Lawrence Berkeley National Laboratory
LBL Publications

Title
Exploring versioned distributed arrays for resilience in scientific applications

Permalink
https://escholarship.org/uc/item/0280h48d

Journal
The International Journal of High Performance Computing Applications, 31(6)

ISSN
1094-3420

Authors

Chien, A
Balaji, P
Dun, N

Publication Date
2017-11-01

DOI
10.1177/1094342016664796

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0280h48d
https://escholarship.org/uc/item/0280h48d#author
https://escholarship.org
http://www.cdlib.org/

W) Check for updates

nternational Journal of

HIGH PERFORMANCE

Research Paper COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
2017, Vol. 31(6) 564-590

© The Author(s) 2016

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342016664796
journals.sagepub.com/home/hpc

®SAGE

Exploring versioned distributed arrays
for resilience in scientific applications:
global view resilience

A Chien'?, P Balaji?, N Dun'?, A Fang', H Fujita'?, K Iskra?,
y 4 Rubenstein', y 4 Zheng3,j Hammond4, | Lagunas, D Richardss, A Dubey6,
B van Straalen6, M Hoemmen7, M Heroux7, K Teranishi’ and A Siegel2

Abstract

Exascale studies project reliability challenges for future HPC systems. We present the Global View Resilience (GVR) sys-
tem, a library for portable resilience. GVR begins with a subset of the Global Arrays interface, and adds new capabilities
to create versions, name versions, and compute on version data. Applications can focus versioning where and when it is
most productive, and customize for each application structure independently. This control is portable, and its embedding
in application source makes it natural to express and easy to maintain. The ability to name multiple versions and “par-
tially materialize” them efficiently makes ambitious forward-recovery based on “data slices” across versions or data
structures both easy to express and efficient. Using several large applications (OpenMC, preconditioned conjugate gradi-
ent (PCG) solver;, ddcMD, and Chombo), we evaluate the programming effort to add resilience. The required changes
are small (< 2% lines of code (LOC)), localized and machine-independent, and perhaps most important, require no soft-
ware architecture changes. We also measure the overhead of adding GVR versioning and show that overheads < 2%
are generally achieved. This overhead suggests that GVR can be implemented in large-scale codes and support portable
error recovery with modest investment and runtime impact. Our results are drawn from both IBM BG/Q and Cray
XC30 experiments, demonstrating portability. We also present two case studies of flexible error recovery, illustrating
how GVR can be used for multi-version rollback recovery, and several different forward-recovery schemes. GVR’s
multi-version enables applications to survive latent errors (silent data corruption) with significant detection latency, and
forward recovery can make that recovery extremely efficient. Our results suggest that GVR is scalable, portable, and
efficient. GVR interfaces are flexible, supporting a variety of recovery schemes, and altogether GVR embodies a gentle-
slope path to tolerate growing error rates in future extreme-scale systems.

Keywords
Resilience, fault-tolerance, exascale, scalable computing, application-based fault tolerance

scale of high performance computers scale (to 1-10 mil-
lion cores in pre-exascale systems (Antypas et al., 2014)

| Introduction

With the widely documented end of Dennard scaling
(Borkar and Chien, 2011; Dennard et al.,, 1974

Esmaeilzadeh et al., 2011), power is an increasingly crit-
ical concern for systems from mobile to supercomputer
scale. As a result, both aggressive voltage scaling and
the physical challenges of deep submicrometer technol-
ogies (14 nm, 7 nm, and beyond) give rise to increased
error rates, wearout, and manufacturing variability.
Reliability is already a serious concern in today’s super-
computers at 1 million cores, where system-wide mean
time between failures (MTBF) can be as short as a few
hours (Di Martino et al., 2014; Schroeder and Gibson,
2006; Zheng et al., 2011). With the growing the growing

'University of Chicago, USA

2Argonne National Laboratory, USA

3HP Vertica, USA

“Intel Corp, USA

SLawrence Livermore National Laboratory, USA
SLawrence Berkeley National Laboratory, USA
7’Sandia National Laboratories, USA

Corresponding author:

A Chien, University of Chicago and Argonne National Laboratory, 1100
E 58th Street, Ryerson 257C, Chicago, IL 60637, USA.

Email: achien@cs.uchicago.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1094342016664796
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342016664796&domain=pdf&date_stamp=2016-09-08

Chien et al.

565

(see also https://www.olcf.ornl.gov/summit/), and per-
haps 100 million cores in exascale (Peter Kogge, et. al.,
2008)) exacerbates both power and reliability concerns
(Borkar and Chien, 2011; Cappello et al., 2009;
Elnozahy 2009; Peter Kogge, et. al., 2008).

Recent studies of modern supercomputers have
shown failure as the norm rather than the exception,
with system-wide mean time between failures of a few
hours (Schroeder and Gibson, 2006; Zheng et al., 2011).
Future exascale systems are projected to have mean
time to interrupt (MTTI) (Bergman and et al., 2008;
Borkar and Chien, 2011; Ferreira et al., 2011; Moody et
al., 2010) as low as 10-30 minutes. If large-scale appli-
cations are to succeed under these circumstances, they
will need strong resilience support. Without it, such
large-scale applications will struggle to make efficient
progress.

A wide array of checkpoint-restart research has
explored techniques to efficiently apply checkpointing
(Daly, 2006; Young, 1974) and improve its perfor-
mance (Antypas et al., 2014; Bautista-Gomez et al.,
2011; Cappello et al., 2011; Fang and Chien, 2015;
Moody et al., 2010). Notably, recent advances that
exploit high bandwidth non-volatile memories both
reduce checkpoint cost dramatically, and because their
efficiency reduces the optimal checkpoint interval, can
do “micro-checkpointing” (fast checkpointing with
interval of seconds), reducing the work lost per detected
error or process failure. Such checkpointing enables
systems to tolerate high rates of “fail-stop” (immedi-
ately detected) errors (Schlichting and Schneider, 1983).

The Global View Resilience (GVR) project seeks to
address a larger class of errors, including not only fail-
stop (immediately detected failures such as an error-
correcting code (ECC) or checksum detected partial
data loss) or node crash addressed by classical
checkpoint-restart (Hargrove and Duell, 2006), but
also growing concerns about latent errors, or often
called silent data corruption (SDC). Latent errors are
errors which are not detected immediately, but may
eventually manifest themselves as incorrect results,
severe performance degradation, or even application
crash (Fiala and et al., 2012; Shantharam et al., 2011).
Interestingly, shortening the checkpoint interval such
as enabled by recent advanced techniques may increase
the number of latent errors, as the likelihood that the
error propagation to detection (fail-stop) increases as
the checkpoint interval is shortened.

Further, numerous reports document SDC errors as
more frequent than previously believed. For example,
the BlueGene/L system (106,496 nodes) experiences an
L1 cache error (parity error) every 4-6 hours (Moody
et al., 2010). The Cray XT5 at Oak Ridge National
Laboratory experiences an uncorrectable double bit
error on a daily basis (Fiala and et al., 2012). Latent
errors are generally invisible (silent) until the corrupted

data is used (Lu and Reed, 2004), so detection latency
is generally much longer, and can be heavily algorithm-
dependent or application-dependent. As shown in pre-
vious studies (Fiala and et al., 2012; Shantharam et al.,
2011), the latent errors can create severe application
problems such as incorrect results or extreme perfor-
mance degradation.

Our approach, GVR, uses versioned, distributed
arrays to enable computational scientists to build porta-
ble, resilient applications. Beyond process/node crashes,
GVR also enables resilience for more difficult /atent or
silent errors (Lu et al., 2013a).

Key features of GVR include:

e multi-version distributed arrays that enable com-
plex and latent error recovery;

e multi-stream versioning that gives the programmer
control of when versions are created for an array;
and

¢ unified error signaling and handling, customized
per GVR distributed array, that enable algorithm-
based fault-tolerance (ABFT) (Huang and
Abraham, 1984) error-checking and recovery.

We explore use of the GVR library for resilience in
several large applications (OpenMC, preconditioned
conjugate gradient (PCG) solver, ddcMD, and
Chombo) that are collectively nearly 1 million lines of
code. Through this experience, we gain significant
insight into the programmer effort required (code
changes) to adopt version-based resilience and its per-
formance impact. Our experience and resulting resilient
applications show that introducing version-based resili-
ence can often be achieved with small, localized code
changes. These changes are portable (machine-indepen-
dent) and create a gentle-slope programming path to
tolerate growing error rates in future systems.

Performance is a central concern of high-
performance computing, so with the same four applica-
tions, we evaluate the overhead of version-based
resilience based on a prototype GVR system GVR
Team (GVR Team, 2014b), reporting overhead results.
These studies involve a range of application types, run
sizes, and machine sizes, and that acceptable overheads
can be achieved.

Finally, we present two studies. To explore the bene-
fit of multi-stream versioning, we conduct a study using
PCG code. We first apply same versioning rate to dif-
ferent data structures and then vary the versioning rate.
We compare the versioning overhead and recovery per-
formance of these configurations. To explore the flexi-
bility of error recovery supported by GVR, we
undertake a case study using the OpenMC code in the
presence of latent errors. We implement and compare
empirically three error recovery techniques, varying
error latency, and show the resulting performance.

566

The International Journal of High Performance Computing Applications 3 1(6)

Specific contributions include the following.

e A description of the GVR resilience model, includ-
ing the API for multi-stream, versioned distributed
arrays, and flexible cross-layer error signalling and
recovery.

e Study of adding resilience to applications and
proxy codes (OpenMC, PCG/Trilinos, ddcMD,
and Chombo), and description of the variety of dif-
ferent approaches used and how they reflect GVR’s
flexibility.

— Error Checking: Error checks can rely on hardware,

exploit system software checks, or exploit application-

semantics, to detect both immediate and silent data
corruption.

— Redundancy: Applications indicate versioning rates

for each distributed array, and can exploit the existing

versions as they see fit for recovery.

— Error recovery: can be achieved by rollback, multi-

version restoration by approximation, and other meth-

ods forward error recovery (Randell et al., 1978).

e Empirical study of required source code changes to
add resilience; the results show that only modest,
localized code changes (<2 % lines of code (LOC))
are required and no software architecture changes
are required to enable GVR-based application
resilience.

e Performance evaluation that of GVR versioning and
scalability, documenting achievable overheads <2%
even at versioning frequencies higher than needed
for today’s error rates, and with up to 16,000 pro-
cesses (1000-16,000 varying by application).

e A case study of multi-stream versioning on PCG
solver. The study shows that multi-stream version-
ing provides control to reduce overhead and flex-
ible choices to achieve efficient recovery.

e A case study of flexible error recovery using GVR
on the OpenMC application. The study illustrates
three different error recovery schemes that can toler-
ate latent errors: rollback, basic forward, and for-
ward with additional batches. Performance
measurements show that forward error recovery can
give significant benefits when error latency increases.

In short, our results show GVR version-based resili-
ence is a portable and gentle-slope. Further, it enables
flexible application and system error checking and
reporting as well as many different methods for error
recovery. As such, GVR is a promising approach to
scale forward to the higher error rates expected in
extreme-scale hardware.

|1 Paper organization

The rest of the paper is organized as follows. In Section
2, we describe the GVR model, introducing key

concepts such as distributed arrays, versioning, multi-
stream, and application-controlled flexible error recov-
ery. In Section 3, we describe addition of version-based
resilience to mini-apps and full applications, closing
with a summary of the needed source code changes to
achieve resilience. In Section 3.3, we present perfor-
mance experiments which explore the runtime costs of
versioning for a range of application sizes, machine
configurations, and error rates. To give deeper insights
into the use of GVR, we present two deep dives that
illustrate multi-stream versioning in preconditioned
conjugate gradient (CG), and design and evaluation of
several different GVR-based resilience techniques in
OpenMC in Section 4. Related work and our results in
context are presented in Section 5. We close in Section
6 with a brief review of our results and highlight several
interesting future research directions.

