
Finite-Element Method completely implemented

for graphic processor units using parallel

algorithm libraries

Franz Pichler∗; Gundolf Haase†

July 3, 2015

Abstract

A finite element code is developed in which all computational expen-
sive steps are performed on a graphics processing unit (GPU) via the
THRUST and the PARALUTION library. The code is focused on simula-
tion of transient problems where the repeated computations per time step
create the computational cost. It is applied to solve partial and ordinary
differential equations as they arise in thermal-runaway simulations of au-
tomotive batteries. The speedup obtained by utilizing the GPU for every
critical step is compared against the single core and the multi-threading
solution which is also supported by the chosen libraries. This way a high
total speedup on the GPU is achieved without the need for programming
a single classical Compute Unified Device Architecture (CUDA) kernel.

∗Virtual Vehicle Research Center, Graz, Austria
†Institut für wissenschaftliches Rechnen, Karl-Franzens University of Graz, Austria

1

1 Introduction

The simulation of thermal abuse scenarios of automotive battery systems is an
important task during concept and design phase in electric vehicles. Experimen-
tal data for such models is obtained by thermal runaway experiments[8, 9, 7].
This data is used to parametrize thermal-chemical material models of battery
chemistries. These material models can then be used in large scale simulations
of complete battery systems. Such simulations need a high spatial resolution be-
cause of the complex structure of battery modules. These computational grids
call for high performance computing implementations.

Furthermore, in transient problems the cost of simulation arises from rep-
etition of evaluation of non-linearities, assembly of matrices, transfer of these
matrices to a proper format, solution of the linear system and iteration of these
steps for many time steps.

The finite element method is a good candidate for the solution of such prob-
lems because of its capability to handle unstructured and complex geometries
and its high level of parallelism. Therefore this method has been implemented
on many parallel computing target architectures [5, 1, 12]. There have been
several papers published on the implementation of the finite element method
on GPUs. In [23, 4] very sophisticated analysis of kernel design and other ar-
chitecture related challenges are given. In [4] the focus of the community on
the linear solver step is emphasized. Opposite to this focus the data assembly
phase, which can form a performance bottle neck too, is taken into the focus
of [4] and related papers. The presented work has the same focus but the ap-
proach is different in that programming libraries are used, that reduce the need
for expert knowledge. This allows for faster prototyping of high performance ap-
plications. Most of the GPU programming is done via the THRUST[11] library
that has a similar application programming interface (API) to the C++ stan-
dard template library (STL) [17]. So not a single classic CUDA[15] kernel had
to be programmed for this application. The data layout needs some expertise in
order to allow the THRUST algorithms for data coalescing which speeds up the
computations dramatically. Furthermore, the complete THRUST library can
easily be used for other hardware backends as OpenMP or Threading Building
Blocks (TBB). This allows for a high portability of the whole program.

The library PARALUTION[16] is used for the solution of the arising lin-
ear systems. This program also supports a simple API and the portability to
OpenMP backend.

2 Generic model formulation

In this section the model equations covered in this work and the used solution
methods are explained. For better understanding of such partial equations
intensive study of e.g. [6] is recommended.

2

Partial differential equation The partial differential equations solved in
this work are of the form

c(u, x)u̇−∇ · (k(u, x)∇u) = f(u, x), (x, t) ∈ Ω× [0, T) (1)

u(x, 0) = u0 (2)

u|ΓD = gD(u, x, t) (3)

k(u, x)∇u|ΓN = gN (u, x, t) (4)

k(u, x)∇u|ΓR = α(gR(u, x, t)− u) (5)

where u is the unknown, and the coefficients c ∈ R and k ∈ R3×3 are assumed to
be positive. Physically equation (1) can be interpreted as a diffusion equation on
the domain Ω ⊂ R3 where u is a diffusing species, c is the volumetric capacity,
k is the tensor conductivity and f is a volumetric source term.

Equations (3) - (5) form three standard boundary conditions for such PDEs.
The Dirichlet condition (3) fixes the unknown at boundary ΓD. and will be
realized here via the penalty form[2]

k(u, x)∇u|ΓR =
1

ε
(gD(u, x, t)− u) (3’)

The Neumann condition (4), fixes the physical flow at the part ΓN of the bound-
ary. And the last boundary condition (5) referred to as a Robin boundary, re-
lates the flow at the boundary to the unknown itself and a given function at the
boundary ΓR.

With equations of this form physical transport phenomena for various quan-
tities as for example heat and chemical species can be modeled. For the ease
of presentation the dependencies on the u, x and t are notated by bold letters
from here on e.g.

k := k(u, x, t).

A weak formulation[6] of the system (1) - (5) is achieved by multiplying
equation (1) with test functions φj ∈ W 1,0(Ω) and applying the divergence
theorem to achieve∫

Ω

(cu̇φ+ k∇u · ∇φ) dx =

∫
Ω

fφdx+

∫
∂Ω

k∇uφdS(x) (6)

where W 1,0(Ω) denotes the standard Sobolev space for this application. At this
point boundary conditions (3’),(4) and (5) can be put in the surface integral on
the right hand side of (6) by∫

∂Ω

k∇uφdS(x) =

∫
ΓD

k∇uφdS(x) +

∫
ΓN

k∇uφdS(x) +

∫
ΓR

k∇uφdS(x) =

∫
ΓD

1

ε
(gD − u)φdS(x) +

∫
ΓN

gNφdS(x) +

∫
ΓR

α(gR − u)φdS(x)

