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Abstract	
	
We	 describe	 a	 multi-GPU	 implementation	 of	 the	 Ludwig	 application,	 which	
specialises	in	simulating	of	a	variety	of	complex	fluids	via	lattice	Boltzmann	fluid	
dynamics	 coupled	 to	 additional	 physics	 describing	 complex	 fluid	 constituents.	
We	describe	our	methodology	in	augmenting	the	original	CPU	version	with	GPU	
functionality	 in	 a	maintainable	 fashion.	We	 present	 several	 optimisations	 that	
maximize	 performance	 on	 the	 GPU	 architecture	 through	 tuning	 for	 the	 GPU	
memory	hierarchy.	We	describe	how	we	implement	particles	within	the	fluid	in	
such	 a	 way	 to	 avoid	 a	major	 diversion	 of	 the	 CPU	 and	 GPU	 codebases,	 whilst	
minimising	 data	 transfer	 at	 each	 timestep.	 We	 detail	 our	 halo-exchange	
communication	phase	for	the	code	which	exploits	overlapping	to	allow	efficient	
parallel	scaling	 to	many	GPUs.	We	present	results	showing	that	 the	application	
demonstrates	 excellent	 scaling	 to	 at	 least	 8192	 GPUs	 in	 parallel,	 the	 largest	
system	tested	at	the	time	of	writing.	The	GPU	version	(on	NVIDIA	K20X	GPUs)	is	
around	3.5-5	 times	 faster	 that	 the	CPU	version	 (on	 fully-utilised	AMD	Opteron	
6274	16-core	CPUs),	comparing	equal	numbers	of	CPUs	and	GPUs.			
	
	 	



1 Introduction	
	
A	wide	variety	of	 substances	 such	as	mixtures,	 surficants,	 particle	 suspensions	
and	liquid	crystals	can	collectively	be	classed	as	soft	matter.		Everyday	examples	
can	be	found	in	foodstuffs,	cosmetic	and	healthcare	items,	technological	products	
and	even	 components	within	our	bodies.	 Improving	 the	understanding	of	 such	
materials	 is	 not	 only	 interesting	 from	 a	 research	 perspective	 but	 potentially	
allows	 the	 development	 of	 new	 and	 improved	 materials.	 Many	 soft	 materials	
may	also	be	categorised	as	complex	fluids,	since	they	display	complex	behaviour	
at	the	macroscopic	level	dependent	on	the	physical	properties	of	the	structures	
that	self-organise	from	the	fluid	components	at	the	microscopic	scale.		
	
Ludwig	 [1]	 is	 a	 versatile	 software	 package	 able	 to	 simulate	 a	 wide	 variety	 of	
complex	 fluids.	 As	 a	 basis,	 Ludwig	 uses	 lattice	Boltzmann	 (LB)	 fluid	 dynamics,	
which	 is	 particularly	 suitable	 for	 implementation	 on	 large-scale	 parallel	
architectures.	 For	 complex	 fluids,	 this	 is	 coupled	 with	 other	 techniques	 to	
represent	the	substance	under	investigation.	A	current	focus	of	research	interest	
is	liquid	crystal	(LC)	systems	[2][3][4].	LCs	are	perhaps	best	known	from	use	in	
liquid	crystal	displays,	but	are	also	found	in	a	variety	of	other	technological	items	
and	natural	systems.	There	is	still	much	to	be	understood	about	the	behaviour	of	
different	 LC	 systems	 under	 different	 conditions,	 and	 how	 to	 harness	 desirable	
properties.	In	particular,	the	stability	of	LC	systems	can	potentially	be	improved	
through	 anchoring	 to	 colloidal	 particles.	 Our	 aim	 is	 to	 fully	 understand	 this	
phenomenon	 through	 the	 use	 of	 Ludwig,	 but	 this	 requires	 very	 large	 and	
computationally	demanding	simulations.		
	
Computational	 resources	 that	 augment	 traditional	 CPUs	 with	 Graphics	
Processing	Units	(GPUs)	as	compute	accelerators	offer	performance	advantages	
over	the	use	of	CPUs	alone.	The	world’s	 largest	open-access	supercomputer	(at	
the	time	of	writing),	Titan	at	Oak	Ridge	National	Laboratory,	exploits	more	than	
18,000	GPUs	to	achieve	this	status.	However,	non-trivial	software	development	
is	 required	 for	 applications	 to	 efficiently	 utilise	 GPUs,	 especially	 for	 use	 in	
massively	 parallel	 supercomputers.	 In	 this	 paper	 we	 describe	 the	 work	
performed	to	enable	Ludwig	to	utilise	large-scale	GPU-accelerated	architectures	
to	 achieve	 substantial	 performance	 improvements	 over	 the	 use	 of	 traditional	
CPUs	alone,	and	make	feasible	studies	such	as	that	mentioned	above.			
	