2 GVR model and APlIs

The GVR model enables portable application-
controlled resilience. Applications control redundancy
(per data structure), error checking, and recovery
(exploit application semantics) in a portable fashion
with versioned distributed arrays.

GVR’s interface has two parts: one for basic data
access, update, and version creation, and the other for
error signalling and handling. These interfaces further
introduce the concept of multi-stream, multi-version,
and enable flexible recovery.

2.1 The GVR model and interfaces

2.1.1 Global-view array basic interface. GVR distributed
arrays each have a global name, but are distributed
across multiple nodes (Bariuso and Knies, 1994;
Nieplocha et al., 2006; Numrich and Reid, 1998). The
global name supports flexible programming of irregular
applications and, in the context of resilience, eases
recovery programming when the number of physical
resources have changed.

The basic GVR APIs are illustrated in Figure 1, and
we briefly introduce those needed to understand the
program examples. Notable are GVR’s operations to
create, navigate, and otherwise manipulate versions.
GVR’s full API is documented in the GVR API refer-
ence (GVR Team, 2014a).

® GDS alloc,GDS create create a global array from
scratch or by federating existing local memory
regions (collective).

e GDS put,GDS_get block data access to the distribu-
ted array.

® (GDS acc block accumulate operations against the
global array.

Chien et al.

567

Array allocation/creation
GDS_alloc (), GDS_create()

Data access and consistency
GDS_put(), GDS_get(), GDS_acc()
GDS_fence(), GDS_wait()

GDS compare and swap ()

Version creation and navigation
GDS_wversion inc()

GDS get version number ()
GDS_move_to_prev()
GDS_move_to_next ()
GDS_move to newest ()

Figure I. Distributed arrays and versioning in GVR.

® GDS compare_and swap compares single value
with an element of the global array and swaps if
they match.

® GDS fence, GDS wait are collective and local syn-
chronization operations.

® GDS version_inc advances the version for the given
global array. Collectively marks a computation
boundary where the array data is consistent. GVR
runtime decides if a version is actually created
based on storage, performance, failure-rate
considerations.

® GDS descriptor_clone creates a copy so we navigate
and manipulate several versions at the same time.

® GDS _get version_number returns the version num-
ber from a global array descriptor.

® GDS move_to_prev,GDS_move_to_next,GDS_move_to_
newest move the global array descriptor to the next, pre-
vious, newest version available.

2.1.2 GVR error handling interface. GVR includes a unified
signalling and error-handling interface that supports
flexible application and cross-layer handling (e.g.
Bridges et al., 2012; Chen, 2013; Huang and Abraham,
1984). When an error occurs, the hardware/system/
application invokes the GVR library, passing an error
descriptor that describes the error.! GVR allows errors
to be signalled with two different scopes (local and glo-
bal), and corresponding different error recovery scopes
(local and global). Local error handling involves a sin-
gle process, and global error handling involves collec-
tive action by all the processes sharing the GVR array.
Of course, local errors can be escalated.’

Beyond a unified error-signalling and -handling
structure (see examples in Figures 6 and 18), GVR fur-
ther incorporates the Open Resilience (OR) interface
(GVR Team, 2014b). The OR interface is designed to
support a resilience ecosystem, where investment in
detailed error signaling and sophisticated error recov-
ery gives incremental benefit to vendors, application

scientists, and middleware developers. The full descrip-
tion of the OR system is beyond the scope of the paper,
but the basic ideas include the following.

® An extensible set of error descriptors; each with set
of error attributes (key-value pairs) such as “cor-
rupted memory address = 0xffe0” or “failed process
ranks = {24, 25}”. These attributes are designed to
be composable with other attributes, in order to
allow flexible combination of them.

e A predicate language that is used to supply a predi-
cate for the triggering of each error handler. With
this description, the GVR system selects the closest
match, allowing modular refinement of error han-
dling based on incremental addition of error report-
ing or handling.

Figure 3 shows how the OR interface can be used.
OR allows generalize existing error handler to another
kinds of errors, as shown in the center of the figure,
leading to maximizes the benefit of error handlers. It
also allows applications to add a specialized error hand-
ler, without affecting other handlers. For example, if an
application is ported to another platform, it can add a
new error handler to implement a recovery logic which
fully utilizes the knowledge of a new platform. Overall,
OR allows applications to incremental investment
towards more flexible error handling.

A simple example of the OR interface is presented in
Figure 7. Detailed description and evaluation of the
OR interface will be the subject of future work.

2.2 Using GVR to introduce versioning and flexible
recovery

Applications using GVR can take a snapshot of an
individual distributed array at a time of their choosing,
what we call multi-stream versioning, to match redun-
dancy to application structure as needed. Applications

568 The Interna

tional Journal of High Performance Computing Applications 31(6)

Handler 1

A
\)

Handler 3 Handler 2 Handler 4

Applicati

Error A Error B Error D Error C

Handler Registration
GDS_create_error pred()
GDS_register_global error_handler()
GDS_register local_error_handler()
Resuming

GDS_resume_global ()
GDS_resume_local()

Error Signaling
GDS raise global error()
GDS_raise_local_error()

Figure 2. Unified error signaling and handling in GVR.

Handler 1 Handler 1 Handler 1

ﬁ m ﬁ Handler 2
Generalization Speuallzalmn

(ove]) wep [ove]

A /?ﬂ

Error A Error A EMorA grorB

(e.g. L1 cache Error B
error) (e.9. main
mem error)

Figure 3. Conceptual use cases of the OR interface. Handler |
handles Error A (L1 cache error). It can be generalized to
handle Error B (main memory error). Handler 2 is a specialized
error handler adapted for another platform to handle both
Error A and Error B.

can select the timing of versions to minimize synchroni-
zation cost and maximize recovery value (keep as small
a state as possible for maximum coverage). Versioning
is a convenient idiom, as the versioning rate can be
increased if error rates and types increase, providing a
“gentle slope” for resilience. Another application tactic

could be to add error checking and recovery techniques
(also supported by GVR) as errors increase.

Figure 4 compares the traditional checkpoint-restart
approach to GVR’s flexible recovery. As shown on the
left, a checkpoint-restart system maintains a single
checkpoint and, upon error, rolls back to the check-
point and restarts the program. In comparison, the
GVR system provides a flexible set of options based on
versioned application state.

Each call to version_inc creates a version and incre-
ments the current version number.® Calls to version_inc
control the rate and timing of versioning for a given
array. The key idea here is multi-stream versioning, that
is, versioning can be done individually, at different tim-
ings for different arrays, based on each data structure’s
characteristic and resiliency requirement. Multi-stream
versioning allows applications to optimize cost of ver-
sioning and provided resilience. For example, a read-
only object needs only be preserved once, an object that
is easy to calculate may not need to be preserved at all,
and objects that take up less memory can be efficiently
preserved at a greater frequency than objects that take
up more memory.

Data structures

Immediate: rollback
Latent: fail

TN

> Checkpoint/Restart

Checkpoint/Restart Recovery

Immediate: rollback

/_\atent: rollback

a
GVR:
Multi-version
Multi-stream

1
- Immediate + Latent:
Forward Error recovery

+Sophisticated ABFT Recovery

GVR Flexible Recovery

Figure 4. Comparison between the classical checkpoint-restart (left) and GVR (right). Checkpoint—restart cannot handle latent
errors while GVR expands the possibilities, enabling Flexible Error Recovery.

Chien et al.

Array C only rollback A
—
Array B _,'/ N\\
\ <
\ 3
Array A [— 3 M —¥ = B 5 —>
— I . —_— a2 —>
3 = o = o
g] SN 13 | oy 5
—any
Y) FR o)
= = =2
error occur in A
(a) Multi-stream recovery
forward
—~
a
5 5 58 -
o] g 3 error &2
s 5 error SE
occur
\ ' '
(¢) Forward recovery (compensation)

rollback
L —
{‘a“:w “\’_
V4 \
y \
\
< < < g
o} Lz 23 error
@ v, >,
o o o= detected
3 3 error =

occur

(b) Latent error recovery
recovery using a part of an old version

_— —)
il
4 o
3 5 ™ 5 & -
= -~ = error 8 =
@] ‘-‘F‘“ﬂ"-:— > B B —
& & L S E detected ® =
=i 3 error S &

occurs

l [

(d) Partial materialization for forward

Figure 5. lllustrating the flexibility of application recovery using GVR.

GDS_move_to_prev and GDS_move_to_next update
an array handle to point to a previous/next version.
For recovery, GVR provides convenient primitives to
name and navigate multiple versions. This differs from
checkpoint-restart systems, where checkpoints have no
application names, nor can you manipulate parts of
several checkpoints simultaneously to aid complex
recovery. When an error is detected (by the system or
perhaps an application consistency check routine), an
error handler is invoked through the GVR unified error
handling interface, with an error descriptor as a para-
meter. A descriptor is generated by a component which
detects an error.

GVR enables a wide range of recovery options
based on multiple versions, multiple streams (data
structures), and the use of application semantics for
forward error recovery. This wide range is illustrated in
Figure 5. First, a GVR program can conveniently ver-
sion different data structures at different rates, in sev-
eral different streams (we call this multi-stream). This
feature enables multi-stream recovery scenario in
Figure Sa. If the error occurs in one data structure, the
program can recover it independently. Second, when
an error occurs, recovery can happen from the most
recent version or from older versions, enabling recovery
from latent/silent errors. Figure 5b shows that error
detection latency results in corrupted versions. The pro-
gram can still recover from previous good versions.
Traditional checkpoint—restart approach cannot handle
latent errors, because it provides an access only to the
latest checkpoint, which might have already been cor-
rupted by a latent error. If the latest checkpoint is cor-
rupted, the only way to recovery the program is to
restart it from the beginning, which is prohibitively
expensive under high rate of latent errors (Lu et al.,
2013a). Third, instead of a rollback recovery, a GVR

program can choose to do a forward error recovery
(Figure 5¢) by computing an approximation from the
current application data and any collection of versions.
For example, if it can be isolated, an error handler
might recover by subtracting/removing the contribu-
tion of a corrupted value. This is particularly useful if
there are several good phases of computation after the
corrupted version which could be used (the phases are
commutative) as in OpenMC. Finally, we have inten-
tionally designed the GVR library implementation to
ensure that version data retrieval cost is proportional
to the size of data accessed. This allows applications to
flexibly use many versions for recovery as shown in
Figure 5d (we call this partial materialization of a ver-
sion). An example of this is shown in Figure 15, in our
OpenMC deep dive.

As we will revisit again in our performance evalua-
tion, key performance aspects of the GVR model
include:

1. versioning runtime overhead is independent from
the number of existing versions;

2. data retrieval cost from a version is independent
from the number of existing versions (given that
the data size accessed is fixed); and

3. data retrieval cost from a version is proportional to
the size of data accessed (partial materialization).

All four of these capabilities are unique to the GVR
interface: checkpoint-restart provides no support for
multi-stream, naming of versions, flexible version
recovery, or partial materialization in a larger, more
complex recovery. Of course all of these things can be
programmed with traditional checkpoint-restart
approaches, but at significantly greater manual effort
and complexity.

570 The International Journal of High Performance Computing Applications 3 1(6)

3 Application studies

In this section we demonstrate real use cases of GVR for
several existing scientific applications. We show that
introducing resilience by GVR requires very small pro-
gramming effort and almost negligible runtime overhead.