3

which yields the final weak formulation∫
Ω

(cu̇φ+ k∇u · ∇φ) dx+

∫
ΓD

1

ε
uφdS(x) +

∫
ΓR

αuφdS(x) =

∫
Ω

fφdx+

∫
ΓN

gNφdS(x) +

∫
ΓD

1

ε
gDφdS(x) +

∫
ΓR

αgRφdS(x) (7)

Finite element method The finite element method is a standard to solve
(7) in a numerical approximative way. LITERATURE TO FEM. The basic idea
here is to approximate the unknown u by linear combinations of a set of base
functions φ ∈ W 1,0(Ω) which have finite support regions combined from finite
elements. The set of all finite elements and their nodes form the computational
grid or mesh. The approximation is done by linear combinations of these base
functions as

u ≈ uh =

np∑
i=1

uiφi (8)

where np is the number of degrees of freedom that a specific finite element
formulation has. For simplicity, linear tetrahedrons are assumed in the bulk of
the domain Ω which yields triangles as boundary elements. Furthermore linear
basis functions are assumed, for which the number of degrees of freedom np is
just the number of mesh nodes. All the presented ideas are easily adapted to
higher order elements.

Putting approximation (8) into (7) and choosing the test functions to be the
same as the base functions yields

np∑
i=1

∫
Ω

cφiφjdxu̇i+

np∑
i=1

∫
Ω

k∇φi · ∇φjdx+

∫
ΓD

1

ε
φiφjdS(x) +

∫
ΓR

αφiφjdS(x)

ui =

∫
Ω

fφjdx+

∫
ΓN

gNφjdS(x) +

∫
ΓD

1

ε
gDφdS(x) +

∫
ΓR

αgRφjdS(x) (9)

for j = 1, . . . , np.
Altogether (9) describes a system of (possibly non-linear) ordinary differen-

tial equations (ODES) in the unknowns uhi , i = 1, . . . , np. For simplicity these
ODES are solved by implicit Euler’s method [10], a stable one step time dis-
cretization scheme. Here the time derivative is approximated by

u̇i(tk) ≈ 1

dtk
(ui(tk)− ui(tk−1))

4

where tk are the discretization points in time and dtk are the time step size
between them.

In order to solve the nonlinear problem a Picard iteration scheme is applied in
which ui(tk) is approximated by iterations uli(tk) with iteration index l. In every
iteration the nonlinearities are evaluated in dependency of the last iteration e.g.

f lk := f(

np∑
i=1

uli(tk)φi(x), x, tk)

Introducing vector notation and matrix notations

ūlk = {uli(tk)}npi=1, (Vector of Unknowns)

¯̄M l
k = {

∫
Ω

cφiφjdx}
np
i,j=1, (Mass Matrix)

¯̄Kl
k = {

∫
Ω

k∇φi · ∇φjdx}
np
i,j=1, (Stiffness Matrix)

F̄ l
k = {

∫
Ω

fφjdx}nj=1, (Source or Load Vector)

N̄ l
k = {

∫
ΓN

gNφjdS(x)}nj=1, (Neumann Vector)

¯̄Dl
k = {

∫
Ω

1

ε
φiφjdx}

np
i,j=1, (Dirichlet Matrix)

D̄l
k = {

∫
Ω

1

ε
gDφjdx}

np
j=1, (Dirichlet Vector)

¯̄Rl
k = {

∫
Ω

αφiφjdx}
np
i,j=1, (Robin Matrix)

R̄l
k = {

∫
Ω

αgRφjdx}
np
j=1 (Robin Vector)

the finite element approximation can be rewritten as the linear system(
1

dt
¯̄M l
k + ¯̄Kl

k + ¯̄Dl
k + ¯̄Rl

k

)
ūlk = F̄ l

k + N̄ l
k + D̄l

k + R̄l
k +

1

dt
¯̄M l
kuk−1 (10)

that has to be solved for every time-step k and for every iteration l until some
convergence criteria is reached. Here ūk−1 denotes the accepted solution from
the last time step.

Ordinary differential equation In addition to the partial differential equa-
tions also ordinary differential equations (ODEs) of the form

u̇(x, t) = f(u(x, t), x, t)

5

are considered in this work. Here the unknowns can be spread over a spatial
domain Ωode but there is no transport of the quantity u in space. Example
quantities for such a set of equations would be chemical reactions for which the
involved species are fixed to their position. The solution of this equations is
achieved by an implicit Euler method as

u̇(x, t) ≈ 1

dt
(u(x, tk)− u(x, tk−1)) = f(u(x, tk), x, tk)

which yields

u(x, tk) = u(x, tk−1) + dtf(u(x, tk), x, tk). (11)

The spatial discretization of the ODE unknowns is the same as in the finite
element mesh which eases implementation.

Adaptive time-step strategy The implicit Euler method that is used for the
discretization in time, is implemented with an adaptive time step method[14].
Here two steps of size dt ∗ 0.5 are calculated starting from the last accepted
solution. Then one step of size dt is calculated again starting from the last
accepted solution. The time-step size is then categorized by the criteria

ctime =
‖uh2 − uf‖

0.5(‖uh‖+ ‖uf‖)
Depending on the size of this criteria the time-step is either accepted and en-
larged, accepted and kept or denied and calculated again with a smaller size.

