1808.04099v1 [cs.CE] 13 Aug 2018

arXiv

CUBE: A scalable framework for large-scale industrial simulations

Niclas Jansson™", Rahul Bale’", Keiji Onishi', and Makoto Tsubokura'?

'RIKEN Advanced Institute for Computational Science, Kobe, Japan.
2Department of Computational Science, Graduate School of System Informatics, , Kobe
University, Kobe, Japan.

*Corresponding aurthors: leifniclas.jansson@riken.jp, rahul.bale@riken.jp

Abstract

Writing high performance solvers for engineering applications is a delicate task. These codes are often devel-
oped on an application to application basis, highly optimized to solve a certain problem. Here, we present our
work on developing a general simulation framework for efficient computation of time resolved approximations of
complex industrial flow problems - Complex Unified Building cubE method (CUBE). To address the challenges
of emerging, modern supercomputers, suitable data structures and communication patterns are developed and
incorporated into CUBE. We use a Cartesian grid together with various immersed boundary methods to accu-
rately capture moving, complex geometries. The asymmetric workload of the immersed boundary is balanced
by a predictive dynamic load balancer, and a multithreaded halo-exchange algorithm is employed to efficiently
overlap communication with computations. Our work also concerns efficient methods for handling the large
amount of data produced by large-scale flow simulations, such as scalable parallel I/O, data compression and
in-situ processing.

Index terms— CFD, Building Cube Method, Immersed Boundary Methods, Dynamic Load Balancing, Parallel
I/0

1 Introduction

In the past decades, rapid advances in computer architecture and parallel computing, enabling faster and more
accurate numerical simulations, have positioned computational fluid dynamics (CFD) as a standard tool in many
areas of science and engineering, capable of competing with full-scale wind tunnel experiments. However, despite
the remarkable progress in computational power, accurate engineering simulations are still very time consuming
and pose several challenges with respect to mesh generation and numerical approximation, in particular in the
context of high performance computing (HPC).

CFD simulations of flow phenomena observed in industrial applications, such as aerodynamics of vehicles and
aircrafts, flow around wind turbines, etc., require high computational power. Consequently, large simulations
of practical interest are not feasible without parallel computing. Parallelization can significantly alleviate the
computational burden of such large simulations by distributing the work across many processors. In parallel
computing, parallel efficiency and scalability of a numerical method or a flow solver determine how efficiently the
computing resources are being utilized. The chosen meshing technique, representation of geometries and numerical
methods not only have an impact on the overall accuracy of the simulation, they greatly affect performance and
parallel scalability of a solver. This is even more important in today’s extreme scale computing environment where
simulation frameworks must be capable of harnessing the power of tens of thousands of cores. At this scale, the
parallelization strategy of a solver is of uttermost importance, even the slightest amount of workload imbalance,
poor communication patterns or serial sections can greatly affect scalability.

In this paper, we present CUBE, a framework for efficient computation of time resolved approximations of
complex industrial flow problems with moving geometries. The framework is based on a block structured Cartesian
meshing technique called Building Cube Method (BCM) [1]. The BCM framework enables easy parallelization and
formulation of efficient numerical kernels. A constraint based immersed boundary (IB) method is used to model
the flow around complex geometries encountered in industrial applications [2, 3, 4]. A hybrid MPI4+OpenMP
based parallelization is used to hide communication cost by overlapped communication patterns, together with a

multi-constraint based load balancing framework to enable scalable simulations. Throughout the paper, we will
mainly focus on the design and parallelization aspects of the framework.

There are two main approaches that can be categorized under IB methods, namely continuous forcing approach
and the discrete forcing approach [5]. The categorization is based on whether the forcing due to an immersed
body is applied before or after discretization of the governing fluid flow equations. As the names imply, in the
continuous and discrete forcing approaches the forcing is applied before and after the discretization of the governing
equations, respectively. An appealing feature of the continuous forcing methods is that they are independent of the
discretization employed [6, 2, 3, 7, 4]. The discrete forcing methods on the other hand are discretization dependent,
but these methods are capable of sharply representing the immersed body interface [8, 9, 10, 11].

In the present work we use a continuous forcing technique, specifically the constraint based IB method, developed
previously by Patankar and co-workers [4, 2, 3], that enables a solver to handle complex immersed bodies without
any special treatment during pre-processing. For simulations involving industrial applications, minimization of the
overall pre-processing time is important. The overall reduction in pre-processing time depends on whether the 1B
method employed allows for “non-water-tight” immersed body geometries. A water-tight geometry is one in which
the volume inside the immersed body is separated from the volume outside by a closed surface. Industrial scale or
production grade CAD data are not always water-tight. Therefore, methods that require water-tight geometries
necessitate pre-processing. Thus, we choose the constraint based IB method as it allows non-water-tight geometries,
reducing or eliminating the pre-processing of CAD data. Furthermore, the continuous forcing technique coupled
with a Lagrangian representation of the immersed geometry is more robust and versatile in handling complex moving
geometries compared to discrete forcing methods. A limitation of continuous forcing approach is its inability to
sharply resolve fluid-immersed body interfaces. This limitation can be addressed through higher spatial resolution
near the fluid-immersed body interface. Thus, we couple the immersed boundary method with BCM so as to
achieve high spatial resolutions close to immersed body.