The	 suitability	 of	 GPUs	 for	 LB	 is	 well	 established	 in	 the	 literature,	 from	 early	
work	 using	 low-level	 graphics	 APIs	 to	 achieve	 fluid-like	 effects	 in	 computer	
animation	 [5][6][7],	 through	 the	 first	 NVIDIA	 CUDA	 implementation	 [8]	 to	
increasingly	 sophisticated	 implementations	 mixing	 CUDA	 with	 other	 parallel	
programming	paradigms	to	allow	use	of	multiple	GPUs	[9][10][11][12][13][14].	
The	 heterogeneous	 nature	 of	 these	 systems	 has	 also	 spurred	 interest	 in	
approaches	including	automatic	code	generation	[15]	and	auto-tuning	[16]	to	aid	
application	performance.	The	novelty	of	the	work	described	in	this	paper	lies	in	
our	 success	 in	 managing	 the	 complexities	 associated	 with	 simulating	 complex	
fluids,	which	require	additional	physics	beyond	the	bare	Navier-Stokes	equations	
to	provide	a	full	description	[17],	and	in	such	a	way	to	allow	scaling	to	extremely	
large	numbers	of	GPUs	in	parallel.	In	this	paper	we	demonstrate	our	work	using	



a	 binary	 fluid	 system,	 noting	 that	 the	 mechanisms	 and	 techniques	 are	
transferable	to	other	systems	including	liquid	crystals.	
	
In	 Section	 2.1	 we	 briefly	 introduce	 the	 underlying	 physics,	 and	 discuss	 the	
implementation	within	Ludwig.	Then,	in	Section	2.2,	we	describe	how	we	adapt	
Ludwig	 for	 the	 GPU	 architecture,	 and	 discuss	 the	 optimisations	 necessary	 to	
effectively	 utilise	 each	 GPU.	 In	 Section	 2.3	 we	 describe	 how	 to	 incorporate	
colloidal	particles	 into	 the	 fluid	 simulation,	 in	 a	way	 that	minimises	overheads	
associated	with	CPU-GPU	data	transfer.	We	go	on,	in	Section	2.4,	to	describe	our	
method	 for	 performing	 the	 necessary	 communications	 required	 for	multi-GPU	
simulations,	 where	 we	 utilise	 overlapping	 to	 maximise	 efficiency.	 Finally,	 in	
Section	 3	we	 present	 performance	 results	 on	 Titan,	 using	 up	 to	 8192	GPUs	 in	
parallel.	

2 Background	and	Implementation	
	

2.1 Background	
	
For	a	general	complex	fluid	problem	the	starting	point	is	the	fluid	velocity	field	
𝐮(𝐫) ,	 whose	 evolution	 obeys	 the	 Navier-Stokes	 equation	 describing	 the	
conservation	of	mass	(or	density	𝜌),	and	momentum:		
	

𝜌 𝜕'𝐮 + 𝐮. ∇ 𝐮 = −∇𝑝 + 𝜂∇/𝐮 + 𝐟(𝐫)	
	
where	𝑝	is	 the	 isotropic	 pressure	 and	𝜂	is	 the	 viscosity.	 A	 local	 force	𝐟(𝐫)	
provides	a	means	for	coupling	to	other	complex	fluid	constituents,	e.g.,	 it	might	
represent	the	force	exerted	on	the	fluid	by	a	curved	interface	between	different	
phases	or	components	(see	below).	
	
The	LB	approach	makes	use	of	a	regular	three-dimensional	lattice	(see	Figure	1)	
with	discrete	spacing	∆𝑟.	It	also	makes	use	of	a	discrete	velocity	space	𝐜4 ,	where	
the	𝐜4 	are	 chosen	 to	 capture	 the	 correct	 symmetries	 of	 the	 Navier-Stokes	
equations.	 A	 typical	 choice,	 used	 here,	 is	 the	 so-called	 D3Q19	 basis	 in	 three	
dimensions	 where	 there	 is	 one	 velocity	 such	 that	𝐜∆𝑡	is	 zero,	 along	 with	 six	
extending	 to	 the	 nearest	 neighbour	 lattice	 sites,	 and	 twelve	 extending	 to	 the	
next-nearest	neighbour	sites	(∆𝑡	being	the	discrete	time	step).	The	fundamental	
object	in	LB	is	then	the	distribution	function	𝑓4(𝐫; 𝑡),	whose	moments	are	related	
to	 the	 local	hydrodynamic	quantities:	 the	 fluid	density,	momentum,	and	stress.	
The	 time	 evolution	 of	 the	 distribution	 function	 is	 described	 by	 a	 discrete	
Boltzmann	equation	
	

𝑓4 𝐫 + 𝐜𝒊∆𝑡; 𝑡 − 𝑓4 𝐫; 𝑡 = −ℒ4:𝑓: 𝐫; 𝑡 	.	
	
It	is	convenient	to	think	of	this	in	two	stages.	First,	the	right	hand	side	represents	
the	action	of	a	collision	operator	ℒ4: ,	which	is	local	to	each	lattice	site	and	relaxes	
the	 distribution	 toward	 a	 local	 equilibrium	 at	 a	 rate	 ultimately	 related	 to	 the	
fluid	 viscosity.	 Second,	 the	 left	 hand	 side	 represents	 a	 propagation	 step	



(sometimes	 referred	 to	 as	 streaming	 step),	 in	 which	 each	 element	𝑖	of	 the	
distribution	is	displaced	𝐜𝒊∆𝑡,	i.e.,	one	lattice	spacing	in	the	appropriate	direction	
per	discrete	time	step.			
	