Coupled systems of equations With the PDEs and ODEs described above,
coupled systems of equations can be used to simulate cross effects between
physical quantities. For such cross effects to occur some of the terms arising in
the equations have to be dependent on the solution of another equation. For
example a coupled system could look like

u̇1 −∇ · ∇u1 = f1(u1, u2, x, t)

u̇2 = f2(u2)

where the term f1 is showing such a cross dependency. These cross effects will be
solved in an explicit manner here which means that for the non-linear iteration
process of one equation the unknowns of the other equations are treated as
constants, i.e. with

fnonliniter(u1, x, t) = f1(u1, ũ2, x, t)

where ũ2 is the last solution of the second equation the equations are solved as

u̇1 −∇ · ∇u1 = fnonliniter(u1, x, t),

u̇2 = f2(u2).

When the non-linear iteration of one equation is finished, the next equation is
solved where the solution of the first equation is again treated as a constant.
This coupled iterations are continued until convergence is reached.

6

3 Implementation

In this chapter the implementation of the above described methods is summa-
rized. The implementation is done in C++ and CUDA with the help of the
CUDA library THRUST.

Finite element method The scheme described in chapter 2 is a standard
finite element method that was implemented in many codes and software pack-
ages in academic and commercial applications.

Many of these codes would loop over the elements and load the data for one
element, calculate the element matrix, which is its contribution to the global
matrix, and add this entries to the global matrix. Once the global linear system
is assembled it is solved and the whole process is iterated. The data structure
is often based on the elements in such codes. All the data for one element form
a structure, which is saved element by element in machine memory (array-of-
structures).

The principle of assembling, solving and iterating is naturally still applied
here but it was found that the data structure should be changed according to
the data coalescing rules. Only with these changes to the data structure a speed
up could be achieved using the GPU.

The data structure was designed by the structure-of-arrays (SoA) approach
in opposite to the above described array-of-structures (AoS) approach [22].
These two approaches are sketched for the data structure used to store a fi-
nite element mesh consisting of tetrahedrons, in Figure 1. SoA usually allows
for better data coalescing because the threads of the GPU can all access the
needed data for the element that they are treating at the moment with one joint
memory access.

The implementation presented here has its focus on speed and not memory
so there where decisions made where memory usage may easily be optimized by
the cost of additional computations.

Problem Initialization The first step in solving the model equations is to
load the mesh and all user functions. The mesh is constraint to linear tetrahedra
in this work but can easily be adapted to more sophisticated elements. Its bulk
elements are saved as sketched in Figure 1. The whole mesh can be grouped
into different sub-domains in order to distinguish physically different parts of
the model domain. Every part is then an object in memory saved by the SoA
approach. Every part has its own set of material properties that are described
by a set of user functions describing the functions c, k and f in (1). The same
idea is applied to the boundaries of the domain. The whole boundary is split
into different boundary parts of triangles that each have a set of user functions
associated with, describing the functions gN ,gD or gR and α in (3)-(5). For
all elements the transformation matrices from a reference element and their
determinant are calculated and also stored in a SoA approach.

Knowing which terms are applied in the model domain allows to pre-calculate

7

Figure 1: The idea of AoS (left) and SoA (right) by the example of saving a three
dimensional mesh of tetrahedra. The xi, yi and zi values denote the coordinates of
the mesh’s i-th node. The nij integers denote the j-th node of the i-th element in the
mesh.

the structure of the linear system (10). The linear system will be calculated
in two steps that are actually implemented continuously as described below.
First coordinate matrices (COO) will be established that describe the element
matrices of every element in a SoA approach. Afterwards this matrices are
transformed to the system matrix of (10) in compressed row storage format
(CRS), which is one of the standard formats for sparse linear systems [3], or to
the vector representing the right hand side of (10).

The structure of the COO matrices is described by a set of row and column
indices for every element matrix entry. These row and column indices are as-
sembled once in the initial phase of the simulation. Parallel to these indices
the entries of the matrix can be assembled in the same structure, as shown in
figure 2. The structures of rows and columns indices are each stored as one long
vector. From them a permutation vector P can be calculated that gives the
index in the CRS matrix in which an entry in the element matrix belongs to.
This permutation vector is actually stored on the GPU and is used later on for
the assembly of the CRS matrix. The vector has duplicate entries by the nature
of the finite element method, meaning multiple element entries can belong to
the same CRS entry.

In addition to the permutation vector the CRS displacement and the column
index vector of the CRS format are stored on the GPU. These are uniquely
defined and calculated from the row and column index vectors of the COO
format. Finally a GPU vector storing the CRS elements has to be allocated.
The COO entries do not have to be stored because they are only calculated

8

locally and then immediately added to the CRS entries.

Figure 2: The element matrices are shown for triangle elments in the Aos and SoA
approach (top). Here the upper index denotes the finite element from which the ele-
ment matrix E is generated. The lower indices ij denote i-th local row and the j-th
local column. Below the COO entries assembled as one vector and the permutation
vector (P) are shown. This permutation gives the global index in the CRS matrix (M)
to which the corresponding entry in the COO matrix (E) has to be added. This sum-
mation has to be performed by atomic operations in parallel because of the duplicate
entries in the P vector.

Evaluate nonlinearities In the beginning of the iteration the functions c,
k, f , gD, gR, gN and α are evaluated for every node of the mesh. The re-
sulting values are then stored in device vectors which permanently use working
memory. In all further iterations only non constant functions are evaluated at
the beginning of every iteration. Depending on the nature of the functions the
computational effort can only be estimated knowing them. There are several
versions of this call implemented depending on the nature of the user function.

If the function is simply a constant than thrust::fill is used to evaluate.
If the function is depending on time, coordinates or the solution than a func-
tor with the right amount of arguments is called in thrust::for_each that is
loading a header file filled with the user specific operators. This allows the user
to change the user functions by minimal compilation effort.