3.1 Applications

We have applied GVR to a set of complex, scientifi-
cally useful, large-scale community application codes,
several of which are broadly used by diverse computa-
tional communities.

e OpenMC (Romano and Forget, 2013) is a produc-
tion Monte Carlo neutron transport simulation
code. It was originally developed by members of
the Computational Reactor Physics Group at the
Massachusetts Institute of Technology and now is
used by the DOE CESAR co-design center to
explore scalable nuclear reactor modeling.

e (Comparing to other Monte Carlo production
codes, such as MCNP (Goorley et al., 2012) and
MC21 (Sutton et al., 2007), OpenMC is designed to
leverage current and future high-performance com-
puting platforms and explore large parallelism.
OpenMC is capable of simulating 3D models based
on constructive solid geometry with second-order
surfaces, which makes possible high-fidelity simula-
tions of nuclear reactors. OpenMC also demon-
strate the ability to model large models with
considerable geometric and material complexity.
By using a mapping technique for fast scoring bin
indexing, the implementation of tallies in OpenMC
was shown to be efficient with respect to tallying
large numbers of quantities. Its parallel fission
bank algorithm also allows for parallel scaling up
to tens of thousands of processors.

e PCG (Golub and Van Loan, 1996) is an efficient
and widely used method to iteratively solve the lin-
ear system Ax = b, where A4 is a matrix of size
m X m, and x and b are vectors of length m where
the value of b is known a priori while the value of x
is unknown. A large number of scientific applica-
tions require the solution to this linear system. A
popular approach to this problem are iterative sol-
vers. Iterative solvers approximate x with increas-
ing accuracy at every iteration. Examples of
iterative solvers include stationary methods such as
successive over-relaxation (SOR), and Krylov sub-
space methods such as CG or generalized minimal
residual method (GMRES). In this study, we focus
on PCG. PCG speeds up the convergence by apply-
ing a preconditioner M to A and b and then solving
the equation MAx = Mb (Saad, 1993). The justifica-
tion behind this procedure is that it may be less
expensive to solve MAx = Mb than to solve Ax = b .

There are a number of different choices for M . We
opt for incomplete Cholesky factorization
(Kershaw, 1978) using an arbitrary drop threshold
of 0.001 (Saad, 1993). In relation to PCG, we will
later refer to the vector p, which records the direc-
tion that x is moved in the current iteration; the
vector r, which is principally identical to the resi-
dual b — A4x, but is updated in-place for optimiza-
tion purposes rather than being calculated as
Ax — b in each iteration; and p, which records the
norm of r from the previous iteration.

ddcMD (Glosli. et al., 2007; Streitz et al., 2006) is a
parallel classical molecular dynamics application
developed by Lawrence Livermore National
Laboratory. It is highly scalable and efficient. It
has twice won the Gordon Bell prize for high-
performance computing (Glosli. et al., 2007; Streitz
et al., 2005). On BlueGene/L, ddcMD was used to
demonstrate application assisted fault tolerance
when BlueGene/L was discovered to have fatal L1
cache errors. The L1 cache on BG/L can detect,
but not correct parity errors due to bit flips. On a
system with over 200,000 cores L1 parity errors
occur roughly every 5 hours. Therefore, ddcMD
exploits a checkpoint/rollback scheme and utilizes
application-level error recovery strategy. It periodi-
cally takes a fast checkpointing of the full computa-
tion state in memory. When an unrecoverable
parity error is detected, the error handler sets an
application-level global flag. The application con-
tinues execution until it reaches a designated rally
point, when all tasks check the error flag, discard
current results, and restore to the previous backup
state. We replicate and extend the fault tolerance of
ddcMD by using GVR (Fang and Chien, 2014).
Chombo (Colella et al., 2009) is a library that
implements block-structured adaptive mesh refine-
ment (SAMR) technique (Berger and Colella, 1989;
Berger and Oliger, 1984) to efficiently achieve
higher resolution in regions of interest. Chombo
defines patches of uniform resolution and embeds
them within other patches of lower resolution. This
is useful when available resources do not permit a
simulation with uniformly high resolution that is
demanded by some regions in the domain. All
patches with the same resolution are grouped into a
level, but distributed arbitrarily in the physical
space. Thus a level can be viewed either as a logical
entity (same resolution) or a physical entity (union
of all patches at the same resolution). Depending
upon the scientific domain and the specific applica-
tion the AMR hierarchy can get very deep. The
solution advances with the same timestep every-
where on a given level, though it might differ from
all other levels. Similarly load distribution and
regridding are also managed on individual levels.

Chien et al.

571

In the following, we explore how each of these appli-
cations were enhanced for resilience with GVR.

3.2 How applications use GVR

We studied our four applications, using GVR to
explore the programming effort, models of adding resi-
lience, and performance impact of versioning. We
quickly learned that there are two ways to integrate
GVR version-based resilience.

1. Deep: Federate primary application data structures
as a GVR distributed array.

2. Shallow: add a new distributed array and copy
application data into it for versioning.

Amongst our four applications, OpenMC used deep
integration and ddcMD, PCG, and Chombo use the
shallow model. In general, we expect that many GVR
adopters would begin with shallow integration, and
then if memory pressure is a significant concern, pro-
ceed to deep integration (eliminates one copy). Below,
we discuss how GVR was added to each of the four
applications in turn.

3.2.] OpenMC. Among several in-memory data struc-
tures in OpenMC, we introduced a distributed array to
represent the tally data. The tally data is the essential
computation structure where the results of the Monte
Carlo samples are collected. Thus, it is the natural place
to introduce versioning. In the original version of
OpenMC, tally data was represented as a set of local
buffers, one in each process. This limited the simulation
scaling, as each process maintained a tally array sized
for the entire application in its memory. By introducing
the distributed array using GVR, OpenMC can take
advantage of globally shared data and gain scalability
(Dun et al., 2014). Tally data is region-based and accu-
mulated (i.e. fetch-and-add) data, where the region, or
tally region, is the volume over which the tallies should
be integrated. The size of total tally data is directly pro-
portional to the number of physical quantities to be tal-
lied and the number of tally regions. In a realistic
reactor simulation, that tally size could reach terabytes.
Tally is a write (acc)-only data structure; read (get)
never happens during simulation. During the simula-
tion, OpenMC simulates a batch, a set of particles.
When it completes simulation of one batch, it creates a
version, then proceeds to the next batch.

3.2.2 PCG. We make PCG resilient by periodically tak-
ing snapshots of critical variables and restoring these
variables if PCG fails checks for algorithm-specific
invariants (Chen, 2013). Our implementation of PCG is
built on top of Trilinos (Heroux et al., 2005). The
Trilinos project is a C++ library that provides

scalable primitives for linear algebra operations, linear
and nonlinear solvers, and other useful scientific com-
puting algorithms. In this study, we utilized Trilinos’
linear algebra primitives in order to implement a PCG
solver. We take advantage of the abstraction that
Trilinos offers by building GVR-provided resilience
into linear algebra primitives rather than requiring the
application developer to interact with GVR directly.
We decorated Trilinos vector objects with methods to
snapshot (take a version) and restore state on demand
with GVR (Rubenstein et al., 2013). These methods
were then used in conjunction with application-
directed error detection in order to find errors and
restore to a previous application state as appropriate.
GVR enabled convenient expression of application-
level error checks connected to application-driven
recovery.

Our experiments with the PCG solver show that the
choice of detection methods make a good deal of differ-
ence when correcting errors in PCG (Rubenstein et al.,
2013). Inexpensive methods based on monitoring the
norm residual and more expensive, algorithm-aware
methods that performed extra linear algebra operations
to verify PCG-specific invariants were implemented and
explored empirically.

3.2.3 ddeMD. The ddecMD code includes in-memory
snapshot, as well as a trap handler to capture the L1
cache parity error. When applying GVR we exploited
the snapshot and restore handler with minor code
changes. As shown in Figure 6, the GVR-enhanced ver-
sion has similar structure, but cleanly separates the
error-handling code. The GVR version protects the
essential data in ddcMD such as positions, velocities in
global arrays by creating versions (see the left-hand side
of Figure 6). Furthermore, the original error handler is
transformed into a GVR-style error handler utilizing
the unified error signaling interface of GVR. With
GVR extended error signaling and handling, we gener-
alize the original error handler that was designed only
for L1 cache errors, to many other kinds of errors such
as main memory errors and application-detected data
corruptions.

Errors identified by the error detectors trigger the
GVR library to identify the right error handler (with
application help). As shown in the code, types of error
detectors include hardware detection to middleware to
application-semantic checks. An example application-
level check uses energy conservation in the simulation
(“total energy change threshold”), to identify errors.
Specifically, in ddcMD, typically the total energy shows
minor changes (i.e. 1 X107) between time steps.
Larger changes (i.e. 1 X 1072) in total energy generally
indicate an error. Fallible detectors such as this can be
combined with recomputation to increase error cover-
age at some overhead.

572 The International Journal of High Performance Computing Applications 3 1(6)

Versioning

/* Create global array */
GDS_alloc(dimension, size, type,
priority, communicator, &gds);

simulation_loop() {

/* Get data */
GDS_get (local_data_structure, gds);

/* Bctual computation work */
compute_interactions();
move_particles();

/* Store results */
GDS_put(local_data structure, gds);

/* Tell GVR OK to snapshot */
if (snapshot point)
GDS_version_inc(gds);

main() { " TS F— /* User defined error handler */

/* MD Simulation */ B .

Error Signaling and Handling

recovery_func(gds, error_descriptor) {

/* Perform rollback */
R GDS_get{local data_ structure, gds);

/* Resume the handler*/
GDS_resume_global (gds, error_desc);

/* Create error predicate */
GDS create error pred(apred);

/* Register error handler */
GDS_register_global_error_handler (gds,
pred, recovery_func);

if (error_detected()) {
/* Create error descriptor */
GDS_create_error_desc (kerror_desc);
/* Raise the global error */
GDS_raise_glcbal error(gds, error_desc);

H
H
i /* Error detection & signaling */
H

} continue;
I }
Figure 6. ddcMD error checking, signaling, and recovery using GVR.
Main Computaﬁon Error handlers Process/Node Failure:
main() { . * Lost data range in an array
Full Rollback: &---. « Lost MPI communicator/ranks
Register for errors with full rollback() {

* Any lost data range in an array /

GDS_register_global_error_handler(
gds, pred_full, full rollback);

Forward Error Correction:

* Get an MPI communicator to know
my rank and number of processes */
GDS_get_comm(gds, &comm);
foreach level ({
/* Recalculate data/task assignment
to reflect process number change */
my_patch_range = rebalance (comm);
/* Reload data from an array */
GDS_get (patches, my patch_ range,
gas[level]): B

} Data Loss Error:
* Lost data range in an array

Small Data Loss Error:
---1 * Lost data range (<=64bytes) in

]
v an array

>
Register for errors with
* Small (<=64bytes) data loss in an =15
array !
GDS_register global_error_handler i
gds, pred_fec, forward correction); H)
1
1
main_loop() | i
foreach (level) { i
compute one timestep(); i
if (need versioning) { 1
/* Per-level, fine-grain
versioning */
GDS_put (gds[level]); H
GDS_version_inc(gds[levell); H
) !
} 1>

forward_correction(gds, error_desc) {

/* Approximate the corrupted data
from the lower resoclution data in
the previous level */
larea = lowres_area(error_desc);
GDS_get (lowres, larea, gds[level-1]);
approx_data = interpolate(lowres);
area = corrupted_region(error_desc);
GDS_put (approx_data, area, gds[level]);

Figure 7. App-level data versioning and several recoveries in Chombo, enabled by GVR.

3.2.4 Chombo. For Chombo we introduced one array
per level, plus one additional array for storing global
metadata information. Figure 7 illustrates how GVR is
applied to Chombo. We exploited a part of the existing

HDF5-based checkpoint-restart functionality in
Chombo for state preservation and restoration. In the
figure, we demonstrate the power of the OR interface.
Two error handlers with different recovery strategies

Chien et al.

573

Table |I. Summary of target applications and their GVR usage.