In	order	to	simulate	complex	fluids	 in	the	Ludwig	application,	we	couple	to	the	
above	the	evolution	of	an	order	parameter	field	which	describes	the	composition	
of	the	fluid.	The	way	in	which	this	is	done	depends	on	the	system	of	interest:	in	
this	paper	we	concentrate	on	binary	fluid.	
	
For	a	symmetric	binary	fluid,	 in	which	both	components	have	the	same	density	
and	viscosity,	the	order	parameter	𝜙(𝐫)	is	a	function	of	position	𝐫	and	describes	
the	 relative	 proportions	 of	 the	 two	 fluids	 present	 locally.	 To	 describe	 the	
thermodynamics	of	the	system	it	is	possible	to	write	down	a	free	energy	which	is	
a	functional	of	the	order	parameter.	The	equation	of	motion	for	𝜙	is	then	
	

𝜕'𝜙 + ∇. 𝐮𝜙 = −𝛻. (𝑀𝛻𝜇)	
	
where	𝜇	is	the	chemical	potential	related	to	the	functional	derivative	of	the	free	
energy,	and	𝑀	is	a	(constant)	mobility.		To	represent	the	composition	variable	in	
our	 lattice	 implementation,	we	 introduce	a	second	distribution	 function	𝑔4(𝐫; 𝑡)	
whose	first	moment	is	𝜙,	second	moment	is	the	order	parameter	flux,	and	so	on	
[1].	A	solution	to	the	equation	of	motion	can	be	obtained	by	evolving	this	second	
distribution	 through	 an	 analogous	 collision	 and	 propagation	 process	 to	 that	
described	 for	𝑓4 	[18].	The	order	parameter	 then	couples	 to	 the	evolution	of	 the	
first	distribution	function	through	the	local	force	term	𝐟 𝐫 	in	the	Navier-Stokes	
equation	 (which	 enters	 the	 lattice	 Boltzmann	 equation	 within	 the	 collision	
operator).	It	is	sufficient	to	note	here	that	this	force	depends	locally	on	the	order	
parameter	and	 its	derivatives	𝛻𝜙	and	𝛻/𝜙,	which	are	calculated	using	standard	
finite	 difference	 techniques.	 For	 a	 full	 description	 the	 interested	 reader	 is	
referred	to,	e.g.,[19][20].	
	
For	more	complex	physical	systems	such	as	liquid	crystals,	the	order	parameter	
and	 its	 derivatives	 couple	 to	 the	 fluid	 simulation	 in	 a	 similar	 fashion	 but	 are	
different	in	nature	and	are	evolved	differently.	For	example,	for	the	liquid	crystal	
system	 the	 order	 parameter	 is	 no	 longer	 a	 scalar	 but	 a	3×3	tensor,	 which	 is	
symmetric	and	traceless	so	can	be	represented	using	5	independent	variables	at	
each	position	𝐫.	 This	 is	 evolved	using	 a	 finite	 difference	 implementation	 of	 the	
Beris-Edwards	 model	 with	 the	 Landau-de	 Gennes	 free	 energy	 functional.	 The	
resulting	equations	are	considerably	more	complex	than	for	the	binary	fluid,	so	
we	suppress	details	here,	but	the	interested	reader	is	referred	to	[21].		



	
Figure	1:	Left:	The	lattice	decomposed	between	MPI	tasks.	For	clarity	we	show	a	2D	decomposition	
of	a	3D	lattice,	but	in	practice	we	decompose	in	all	3	dimensions.	Halo	cells	are	added	to	each	sub-
domain	 (as	 shown	 on	 the	 upper	 right	 for	 a	 single	 slice)	 which	 store	 data	 retrieved	 from	 remote	
neighbours	 in	 the	 halo	 exchange.	 Lower	 right:	 the	 D3Q19	 velocity	 set	 resident	 on	 a	 lattice	 site;	
highlighted	are	the	5	“outgoing”	elements	to	be	transferred	in	a	specific	direction.	

	
	
To	 allow	 utilisation	 of	 multi-node	 computing	 architectures,	 Ludwig	 is	
parallelised	using	domain	decomposition	and	message	passing	communications.	
The	regular	3D	decomposition	is	illustrated	in	Figure	1.	Each	local	sub-domain	is	
surrounded	 by	 a	 halo	 (or	 ghost),	 region.	 Elements	 of	 the	 distribution	must	 be	
exchanged	at	the	edges	of	the	domains	to	facilitate	the	propagation.	To	achieve	
the	full	3D	halo	exchange,	the	standard	approach	of	shifting	the	relevant	data	in	
each	 co-ordinate	 direction	 in	 turn	 is	 adopted.	 This	 requires	 appropriate	
synchronisation,	i.e.,	a	receive	in	the	first	co-ordinate	direction	must	be	complete	
before	a	send	in	the	second	direction	involving	relevant	data	can	take	place,	and	
so	on.	We	note	that	only	“outgoing'”	elements	of	the	distribution	need	to	be	sent	
at	each	edge.	For	the	D3Q19	model,	this	reduces	the	volume	of	data	traffic	from	
19	 to	5	of	 the	distribution	velocity	components	per	 lattice	site	at	each	edge.	 In	
the	CPU	version	of	 the	 code,	 the	necessary	 transfers	 are	 implemented	 in	place	
using	a	vector	of	appropriately	strided	MPI	datatypes	for	each	direction.	
	