As an example the conductivity k is assumed to be nonlinear, depending on
the solution u. This dependency is calculated and stored to a vector k̄ where
the n-th value is the value at the n-th node of the mesh

k̄n = k(ūn)

9

Assemble COO Matrix The matrix assembly is done by a call to thrust::

for each where the element matrix structure of the virtual COO matrix is gen-
erated locally in an assembling functor. The output argument for this functor
are the zipped element matrices, that are immediately permuted by the permu-
tation vector P , on which the entries are added with atomic operations. That
way every thread creates the element matrix of one element and then adds
them directly into the CRS matrix which renders the storage of the COO en-
tries unnecessary. This allows a single call to thrust::for_each to assemble
the contribution of an equation term (10)) to the CRS matrix at once for all
elements of a sub-domain. The input arguments which are the element trans-
formation matrices and the determinant of these as well as the user function
values and the Gauss weights are zipped separately in the same manner. A
more detailed explanation of the numerical integration is given in appendix A.

Finalize Equation As a final step the mass matrix, that is also assembled
separately, by the methods described above, has to be multiplied by the old
solution and divided by the factor dt and finally be added to the right hand side
of the problem. This can be done by the linear algebra functionality of most
linear solvers or also trivially implemented with THRUST, which was done in
this work.

Linear Solution For the solution of the linear system (10) the package PAR-
ALUTION [16] has been used. It has a free single GPU node version that gives
some choices of preconditioners and solvers. The implemented Jacobi precon-
ditioner and the conjugate gradient method are applied to solve the symmetric
linear system of equations in every iteration. It is not the aim of this work to
apply an optimal solver and so the choice of the preconditioner and solver have
rather been based on simplicity in use and robustness than optimal speed or
memory usage.

Ordinary differential equations The solution of the ODEs as described in
2 is straight forward to implement, and only a summary of it will be given here.
The function evaluation is mechanism is the same asd for the PDEs and the
solution of (11) is realized by element-wise division of one vector by another
and an element-wise addition to the solution of the last time-step, i.e.

ūlk = dtF̄ l
k/M̄

l
k + uk−1 (12)

where / denotes the element-wise division and the two vectors F̄ l
k and M̄ l

k denote
the l-th iteration in the k−th time step of the process. The entries of the vectors
are the nodal evaluations of the ODE terms, i.e.

Fi = f(ui, xi, tk), (13)

Mi = c(ui, xi, tk). (14)

10

Calculate Convergence Norm In order to compute the norm of the solution
and the norm of the change of the solution the following relation is used∫

(uh)2dx =

∫
(

np∑
i=1

φiui)
2 =

∫ np∑
i=1

np∑
j=1

φiuiφjujdx = ūT ¯̄Nū (15)

where ¯̄N is a matrix that has similar form to the mass matrix ¯̄M and is one
assembled and transformed to CRS format in the beginning of the simulation.
This way calculation of the norm is done by a vector-matrix-vector product
which again can be realized by the linear algebra capabilities of most GPU
solvers or implemented directly.

4 Example Application

The presented finite element framework is applied to the simulation of thermal
runaway experiments [9, 8, 7] of automotive batteries. The model describes the
relation of the temperature distribution in a battery module (shown in Figure
3 and an exothermic reaction. This scenario is of great importance in safety
related fields in the automotive and other sectors.

This model will be used to characterize different chemical materials and
scenarios in the field of automotive batteries. For such a characterization many
experiments in the lab and numerical simulations are necessary. Therefore a
fast implementation of such a model is of high importance.

The thermal runaway process There are many candidates for the exother-
mic reactions that can occur in a battery [13] and cause thermal runaway. In the
presented work the exothermic reaction is generically described by a progress
quantity α[13] describing the amount of reactant that is still present. The bat-
tery will be heated up from the outside as a possibly abuse scenario. Once a
certain heat is reached in the jelly roll the reaction will start and the battery will
heat up even faster due to the exothermic nature of the process. The progress
quantity will monotonically decrease until it reaches zero which indicates that
all potential reactants of the reaction are used and the reaction will stop once
again which is equivalent to a completely burnt out battery.

The equation domain A generic battery module was constructed, con-
sisting of different parts as indicated in Figure 3 where most of the parts are just
passive in the sense that they only act as heat conductors in the model. The only
active parts in the module are the jelly rolls, which are the parts of a battery
that contain the electro chemical active materials used to transform electrical
into chemical energy and vice versa. This part consists of thin wounded lay-
ers.The layers form the cell sandwich (metal/cathode/separator/anode/metal)
in which exothermic reactions can occur if the battery is mistreated. These
exothermic reactions can lead to a thermal runaway process in which the bat-
tery is destroyed in the end and can cause serious damage to its surroundings.

11

Figure 3: The geometry ofthe battery module: a) shows the whole battery module
that is housed in a plastic casing outof which the two main contacts are connected
with copper cables. b) shows the module without the case where the 6 cells are visible
surroundeed by an aluminium cage and a bottom plastic plate. c) Shows the a single
cell. In the left side the cell is exploded into its three surrounding layers that are a
inner plastic isolation, a aluminium case and an outer plastic isolation. The right side
shows the cell in more detail where the connection from the active jelly roll to the
outside can be seen (The voids in the cell and the module case are another subdomain
not shown that is forming the air in the module)

The chemical active parts are denoted by Ωc and the whole domain is denoted
by Ω.