Load balancing is a key factor that strongly influences the efficiency of a parallel code. In a massively parallel
computing environment even the slightest workload imbalance can severely affect the performance of a code.
Thus, load balancing is an essential aspect of a large scale simulations. It is closely linked to the fundamental
aspect of parallel computing namely data decomposition. Data decomposition is typically done either through
a pre-processor before the main simulation, or during the initial steps of the simulation. The decomposition is
often carried out on the underlying computational mesh that discretizes the computational domain. The aim
of such decomposition is to equally distribute the unit of discretization such as tetrahedral or hexahedral cells,
blocks across all the workers. Most decomposition techniques assume that the workload of each discretization
unit is equal. Although this is true for many applications, there are a large class of problems for which it is not.
Lagrangian-Eulerian based immersed boundary methods are one such class of problems. In Lagrangian-Eulerian
approach the immersed body is represented by a discrete set of Lagrangian particles which are free to move relative
to the fixed background Eulerian mesh. For such a framework, the computational cost of cells or cubes that overlap
with Lagrangian particles is different from that of non-overlapping cells. In this work we develop a general multi
constraint load balancing technique based on the intelligent remapping approach PLUM [12], to decompose the
Lagrangian-Eulerian system.

The outline of the paper is the following; In Section 2 an overview of the numerical methods is given. Our
general framework is presented in Section 5 and paralleization, load balancing and I/O strategies in Section 6
together with performance analysis and parallel scalability in Section 7. We present a typical industrial application
in Section 8, give conclusions and outline future work in Section 9.

2 Mathematical Framework

We consider a viscous, incompressible fluid with immersed bodies. The governing equations for such a setup are
given by

p (g‘: + (u- V)u> = -Vp+uViu+f in Q, (1)
V-u=0 in Q, (2)
8@7): _ in 0, (3)
f = P[F] in Q, (4)

where u is the velocity field, p is the density, p is the pressure, and g is the dynamic viscosity of the fluid. The
physical space occupied by the fluid along with the immersed body is denoted by €2. The domain €2 is divided into
Q and €, to represent the fluid and the immersed body domains, respectively, 2 = ;U ;. The immersed body,
fluid interface is denoted by 9€);¢. Note that bold face variables, such as u, are vector quantities, and non-bold
faced quantities, such as p, are scalar quantities.

A material description is used for immersed body representation, in which the structure resides in a Lagrangian
domain W. The physical coordinates of the immersed body, X(c,t), is updated with the immersed body velocity
U(c,t), which is defined on the Lagrangian domain W. Here, c is the material coordinate of the immersed body in
the Lagrangian domain, ¢ € ¥, and the physical coordinate, X, of each material point is defined in Q, X(c,t) € Q.
A material quantity V is related to its Eulerian counterpart v by V = Z[v] The operator Z maps v from Q to V
in the Lagrangian domain W. A detailed discussion of the Lagrangian-Eulerian framework is presented in Section.
2.1.

Presence of the immersed body in the fluid is modeled by the body force f in the momentum equation. The body
force arises due to the rigidity constraints imposed by the immersed body in 24, thus by definition f is non-zero in
Q, and zero in Q. The constraint force due to the immersed body is evaluated in the Lagrangian domain, defined
by F, before it is mapped onto its Eulerian counterpart f. The mapping operator P maps a Lagrangian variable
onto its Eulerian counterpart. The operators P and Z are defined and discussed in the following section.

The rigidity constraint is imposed in the immersed body domain €2, and at fluid immersed body interface 9%
as

V:Du—u,)=0 in Q, (5)
D(u—u,)-0n=0 on 09y, (6)

where ug is the specified velocity of the immersed body, and D is the deformation rate tensor given by
1 T
D(u) = i(Vqu Vu').

Eq. (5) and Eq. (6) physically imply that the rate of deformation of the rigid, flow induced velocities on the
immersed body velocity must be zero. In the case where motion or velocities induced by the fluid on the immersed
body is not of interest, the above equations are replaced by the following

(u—u;) =0 in Q,
(u—u,)-n=0 on 0.

[2] have shown that the rigidity constraint in Egs. 5 & 6 give rise to a constraint force that is given by
f =V -D(\ —2uuy).

Ar, in the equation, is the Lagrange multiplier that enforces rigid motion constraint in the immersed body domain
(Qs). A is analogous to the mechanical pressure, p, which is also a Lagrange multiplier. p is a Lagrange multiplier
that imposes the incompressiblity constraint. It is to be noted that we do not directly compute the Lagrange
multiplier, rather an equivalent forcing upon discretization.