2.2 GPU	enablement	and	Optimisation	
	
Our	 overarching	 aim	 is	 to	 develop	 a	 codebase	 that	 can	 perform	well	 on	 both	
traditional	and	GPU-accelerated	architectures	 in	a	maintainable	 fashion.	To	aid	
this	difficult	 challenge,	we	have	 followed	a	number	of	basic	principles.	First,	 in	



order	to	port	to	the	GPU	in	an	incremental	fashion,	we	have	tried	to	maintain	the	
modular	 structure	of	 the	CPU	version	where	possible.	 For	 each	data	 structure,	
such	as	the	distribution,	a	separate	analogue	is	maintained	in	both	the	CPU	and	
GPU	memory	spaces.	However,	the	GPU	copy	does	not	include	the	complete	CPU	
structure:	 in	 particular,	 non-intrinsic	 datatypes	 such	 as	MPI	 datatypes	 are	 not	
required	 on	 the	 GPU.	 Functions	 to	 marshal	 data	 between	 CPU	 and	 GPU	 are	
provided	 for	 each	 data	 structure,	 abstracting	 the	 underlying	 CUDA	
implementation.	 (This	 reasonably	 lightweight	 abstraction	 layer	 is	 a	 future-
proofing	measure	since	it	will	aid	portability	to,	e.g.	an	OpenCL	implementation.)		
This	makes	it	easy	to	switch	between	the	CPU	and	GPU	for	different	components	
in	the	code,	which	is	useful	in	development	and	testing.	GPU	functionality	can	be	
added	incrementally	while	retaining	a	code	that	runs	correctly	(albeit	slowly	due	
to	data	transfer	overheads).	 	It	is	necessary	to	offload	all	computational	activity	
that	 involve	 the	 main	 data	 structures	 (such	 as	 the	 distribution)	 to	 the	 GPU,	
including	 kernels	with	 relatively	 low	 computational	 demand:	 once	 all	 relevant	
components	 are	 moved	 to	 the	 GPU,	 it	 becomes	 possible	 to	 remove	 the	 data	
transfers	and	keep	the	entire	problem	resident	on	the	device	for	the	duration	of	
the	 timestepping	 algorithm	 (with	 the	 exception	 of	 those	 subsets	 of	 data	 to	 be	
marshalled	 for	communication	operations	or	particle	 interactions,	as	described	
later	in	this	paper).	
		
To	 achieve	 optimal	 performance,	 it	 is	 vital	 to	 fully	 exploit	 the	 parallelism	
inherent	 in	 the	GPU	architecture.	The	GPU	architecture	 features	 a	hierarchy	of	
parallelism.	 At	 the	 lowest	 level,	 groups	 of	 32	 threads	 (warps)	 operate	 in	 lock-
step	 on	 different	 data	 elements:	 this	 is	 SIMD	 style	 vector-level	 parallelism.	
Multiple	warps	are	combined	into	a	thread	block	(in	which	communication	and	
synchronisation	are	possible),	 and	multiple	blocks	can	run	concurrently	across	
the	 streaming	 multiprocessors	 in	 the	 GPU	 (with	 no	 communication	 or	
synchronisation	possible	across	blocks).	 	For	most	kernels,	we	 find	 that	simply	
assigning	a	separate	CUDA	thread	to	each	lattice	site	works	well,	using	a	CUDA	
block	size	of	256.	That	is,	we	decompose	the	lattice	into	groups	of	256	sites,	and	
assign	each	group	to	a	block	of	CUDA	threads.	For	kernels	such	as	the	collision	
involving	only	 operations	 local	 to	 each	 lattice	 site,	we	 can	 simply	 linearize	 the	
lattice	indexing	and	perform	a	1D	CUDA	decomposition.	For	kernels	such	as	the	
propagation	which	involve	updates	based	on	neighbouring	site	values,	we	use	a	
3D	 CUDA	 decomposition.	 This	 improves	 performance	 since	 it	 reduces	 the	
number	of	lattice	site	memory	loads	for	each	thread	block	(and	improves	cache	
utilisation).	
	
An	 architectural	 constraint	 of	 GPUs	 means	 that	 optimal	 global	 memory	
bandwidth	is	only	achieved	when	data	are	structured	such	that	threads	within	a	
half-warp	(a	group	of	16	threads)	load	data	from	the	same	memory	segment	in	a	
single	 transaction:	 this	 is	memory	 coalescing.	 The	 array-of-structures	 ordering	
used	for	the	distribution	in	the	CPU	code	would	not	be	suitable	for	coalescing;	in	
fact,	 it	 would	 result	 in	 serialised	 memory	 accesses	 and	 relatively	 poor	
performance.	 To	meet	 the	 coalescing	 criteria	 and	 allow	 consecutive	 threads	 to	
read	consecutive	memory	addresses	on	the	GPU,	we	transpose	the	layout	of	the	
distribution	 so	 that,	 for	 each	 velocity	 component,	 consecutive	 sites	 are	
contiguous	in	memory	(structure-of-arrays	order).		Ludwig	was	modified	to	allow	



a	choice	of	distribution	data	layout	at	compilation	time	depending	on	the	target	
architecture:	 CPU	 or	 GPU.	 	 Additionally,	 for	 those	 data	 that	 are	 read-only	 we	
exploit	the	constant	cache	and	texture	memory	pipe	where	possible.	
	