Application Percentage Application Leverage global view Change software
changed lines of code architecture

OpenMC <2% 30,000 Yes No

PCG/Trilinos <1% 300,000 Yes No

ddcMD <0.3% 110,000 Yes No

Chombo <1% 500,000 Yes No

are presented. They are registered to the system at the
same time, and GVR invokes the most appropriate
handler upon error. The first error handler performs
full rollback of the data structure. This handler is regis-
tered for errors which contains lost data range as error
attributes. This handler can handle two kinds of errors,
process failures and data loss errors, as both errors
contain lost data range. This is an example of generali-
zation of error handlers. It is possible to use another
kind of error handler which exploits the idea of for-
ward error correction. In AMR, finer-level data has its
counterpart in coarser level, so if data is corrupted in
finer level it can be approximated using values in coar-
ser level (Dubey et al., 2013). However, since the result-
ing values are not exact, caution must be exercised to
ensure that the approximated values are within accep-
table error bounds. It is not yet clear whether in
Chombo’s context which of the two kind of error hand-
lers is more suitable for small data corruption since we
have not yet implemented the forward error correction
handler. In the example, the forward error correction
handler is associated with small data corruption, so if
the size of corruption is small, this handler is called.
Otherwise (if the size is bigger), the first handler will be
invoked for full rollback.

Across all four applications, our experience is that
modest source code changes are sufficient to add GVR
resilience to an application. Further, these changes are
localized to a small part of the program, requiring no
software architecture change, and are portable
(machine-independent, involving only array manipula-
tion at the level of the GVR interface). Table 1 docu-
ments these results quantitatively, with overall results
of typically less than 1% code change. Even for
OpenMC, which incorporates the global view model in
the code deeply, the code changes were still below 2%.
In all four applications, we found the global view for
state preservation and recovery to be a powerful tool to
understand how to identify errors and select appropri-
ate recovery strategies. And the basic infrastructure for
versioned arrays added to each appears to be a suffi-
cient platform to scale forward to the high error rates
anticipated in extreme-scale systems. In short, we con-
clude that GVR enables gentle-slope migration to
higher resilience for existing scalable scientific
applications.

3.3 Performance experiments

We explore the runtime overhead of adding GVR to an
application by measuring execution time for several
applications, varying versioning frequency and compar-
ing with a base case. Specifically, we first run native
applications with no modifications made to the original
application codes and use that runtime as the base-
line.*. Second we run applications linked with GVR
library, but without any GVR operations (no puts,
gets, or version_inc’s). In runtime, GVR launches a ser-
ver thread (called target server thread) per process
which is used to implement collective operations such
as allocation. This measurement isolates the target ser-
ver thread overhead. Finally we measure the runtime of
GVR versioning applications, which create versions of
global arrays at varied frequencies. We choose version-
ing frequencies of every 30 minutes, 15 minutes, and 5
minutes (which leads to take 1 version, 2 versions, and
6 versions respectively in our experiments of a 30-min-
ute run), successively increasing the versioning over-
head. These times correspond to much shorter periods
than would be used on today’s systems and current
MTTIs. The shortest of these periods (5 minutes) corre-
spond to predicted MTTIs on extreme resilience scenar-
ios for future exascale systems. We then compare the
performance of each configuration and characterize the
overhead of GVR versioning.

We configured each application run in the following
ways.

® OpenMC: This uses PWR Performance Benchmark
(Hoogenboom et al., 2011) with a total of 8,352,100
tally bins.

® PCG: This uses a sparse matrix generated accord-
ing to HPCG benchmark (Heroux et al., 2013) of
105 million X 105 million with 26 non-zero values
per row. Each of the 16 processes has a
820, 000 X 820, 000 sub-matrix. The data size of per
sub-matrix, thus per process, is approximately 256
MB.

® ddcMD: The simulation is a system of 500 (Ta)
atoms per process. Atom interaction is modeled
with EAM potentials. The simulation runs for
about 130,000 to 140,000 time steps.

574

The International Journal of High Performance Computing Applications 3 1(6)

® Chombo: We use a 3D gas-dynamics example
reflecting a shockwave along a ramp (Colella, 1990).
It uses purely explicit hyperbolic solve with space
and time refinement, where AMR hierarchy has
four levels and the refinement ratio is two.
Refinement in time implies that for every time step
dt taken by a coarse level, the next fine level takes n
timesteps of size dt/n where n is the refinement
ratio. The coarsest level has 128 X 32X 128,
128 X 64 X 128, 128 X 128 X 128, 128 X 128 X 256
cells for 1024, 2048, 4096, and 8192 process run,
respectively.

3.3.1 Hardware platforms. GVR is a portable system, as
are many of the applications. So we performed experi-
ments on the Mira Blue Gene/Q system at Argonne (see
http://www.alcf.anl.gov/mira), the Edison Cray XC30
system at NERSC (see http://www.nersc.gov/users/
computational-systems/edison/), and the UChicago
Midway Linux cluster (see https://rcc.uchicago.edu/).
We report ddcMD, PCG, and OpenMC measurements
for the Midway cluster (284 nodes, dual 8-core Intel 2.6
GHz Xeon E5-2670, 32 GB). For Chombo, we report
Edison measurements (5576 nodes, dual 12-core Intel
IvyBridge 2.4 GHz, 64 GB) connected by Cray Aries
with Dragonfly topology.

3.3.2 Results and discussion. Figure 8 shows the runtime
(single run) of the applications in each configuration.
The versioning overhead is less than 2% in all cases
except the ddcMD run with 512 processes and version-
ing every 5 minutes. Specifically, for versioning every 30
minutes, which is a reasonable frequency under today’s
failure rates, the overhead is less than 1% for all appli-
cations. We also observe some negative overheads for
ddcMD and PCG solver, which we conjecture may
result from the unstable network of the cluster. The
results also show that GVR scales at least up to 8000
processes. Figure 9 summarizes the versioning over-
heads in different applications.

Overall, the results indicate that adding GVR ver-
sioning incurs low overhead that can be managed by
the application, which data, how frequently, to provide
appropriate coverage, and thereby GVR provides a
gentle-slope for application resilience.

4 GVR deep dives: multi-stream and
forward error correction

4.1 Multi-stream in PCG linear system solvers

In this section, we use a deep-dive with the PCG solver
to illustrate how multi-stream control of versioning
enables tailoring of resilience to an application.
Specifically, we show how the flexible control can be

used to reduce application overhead both for version-
ing and recovery. We apply GVR multi-stream version-
ing to the sparse matrix (A4), direction vector (p), and
solution vector (x) as depicted in Figure 10, a notional
example of different versioning intervals for each data
structure. We vary these intervals in the experiments
that follow. Versioning of all of these structures are
done through the enhanced Trilinos vector and matrix
classes as described in Section 3.2.

4.1.1 Experiments. We first explore how multi-stream
versioning can be used to control and reduce the over-
head of versioning in error-free PCG, varying version-
ing and versioning rate (see Figures 11 and 12). We run
PCG with single process on the UChicago Midway
cluster. Experiments use besstk18 from the University
of Florida sparse matrix collection (Davis and Hu,
2011), a large symmetric and positive definite matrix.
besstk18 is 11,948 X 11,948 matrix with 149,090 non-
zeros. We run experiments with a convergence thresh-
old of 0.001, leading to convergence in 739 iterations.
All results are the average of five runs to reduce varia-
tion and measurement error. Starting with “full ver-
sioning” of all three structures every iteration (red bar),
we consider eliminating versioning of first one (blue
bars) and then two (green bars) of the structures.
Eliminating versioning can reduce overhead dramati-
cally, and reducing A4’s versioning gives the greatest
benefit because it is largest.

Next we compare versioning all three structures in
PCG to only one structure (see Figure 12), and vary the
versioning rates. Eliminating versioning can reduce over-
head dramatically, and at frequent versioning. But as
the versioning frequency decreases (interval increases),
the overall versioning overhead becomes quite small.

To achieve resilience with the best overall perfor-
mance, the versioning overhead must be balanced
against the cost of recovery. We illustrate how GVR’s
multi-stream versioning control can be used to optimize
across these two often opposing considerations. In our
experiment, we consider a single error injection at an
arbitrary iteration, number 139, and inject a large bit-
flip error (Elliott et al., 2013; Shantharam et al., 2011).
We assume the error is detected immediately (end of
the iteration). We consider error injection in the p vec-
tor and x vector in turn, but not the 4 matrix. The
matrix A4 is versioned exactly once at the beginning of
execution. We use 74, 7, and 7, to represent the ver-
sioning interval of 4, p and x .

First, we compare the error-free execution to
version-based recovery (see Figure 13). These three
experiments all version 4 only once, p every 100 itera-
tions and x every 10 iterations, that is, 7, = 100 and
7. = 10 (the recovery baseline). Our recovery procedure
restores the most recent version of the direction (p)

Chien et al. 575

liNo Versioning N] Versioning per 30m] Versioning per 5m

°
2
s
Z
O
o
£
Z

0

1024 2048 4096
Number of processes
(a) OpenMC
o Native 11 Versioning per 15m N Versioning per 5m

l |
2
=
z
E O
o
£
£
e~

0

128 256 512 1024

Number of processes

(b) PCG solver

I 1 Native ! Linked with GVR 11 Versioning per 30m N] Versioning per 5m

Runtime (vs. Native)
(=}

(=} w [,
T
|
|
I
I
I
|
|
|
|
I
I
I
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
I
I
|
|
|
|
I
I
|
|
|
|
|
|

512 1024 2048

Number of processes
(¢) ddcMD
I i Native [1 Linked with GVR 11 Versioning per 30m h Versioning per Sm

Runtime (vs. Native)
'<D
(=} w -
T
|
|
|
|
|
|
E

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
E

|

|

|

|

|

|

|

|

1024 2048 4096 8192

Number of processes

(d) Chombo

Figure 8. Versioning performance impact adding resilience using GVR.

576 The International Journal of High Performance Computing Applications 3 1(6)

I i Native B0 Versioning per 30m] Versioning per 15m N] Versioning per 5m

0.5

Run time (vs. Native)

OpenMC PCG Solver ddcMD Chombo

Figure 9. Summary of versioning overhead.

Al o o

Low redundancy

> High redundancy

>

o
=

(]
[

B
| o ;o |

o

p 0 1 I P Medium redundancy

L

Iteration 1 2 3 4 5 6

Figure 10. Example of multi-stream versioning: A, x, and p intervals are under programmer control.

Apx
1
A,p Az

3 A
&0
g
= 0.9
£
w
g
=
w
£
-} 0.8 p,x
£ ’)
& p
=
e
2
=
o
% 0.7
m

0.6

all omit one omit two
Versioning Data Structures at Every Iteration

Figure 1 1. Selectively versioning A, p and x : all, omit one, omit two. Results are normalized to versioning all (A, p, x).

Chien et al. 577
1 I Versioning A, p, x

= h Versioning A
g Versioning p
g 0.95 Versioning =
.
E 0.9
8
=
T 085
-
F 0.8
=
=
©
>
S 075
g
E 0.7
Z
ZE 0.65

0.6

1 2 5 10 20 INF
Versioning Interval (Iterations)

Figure 12. Versioning of A, p and x and omit two versus versioning interval. Results are normalized to versioning A, p, x at every

iteration.
12 I 1 Error free
I 1 Error — P
e Error — =
B 10
=
e
o
=
m 8
w
2
-
= 6
B
g
3 4
<
ks
=
2
. 1
FError Free Error — p FError — =
Figure 13. Runtime with error recovery. Varied error location, and with versioning intervals 7, = 100, and 7, = 10 . Results are

normalized to the error-free case.

and solution (x) vectors. In our experiments, the resi-
dual and residual norm vectors are never corrupted.
Figure 13 shows empirically that the cost of error
recovery can be high, increasing runtime by up to 12 X
over the error-free runtime. The principal cause for
increased runtime in our experiments is a large increase
in the number of iterations from 739 to 8677. This
increase is a product of error propagation into other
solver state. The compute cost per iteration varies only
slightly with versioning interval.