2.1 Lagrangian—Eulerian approach

Accurate representation of intricate details, down to the Eulerian mesh resolution, of immersed body is key to the
success of the numerical method. This is especially true when the immersed body is moving. As already introduced
in the previous section, a Lagrangian-Eulerian approach is used in this work because a Lagrangian description is a
very accurate method of representing complex, mobile immersed bodies. The physical space €2, 2, and boundary
0€s¢ defined in the previous section are based in the Eulerian description. For the Lagrangian description we define
a coordinate system ¥ on which the body resides. €2, is the projection of Lagrangian domain ¥ on to Eulerian
domain € through the Dirac delta function operator. The operators P and Z are defined by the following equations

g(x,t) =P[G(c,t)], where,
me@@piée@@ax—xwwmq

Ve, t) =Z[v(x,t)], where,
Iv(x,t)] = /Q v(x,t)d(x — X(c, t))dx. ®

The variable G, which is defined on the Lagrangian domain (¥), is projected on to the variable g, which is defined
on the Eulerian mesh’s immersed body domain (£25). Similarly, Eulerian variable v is interpolated on to the
Lagrangian variable V. The coordinate x is defined on the Eulerian domain 2, x € Q. And, c is the discrete
Lagrangian coordinate defined on ¥. §(x) is the Dirac delta function defined as §(x) = 6(z1)d(z2)d(x3) in three
dimensions, where x = (x1, 2, x3).

(/
o

>

(X
s
o

’
i
9%

i
W

v

%
"
Yy
ot

= STt TR
SR SR Sie
e =S et e e
SISO, S et e e L e
T e e et
R B L
SEETRme

e

e
S e
S

()

()
X/

S ST =
L e R SrEeee
R S W e e e B
R
S R e

%
0
¢

e
s
i/

()
2

oSS
%
i

‘
{

T S e
o5 e e
o R

§
o
;

s
i

4
()

h
0
W

SN
TS
o I S S S e SO CINSOS ST
S S A e A TSRS
e AN s en s aTs et s se et s

o
T S

Figure 1: An example of a BCM mesh, the vertical plane shows the cubes and the horizontal plane shows cubes
subdivided into cells.

2.2 Building Cube Method

The Eulerian domain () is discretized using a structured Cartesian meshing technique called the building cube
method (BCM), wherein the Eulerian domain is discretized using cubic units called cubes. The cubes are subdivided
into fineer cubes in regions of interest, for example around an immersed body, to generate a set of cubes ranging
from coarsest level (I = 0) to finest level (I = m — 1) with a total of I, = m levels, and I, = m — 1 number of
refinements. Although it possible in theory to represent the cubes in a heirarchical tree structure, in the present
version of BCM we do not use a tree data structure to represent the cubes. A simpler, more efficient, data structure,

North Neighbour North-East Neighbour Halo(T)

ejoqjofeo oleo)oge (i,j+1Lt) | (41, j+1,)
olofofo o|lo|o]o
" &I T)
olofofo o|lo|o]o (111,71
olololo oflo]ofo ° ° (i, 3, %) (i+1, j, t)
(i, j+1, t) (i1, j+1, t)
(\ (\ K K o Cell Center O
(-1, J,T)
Halo Cell : :
o o 2, §+1,t) | (-1, j+1, ¢
[(RR0] (i+1.), 1) G2501,9 | (s) ° °
o|lo|ofo *T o |oflofo S, (L) | (1 +L 1)
o|lof|o|o “T o |o]o]|o (CEy
1] o o
ofoofo| T Tofo]ofo (259 | @130 0.0 | (+Liv
ofofo]o “T o |oflofo Halo(t)

Fast Neighbour
(@) (b)

Figure 2: (a) Exchange of information between neighbouring cubes of same size. Data from neighbouring cubes
are copied to adjoining halo cells. (b) Data exchange between cells of neighbouring coarse and fine cubes. In
the fine to coarse data exchange the halo cell of coarse cube gets interpolated value from the interior cells of the
neighbouring fine cubes. During coarse to fine data exchange, the data from the boundary cell of the coarse cube
is copied into all the halo cells of the fine cube that are within the coarse cube cell.

where only the cube coordinates, size, an arbitrary index, number of cells and neighbor adjacency information is
used to represent the mesh using linear arrays in this work. An arbitrary refinement ratio can be used between a
coarse and fine cube, for the results presented in this work this ratio is restricted to 2. Cubes are further subdivided
into cells such that all cubes have the same number of cells. As every cube has equal cells, all cubes are equal
and independent units of work. This enables efficient and easy grid partitioning and parallelization. An example
of BCM mesh is shown in Fig. 1, the vertical plane slice shows the cubes and the horizontal slice shows the cube
subdivided into cells.

A cell centered, collocated arrangement is used to discretize the governing equations on the BCM mesh, wherein
the Eulerian variables (u, p, and f) are defined at the center of a cell. The coordinate of the cell center defined by
the index i = (4,7, k), in the t'* cube, is given by

t t . . t 1 t
it =xt+ (4 p)Act, G+ ek, e+ 3)ast).
where x! = (21, T2, T3.) is the coordinate of the base corner of a cube indexed ¢, and Ax" = (Ax!, Az, Azk) is
the mesh spacing. Base corner of a cube is the corner with the minimum coordinate along the principle directions.
X, is the set of base corner coordinates of all the cubes in a mesh so that x! € x.. Similarly, Ax! € Ax, where Ax
is the set of mesh spacing of each cube in the BCM mesh.