2.3 Moving	Solid	Particles	
	

	
	
Figure	2:	A	two-dimensional	schematic	picture	of	spherical	particles	on	the	lattice.	Left:	a	particle	is	
allowed	to	move	continuously	across	the	lattice,	and	the	position	of	the	surface	defines	fluid	lattice	
sites	 (light	 blue)	 and	 solid	 lattice	 sites	 (dark	 red).	 The	discrete	 surface	 is	 defined	by	 links	where	
propagation	would	 intersect	 the	 surface	 (arrows).	 Note	 the	 discrete	 shape	 of	 the	 two	 particles	 is	
different.	 Right:	 post-collision	distributions	 are	 reversed	 at	 the	 surface	 by	 the	 process	 of	 bounce-
back	on	links,	which	replaces	the	propagation.	

The	introduction	of	moving	solid	particles	(often	called	colloidal	particles)	poses	
an	 additional	 hurdle	 to	 efficient	 GPU	 implementation	 of	 an	 LB	 code	 such	 as	
Ludwig.		
	
Moving	 solid	 particles	 (here,	 spheres)	 are	 defined	 by	 a	 centre	 position	 that	 is	
allowed	to	move	continuously	across	the	space	of	the	lattice,	and	a	fixed	radius	
that	is	typically	on	the	scale	of	a	few	lattice	spacings.	The	definition	of	the	surface	
of	each	particle	 is	an	approximation	by	mid-node	planes	that	are	closest	 to	 the	
real	radial	extension	of	the	particle.	In	our	implementation,	for	each	particle	we	
keep	 track	 of	 the	 series	 of	 links	 for	which	 a	 discrete	 velocity	 propagation	𝐜𝒊∆𝑡	
would	 intercept	 or	 cut	 the	 spherical	 shell	 (see	 Figure	 2).	 Hydrodynamic	
boundary	 conditions	 are	 then	 implemented	 via	 the	 standard	 approach	 of	
bounce-back	 on	 links	 [22][23],	 where	 the	 relevant	 post-collision	 distribution	
values	are	reversed	at	 the	propagation	stage	with	an	appropriate	correction	 to	
allow	for	the	solid	body	motion.	The	exchange	of	momentum	at	each	 link	must	
then	 be	 accumulated	 around	 the	 entire	 particle	 surface	 to	 provide	 the	 net	
hydrodynamic	force	and	torque	on	the	sphere.	The	particle	motion	can	then	be	
updated	in	a	molecular	dynamics-like	step.	
	

(b) Post propagation

(a) Post collision



Minimisation	 of	 host-device	 data	 transfer	 would	 argue	 for	 moving	 the	 entire	
particle	 code	 to	 the	 GPU.	 However,	 the	 code	 in	 question	 involves	 largely	
conditional	 logic	 (e.g.,	 identifying	 cut	 surface	 links)	 and	 irregular	 memory	
accesses	(e.g.,	access	to	distribution	elements	around	a	spherical	particle).	These	
operations	 seem	 poorly	 suited	 to	 effective	 parallelisation	 on	 the	 GPU.	 As	 an	
additional	 complication,	 the	 sums	 required	 over	 the	 particle	 surface	 would	
involve	 potentially	 tricky	 and	 inefficient	 reductions	 in	 GPU	 memory.	 The	
alternative	 is	 to	 retain	 the	 relevant	 code	on	 the	CPU,	where	 it	 is	 better	 suited.	
While	 the	 transfer	 of	 the	 entire	 distribution	 between	 host	 and	 device	 at	 each	
time	 step	 is	 unconscionable	 owing	 to	 PCIe	 bus	 bandwidth	 considerations,	 the	
transfer	of	only	relevant	distribution	information	to	allow	bounce-back	on	links	
is	possible.	This	option	also	has	 the	advantage	that	no	 further	host-device	data	
transfers	 are	 necessary	 to	 allow	 the	 MPI	 exchanges	 required	 for	 particle	
information.	
	
We	have	implemented	the	second	option	as	follows.	For	each	sub-domain,	a	list	
of	boundary-cutting	 links	 is	assembled	on	the	CPU	that	 includes	 the	 identity	of	
the	 relevant	 element	 of	 the	 distribution.	 This	 list,	 together	 with	 the	 particle	
information	required	to	compute	the	correct	bounce-back	term,	are	transferred	
to	 the	 GPU.	 The	 updates	 to	 the	 relevant	 elements	 of	 the	 distribution	 can	 then	
take	place	on	the	GPU.	The	corresponding	information	to	compute	the	update	of	
the	 particle	 dynamics	 is	 returned	 to	 the	 CPU,	 where	 the	 reduction	 over	 the	
surface	 links	 is	 computed.	The	change	of	particle	 shape	may	be	dealt	with	 in	a	
similar	manner:	the	relatively	small	number	of	updates	required	at	any	one	time	
step	(or	however	frequently	the	particle	position	is	updated)	can	be	marshalled	
to	the	GPU	as	necessary.	Hence,	overheads	of	CPU-GPU	transfer	are	minimised	by	
transferring	 only	 those	 data	 relevant	 to	 the	 hydrodynamic	 interaction	
implemented	via	bounce-back	on	links.	 	In	Section	3	we	will	show	performance	
results	demonstrating	the	effectiveness	of	this	solution.	
	