Furthermore the same governing equations will be solved on a simple cube
of edge length 100mm for which different mesh sizes are compared. With this
cubes a relation of mesh size to speed up is established.

The computational mesh The geometrical discretization or mesh was
created using the meshing tool SALOME [20] and a CAD geometry drawn in
HYPREWORKS REFto hypreworks. In addition to the parts shown in Figure 3
the empty spaces inside the module and the cells have been meshed and represent
the air inside the module. The cube was completely generated by SALOME.
Four different mesh sizes where used where the cube edges where split into
10,20,40 and 80 segments. The resulting number of nodes and elements for all
the meshes are summarized in table 4.

12

Mesh Edge Element size Nodes Elements
Cube A 10 mm 2220 9166
Cube B 5 mm 12394 56401
Cube C 2.5 mm 109327 567476
Cube D 1.25 mm 543936 2920774

Battery Module 3 mm 132697 745950

Table 1: The meshes and their sizes used for simulation. The edge element
length in the battery module is 3 mm wherever possible and smaller where
necessary.

The governing equations The temperature distribution is governed by
the heat equation

cp(x)Ṫ (x, t)−∇ · (λ(x)∇T (x, t)) = ∆Hα̇(x, t), (16)

(x, t) ∈ Ω× [0, tend], (17)

where T is the temperature, cp is the volumetric heat capacity, λ is the thermal
conductivity and ∆H is the heat enthalpy of the exothermic reaction f . The
chemical reaction progress is modeled by the ODE

α̇(x, t) = −f(α(x, t), T (x, T)) (x, t) ∈ Ωc × [0, tend] (18)

where Ωc denotes the sub-domain in the battery that describes the chemical
active part of the battery module. The exothermic reaction is of Arrhenius type

f(c, t) = kc exp(
Ea

RT
) (19)

where k is the reaction frequency, Ea is the activation energy of the reaction
and R is the universal gas constant.

Remark that in these equations the source terms are the nonlinearities that
have to be assembled in every iteration of the solution process. In order to
analyze also the extreme case, where every occurring term would be nonlinear
and would have to be assembled for every iteration, a second set of numerical
simulations is performed in which the terms are all assembled even though they
are constant.

The initial conditions In the beginning the temperature is set to 420
degree Kelvin, which is just below the temperature where the thermal runaway
is started, and the reaction progress is set to 1, which implies that all reactants
are still existing.

The boundary condition The ambient temperature is raised linearly
from 420 degree Kelvin, by 2 degree Kelvin per minute, for 1000 seconds and

is then held constant. An estimated heat transfer coefficient of α = 10
W

Km2
is

used in the Robin boundary condition.

13

The simulation is executed for 2400 seconds of simulation time, after which
all reactions have been finished and the temperature has reached a steady state.

The convergence criteria The applied tolerances for the simulation sce-
nario discussed above are summarized in table 4. The criteria for the reaction
progress solved for in the ODE (18) is taken relative to the its domain measure,
because the range of the unknown goes down to 0, which forms a numerical
problem when taking a relative criteria. The three tolerances for the adaptive
time-stepping algorithm give the limits for either accepting the time-step and
enlarging it for the next step, accepting it and keeping the same size, or not
accepting it an decreasing it for the next try.

Linear Solver Nonlinear Iteration Coupled Iteration Adaptive Timestep

Temperature ‖Ax − b‖2L
‖Ti − Ti−1‖

0.5(‖Ti‖ + ‖Ti−1‖)

‖Tj − Tj−1‖

0.5(‖Tj‖ + ‖Tj−1‖)

‖T2h − Tf‖

0.5(‖T2h‖ + ‖Tf‖)

Reaction not applicable
‖αi − αi−1‖

‖Ω‖

‖αj − αj−1‖

‖Ω‖

[0.5(‖α2h‖ + ‖αf‖)]

‖Ω‖
tol 1.e-7 1.e-6 1.e-6 1.e-3,1.e-4,1.e-5

5 Results

In order to compare the simulation speed of the GPU architecture to a CPU
architecture the OMP backends of THRUST and PARALUTION were used. So
the whole program can be switched from GPU to CPU architecture by changing
the according compiler flags. The only point where the code is different for these
two architectures are the atomic additions that have to be implemented via the
OMP pragma atomic for the OMP backend and via CUDAs atomicAdd for the
GPU backend.

The calculations have been performed on a NVIDIA Titan Black and on
1 to 6 threads of a Intel(R) Xeon(R) CPU E5-1620 v2 with 3.70GHz. It was
not the aim of this publication to optimize the OMP implementation but still
the portability should be underlined. A further run has been performed on the
GPU where the three dimensional mesh and the solutions for every time-step
have been written to the hard drive using the C++ VTK API [21]. This is in
general not necessary in scientific numerical simulations, but sometimes it gives
a more intuitive understanding of ”what is going on”. The result is shown in
Figure 6 where the toolbox PARAVIEW [24] has been used for visualization.
It should be remarked that writing the whole solution with the mesh for every
time-step is easily the slowest step in such a simulation, especially when this
involves data transfer from the GPU-RAM to the CPU-RAM.