Discrete stencil operations at a cube’s boundary can span across into the neighbouring cube. A halo of cells from
neighbouring cubes are defined around each cube to enable discrete stencil operations at cube faces (Fig. 2). The
size of the halo is determined by the extent of the widest stencil used in the solver. For the halo exchange between
cubes of same size, data is copied from the boundary interior cells of a neighbouring cubes into adjoining halo cells
of a given cube. Halo exchange between coarse and fine cube involves data interpolation of data. A schematic
representation of halo exchange is shown in Fig. 2. In case of data exchange from fine to coarse cube, the boundary

interior cells are interpolated to the center of the halo cell of the coarse cube (Fig. 2b). The interpolation of a cell
centered quantity ¢ from fine cube ¢ to the halo cell of coarse cube T can be expressed as follows

lr—1

T t
b1 = Z Witp®isp:

p=0

Here, i = (i,7) (i = (4,4, k) in 3D) is the cell index of fine cube and I is that of the coarse cube cell, p = (p, q)
(p = (p,q,r) in 3D) is the summation index and w is the interpolation weight. Data exchange from coarse cube
interior boundary cell to fine cube halo cells is achieved by simply copying the coarse cell data to all the fine cells

that lay within the corse cell. The coarse to fine exchange, as depicted in Fig. 2, may be expressed as,
Gi—1,4t = P1-1,J,T Pi—2,jt = P1-1,J,T
Gi-1j+1,t = Q1-1,J,T Di—2,j+1,t = OI1-1,J,T-

Treatment of face centered, staggered quantities is not necessary because we use a collocated arrangement in the
present work.

o|®®e
° °
L] L]
L] L
/ \ ° °
»
L >
» L
\ /| ° °
L] (]
() °
() L]
) oTel® 'y
(a) Immersed body (b) Discretized into particles

Figure 3: Discretization of immersed body into Lagrangian particles. The surface of the cylinder in the 2D mesh
is discretized into Lagrangian particles.

2.3 Lagrangian Data Structure

The immersed body is discretized into material /Lagrangian particles that are attached to its surface which consti-
tute the Lagrangian domain (¥). An example of the discretization of the immersed body into Lagrangian particles
is shown in Fig. 3, which shows the discretization of the surface of a 2D cylinder into Lagrangian particles. Typi-
cally, discretization of immersed body surface results in one Lagrangian particle in the Eulerian cell which immersed
body surface intersects.

In order to enable simple parallelization we use the underlying cube data structure (BCM cubes) of the Eulerian
mesh. The Lagrangian points are grouped into an unordered set belonging to each BCM cube. Lagrangian particles,
which are inside cube ¢, are inserted into set(¢). Cubes that do not contain any Lagrangian particles will have
empty sets. The grouping of Lagrangian particles into sets is demonstrated in Fig. 4, which shows a set assigned to
each cube in the mesh shown. In the figure, empty and non-empty sets are highlighted through the use for different
colors. Empty sets are colored in black while each of the non-empty set is colored with a different non-black color.
The spacing between Lagrangian particles in a cube indexed t is given by Ac! = (Ac}, Ach, Adk), and a given
particle is identified through the index R = (R, S, T). The Eulerian coordinate of a Lagrangian particle is denoted
by X7 57

The main purpose of grouping Lagrangian particles into sets is to enable efficient Lagrangian-Eulerian interpo-
lation. Interpolation from Eulerian mesh to Lagrangian points requires, for a given Lagrangian point, information
of surrounding Eulerian mesh points. Without the set based Lagrangian data structure, identifying the surround-
ing points for interpolation is very expensive. This is because the cube indexing in a BCM mesh is arbitrary.
As a result, to find surrounding points for interpolation, the cube containing the Lagrangian point in question
needs to be searched. Searching is an inherently slow process which is best avoided when possible. The set based
data structure eliminates this search operation. The Lagrangian-Fulerian interpolations boils down to algebraic
expression for finding the Eulerian indicies i for a given cube t. Typical Lagragian Eulerian interaction is shown
in Algorithm 1.

set(1) set(3) set(1) set(3)

| [set(2) set(5) |set(6),| |set(2) set(5), st (6)
o set((h) |set(4) sefl7) |set(4)
(a) Ungrouped particles (b) Grouped particles (c) Particle motion

Figure 4: (a) Ungrouped Lagrangian particles and cubes of a BCM mesh. (b) Lagrangian particles grouped into
sets for each cube of the BCM mesh. The sets are colored in black and non-black colors to identify empty and
non-empty sets. (b) Motion of Lagrangian particles. As particles move, particles from set(7) removed and added
to set(5). Similarly, particles from set(6) are removed and added to set(3).

