Energy Flow Trends (2012). Lawrence Berkeley National Laboratory https://flowcharts.

llnl.gov/archive.html#energy_archive.

Vera, X. and Xue, J. (2002). Let's study whole-program cache behaviour analytically. In High-

Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on, pages

175�186.

Vladimirov, A. (2012). Arithmetics on Intel's Sandy Bridge and Westmere CPUs: not all FLOPS are

created equal. Colfax International.

Wawrzynek, J., Patterson, D., Oskin, M., Lu, S.-L., Kozyrakis, C., Hoe, J. C., Chiou, D., and Asanovic,

K. (2007). RAMP: A Research Accelerator for Multiple Processors. IEEE Micro, 27(2).

Williams, S. et al. (2009). Roo�ine: an insightful visual performance model for multicore architectures.

Communications of the ACM, 52(4):65�76.

Woodward, P. R., Jayaraj, J., Lin, P.-H., Yew, P.-C., Knox, M. R., Greensky, J. B. S. G., Nowatski,

A., and Sto�els, K. (2010). Boosting the performance of computational �uid dynamics codes for

interactive supercomputing. Procedia CS, 1(1):2055�2064.

46