Next, we vary the versioning intervals for p and x to
find the best intervals for each that maximize perfor-

mance in the presence of errors and recovery. As shown
in Figure 14(a) and (b), varying the versioning interval
for x has a modest impact on the overall runtime while
varying that for p has a much larger effect (over 10-
fold). In fact, changing the versioning interval for x
cannot reduce overall overhead and recovery cost to a
useful range. However, the right choice of versioning

The International Journal of High Performance Computing Applications 3 1(6)

I Varying 7, 74 = inf, 7, = 10
Varying 7., Ta = inf, 7, = 100

— 1
o
:

s 08
£
P
2

2 0.6
&

E 04
%
=

0.2

1 2 5 10 20 50 100
Versioning Interval ([terations)
(a) Error injected into p
I Varying 7, 74 =inf, 7, = 10
Varying 7z, Ta = inf, 7, = 100

[
>

o 0.8
z
-
Z

2 0.6
&

z 0.4
%
=

0.2

1 2 5 10 20 50 100
Versioning Interval (Iterations)
(b) Error injected into x

Figure 14. Comparison of runtime with recovery by varying versioning intervals 7, and 7, . Error is injected at iteration 139. The
red line represents runtime of the error-free case. Execution times normalized to a recovery baseline with versioning intervals

7, =100and 7, = 10.

interval for p can, achieving only 3% overhead for the
best interval of two iterations.

Overall, these results in PCG show that multi-stream
versioning control can (1) provide control to separately
reduce overhead per-data structure, and (2) provide
flexible choice of versioning intervals to achieve effi-
cient recovery. In the best cases, the tuned multi-stream
versioned recovery can approach within 3% of the
error-free case.

4.2 Forward error correction in OpenMC

Monte Carlo methods have shown a number of poten-
tial advantages over conventional deterministic meth-
ods in carrying out nuclear reactor core simulations
(Martin, 2012; Siegel et al., 2013): the capability of
simulating arbitrary geometrical and physics complex-
ity, no approximation for neutron energy dependence,
and inherent extreme parallelism for modern HPC
architectures. OpenMC (Romano and Forget, 2013), a

Chien et al.

579

Table 2. Data reliability in OpenMC.

Datastructure Property Management Recovery

Geometry Read-only Caching Reread from non-volatile storage
Cross section Read-only Caching Recompute from cached good data
Tally data Accumulate Versioning Forward error correction

production Monte Carlo neutron transport code, is
capable of simulating 3D models based on constructive
solid geometry with second-order surfaces. The appli-
cation is written in FORTRAN, with support for a
hybrid MPI/OpenMP parallelism.

However, there are still two major challenges that
prevent Monte Carlo methods from being a realistic
choice for full-core simulation. One is the enormous
computational effort required to achieve acceptable sta-
tistics and source convergence, and the other is exces-
sive demand of memory due to the large cross-section
and tally data (Martin, 2012). Current tally accumula-
tion approaches include either simple data replication
(as in native OpenMC), or are based on application-
controlled decomposition such as domain decomposi-
tion (Horelik et al., 2014) or client/server model-based
data decomposition (Romano et al., 2013), which are
limited by either memory cost, programmability, load
imbalance, or performance loss. Accordingly, effective
algorithms and implementations of Monte Carlo simu-
lation are still required as a matter of urgency to enable
scientists to harness the power of current and future
exascale systems to conduct full-scale simulation.

During a simulation, there are three categories of
data need to be stored in memory.

e Geometry: Geometry in Monte Carlo simulation is
non-mesh based, read-only data and can be repre-
sented using constructive solid geometry.

e Interaction cross sections: The random events of
each particle are determined by experimentally pre-
measured probability distributions, i.e. cross sections.
The cross section is also read-only data and accessed
randomly by each process during the simulation.

e Tallies: Tally data is region-based and accumulated
(i.e. fetch-and-add) data, where the region, or tally
region, is the volume over which the tallies should
be integrated. The size of total tally data is directly
proportional to the number of physical quantities
to be tallied and the number of tally regions. In a
realistic reactor simulation, that tally could reach
terabytes size of data. Unlike geometry and cross
sections, tally is only output data and not required
for particles simulation; it is possible to process tally
data in an asynchronous way.

4.2.1 Forward error correction. The reliability of OpenMC
data structures are categorized as shown in Table 2.

Algorithm | Comparison of local accumulation, global view, and
tally server algorithms

Global view: Create global arrays for tallies
fori«— | to Mdo
forj— | to N/p do
while Particle j is alive do
Process next event
if Event satisfies filter criteria then
for all Scoring functions do
Calculate score
Accumulate score to global view array
end for
end if
end while
end for
Flush outstanding accumulate operations
end for
Write tally results to state point file

Cross-section and geometry data are stored on low-le-
vel, read-only, and is replicated over nodes. Therefore,
they can be recovered simply by rereading from storage
or other nearby nodes with replicas. It is also possible
to recompute cross-section data from cached good
data.

Data versioning is applied to tally data. At the end
of each batch simulation (e.g. batch i), tally data can
be snapshotted as a version T; . Thus, we have a history
of tally data T;...T, . Since the tally scoring is Monte
Carlo accumulation only, if one latent error is detected
at the latest batch » but this error occurred in batch i,
then we are able to correct the contaminated 7, to the
correct T, by removing the contribution, i.e.

n

8T = T; — T;_1, caused by this latent error:

T,=T,—(T;— Ti-1) (1)

This forward error correction especially allows the
application to recover from latent errors without roll-
ing back to a previous state and conserving the effort
in contaminated but correctable computation (Randell
et al.,, 1978). For example, if using checkpointing/
restart, the computation needs to roll back to batch
i — 1 with T;_; and compute from batch i to batch n
again. Figure 15 illustrates this scheme.

4.2.2 Tally implementation. Algorithm 1 shows the pseu-
docode of applying global arrays approach in

580

The International Journal of High Performance Computing Applications 3 1(6)

‘Monte Carlo Simulation

Recovery

Computation

Random Sample w\

Convergence

l

Statistics

Execution
Tally

Corrupt Tally

N

Contaminated Tally

Corrected Tally

N/

Figure 15. lllustration of forward error recovery in OpenMC.

_~ Tally Bin
iy 2 3/ 4 5 6 7 8
Global Index: ¥
(filter_bin_idx, score_bin_idx) —+ 10 Index I I | | | I _
__—r
/f/ P3
/_—
Tally Accumulation Buffer ——3 I I | I

Tally Events

Figure 16. lllustration of global view implementation of tally data, using block distribution.

OpenMC. During initialization, each user-defined tally
is allocated separately as a global array. In particle
tracking routines, the only modification is to replace
the original tally scoring function with GVR array
accumulation calls when a scoring event occurs. When
a batch of particles simulation finishes, the variances of
tally score bins can be calculated by referencing corre-
sponding tally array.

In native OpenMC implementation, one tally array
consists of all tally bins/values corresponding to a spe-
cific tally (e.g. type of nuclides), which is represented as
a 2D array indexed by filter bin index and score bin
index. In global view implementation, as shown in
Figure 16, we use a 1D GVR array to implement the
original 2D array, where the mapping from 2D index
to 1D global index is straightforward. Since the tally is
accumulated into random bins during the simulation
and thus data layout does not help access locality, we
simply use block distribution to partition the array
evenly on processes.

Using global view array naturally expresses the
particle-base parallelism in OpenMC thus significantly
enhances the programmability. Integrating GVR arrays
requires fairly small changes (less than 1% LOC) of
OpenMC code. Figure 17 shows the actual code
changes required by using GVR library.

As shown on the right of Figurel8 the application
programmer would typically define an error recovery

function to handle a class of errors and register it. The
error can be recovered by forward correction approach
or rollback fully, depending on the properties of errors.
Through GVR, applications can utilize the OR inter-
face for error signaling and handling. Figure 18 shows
the GVR unified dispatch code, by using OR interface.
An error handler do _recovery is newly introduced
and registered to an array. The error handler is also
associated with error matching predicates, to express
what kind of errors can be handled by this handler. By
registering an error handler through the OR interface,
the handler can receive all error signals from any kind
of sources such as hardware, operating system, runtime
libraries, or the application itself, as long as the error
consists of a set of error attributes which satisfies the
pre-registered predicate.

4.2.3 Experiments. Figure 19 shows results up to 16,384
processes of GVR-enabled OpenMC with 2.4 TB array
size on 1366 nodes of Edison Cray XC30 system (weak
scaling). At maximum size, OpenMC with GVR
achieves 85% efficiency for 16,384 processes with 1024
processes as the baseline.

To illustrate how forward error correction can help
OpenMC efficiently recover from latent errors, we com-
pare the recovery efficiencies of using following three
error recovery approaches.

Chien et al.

581

! === Tally Allocation ===

subroutine setup_tally_arrays()

tifdef GVR
ndim = 1
arr_size = total_score_bins * total_filter_bins
call gds_allec(ndim, arr_size, ..., tally_arr)

¥else

#endif
end subroutine

!=== Tally Accumulation ===

subroutine score_analog_tally(
! score calculation

#ifdef GVR
index = score_index =
call gds_acc(score, index, ..

#¥else

., tally_arr)

#endif
end subroutine

allocate(tally_arr(total_score_bins, total_filter_bins)

total_score_bins + filter_index

tally_arr(score_index, filter_index) % value += score

Figure 17. Code snippet of tally allocation and accumulation.

Table 3. System parameters for flexible recovery efficiency study.

Higher error rate

Lower error rate

Nodes (N) 1024 1024
Node FIT () 36,621 8610
Versioning overhead (5) 0.3 seconds 0.3 seconds

Versioning interval (7)

250 seconds

500 seconds

e Rollback/restart: the application rolls back to a pre-
vious version/snapshot of tally data right before the
error occurred, and compute all batches again. For
example, some errors occurred in batch i and there
is a version of good tally data at batch 7, but the
detection of errors are delayed until batch i + k,
then the application calls GDS_move_to_prev() to
checkout the good version and redo k batches.

e Forward error correction with additional batches:
the application uses the forward error correction
described in Section 4.2.1 to remove the contribu-
tion between to consecutive versions that enclose
the error, then redo all the contaminated batches
between these two consecutive versions. For exam-
ple, similar as above, some errors occurred at batch
i but detected at batch i + & . If there is a version at
batch i + [(I<k), then the § is computed by using
version i + [and version i and removed from cur-
rent version. Finally, / batches are re-run to com-
pensate lost accumulation.

e Forward error correction: this approach is the same
as above but without re-running / batches to com-
pensate. Instead, the application can decide how to
deal with error-removed data: to compensate it or
simply tolerate it. This approach is useful if the
detector can indicate specific error locations while
the errors are significant but it is sufficient to

remove errors without re-run additional batches.
For example, whether to re-run additional batches
or not can be determined by statistical convergence
criteria.

To exploring the impact of failure rate and detection
latency on recovery efficiency, we use the failure model
proposed by Snir et al. (2014) to manually inject errors
and set versioning interval and detection latency.
Specifically, the optimal versioning interval 7 is calcu-
lated by v26M (Young, 1974), where 6 is the time to
take a version and M is the MTBF that can be derived
from empirical node FIT values. Table 3 documents
the experiment parameters.