2.4 Multi-GPU	Implementation	
	
In	Section	2.1	we	described	the	strategy	used	in	Ludwig	to	allow	use	of	parallel	
multi-node	 architectures.	 For	 the	 GPU	 implementation,	 we	 retain	 this	
framework,	 but	 substantial	 adaptations	 are	 required	 to	 allow	 good	 scaling	 to	
many	GPUs	in	parallel.	
	
	
	
	
	
	



	
Figure	3:	The	dependency	graph	for	the	data	packing	and	movement	operations	required	within	the	
communication	stage	of	the	application.	The	labels	X,	Y,	and	Z	correspond	to	data	transfers	in	each	of	
the	3	spatial	directions.		

	
We	use	the	same	domain	decomposition	and	message	passing	framework	as	the	
CPU	 version.	 Within	 each	 sub-domain	 (allocated	 to	 one	 MPI	 task)	 the	 GPU	
implementation	 proceeds	 as	 described	 in	 the	 Section	 2.2.	 The	 only	 additional	
complication	 is	 that	 halo	 transfers	 between	 GPUs	must	 be	 staged	 through	 the	
host.	This	means	host	MPI	sends	must	be	preceded	by	appropriate	device	to	host	
transfers	 and	 host	 MPI	 receives	 must	 be	 followed	 by	 corresponding	 host	 to	
device	transfers.	In	practice,	this	data	movement	requires	additional	GPU	kernels	
to	pack	and	unpack	the	relevant	data	before	and	after	corresponding	MPI	calls.	
The	 CPU	 version	 uses	MPI	 datatype	 functionality	 to	 designate	 the	 lattice	 sites,	
and	velocity	components	within	each	lattice	site,	that	are	required	for	a	specific	
direction	of	 transfer	 (i.e.	 the	complexities	 in	buffer	packing	are	handled	by	 the	
MPI	library).	The	lack	of	MPI	functionality	in	the	GPU	memory	space	means	that	
this	 filtering	 had	 to	 be	 done	 by	 hand	 in	 the	 abovementioned	 CUDA	 buffer-
packing	kernels.1	
	
The	 standard	 shift	 algorithm,	 in	which	 each	 co-ordinate	 direction	 is	 treated	 in	
turn,	does	provide	some	scope	for	the	overlapping	of	different	operations,	as	can	
be	seen	by	the	dependency	graph	in	Figure	3.	For	example,	after	the	data	for	the	
first	 co-ordinate	 direction	 have	 been	 retrieved	 by	 the	 host,	 these	 can	 be	
exchanged	using	MPI	between	hosts	at	the	same	time	as	kernels	for	packing	and	
retrieving	 of	 data	 for	 the	 second	 co-ordinate	 direction	 are	 executed.	 This	
overlapping	 must	 respect	 the	 synchronisation	 required	 to	 ensure	 that	 data	

																																																								
1	At	the	time	of	writing,	CUDA-aware	MPI	implementations	that	potentially	
simplify	the	situation	are	becoming	available,	but	still	lack	maturity.	The	Cray	
implementation	on	Titan	does	not	yet	support	the	MPI-datatype	functionality	
used	in	the	CPU	version	of	Ludwig.	When	possible,	we	will	compare	performance	
with	our	hand-written	inter-GPU	communication	code.		

Overlapping(within(CommunicaFon(Phase(

11 

X: pack on device 

X: device to host  

X: host to host  

X: host to device   

X: unpack on device  

Y: update corners  

Y: pack on device 

Y: device to host  

Y: host to host  

Z: pack on device 

Z: device to host  

Z: host to host  

Y: host to device   

Y: unpack on device  

Z: host to device   

Z: unpack on device  

Z: update corners  

Stream 1 Stream 2 Stream 3 



values	 at	 the	 corners	 of	 the	 sub-domain	 are	 transferred	 correctly.	 We	 use	 a	
separate	CUDA	stream	for	each	co-ordinate	direction	(i.e.	each	of	the	three	X,	Y	
and	Z	columns	of	operations	 shown	 in	Figure	3):	 this	allows	some	of	 the	host-
device	communication	time	to	be	effectively	“hidden”	behind	the	host-host	MPI	
communication,	 resulting	 in	 an	 overall	 speedup.	 The	 effect	 of	 this	 overlapping	
optimisation	is	measured	in	the	following	section.	
	