Algorithm 1: Lagrangian-Eulerian mesh interaciton.
Function L-FE Interact:
for each cube in BCM mesh do
if set is empty then
cycle
else
i=(X%s7 —x0)/Ax; + 1
Call L-E Interpolation(i, X% g 7,%.)
end
end

The Lagrangian data structure is cube based, i.e. a set belonging to cube t is independent of the sets of all
the other cubes. Therefore, propogation and motion of the Lagrangian particle requires careful design of the set
data structure. As the particles of the set of a given cube ¢ move, some of the particles of the set(t) may cross
the bounds of the said cube (runaway particles). The runway particles no longer belong the set(t), but they may
be within the bounds of one of the many neighbors of cube ¢. Hence they have to removed from set(t) and added
to the set of the neighboring cube. A schematic representation of propogation, insertion and deletion of particles
is shown in Fig. 4c. This deletion and insertion of particles from and into sets of cubes, respectively, has to be
carried out efficiently. To enable quick insertion and deletion of particles from sets, the set is built on an integer
based hash table. Each Lagrangian particle is assigned a unique global integer identifier, which acts as the key
to the hash table. Global implies across cubes as well as MPI partitions. And, the uniqueness of the identifier is
necessary to avoid duplicity of particles as they are advected across cubes. The average cost of insertion, deletion,
or a look up of hash table entries is O(1), and the cost of the worst case is O(N), where N is the size of the
hash table. The frequency of the running into hash table related worst case operations depends on the choice of

hash function. Consequently, the choice of a hash function that minimizes hash conflicts is key to the efficiency of
the hash table.

2.4 Lagrangian-Eulerian Interaction

With the discretization of the Eulerian and Lagrangian domain defined, the projection and interpolation operations
between the two domains will be discussed next. The interpolation from Eulerian to Lagrangian domain in discrete

form is given by
t _ t t t t At AT
UR,S,T = Z U—i,j,k‘SA(Xi,j,k - XR,S,T)A331A332A933> 9)
i,5,k,t

where U%z) 5.7 1s the interpolated velocity at Lagrangian particle indexed R, S, T, and ui k8 the cell centered
velocity in the cell (¢,7,k) in cube ¢. Similarly, the discretized version of projection operator in Eq. (7) is given
below

= Z Fi s 70X} j 1 — X5 7) A Ach AL, (10)
R.S.Tt

Here, da is the discrete form of the Dirac delta function introduced in Eqgs. 7 &8 and it is given by

3 .
oax) = H Ax é(ﬁx) ,
n—1 n n

where ¢ (z/Ax) /Ax is the one dimensional discrete delta function. The following smoothed 3 point function for
the one dimensional function ¢(r) [13] is used in this work

% o 7"2, |7“| < 0.5,
o(r) = 4 5(§ = 3lr[+77), 05 <|r[< L5,
0, 1.5 < |r|.

The choice of the type of Dirac delta function is important from an accuracy and a computational efficiency
stand point. Wider delta function are known to give better accuracy then narrower ones [14, 6, 13], but this
better accuracy comes at greater computational cost. An n point wide delta function will require n3 operations
to interpolate at one Lagrangian particle. Therefore, from a computational cost stand point it is ideal to choose
a delta function that is the narrowest (a 2-point function). A balance between accuracy and computational cost
is necessary. [13] have shown that the 3-point wide function in the above equation provides reasonable accuary at
lower computational cost compared wider delta functions.
Egs. 9 & 10 can be expressed in a more concise form as
Ug = Zalxi]u (11)

1 17

fi = Pa[XRr]FrR (12)

respectively. Here, Za and Pp are the discrete versions of the interpolation operator Z eq. (8) and P eq. (7).

3 Numerical algorithm

We use a modified fractional step method [15, 2] to solve the system of equations in Eq. (1) to (4). In the first
sub-step of the fractional step method, a modified momentum equation is solved to obtain a non-divergence free
intermediate velocity. The constraint force due to the immersed body is not imposed at this step. In this first sub-
step, the equations may be discretized using any time stepping algorithm. In CUBE, Euler, Adams-Bashforth and
implicit Crank-Nicolson schemes are available. Here we describe the numerical algorithm using the Crank-Nicolson
scheme.

ﬁ_ n

u
P At
where a superscript indicates time, n corresponds to previous time step and intermediate variables of the fractional
step are identified by a tilde, and n + 1 indicates time at the end of current new time step. A and D are discrete
operators of the advection and the diffusion terms, respectively.
In the next step, the immersed body force is imposed on the intermediate velocity @ to obtain the second
intermediate velocity u*

1 1
+pgAfa+u"] = p3Dfa+u], (13)

ut* —u

PAT

= Pa[X]F",

where the immersed body force F", evaluated as the difference between the immersed body velocity U7 and
interpolated intermediate velocity Za [x]@, in the Lagrangian domain ¥ is given by

p -
F" = — (U? — Za[x]0) .
L (ur - 25 M)
The non-zero divergence of the intermediate velocity, 11, and that introduced by the immersed body force into u*
is removed through the projection step to yield the divergence free velocity field u™*!

n+1 __ *_L n+1
Atgp)

where G is the discrete gradient operator. The pressure p™*! in the projection step is obtained by solving the
Poisson equation

Dyt = Lgown, 14
P LA (14)

Eq. (14) is solved with an efficient geometric multigrid solver. Implementing a multigrid solver on a Cartesian
grid with discrete forcing immersed body methods (such as ghost cell IB methods [8, 9]) is a complex task. In
order to retain good convergence, special treatment of the immersed body at every grid level is necessary [16].
Since we use a continuous forcing to represent the immersed body, the effect of the body is only present in the
right hand side of Eq. (14). Thus, it will be unaffected by grid coarsening, and only present at the fine grid level.
Hence, implementation of the multigrid solver is straightforward, without the need of any special treatment of
the immersed bodies at different grid levels of the multigrid solver. Furthermore, we exploit the underlying cube
structure, and only create coarser grid levels on a per cube basis. Thus, we can retain the same communication
pattern on all grid levels.