Cube Simulations The number of time-steps and iterations produced for
the examples are summarized in table 5. These numbers are given for the GPU
implementation and slightly vary for the OMP implementations and the different
number of threads due to rounding differences. This variation is less than one
percent for all the listed iteration numbers and therefore not shown here. The

14

Mesh Timesteps PDE It. ODE It. Linear It.
Cube A(single) 204/8 4509 5422 84298

Cube A(double) 204/8 4472 5399 49072
Cube B(single) 203/8 4460 5397 133800

Cube B(double) 205/8 4466 5374 78269
Cube C(single) 205/8 4452 5373 238086

Cube C(double) 204/8 4472 5400 121589
Cube D(single) 202/8 4330 5347 397624

Cube D(double) 204/8 4472 5400 214816
Battery Module(single) 137/144 2783 3414 1035449

Battery Module(double) 137/144 2779 3356 602278

Table 2: Summary of the time-steps and iterations needed to solve the example
applications. The second number in the time-step column gives the denied
number of time-steps. Every timesteps consists of the calculation of 3 actual
timesteps (half, second half and full step) as described by the time-stepping
algorithm.

number of time-steps is the same for all implementations. The most interesting
fact shown in this table is that the number of linear iterations needed in the
single precision mode is often nearly twice as big as for the double precision case.
This is due to the tolerances that are the same for both implementations. By
the nature of the less precise numbers, they need more iterations to achieve the
same tolerance, than the more precise numbers. This explains why in total the
double precision implementation is sometimes faster than the single precision
one.

The two most expensive steps, namely assembling the CRS matrix and the
solution of the arising linear systems, and their total execution time are summa-
rized in Figure 5 for the cube domain and in Figure 5 for the battery module.
As expected the advantages of the GPU are only showing for problems of a
certain size. On the coarsest cube the problem is actually solved faster by the
CPU implementations, because the linear solver is slower on the GPU than on
the CPU. For a higher number of discretization points the GPU pays off more
and more, where for the finest cube a total speed up of XXX is achieved. The
presented results make it obvious that usage of the GPU overcomes the use
of more and more threads in a multi-threaded environment. The results show
that the multi-threading solutions stagnate in their speed-up using more than
3 threads which is probably due to the limited bandwidth they share. Using
distributed threads could improve the OMP implementation, because that way
a higher memory bandwidth can be achieved. However, up to 3 threads the
solution scales very nice. The GPU has a way higher bandwidth than the CPU
threads, in theory and as shown in praxis. Especially the assembling step prof-
ited here. A speed up of a factor of 33 was reached for the assembly in Cube
3 for single precision. For double precision the pseudo atomic addition on the
GPU shows its cost. Where the OMP solution still scale similar to the single

15

precision case , the GPU loses half of it speed up. Still it is nearly ten times
faster than the CPU.

For the module simulation the linear solver step takes up way more of the
total simulation time than for the cube simulations. This is due to the aspect
ratios of the elements that is very bad for thin elements as they arise in the
isolation layers in the module. Problems like these arise in moset real life ap-
pliucations and that is why it is important to study the simulation times not
only on simlpe geometries like the cube. The extreme case where not only the
source term but all terms are treated nonlinear is shown in the bottom plots
in Figure 5. It shows that both, the linear solver and the assembly, can form
the bottle neck of the simulation, depending on the number of nonlinear terms
in the PDE. For al cases the OMP solution scales good up to 3 threads as for
the cube studies. Also the GPU solution performs very well for all cases even
though the highest speed up was established for the single precision case with
forced nonlinearities. For this case the CPU is slower for single than for double
precision because of the higher number of linear solver iterations needed for
convergence. Opposed to that the GPU solution is faster in the single preci-
sion case because of the actual atomic operations that it can perform for single
precision.

6 Conclusion

Using the THRUST library, a fast implementation of GPU code was possible
without the need for kernel programming. This allows a beginner in this field to
achieve results quickly. The data design was the only part where some knowledge
about the GPU architecture was used in order to allow for data coalescing. A
wide range of coupled ordinary and partial differential equations as they occur
in battery modeling and in other fields can be handled quite efficiently by the
presented solution. By having all the involved steps implemented on the GPU a
good basis is created for keeping the cost of all possible bottle necks low. This is
also due to the fact that no data transfer from CPU to GPU memory is needed
except for single numbers in the whole simulation.

For the cases studied in this work speed ups of a factor up to 30 where
achieved in the assembling phase for single precision numbers and speed ups of
up to 9 for the double precision case. If there would be real atomic summations
available for double precision numbers in the future this result could easily be
improved.

Further improvements of the code are possible and planned. This can in-
volve the implementation of further elements and also the implementation of
further equation terms in the partial differential equations. Furthermore a
Newton-Raphson method can generally be implemented for this system where
the derivatives of the occurring nonlinear functions have to be given by the
user. Depending on the nature of these further improvements the assembly or
the solving step will get more expensive.

16

7 Acknowledgements

This work was accomplished at the VIRTUAL VEHICLE Research Center in
Graz, Austria. The authors would like to acknowledge the financial support
of the ”COMET - Competence Centers for Excellent Technologies Programme
of the Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT), the Austrian Federal Ministry of Science, Research and Economy
(bmwfw), the Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG).

They would furthermore like to express their thanks to their supporting
industrial and scientific project partners namely Samsung SDI Battery Systems
GmbH and AVL List.

The Titan Black used for this research was donated by the NVIDIA Corpo-
ration.