3 Results	and	Discussion	
	
The	Cray	XK7	Titan	machine	at	Oak	Ridge	National	Laboratory	comprises	18,688	
nodes,	 each	 with	 a	 single	 NVIDIA	 K20X	 (Kepler)	 GPU	 augmenting	 an	 AMD	
Opteron	6274	16-core	CPU,	where	the	nodes	are	connected	via	the	Cray	Gemini	
network	 [24].	 In	 Figure	 4	we	 compare	 the	 computational	 time	 of	 the	 CPU	 and	
GPU	versions	of	Ludwig,	for	the	binary	fluid	system,	within	a	single	node	of	Titan	
(i.e.	one	CPU	is	compared	to	one	GPU).	We	plot	the	time	per	timestep	with	and	
without	the	inclusion	of	colloidal	particles.	For	the	latter	we	include	30	particles,	
corresponding	 to	 a	 volume	 fraction	 of	 around	 0.1%.	 This	 is	 relatively	 low	
compared	to	typical	simulations	that	would	require	1-10%,	but	it	is	sufficient	to	
analyse	whether	 our	 general	mechanisms	 for	 handling	 particles	 have	 incurred	
significant	 overhead.	 	 We	 decompose	 results	 into	 the	 different	 stages	 in	 the	
calculation.	 For	 the	 CPU	 version,	 we	 include	 results	 both	 fully	 populating	 and	
half	 populating	 each	 chip	 with	 MPI	 tasks	 (since	 the	 latter	 can	 potentially	 be	
beneficial	 in	some	cases):	 the	 fully	populated	results	 for	which	all	16	cores	are	
utilised	clearly	has	the	advantage.		
	
	

	
Figure	4:	The	time	taken	for	the	binary	 fluid	system	on	a	single	node.	Results	are	shown	with	and	
without	 the	 inclusion	of	colloidal	particles.	The	results	using	a	single	AMD	Interlagos	16-core	CPU	
(either	fully	or	half	populated)	are	compared	to	those	using	a	single	NVIDIA	Kepler	GPU.	All	results	
are	decomposed	into	the	different	stages	within	the	computation.			
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It	 can	be	seen	 that,	 for	 the	non-particle	 case,	 the	GPU	performs	 the	calculation	
around	 a	 factor	 of	 4	 faster	 than	 the	 (fully-populated)	 CPU.	 The	 picture	 is	 very	
similar	when	colloidal	particles	are	included	into	the	binary	fluid,	indicating	that	
we	 have	 successfully	 implemented	 this	 functionality	 without	 discernible	
overheads.	 It	 can	 be	 seen	 that	 all	 the	 computational	 components	 of	 the	
calculation	have	been	successfully	accelerated	on	the	GPU,	with	the	exception	of	
the	 calculation	 of	 the	 order	 parameter	 gradients.	 This	 memory-bandwidth	
intensive	 code	 section	 is	 performing	 better	 on	 the	 CPU,	 perhaps	 taking	
advantage	of	the	caching	architecture,	and	further	effort	is	required	to	improve	
this	part	of	the	code	in	the	GPU	version.		
	
	
	

	
Figure	 5:	 The	 dependence	 of	 runtime	 on	 the	 number	 of	 nodes	 utilised,	 where	 the	 problem	 size	
increases	with	the	number	of	nodes.	Diamonds	denote	use	of	a	single	16-core	AMD	Interlagos	CPU	
per	node,	and	squares	denote	use	of	a	single	NVIDIA	Kepler	GPU	per	node.		

In	 Figure	 5	we	 extend	 the	 results	 for	 the	 non-particle	 case	 to	multiple	 nodes,	
noting	that	the	particle	case	uses	the	same	communication	mechanism.	We	keep	
the	problem	size	per	node	fixed,	i.e.	measure	weak	scaling,	where	the	time	taken	
per	timestep	would	stay	constant	in	the	ideal	case.	We	plot	against	the	number	of	
nodes,	i.e	the	number	of	GPUs	or	(fully	populated)	16-core	CPUs.	It	can	be	seen	
that	the	GPU	code	scales	perfectly	up	to	the	largest	size	available	at	the	time	of	
writing,	8192	GPUs.	The	CPU	code	actually	super-scales	at	low	node-counts.	This	
may	 be	 attributable	 to	 the	 MPI	 tasks	 within	 each	 node	 becoming	 out	 of	
synchronisation	leading	to	less	memory	bandwidth	contention.	The	performance	
advantage	 of	 the	 GPU	 version	 ranges	 from	 a	 around	 factor	 of	 4	 at	 low	 node	
counts	to	around	a	factor	of	3.5	at	high	node	counts.	
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Figure	6:	The	dependence	of	performance,	 in	PFLOPS,	on	the	number	of	nodes	utilised.	For	closed	
symbols,	the	problem	size	increases	with	the	number	of	nodes	(i.e.	weak	scaling).	For	open	symbols,	
the	problem	size	is	fixed	(such	that	that	it	matches	the	weak	scaling	case	at	512	nodes).	Diamonds	
denote	 use	 of	 a	 single	 16-core	 AMD	 Interlagos	 CPU	 per	 node,	 and	 squares	 denote	 use	 of	 a	 single	
NVIDIA	 Kepler	 GPU	 per	 node.	 	 The	 series	 represented	 by	 the	 dashed	 line	 shows	 results	 when	
communication	overlapping	is	disabled.	