Finally, the position of the Lagrangian points/particles are updated by the following equation

XM = X" + AU

4 Validation

We carry out simulation of two cases to validate implementation of the numerical method. First, we consider
the standard benchmark problem of flow around a stationary sphere. Next, to validate the method for moving
immersed bodies we consider flow created by an impulsively started plate in a quiescent fluid.

4.1 Flow around a sphere

Flow around a sphere is a widely used case to validate three dimensional flows. There are numerous experimental
[17] and numerical studies [18, 8, 9] that have investigated this flow at various Reynolds numbers against which
we can validate our simulations. In the present study we carried out numerical simulations for Reynolds numbers
ranging from 100 to 1000 (Reynolds number is based on sphere diameter).

Following are the details of the computational domain used for the simulations: —25D to 25D in all three
directions with the sphere placed at the center of the domain. Here, D is the diameter of the sphere. The
hierarchical mesh of the BCM has [,, = 7 and [, = 6. The mesh spacing on the finest level [= 6, where the sphere
is placed, is Ax |;;= 0.012D. For all the simulations slip boundary condition is used on domain boundaries in y
and z directions, and inflow and outflow boundary condition for = and z* boundaries, respectively. In Fig. 5 we
compare the drag coefficient with established numerical and experimental results. We find that our results are in
good agreement with both numerical and experimental data.

Tablel shows a comparison of wake bubble measurements for flow at Re = 100 with experimental and numerical
data. The measurements of the wake bubble center agrees well with both numerical and experimental data, where
as the bubble length shows better agreement with experiments.

4.2 Impulsively started plate

We validate the numerical method for a moving immersed body with the simulation of an impulsively started/ac-
celerated infinitesimally thin plate moving perpendicular to its surface in a quiescent fluid. The experimental work
of Taneda and Honji [20] is used to validate our work. A plate of dimensions h x 20h is used in a computational
domain of size 40h x 40h x 40h, where h is the plate height. The domain extents are: —20h to 20h along all three

—Clift et al. (1978)

A Johnson & Patel (1999)
Vv Mittal et al. (2008)

O Onishi et al. (2013)

® Present
< 10°
-1 . . .
10
10t 102 103 10% 10°

Re

Figure 5: A comparison of drag coefficient of flow around a sphere with other works [8, 9, 18, 17] at different Re.

Table 1: Wake bubble measurements of present work and from literature for Re = 100.

ye/D xc/D Ly/D
Present 0.288 0.729 0.794

8] 0278 0742 084
18] 029 075 088
[19] 028 074 08

directions. At ¢ = 0 the plate is located with its centroid at the origin of the computational domain. On the finest
level of the adaptive mesh, the mesh resolution was Ax |;,= 0.02h. A large aspect ratio of 20 is chosen for the
plate so that flow from the plate’s lateral edges do not affect the flow at the center of the plate where the flow is
analyzed. The domain size is chosen such that the plate is sufficiently far from the domain boundaries so as to
avoid any boundary effects. The Plate is moved with a constant velocity U in the z~ direction.

The simulation was carried out at Re = 126 and Re = 896, where plate height and velocity are used as
characteristic length and velocity, respectively, to define the Reynolds number. A comparison of wake bubble size
from the simulations with Taneda and Honji’s [20] experimental data is shown in Fig. 6. The figure shows evolution
of wake bubble size (L) normalized by plate height i as a function of dimensionless time tU/h. We also compare
our results with the 2D simulation results of Koumoutsakos’ [21] at Re = 126. Our results are in good agreement
with both experimental and simulation data from literature.

5 Software Environment

Based on the Finite Volume Method, we have developed a unified solver framework CUBE (Complex Unified Building
cubE) for solving large-scale compressible and incompressible flow problems. The framework has a modular design
where CUBE provides a core library containing kernel functionalities e.g. mesh representation, numerical kernels
for computing flow field and I/O routines. Solvers are then developed on top of the kernel by connecting necessary
kernel modules together, forming a “solver” pipeline, describing the necessary steps to solve a particular problem.