Appendices

A Numerical Integration

The numerical integration implemented in this work is a gauss quadrature
scheme combined with the use of a reference element Ωref that is approximating
the integral over an element Ωe by∫

Ωe

f(x)dx ≈
ng∑
g=1

ωgf(Te(xg))|det (JTe(xg)) |. (20)

This needs a set of weights ωg, integration points xg on the reference element
and the transformation Te and its spatial derivative JTe . The gauss weights and
points be taken from literature [18, 19] and the transformation Te, that maps
the reference tetrahedron Ωref to the element Ωe, is given by a linear function

Te : Ωref− > Ωe (21)

x̃− > ¯̄Tex̃+ x0 (22)

which yields the Jacobi matrix

JTe = ¯̄Te. (23)

The linear operator for a tetrahedron that has the four corner points x̄1, x̄2, x̄3

and x̄4 is given by

¯̄Te =
[
x̄2 − x̄1| x̄4 − x̄1| x̄4 − x̄1.

]
(24)

An analogous matrix is set up for the triangle boundary elements.

17

In order to keep the number of user function evaluations low the functions
at the Gauss points are again approximated by the finite element method. For
the example of the stiffness matrix ¯̄K involving the term k. This means that
the actual evaluation of the integral is given by∫
Ω

∇φi · k(u′)∇φjdx =

ng∑
g=1

(¯̄Te∇̃φ̃i(xg)) ·
nn∑
k=1

¯̄kp(k)φ̃k(xg)(¯̄Te∇̃φj(xg))ωg|det(¯̄Te)|

(25)

where pe(·) denotes a permutation from the local node index k of element e to

the global node index pe(k). This can be rewritten for an element matrix ¯̄Ke as

¯̄Ke =

ng∑
g=1

(¯̄Te
¯̄Gg)T (

¯̄̄
keB̄g)(¯̄Te

¯̄Gg)ωg|det(¯̄Te)| (26)

where ¯̄Gg denotes a matrix which columns are the basis function gradients
evaluated on the reference element, i.e

¯̄Gg =
[
∇̃φ̃1(x̃g) ∇̃φ̃2(x̃g) ∇̃φ̃3(x̃g) ∇̃φ̃4(x̃g)

]
, (27)

B̄g denotes the basis function values on the reference element evaluated at the
gauss point x̃g, i.e

B̄g =
[
φ̃1(x̃g) φ̃2(x̃g) φ̃3(x̃g) φ̃4(x̃g)

]
, (28)

¯̄̄
K denotes the evaluations of the tensor function k at the nodes of element e at
time tk, forming a three dimensional tensor, i.e

K̄(·, ·, i) =
[¯̄k(upe(i), xpe(i), tk)

]
, i = 1, . . . , 4 (29)

The Stiffness matrix ¯̄K is the most complex example of all the terms listed
in 2 because it involves the transformation of the gradient of the basis functions.
Analogously to the just described method the form of the other terms can be
derived as

¯̄Me =

ng∑
g=1

nn∑
k=1

c̄p(k)φ̃k(xg)(B)T (B)ωg|det(JT)| (30)

F̄e =

ng∑
g=1

nn∑
k=1

c̄p(k)φ̃k(xg)(B)ωg|det(JT)| (31)

so on for other terms

References

[1] Finite element applications on a shared-memory multiprocessor: Algo-
rithms and experimental results. Journal of Computational Physics,
94(2):352 – 381, 1991.

18

[2] Ivo Babuška. The finite element method with penalty. Mathematics of
computation, 27(122):221–228, 1973.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, Philadelphia, PA, 1994.

[4] Cris Cecka, Adrian J. Lew, and E. Darve. Assembly of finite element meth-
ods on graphics processors. International Journal for Numerical Methods
in Engineering, 85(5):640–669, 2011.

[5] Sergey Choporov. Parallel computing technologies in the finite element
method. Radio Electronics, Computer Science, Control, (2), 2013.

[6] L.C. Evans. Partial Differential Equations. Graduate studies in mathemat-
ics. American Mathematical Society, 1998.

[7] Andrey W Golubkov and David Fuchs. Thermal runaway: Causes and
consequences on cell level. In Automotive Battery Technology, pages 37–51.
Springer, 2014.

[8] Andrey W Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche,
Christoph Stangl, Gisela Fauler, Gernot Voitic, Alexander Thaler, and Vik-
tor Hacker. Thermal runaway behavior of commercial 18650 li-ion batteries.
Environmental Science, 5(1):5271, 2012.

[9] Andrey W Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche,
Christoph Stangl, Gisela Fauler, Gernot Voitic, Alexander Thaler, and
Viktor Hacker. Thermal-runaway experiments on consumer li-ion batteries
with metal-oxide and olivin-type cathodes. RSC Advances, 4(7):3633–3642,
2014.

[10] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I (2Nd Revised. Ed.): Nonstiff Problems. Springer-Verlag New
York, Inc., New York, NY, USA, 1993.

[11] Jared Hoberock and Nathan Bell. Thrust: A parallel template library,
2010. Version 1.7.0.

[12] PK Jimack and N Touheed. Developing parallel finite element software
using mpi. High Performance Computing for Computational Mechanics,
pages 15–38, 2000.

[13] D. D. MacNeil and J. R. Dahn. Test of reaction kinetics using both differen-
tial scanning and accelerating rate calorimetries as applied to the reaction
of lixcoo2 in non-aqueous electrolyte. The Journal of Physical Chemistry
A, 105(18):4430–4439, 2001.

19

[14] Susan E Minkoff and Nicholas M Kridler. A comparison of adaptive time
stepping methods for coupled flow and deformation modeling. Applied
mathematical modelling, 30(9):993–1009, 2006.

[15] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.

[16] PARALUTION Labs. PARALUTION v1.0.0 , 2015.
http://www.paralution.com/.

[17] P.J. Plauger, Meng Lee, David Musser, and Alexander A. Stepanov. C++
Standard Template Library. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1st edition, 2000.