In	Figure	6	we	translate	these	results	into	raw	performance	in	PFLOPS,	inferred	
from	 the	 timings	 using	 a	 baseline	 performance	 measurement	 taken	 using	 the	
CrayPAT	 tool	 on	 the	 CPU	 version	 on	 a	 single	 node.	 Overall	 performance	 is	
reflected	by	the	gradients,	and	scaling	reflected	by	closeness	to	 linearity,	of	the	
series:	 curvature	 indicates	deviation	 from	 ideal	 scaling.	We	also	 include	strong	
scaling	 results,	 where	 the	 problem	 size	 is	 fixed	 whilst	 the	 number	 of	 nodes	
varies.	We	choose	a	size	of	10243	(which	matches	that	used	at	512	nodes	in	the	
weak	 scaling	 analysis)	 since	 this	 is	 roughly	 similar	 to	 the	 size	 required	 for	
current	research.		
	
It	can	be	seen	that	 the	benchmark	does	exhibit	strong	scaling	up	to	 the	 largest	
node	 count,	 in	 the	 sense	 that	 the	performance	 continues	 to	 improve.	However	
the	 parallel	 efficiency	 clearly	 reduces	 as	 the	 node	 count	 increases.	We	 include	
the	results	gained	when	the	communication	overlapping	optimisation	described	
in	 the	previous	 section	 is	disabled	 (dotted	 line).	 It	 can	clearly	be	 seen	 that	 the	
overlapping	has	a	significant	effect	in	improving	the	strong	scaling.	
	
Profiling	 analysis	 indicates	 that	 the	 deviation	 from	 ideal	 strong	 scaling	 can	 be	
attributed	to	two	factors.	The	first	is	that,	as	the	number	of	nodes	increases,	the	
domain	size	per	node	decreases,	and	each	GPU	becomes	underutilised	reducing	
the	computational	performance.	For	the	more	computationally	demanding	liquid	
crystal	 case,	 the	 strong	 scaling	 may	 therefore	 be	 better:	 this	 is	 yet	 to	 be	
measured.		The	second	factor	is	simply	that	the	communication	costs	increase	as	
the	 number	 of	 nodes	 increases.	 Future	 work	 will	 attempt	 to	 address	 this	 by	
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overlapping	 the	 communication	 stage	 of	 the	 timestep	 with	 an	 appropriate	
computational	 kernel.	 One	 option	 is	 to	 split	 one	 or	 more	 of	 the	 lattice	 based	
kernels	into	two	factors:	one	which	processes	the	edges	of	the	(sub-)domain,	and	
the	 other	 the	 interior.	 It	 should	 then	 become	 possible	 to	 overlap	 the	 interior	
kernel,	which	has	no	dependency	on	halo	data,	with	the	communication	stage.		

Conclusions	
	
We	have	described	the	steps	take	to	augment	the	Ludwig	code	with	functionality	
required	 for	 efficient	 utilisation	 of	 GPU-accelerated	 architectures,	 for	 the	
simulation	 of	 complex	 fluids.	We	have	 added	 the	necessary	 functionality	 using	
NVIDIA	CUDA	in	a	maintainable	fashion,	and	we	discussed	the	tuning	required	to	
optimally	 exploit	 each	 GPU,	 such	 that	 it	 operates	 several	 times	 faster	 than	 a	
(optimally	utilised)	CPU.	For	the	intricate	problem	of	moving	solid	particles,	we	
find	 it	 is	 possible	 to	 retain	 the	 more	 serial	 elements	 related	 to	 particle	 link	
operations	on	the	CPU,	while	offloading	only	the	parallel	lattice-based	operations	
involving	 the	 LB	distribution	 to	 the	GPU,	minimising	 host-device	movement	 of	
data.	By	retaining	domain	decomposition	and	message	passing	via	MPI,	we	have	
demonstrated	it	is	possible	to	scale	complex	fluid	problems	to	large	numbers	of	
GPUs	in	parallel,	through	careful	minimisation	of	the	overheads	associated	with	
communications:	 we	 demonstrated	 excellent	 weak	 scaling	 using	 up	 to	 8192	
GPUs.	When	we	 fix	 the	 problem	 size	 at	 that	 required	 for	 current	 research,	we	
find	that	we	can	reasonably	use	in	the	region	of	512-2048	GPUs	while	retaining	
good	parallel	efficiency.			
	
Future	 work	 is	 required	 in	 further	 improving	 both	 strong	 scaling	 and	
maintainability.	 To	 address	 the	 first	 issue,	 there	 is	 scope	 to	 overlap	
communication	 with	 computation	 to	 hide	 overheads.	 Related	 to	 this,	 the	
introduction	 of	 autotuning	 techniques	 may	 help	 to	 find	 the	 most	 optimal	
configuration	 out	 of	 the	 multitude	 of	 choices	 in	 ordering,	 overlapping,	
decomposing	 etc.	 that	 arise	 with	 complex	 applications	 on	 complex	 hardware.	
From	 a	 software	 engineering	 viewpoint,	 some	 duplication	 of	 code	 to	 allow	
efficient	 implementation	 on	 both	 host	 and	 device	 is	 currently	 required.	 This	
issue	might	 be	 addressed	 by	 approaches	 such	 as	 automatic	 kernel	 generation,	
but	may	also	be	addressed	naturally	in	time	as	GPU	and	CPU	hardware	converge.		
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