5.1 Object-Oriented abstraction

Written in modern Fortran 2003, CUBE employs a lightweight Object-Oriented abstraction. A set of abstract
classes/types define canonical components of a solver, which are later provided by a real solver. With a set of
predefined solvers and parameters, CUBE can be used as a regular CFD solver. Meanwhile, for advanced users it

10

2.5

O
2 L 4
1.5¢ 1
=
3
3
1 L .
% —— Present, Re=126
O Taneda & Honji (1971), Re=126
0.5¢ 4 ¢ Koumoutsakos (1996), Re=126 |
¢ —A— Present, Re=896
O Taneda & Honji (1971), Re=896
O L L
0 2 4 6

tU/h

Figure 6: Evolution of wake bubble behind an impulsively stated plate at Re= 126 and Re= 896. The simulations
show good agreement with Kaoumatsakos’ [21] 2D simulation at Re = 126 and, Taneda & Honji’s [20] experimental
results.

is also possible to develop their own tailor-made applications by overloading certain kernel components similar to
other C++ based solver frameworks, e.g. FEniCS [22] and OpenFOAM [23].

For example, if a user wishes to write her own application specific flux evaluation routine, she would only need
to overload the base definition of a numerical flux flux_t (Fig. 7) inside the kernel. Once done, the framework
will execute the user’s code (in this case the eval subroutine) instead of the one in the kernel every time fluxes are
evaluated. This way we can keep CUBE’s kernel small and general, without application specific code.

type flux_t
real (kind=dp), allocatable :: f(:,:,:,:,:)
procedure(scheme), nopass, pointer :: eval
end type flux_t

Figure 7: An illustration of the abstract definition of a numerical flux inside CUBE.

6 Enabling Large Scale Simulations

6.1 Data Decomposition

CUBE has been parallelized using a hybrid MPI 4+ OpenMP approach, where whole cubes are subdivided between
MPI ranks, and thread parallelization of the numerical kernels are performed on a per cube basis or with two
dimensional slices in the z-direction of each cube. MPI partitioning is performed following a load-balanced linear
data distribution [24]; Let P be the number of MPI ranks, p be an MPI rank, N be the global number of cubes,
and n be the local number of cubes assigned to a rank. With N = PL + R and 0 < R < P, we have that

(3]

R = N mod P, (15)
N+P—-p-—-1
n=|——1.
P

To minimize data dependencies, the distribution is calculated based on a space-filling curve, the Z-ordering (cf.
[25]) of the cubes given by our mesh generator. Using the linear distribution as defined in (15), we can easily

11

calculate an owner of a cube given its global id. Therefore, each MPI ranks builds a look-up table for local to
global index mappings, which can later be used to construct adjacency information on the fly. If the Z-ordering is
not sufficient, a new distribution can be calculated using ParMETIS [26] or the built in load balancing framework
(see Section 6.5).

6.2 Lagrangian domain decomposition

L] ° °
.® Lo A ., ° ° S ®e L
. ° .. 777777777 ~
L]
.. '. ° .
. o | e ————— e
L] L] Y v
° . ° °
. : . .’
. Y ° °
0 . 4 hd . . R L
e lene . e lilses
(a) Unpartitioned mesh. (b) Partitioned mesh.

Figure 8: An unpartitioned BCM mesh with lagrangian particles (a). BCM mesh and the Lagrangian particles
partitioned into 4 paritions (b). Separation of the paritions is marked by the dashed red lines.

For a Lagrangian-Eulerian framework, such as the one employed in the present work for modeling immersed
geometries, there are more than one methods of decomposing the system. As there are two separate domains,
namely the Lagragian domain and Eulerian domain, combined or separate domain decomposition strategies may
be employed. Three of the most commonly used approaches for decomposing a Lagrangian-Eulerian system are
task parallelism, atomic decomposition, and spatial decomposition [27]. In task parallelism the Lagrangian and
Eulerian workload are assigned to separate set of processors. In atomic decomposition, after the Eulerian domain
is decomposed, the Lagrangian domain is divided equally among all the processors. Spatial decomposition de-
composes the Lagrangian domain on the basis of the Eulerian decomposition. Both task parallelism and atomic
decomposition, due to non locality of the Eulerian and Lagrangian domain, necessitate communication between
processors for Lagrangian-Eulerian interaction [28]. This is not the case with spatial decomposition. In the present
work we employ the spatial decomposition. A schematic of spatial decomposition applied to combined system of
the Lagrangian particles and the cubes of the BCM mesh is shown in Fig. 8. In the schematic the partitioning of
the BCM mesh is highlighted by the dashed red lines between the cubes, as shown in Fig. 8b. As described in Sec.
2.3, Lagrangian particles are grouped into a set for each cube of the BCM mesh. Lagrangian particle sets of cubes
belonging to partition p are assigned to the same partition p.

6.3 Halo-exchange

A key to achieve good performance in block structured codes is an efficient halo-exchange routine, locally (between
cubes owned by a MPI rank) as well as globally between adjacent MPI ranks. There are many factors that can
impact performance, such as the width of the halo or the number of cells per cube [29]. Increasing the number of
cells per cube is a less viable approach for CUBE. Since we target industrial applications, complex geometries will
require very fine resolution in very localized areas of the domain. For a given mesh resolution around a geometry,

12

Algorithm 2: Multithreaded halo-exchange

Function FEzxchange:
if first thread to arrive then
Post Irecv;
for each cube in the halo do
Pack data;
end
Post Isend;
else
for each cube do
Local halo exchange;
end

end
Function Finalize:

while Halo data has not arrived do
Check if data has arrived (Testsome);
for each received halo do

Add halo data to local cubes;

end

end

cubes with greater number of cells would greatly increase the overall mesh size, and quickly exhaust memory
resources. Therefore, the most feasible option for our applications is to develop a highly concurrent halo-exchange
algorithm, that can handle situations where large amount of halo data has to be exchanged efficiently.