[18] H.T. Rathod, K.V. Nagaraja, and B. Venkatesudu. Symmetric gauss leg-
endre quadrature formulas for composite numerical integration over a tri-
angular surface. Applied Mathematics and Computation, 188(1):865 – 876,
2007.

[19] H.T. Rathod, B. Venkatesudu, K.V. Nagaraja, and Md. Shafiqul Islam.
Gauss legendregauss jacobi quadrature rules over a tetrahedral region. Ap-
plied Mathematics and Computation, 190(1):186 – 194, 2007.

[20] Andre Ribes and Christian Caremoli. Salome platform component model
for numerical simulation. In Computer Software and Applications Confer-
ence, 2007. COMPSAC 2007. 31st Annual International, volume 2, pages
553–564. IEEE, 2007.

[21] Will Schroeder. The visualization toolkit : an object-oriented approach to
3D graphics. Kitware, Clifton Park, N.Y, 2006.

[22] Robert Strzodka. Abstraction for AoS and SoA layout in C++. In Wen-
mei W. Hwu, editor, GPU Computing Gems Jade Edition, pages 253–269.
Morgan Kaufmann, Waltham, MA, 2011.

[23] Li Tang, X. Sharon Hu, Danny Z. Chen, Michael Niemier, Richard F. Bar-
rett, Simon D. Hammond, and Genie Hsieh. Gpu acceleration of data as-
sembly in finite element methods and its energy implications. 2013 IEEE
24th International Conference on Application-Specific Systems, Architec-
tures and Processors, 0:321–328, 2013.

[24] Ayachit Utkarsh. The paraview guide: A parallel visualization application,
2015.

20

0

5

10 1.43
1.56

1.72 1.87 1.7
0.39

1.4
1.22

1.48 1.61 1.6
9.66

T
im

e
(s

ec
.)

fo
r

C
u
b

e
A

0

5

101.51
1.91 1.81 1.83 1.78

0.31

1.56
1.98 1.85 1.86 1.94

3.35

T
im

e
(s

ec
.)

fo
r

C
u
b

e
A

0

20

40

60
1.62

2.41
2.93

2.45
2.82

1.86

1.74

2.44
3.07

2.08
2.4

24.86

T
im

e
(s

ec
.)

fo
r

C
u
b

e
B

0

20

40

60
1.67

2.44 2.51
2.35

2.64
1.45

1.8

2.56 2.67
2.19

2.57
7.87

T
im

e
(s

ec
.)

fo
r

C
u
b

e
B

0

200

400

600

1.77

2.56 3.08 2.87
3.36

7.6

1.9

2.74 2.83 2.38
2.79

33.29

T
im

e
(s

ec
.)

fo
r

C
u
b

e
C

0

200

400

600

1.72

2.54 2.94
2.49

2.9

5.53

1.84

2.79 3.14
2.44

2.86

9.75

T
im

e
(s

ec
.)

fo
r

C
u
b

e
C

1 2 3 4 5 6 GPU
0

2,000

4,000

6,000

1.86

2.59 2.92 2.77 3.25

14.02

1.93

2.79 2.96 2.5 2.95

22.02

OMP Threads/GPU
(single precision)

T
im

e
(s

ec
.)

fo
r

C
u
b

e
D

1 2 3 4 5 6 GPU
0

2,000

4,000

6,000
1.71

2.31 2.35 2.36
2.72

10.85

1.95

2.69 2.65 2.6
3.06

8.8

OMP Threads/GPU
(double precision)

T
im

e
(s

ec
.)

fo
r

C
u
b

e
D

Figure 4: Computation time for the most expensive steps (in seconds) compared
for the multi-threaded and the GPU solution. The left and right panels show the
timings for single and double precision solution respectively. The lower (blue)
bar shows the time for assembling the linear system and the upper (red) bar
shows the time for the solution of the system. The speed up compared to the
CPU (1 Thread) solution is indicated by the respective number above the bars.

21

0

1,000

2,000

3,000

1.85

2.57
2.94 2.95 3.41

9.98

1.92

2.62
2.8 2.26

2.58

27.18T
im

e
(s

ec
.)

fo
r

M
o
d
u
le

0

1,000

2,000

3,000

1.78
2.49 2.91 2.65 2.93

7.12

1.82
2.72 3.2 2.3 2.64

7.9 T
im

e
(s

ec
.)

fo
r

M
o
d
u
le

1 2 3 4 5 6 GPU
0

2,000

4,000

6,000

8,000

1.84

2.65
3.11

2.18
2.53

9.93

1.93

2.81
3.42

2.25
2.67

34.54

OMP Threads/GPU
(single precision)

T
im

e
(s

ec
.)

fo
r

C
u
b

e
A

1 2 3 4 5 6 GPU
0

2,000

4,000

6,000

8,000

1.79

2.48
2.92

2.63 2.9

7.12

1.9

2.74
3.42

2.61 3.01

9.1

OMP Threads/GPU
(double precision)
T

im
e

(s
ec

.)
fo

r
C

u
b

e
A

Figure 5: Computation time for the module geometry. Left and right column
show single and double precision computation times. Top row shows times where
only the nonlinear r.h.s. is assembled in every iteration and bottom row shows
times when all terms are treated nonlinear and are assembled in every iteration.
The top bar (red) shows time for the linear solver, the lower bar (blue) shows
time for assembly and the respective numbers above show seep up against CPU
implementation.

22

Figure 6: Cut through the module in xz and yz plane for ten time-steps starting at
time t=1300 with ∆t = 22.sec

23