As shown in Figure 20, using forward error correc-
tion achieves better recovery efficiency as error detec-
tion latency increases. Because rollback discards all of
the computation since error occurrence, the loss for
each error is proportional to the detection latency since
it has to rollback to the version before the error hap-
pened. Note that this may be better than checkpoint
restart, which will fail if the error detection latency
exceeds the detection latency. In contrast, forward cor-
rection is able to conduct the in-place compensation
for current version of data with optional additional
batches, saving much of the intervening computation.
Note that in Figure 20a, since the versioning interval is

582 The International Journal of High Performance Computing Applications 3 1(6)

Main Computation Error handlers

do_recovery () {
if (correctable)
forward_correction();
else
full rollback();

main () {

GDS alloc(tally array); >

Register for errors with
« Any lost data range in an array

Forward Error Correction:

GDS_register global error handler (forward_correction(gds, err_ locs) f{
gds, predicator, do recovery()): GDS_move_to_next(tally array old);
- GDS_get (&bad val, ..., err loc,

tally array_old);

delta = val - bad_val;

GDS_acc(&delta, ..., err loc, MPI_SUM,
tally array old);

foreach (batch, particle) {

process next event();
if (tally this event()) ({
foreach (Scoring_funCtions) { GDS resume local(tally array);
score = scoring_func(); }
GDS_acc(score, score_index,
., MPI_SUM, tally array);

} Full Rollback:
} full rollback() f{
// move to previous good version
if (has_error(err locs, &n_err)) GDS_move_to_prev(tally_ array_old);
do_recovery(err locs, n_err);
GDS_version inc(tally array, 1); // Redo contaminated batches

\ GDS_resume_local (tally_array);

Figure 18. Expandable GVR error signalling and handling in OpenMC.

= = = ldeal scaling .
—— Global View Array ’

10

Speedup (vs. 1K Processes)

1024 2048 4096 8192 16384

Number of processes, p

Figure 19. Scalability of OpenMC using GVR.

taken every 5 batches, the number of additional rerun shown in Figure 20b the number of re-run batches is 5
batches (i.e. blue bars) is always 5 for 15, 30, and 45 for 15 and 45 detection latency, and 10 for 30 detection
detection latency. With 10-batch versioning interval, as latency.

Chien et al.

583

I 1 Rollback/Restart

Simulation Time (vs. Rollback/Restart)
—

I 1 Forward Error Correction with Additional Batches

2 Forward Error Correction

0‘5 II u
0
0 15

Detection Latency (batches)

(a) 7 = 5 batches (250 seconds)

30

I Rollback/Restart

Simulation Time (vs. Rollback/Restart)

I 1§ Forward Error Correction with Additional Batches

2 Forward Error Correction

1

0.5

0
15

Detection Latency (batches)

(b) 7 = 10 batches (500 seconds)

30

Figure 20. OpenMC runtime for 50 batches with varied error recovery (1000 processes, 8 GB tallies).

5 Discussion and related work

For decades, checkpoint-restart has been the mainstay
of reliability in high-performance computing, and a
wealth of research in appropriate checkpoint frequen-
cies (Daly, 2006; Young, 1974), data compression
(Hargrove and Duell, 2006; Hogan et al., 2012;
Lakshminarasimhan et al., 2013), and recently efficient
exploitation of non-volatile storage as in SCR and FTI
(Bautista-Gomez et al., 2011; Moody et al., 2010) has
steadily increased its efficiency.

GVR'’s global arrays trace their heritage to PGAS-
style libraries and languages such as Global Arrays
(GA) (Nieplocha et al., 2006), UPC (Carlson et al.,
1999), Co-Array Fortran (Numrich and Reid, 1998),
X10 (Charles et al., 2005), and Chapel (Chamberlain et
al., 2007). GVR programmers access arrays with APIs
that are derived from the Global Array library
(Nieplocha et al., 2006), extending them with new oper-
ations that to create versions of each distributed array,
names for each version, and navigation amongst ver-
sions for an array. In contrast, checkpoint-restart

584

The International Journal of High Performance Computing Applications 3 1(6)

approaches typically maintain only a single checkpoint,
so they can be used to recover from errors detected
immediately (checkpoints are uncorrupted). In con-
trast, GVR versions can be used to recover from latent
errors (Aupy et al., 2013; Hogan et al., 2012), and
to do so effectively in the face of high error rates
(Luetal., 2013b).

While applications using checkpoint—restart can con-
trol the checkpoint rate, that is a single knob for the
entire application. GVR provides per-data structure
redundancy, with application control of when versions
can be created, so each array’s redundancy can be tuned
to match application need.’

Finally, GVR empowers applications to use the full
complement of versions captured for each array to do
sophisticated application data recovery. In checkpoint—
restart systems that lack the ability to name multiple
checkpoints, partially materialize them, and manipulate
them conveniently, any such flexible recovery is diffi-
cult. For example, SCR (Moody et al., 2010) and FTI
(Bautista-Gomez et al., 2011) preserve multiple check-
points internally, they provide a way for applications
to name and manipulate multiple versions. To these,
GVR adds flexible version labels, navigation, and flex-
ible read access to arbitrary parts of versions to support
a wide range of latent error recovery and forward error
recovery.

While a relatively new concept in high-performance
fault resilience, multi-version concepts have been
explored in other concurrent systems including data-
base views (sometimes called snapshot views), time-
stamped values for a key in Google’s BigTable (Chang
et al., 2006) and Apple’s Time machine (see http://
www.apple.com/osx/apps/#timemachine), and a variety
of research snapshot extensions of Linux filesystems
(Konishi et al., 2006; Rodeh et al., 2013).

Several research planning reports have advocated
cross-layer resilience (DeHon et al., 2011) to both
increase the number of recoverable errors and make
recovery efficient. However, existing examples of cross-
layer error recovery (Bridges et al., 2012; Glosli. et al.,
2007) are “stovepipes”, with a one-to-one mapping of
error handler and error event. GVR’s approach here
has two novelties: associating error handling with data
(distributed arrays) and flexibly associating handlers
and errors. GVR’s OR uses pattern matching to flex-
ibly pair error handlers and error events. And by doing
so, to increase the return on investment for both error
signallers and handlers. An early unified error signaling
interface can be found in CIFTS (Gupta et al., 2009),
but that work is currently inactive. Checkpoint/restart
also provides no means to any form of extensible error
checking or flexible recovery.

The wealth of work on application-specific tech-
niques such as approximate execution (Carbin et al.,
2013; Misailovic et al., 2014; Sampson et al., 2011) and

fault-tolerant algorithms (Bronevetsky and de Supinski,
2008; Hari et al., 2012; Heroux, 2014) (such as ABFT)
can enable efficient error detection and recovery. This
work complements our research on GVR, and we hope
that not only these published approaches, but many
more will be implemented atop GVR. As described in
Section 2, it is our goal to support both the application
error checking and recovery aspects of these applica-
tions with GVR.

Other reliability techniques such as replicated
(Lidman et al., 2012; Lyons and Vanderkulk, 1962)
have been proposed, and evaluated at scale. There are
situations where they can be appropriate, but they
often incur high overhead during failure-free execution,
and have a limited set of options on the range of error
rate and cost. GVR enables flexible balance of error
coverage and overhead.

6 Summary and future work

We presented GVR, a library that enables the construc-
tion of portable, resilient applications. By adding GVR
calls to capture key data structures, one can implement
resilience that is matched to the data structure needs,
and then tune coverage to match to increasing error
rates. Programming experience with GVR shows that it
can be added to large applications with little effort
(<2% code changes), and support both rollback recov-
ery and a broad range of multi-version and forward
recovery approaches that may be important for future
extreme-scale systems. Adding GVR versioning to an
application is low cost (<2 % runtime) at today’s
error rates. The PCG solver case study shows that
multi-stream versioning can provide per-data structure
control to reduce overhead and enable flexibility to
achieve efficient recovery. While we have shown only
one example of multi-stream versioning, there are many
possible uses. For example, in a multi-physics simula-
tion where different model variables (e.g. velocity, tem-
perature, density) evolve at different time scales.
Varying the versioning rate as the computational mod-
eling rate is varied may be appropriate. Besides many
application have immutable table data (e.g. cross-
section data for neutronics). In such cases, immutable
data can be versioned only once with other versioned
appropriately for resilience. Our experiments with flex-
ible forward error correction demonstrate that large
performance gains are possible compared with rollback
restart schemes when latent errors occur. Future direc-
tions include incorporating GVR into high-level pro-
gramming models and tools, such the X-stack program
research (see https://xstackwiki.modelado.org/
Extreme_Scale Software Stack) and deeper explora-
tion of the opportunities presented by a resilience eco-
system as posited by OR. In addition, techniques to
further optimize version implementation, including

Chien et al.

585

efficient differences, compression, and exploitation of
NVRAM are all promising directions.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, US
Department of Energy, under Award DE-SC0008603 and
Contract DE-AC02-06CH11357. This work was completed in
part with resources provided by: the University of Chicago
Research Computing Center, the resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of
the US Department of Energy under Contract No. DE-
AC02-05CH11231, and resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

Notes

1 Error detection is a rich and long-standing research area.
GVR enables errors from all layers of the system, includ-
ing application, system software, and hardware to be sig-
nalled, and handled through its unified error-handling
interface.

2 Specific error-handling strategies can be defined for a sys-
tem, or specific to an application. We give several exam-
ples later, but the general question of error handling
strategy is left to the application.

3 The increment can be specified by the user, and if desired a
version label can be applied.

4 Note that the native version of OpenMC did not scale
beyond 64 nodes for the data set we use due to a design
limitation of the tally data structure. So instead we com-
pare with the GVR base version for OpenMC.

5 While application programmers could implement this
manually using some application-based checkpointing
techniques, GVR provide direct naming and API support
for this.

References

Antypas K, Wright N, Cardo NP, Andrews A and Cordery
M (2014) Cori: A Cray XC pre-exascale system for
NERSC. In: Cray User Group Proceedings. Cray Research,
Inc.

Aupy G, Benoit A, Herault T, Robert Y, Vivien F and Zai-
douni D (2013) On the combination of silent error detec-
tion and checkpointing. In: 2013 IEEE 19th Pacific Rim
International ~ Symposium on Dependable Computing
(PRDC), pp. 11-20. DOI:10.1109/PRDC.2013.10.

Bariuso R and Knies A (1994) Shmem user’s guide. Cray
Research, Inc.

Bautista-Gomez L, Tsuboi S, Komatitsch D, Cappello F,
Maruyama N and Matsuoka S (2011) FTI: High perfor-
mance fault tolerance interface for hybrid systems. In:
SC’11. DOI:10.1145/2063384.2063427.

Berger M and Colella P (1989) Local adaptive mesh refine-
ment for shock hydrodynamics. Journal of Computational
Physics 82(1): 64-84.

Berger M and Oliger J (1984) Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of Com-
putational Physics 53(3): 484-512.

Bergman K, et al (2008) Exascale computing study: Technol-
ogy challenges in achieving exascale systems. DARPA
IPTO Technical Report.

Borkar S and Chien AA (2011) The future of microproces-
sors. Communications of the ACM 54: 67-717.

Bridges PG, Hoemmen M, Ferreira KB, Heroux MA, Soltero
P and Brightwell R (2012) Cooperative application/OS
DRAM fault recovery. In: Resilience’ll, pp. 241-250.
DOI:10.1007/978-3-642-29740-3_28.

Bronevetsky G and de Supinski B (2008) Soft error vulner-
ability of iterative linear algebra methods. In: ICS.

Cappello F, Casanova H and Robert Y (2011) Preventive
migration vs. preventive checkpointing for extreme scale
supercomputers. Parallel Processing Letters 21(02):
111-132.

Cappello F, Geist A, Gropp W, Kale L, Kramer W and Snir
M (2009) Towards exascale resilience. International Jour-
nal of High Performance Computing Applications 23(4):
374-388.

Carbin M, Misailovic S and Rinard MC (2013) Verifying
quantitative reliability for programs that execute on unreli-
able hardware. In: OOPSLA ’13, pp. 33-52. DOI:10.1145/
2509136.2509546.

Carlson W, Draper J, Culler D, Yelick K, Brooks E and War-
ren K (1999) Introduction to UPC and language specifica-
tion. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences.

Chamberlain BL, Callahan D and Zima HP (2007) Parallel
programmability and the chapel language. The Interna-
tional Journal of High Performance Computing Applica-
tions 21(3): 291-312.

Chang F, Dean J, Ghemawat S, Hsiech WC, Wallach DA,
Burrows M, Chandra T, Fikes A and Gruber RE (2006)
Bigtable: A distributed storage system for structured data.
In: OSDI 06, p. 15.

Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A,
Ebcioglu K, von Praun C and Sarkar V (2005) X10: An
object-oriented approach to non-uniform cluster comput-
ing. In: OOPSLA 05, pp. 519-538. DOI:10.1145/
1094811.1094852.

Chen Z (2013) Online-ABFT: an online algorithm based fault
tolerance scheme for soft error detection in iterative meth-
ods. In: PPoPP 13, pp. 167-176. DOI:10.1145/
2442516.2442533.

Colella P (1990) Multidimensional upwind methods for hyper-
bolic conservation laws. Journal of Computational Physics
87(1): 171-200.

Colella P, Graves D, Keen N, Ligocki T, Martin D, McCor-
quodale P, Modiano D, Schwartz P, Sternberg T and Van
Straalen B (2009) Chombo software package for AMR
applications design document. Technical report, LBNL,

586

The International Journal of High Performance Computing Applications 3 1(6)

Applied Numerical Algorithms Group, Computational
Research Division.

Daly JT (2006) A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Generation
Computer Systems 22(3). DOI:10.1016/j.future.
2004.11.016.

Davis TA and Hu Y (2011) The university of florida sparse
matrix collection. ACM Transaction on Mathematical Soft-
ware 38(1): 1:1-1:25.

DeHon A, Carter N and Quinn H (2011) Final report for
CCC cross-layer reliability visioning study. Available at:
http://www.cra.org/ccc/xlayer.php.

Dennard RH, Gaensslen FH, Rideout VL, Bassous E and
LeBlanc AR (1974) Design of ion-implanted MOSFET’s
with very small physical dimensions. IEEE Journal of
Solid-State Circuits 9(5): 256-268.

Di Martino C, Kalbarczyk Z, Iyer R, Baccanico F, Fullop J
and Kramer W (2014) Lessons learned from the analysis of
system failures at petascale: The case of Blue Waters. In:
DSN 2014, pp. 610-621. DOI:10.1109/DSN.2014.62.

Dubey A, Mohapatra P and Weide K (2013) Fault tolerance
using lower fidelity data in adaptive mesh applications. In:
Proceedings of the 3rd Workshop on Fault-tolerance for
HPC at Extreme Scale. New York: ACM Press, pp. 3—-10.
DOI:10.1145/2465813.2465817.

Dun N, Fujita H, Tramm J, Chien AA and Siegel AR (2014)
Data decomposition in Monte Carlo particle transport
simulations using global view arrays. Technical Report
TR-2014-09, Department of Computer Science, University
of Chicago.

Elliott J, Mueller F, Stoyanov M and Webster C (2013)
Quantifying the impact of single bit flips on floating point
arithmetic. Technical Report TR 2013-2, Department of
Computer Science, North Carolina State University.

Elnozahy M (2009) System resilience at extreme scale: A
white paper. DARPA Resilience Report for ITO, William
Harrod.

Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K and
Burger D (2011) Dark silicon and the end of multicore
scaling. In: 2011 38th Annual International Symposium on
Computer Architecture (ISCA). IEEE, pp. 365-376.

Fang A and Chien AA (2014) Applying GVR to molecular
dynamics: Enabling resilience for scientific computations.
Technical Report TR-2014-04, University of Chicago.

Fang A and Chien AA (2015) How much SSD is useful for
resilience in supercomputers. Manuscript submitted for
publication.

Ferreira K, Stearley J, Laros JH III, Oldfield R, Pedretti K,
Brightwell R, Riesen R, Bridges PG and Arnold D (2011)
Evaluating the viability of process replication reliability for
exascale systems. In: SC '11.

Fiala D, Mueller F, Engelmann C, Riesen R, Ferreira K and
Brightwell R (2012) Detection and correction of silent data
corruption for large-scale high-performance computing.
In: Proceedings of Supercomputing, p. 78.

Glosli JN, Richards DF, Caspersen KJ, Rudd RE, Gunnels
JA and Streitz FH (2007) Extending stability beyond CPU
millennium: a micron-scale atomistic simulation of
Kelvin—Helmholtz instability. In: Proceedings of SC 07,
pp. 1-11. DOI:10.1145/1362622.1362700.

Golub GH and Van Loan CF (1996) Matrix Computations
(3rd ed.). Baltimore, MD: Johns Hopkins University Press.

Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ,
Durkee J, Elson J, Fensin M, Forster RA, Hendricks J,
Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik
S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L,
Wilcox T and Zukaitis T (2012) Initial MCNP5 release
overview. Nuclear Technology 180(3): 298-315.

Gupta R, Beckman P, Park BH, Lusk E, Hargrove P, Geist
A, Panda D, Lumsdaine A and Dongarra J (2009) CIFTS:
A coordinated infrastructure for fault-tolerant systems. In:
Proceedings of ICPP 09, pp. 237-245. DOI:10.1109/
ICPP.2009.20.

GVR Team (2014a) Global View Resilience (GVR) API doc-
umentation, version 1.0. Technical report, University of
Chicago, Department of Computer Science.

GVR Team (2014b) Global View Resilience (gvr) documenta-
tion, release 1.0. Technical Report TR-2014-13, University
of Chicago, Department of Computer Science.

Hargrove PH and Duell JC (2006) Berkeley Lab checkpoint/
restart (BLCR) for Linux clusters. Journal of Physics: Con-
ference Series 46: 494.

Hari SKS, Adve SV and Naeimi H (2012) Low-cost program-
level detectors for reducing silent data corruptions. In:
IPDPS.

Heroux MA (2014) Toward resilient algorithms and applica-
tions. CoRR Preprint abs/1402.3809.

Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ,
Kolda TG, Lehoucq RB, Long KR, Pawlowski RP,
Phipps ET, et al. (2005) An overview of the trilinos proj-
ect. ACM Transactions on Mathematical Software 31(3):
397-423.

Heroux MA, Dongarra J and Luszczek P (2013) HPCG tech-
nical specification. Technical report, Sandia National
Laboratories.

Hogan S, Hammond JR and Chien AA (2012) An evaluation
of difference and threshold techniques for efficient check-
points. In: 2012 IEEE/IFIP 42nd International Conference
on Dependable Systems and Networks Workshops (DSN-W).
1IEEE, pp. 1-6.

Hoogenboom JE, Martin WR and Petrovic B (2011) The
Monte Carlo performance benchmark test - aims, specifi-
cations and first results. In: ANS M&C.

Horelik N, Forget B, Smith K and Siegel A (2014) Domain
decomposition and terabyte tallies with the OpenMC
Monte Carlo neutron transport code. In: PHYSOR 2014 —
Advances in Reactor Physics — The Role of Reactor Physics
toward a Sustainable Future.

Huang KH and Abraham JA (1984) Algorithm-based fault
tolerance for matrix operations. IEEE Transactions on
Computers 33(6): 518-528.

Kershaw DS (1978) The incomplete Cholesky—conjugate gra-
dient method for the iterative solution of systems of linear
equations. Journal of Computational Physics 26(1): 43-65.

Konishi R, Amagai Y, Sato K, Hifumi H, Kihara S and Mor-
iai S (2006) The Linux implementation of a log-structured
file system. SIGOPS Operating Systems Review 40(3):
102-107.

Lakshminarasimhan S, Shah N, Ethier S, Ku SH, Chang CS,
Klasky S, Latham R, Ross R and Samatova NF (2013)

Chien et al.

587

Isabela for effective in situ compression of scientific data.
Concurrency and Computation: Practice and Experience
25(4): 524-540.

Lidman J, Quinlan DJ, Liao C and McKee SA (2012)
ROSE::FTTransform-a source-to-source translation
framework for exascale fault-tolerance research. In:
FTXS’I2.

Lu Cd and Reed DA (2004) Assessing fault sensitivity in MPI
applications. In: Proceedings of Supercomputing.

Lu G, Zheng Z and Chien AA (2013a) When is multi-version
checkpointing needed? In: FTXS 'I13. New York: ACM
Press. DOI:10.1145/2465813.2465821.

Lu G, Zheng Z and Chien AA (2013b) When is multi-version
checkpointing needed? In:Proceedings of the 3rd Workshop
on Fault-tolerance for HPC at Extreme Scale (FTXS ’13).
New York: ACM Press. DOI:10.1145/2465813.2465821.

Lyons RE and Vanderkulk W (1962) The use of triple-
modular redundancy to improve computer reliability.
IBM Journal of Research and Development 6(2): 200-209.

Martin WR (2012) Challenges and prospects for whole-core
Monte Carlo analysis. Journal of Nuclear Engineering
Technology 44(2): 151-160.

Misailovic S, Carbin M, Achour S, Qi Z and Rinard MC
(2014) Chisel: Reliability- and accuracy-aware optimiza-
tion of approximate computational kernels. In: OOPSLA
'14, pp. 309-328. DOI:10.1145/2660193.2660231.

Moody A, Bronevetsky G, Mohror K and Supinski BRd
(2010) Design, modeling, and evaluation of a scalable
multi-level checkpointing system. In: SC ’10. IEEE Com-
puter Society. DOI:10.1109/SC.2010.18.

Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H
and Apra E (2006) Advances, applications and perfor-
mance of the Global Arrays shared memory programming
toolkit. The International Journal of High Performance
Computing Applications 20(2): 203-231.

Numrich RW and Reid J (1998) Co-array fortran for parallel
programming. SIGPLAN Fortran Forum 17(2): 1-31.

Peter Kogge, et al (2008) Exascale computing study: Technol-
ogy challenges in achieving exascale systems. DARPA
IPTO Study Report. Available at: http://users.
ece.gatech.edu/mrichard/ExascaleComputing
StudyReports/exascale final report 100208.
pdf.

Randell B, Lee P and Treleaven PC (1978) Reliability issues in
computing system design. ACM Computer Surveys 10(2):
123-165.

Rodeh O, Bacik J and Mason C (2013) Btrfs: The Linux
B-tree filesystem. Transactions on Storage 9(3): 9:1-9:32.
Romano PK and Forget B (2013) The OpenMC Monte Carlo
particle transport code. Annals of Nuclear Energy S51:

274-281.

Romano PK, Siegel AR, Forget B and Smith K (2013) Data
decomposition of Monte Carlo particle transport simula-
tions via tally servers. Journal of Computational Physics
252: 20-36.

Rubenstein Z, Fujita H, Zheng Z and Chien A (2013) Error
checking and snapshot-based recovery in a preconditioned
conjugate gradient solver. Technical Report TR-2013-11,
Department of Computer Science, University of
Chicago.

Saad Y (1993) A flexible inner-outer preconditioned GMRES
algorithm. SIAM Journal on Scientific Computing 14(2):
461-469.

Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L
and Grossman D (2011) EnerJ: Approximate data types
for safe and general low-power computation. In: PLDI
‘11, pp. 164-174. DOI:10.1145/1993498.1993518.

Schlichting RD and Schneider FB (1983) Fail-stop proces-
sors: An approach to designing fault-tolerant computing
systems. ACM Transactions on Computing Systems 1(3):
222-238.

Schroeder B and Gibson GA (2006) A large-scale study of
failures in high-performance computing systems. In: DSN.

Shantharam M, Srinivasmurthy S and Raghavan P (2011)
Characterizing the impact of soft errors on iterative meth-
ods in scientific computing. In: Proceedings of
Supercomputing.

Siegel AR, Smith K, Romano PK, Forget B and Felker K
(2013) The effect of load imbalances on the performance
of Monte Carlo codes in LWR analysis. Journal of Com-
putational Physics 235: 901-911.

Snir M, Wisniewski RW, Abraham JA, Adve SV, Bagchi S,
Balaji P, Belak J, Bose P, Cappello F, Carlson B, Chien
AA, Coteus P, Debardeleben NA, Diniz P, Engelmann C,
Erez M, Fazzari S, Geist A, Gupta R, Johnson F, Krish-
namoorthy S, Leyffer S, Liberty D, Mitra S, Munson TS,
Schreiber R, Stearley J and Hensbergen EV (2014) Addres-
sing failures in exascale computing. International Journal
of High Performance Computing 28(2): 129-173.

Streitz FH, Glosli JN, Patel MV, Chan B, Yates RK and de
Supinski BR (2005) 100 + TFlop solidification simula-
tions on BlueGene/L. In: SC 05.

Streitz FH, Glosli JN, Patel MV, Chan B, Yates RK, de
Supinski BR, Sexton J and Gunnels JA (2006) Simulating
solidification in metals at high pressure: The drive to petas-
cale computing. Journal of Physics: Conference Series
46(1): 254.

Sutton TM, Donovan TJ, Trumbull TH, Dobreff PS, Caro E,
Griesheimer DP, Tyburski LJ, Carpenter DC and Joo H
(2007) The MC21 Monte Carlo transport code. In: Joint
International Topical Meeting on Mathematics and Compu-
tation and Supercomputing in Nuclear Applications.

Young JW (1974) A first order approximation to the opti-
mum checkpoint interval. Communications of the ACM
17(9).

Zheng Z, Yu L, Tang W, Lan Z, Gupta R, Desai N, Coghlan
S and Buettner D (2011) Co-analysis of RAS log and job
log on Blue Gene/P. In: Proceedings of IPDPS.

Author biographies

A Chien is the William Eckhardt Professor in
Computer Science at the University of Chicago. He is
also a Senior Fellow at UC’s Computation Institute
and a Senior Computer Scientist at Argonne National
Laboratory. His research interests include parallel com-
puting, computer architecture, and cloud computing.
From 2005 to 2010, Chien was Vice President of
Research at Intel Corporation where he launched new
initiatives in parallel software, mobile computing,

588

The International Journal of High Performance Computing Applications 3 1(6)

cloud computing, and exascale research. From 1998 to
2005, He was the SAIC Endowed Chair Professor in
the Department of Computer Science and Engineering
where he founded the Center for Networked Systems
at the University of California San Diego. From 1990
to 1998, he was a Professor of Computer Science at the
University of Illinois at Urbana-Champaign and the
National Center for Supercomputing Applications
(NCSA). He has served on numerous advisory commit-
tees for the National Science Foundation, Department
of Energy, and universities such as Stanford, EPFL,
and Cal-Berkeley. He earned BS, MS, and PhD degrees
at the Massachusetts Institute of Technology, and is a
Fellow of the ACM, IEEE, and AAAS.

P Balaji holds appointments as a Computer Scientist
and Group Lead at the Argonne National Laboratory,
as an Institute Fellow of the Northwestern-Argonne
Institute of Science and Engineering at Northwestern
University, and as a Research Fellow of the
Computation Institute at the University of Chicago.
He leads the Programming Models and Runtime
Systems group at Argonne. His research interests
include parallel programming models and runtime
systems for communication and I/O on extreme-scale
supercomputing systems, modern system architecture,
cloud computing systems, data-intensive computing,
and big-data sciences. He has more than 130 publica-
tions in these areas and has delivered nearly 150 talks
and tutorials at various conferences and research
institutes. His work has been cited nearly 2000 times
in the literature. He is a recipient of several awards
including the US Department of Energy Early Career
award in 2012, TEDxMidwest Emerging Leader
award in 2013, Crain’s Chicago 40 under 40 award in
2012, Los Alamos National Laboratory Director’s
Technical Achievement award in 2005, Ohio State
University Outstanding Researcher award in 2005,
six best paper awards, one best paper finalist, and
one best poster finalist. He has served as a chair or
editor for nearly 50 journals, conferences and work-
shops, and as a technical program committee member
in numerous conferences and workshops. He is a
senior member of the IEEE and a professional mem-
ber of the ACM.

N Dun is a postdoctoral researcher working jointly at
the Large-Scale Systems Group, University of Chicago
and Argonne National Laboratory. His current
research focuses on developing resilient models and
techniques that enable reliable large-scale scientific
applications. He received his PhD and MS in computer
science from the University of Tokyo, and BS in com-
puter science from Peking University. His research
interests include parallel and distributed systems, sys-
tem software, and large-scale applications.

A Fang is a third year PhD student working in GVR
group at Computer Science Department of University
of Chicago. Her current research focuses on resilience
and high performance computing areas. Her PhD advi-
sor is Andrew A Chien. She received her BS in com-
puter science from Beijing Institute of Technology,
Beijing, China in 2012.

H Fujita is a postdoctoral scholar at Large-scale
Systems Group, University of Chicago. He is also a
joint staff at Argonne National Laboratory. He is cur-
rently working with Professor Andrew A Chien in the
GVR project. He received his PhD in 2012, MS in
2008, and BS in 2006, from The University of Tokyo,
Japan, respectively. His research interest includes large-
scale systems, systems software, and computer
networks.

K Iskra received his MS in computer science from
AGH University of Science and Technology in
Cracow, Poland in 1999. In 1999-2000 he was a scien-
tific programmer at the University of Amsterdam,
Netherlands, where he worked on task migration for
parallel applications. He got his PhD in computer sci-
ence from the University of Amsterdam in 2005, in the
area of parallel discrete event simulation. He has been
working at the Argonne National Laboratory in the
US since 2005, first as a postdoctoral researcher, then
as an assistant computer scientist, and since 2013 as a
computer scientist. He works on operating systems and
I/O forwarding for massively parallel machines. He has
worked on projects Argo, GVR, NoLoSS, 10-VIS,
IOFSL, and ZeptoOS.

Z Rubenstein received a BA in Computational and
Applied Mathematics at Rice University in 2011 and a
MS in Computer Science at University of Chicago in
2014. He currently works as a software engineer at the
Computational Institute at University of Chicago.

Z Zheng obtained the BS and MS degrees from the
University of Electronic Science and Technology of
China in 2003 and 2006, respectively, and the PhD
degree in computer science from Illinois Institute of
Technology in 2012. He was a postdoctoral scholar at
the University of Chicago in 2013. He is currently a
software engineer in HP Vertica. His research focuses
on fault tolerance in large-scale computer systems. He
is a member of IEEE computer society.

J Hammond 1is a research scientist in the Parallel
Computing Lab at Intel Labs. His research interests
include: one-sided and global view programming mod-
els, load-balancing for irregular algorithms, and
shared- and distributed-memory tensor contractions.
He has a long-standing interest in enabling the

Chien et al.

589

simulation of physical phenomena, primarily the beha-
vior of molecules and materials at atomistic resolution,
with massively parallel computing. Previously, he was
a Assistant Computational Scientist and Director’s
Postdoctoral Fellow at Argonne National Laboratory.
He received a PhD in chemistry from the University of
Chicago and undergraduate degrees in chemistry and
mathematics from the University of Washington.

I Laguna is a computer scientist at the Center for
Applied Scientific Computing (CASC) at the Lawrence
Livermore National Laboratory. He received the PhD
degree in the school of electrical and computer engi-
neering from Purdue University, West Lafayette,
Indiana, in 2012. He received the ACM and IEEE-CS
George Michael Memorial Fellowship in 2011 for his
work on large-scale failure diagnosis techniques. His
research interests include software reliability, fault tol-
erance, and debugging in high-performance computing.

D Richards is a computational physicist in the Physical
and Life Sciences Directorate at Lawrence Livermore
National Laboratory. He received a BS in Physics from
Harvey Mudd College in 1992 and a PhD in Physics
from the University of Illinois at Urbana-Champaign
in 1999. He has over 15 years of experience in scientific
computing as both a user and application developer in
academic, industrial, and national lab settings. He is
the applications lead for the ExMatEx Co-Design cen-
ter and also leads a team that is working with scientists
at IBM to develop advanced cardiac modeling tech-
niques. He was a recipient of the IEEE/ACM Gordon
Bell Award in 2007 and an R&D 100 award in 2013.
His research interests include large-scale parallel scien-
tific computing and atomic scale simulation of
materials.

A Dubey is a member of the Applied Numerical
Algorithms Group at Lawrence Berkeley National
Laboratory (LBNL). Before joining LBNL she was the
Associate Director of the Flash Center for
Computational Science at the University of Chicago.
She received her PhD in Computer Science (1993) from
Old Dominion University and BTech in Electrical
Engineering Indian Institute of Technology Delhi
(1985). Her research interests are in parallel algorithms,
computer architecture, and software engineering appli-
cable to high-performance scientific computing.

B van Straalen is a member of the Applied Numerical
Algorithms Group at Lawrence Berkeley National
Laboratory (LBNL) since 1998. Before working at
LBNL he worked at Beam Technologies in NY, and
Bell Northern Research in Ottawa, Canada. He
received his MMath in Applied Mathematics and
BASc in Mechanical Engineering from University of

Waterloo, Canada in 1995 and 1993 respectively. His
rescarch focus is HPC techniques for scientific
computing.

M Hoemmen finished his PhD in computer science at
the University of California Berkeley in 2010. He spe-
cializes in the boundary between numerical algorithms
and computer architectures. His latest research areas
are algorithmic fault tolerance and very fine-grained
parallel programming models. He is also a Trilinos (tri-
linos.org) developer.

M Heroux is a distinguished member of the Technical
Staff at Sandia National Laboratories and Scientist in
Residence at St. John’s University, MN, working on
new algorithm development, and robust parallel imple-
mentation of solver components for problems of inter-
est to Sandia and the broader scientific and engineering
community. He leads development of the Trilinos
Project, an effort to provide state-of-the-art solution
methods in a state-of-the-art software framework. He
works on the development of scalable parallel scientific
and engineering applications and maintains his interest
in the interaction of scientific/engineering applications
and high-performance computer architectures. He
leads the Mantevo project, which is focused on the
development of open source, portable mini-
applications and mini-drivers for scientific and engi-
neering applications. He is also the lead developer and
architect of the HPCG benchmark, intended as an
alternative ranking for the TOP 500 computer systems.
He is a member of the Society for Industrial and
Applied Mathematics (SIAM) and past chair of the
SIAM Activity Group on Supercomputing. He is a
Distinguished Member of the Association for
Computing Machinery (ACM). He is the Editor-in-
Chief for the ACM Transactions on Mathematical
Software, Subject Area Editor for the Journal on
Parallel and Distributed Computing and Associate
Editor for the SIAM Journal on Scientific Computing.

K Teranishi is a principal staff member of Scalable
Modeling and Analysis Systems at Sandia National
Laboratories at California. His has broad interests in
HPC research, including application resilience, pro-
gramming models and numerical linear algebra. He
holds MS degree from University of Tennessee and
PhD from Pennsylvania State University.

A Siegel is a scientist with joint appointments in
the Mathematics and Computer Science and
Nuclear Engineering Divisions of Argonne National
Laboratory, where he currently serves as the Director
of the Center for Exascale Simulation of Advanced
Reactors (CESAR). His research focuses on the inter-
section between advanced computational methods for

590

The International Journal of High Performance Computing Applications 3 1(6)

particle transport and next generation computer archi-
tectures, with particular recent focus on stochastic
approaches. Previously, he served as the founder and
lead of the SHARP (Simulation-based High-Fidelity
Advanced Reactor Prototyping) group, the National
Technical Director of the Nuclear Energy Advanced
Modeling and Simulation Program, the Deputy

Director for the Fusion Simulation Program, lead of
the Petaflops Application Group, and Chief Architect
of the Flash code. He is also an Adjunct Professor of
Computer Science at the University of Chicago, where
he has helped design a curriculum and taught over fifty
courses in parallel computing, numerical methods, and
software design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