To mitigate this problem, we have developed a highly concurrent multithreaded exchange algorithm, that will
overlap packing, sending and unpacking of data with local halo-exchange and other possible work (if the numerical
scheme permits). The pseudo-code of the algorithm is given in Algorithm 2, and is divided into two separate
functions. When CUBE needs to exchange data, the function Ezchange is called. The first thread to arrive starts
filling communication buffers and posting non-blocking send/recv requests. While the first thread is busy packing
and sending data to MPI neighbors, all other threads will perform the exchange of data between cubes local to an
MPI rank.

The second function Finalize waits until halo data has arrived, and adds contribution from received data to
the local cubes. To increase the concurrency, the routine will process messages on a first come first served basis,
by issuing MPI_Testsome calls to pick the first finished recv requests from the message queue.

6.3.1 Overlapped time-stepping

The halo-exchange wait time between Exchange and Finalize until the data has arrived, creates a serial section
and severely limits the potential scalability. This overlap window could be utilized to perform operations that do
not require information from other MPI ranks. The easiest option to utilize the time between non-blocking send
and recive calls is to impose boundary conditions, which does not require any communcation. However, typically,
imposition of boundary conditions is not expensive, and will not cover the entire overlap window.

In order to enable utilization of the overlap window in Alg. 2, we subdivide the local cubes on an MPI rank
into two different zones, namely internal zone and external zone. Internal zone is a spatial region containing only
those cubes all of whose neighbours are on the same rank. And, we define external zone as a region containing
cubes with at least one off rank neighbour as shown in Fig. 9a. With such a zoning of cubes, we can extend the
overlapped halo-exchange to all stages of the solution algorithm, filling the wait time window between Exchange
and Finalize with as much work as the numerical method permits.

Here we describe an overlapped time-stepping method that can make full utilization of the overlap window
between halo exchange routines. In the numerical algorithm of the present work (Sec. 3), the halo exchange needs
to be performed during first substep (Eq. 13) and during the iterative solution of the Poisson equation. During
these two steps we can overlap halo exchange with core computation of the solver. The overlapped time-stepping
algorithm is shown in Alg. 3. At each time-step, in the function FracTimeStep the solver first initiates the halo-
exchange by calling Exchange. Once all threads have returned from Ezxchange, there will exist enough valid data

13

Internal zone

8
g7
\’J}/
%5
d
g4
=3
External zone MPI rank q:i)
boundaries Q
g1
= 0
! Original Overlapped
(a) Subdivision of the grid into internal (blue) and external (red) zones for four (b) Time per time-step.

MPI ranks.

Figure 9: Time per time-step 9b, comparing ordinary time-stepping with overlapped for simulation of flow past a
full car on the K computer, running on 128 MPI ranks using 8 threads each.

locally to compute Eq. 13 in all cubes belonging to the internal zone. After the internal zone calculation is complete,
the Finalize function is called to distribute data that has already been received to the relevant external zone cubes.
Once the rank neighbor halo information has arrived, the same calculation is performed in the external zone thereby
completing substep one (Eq. 13) of the numerical algorithm. Here, an explicit Adams-Bashforth time-stepping
was assumed in the description of overlapped time-stepping of the FracTimeStep. Following the completion of the
FracTimeStep, the solver can continue to the next substep of the numerical algorithm, the Poisson solver. In the
PoissonSolve function, pressure is solved iteratively until the error in pressure converges to a specified tolerance.
Within each of these iteration we perform the overlapped halo exchange as described above for FracTimeStep
(Algorithm 3).

The potential of utilizing the full overlapped time-stepping scheme is illustrated in Fig. 9b, where the time to
solution for an incompressible simulation of a full car model (see Fig. 12b) is reduced by almost a factor of half
when running on 128 nodes on the K computer with a mesh of 47811 cubes.

6.4 1I/0 strategies

Efficient I/O strategies have in recent years become a very important component of a scalable code. Not only
should the I/O routines be able to dump data as fast as possible, but loading input data and restarting from
checkpoint files are as important. For large scale simulations, the ability to load/restart from previous runs on any
number of MPI ranks without offline processing is also a necessity.

To accommodate these requirements CUBE implements parallel I/O in form of MPI I/O. Any kind of data is
written to a shared file as a flat binary stream. A small header in the beginning of each file contains necessary
information to compute new load-balanced distributions using equation (15), which allows for the data to be read
back on any number of ranks automatically.

6.4.1 Data compression

The high spatial resolution required for accurate simulations can easily exceed hundreds of millions of grid points.
For such problems, the data size quickly becomes a problem. While quickly writing data to disk is not the biggest
concern, the problem is the psychical disk space, which can easily be saturated for a time dependent problem.

To solve this problem, we use the discrete wavelet based lossy data compression algorithm developed by Sakai
and co-workers [30]. In this algorithm, a discrete wavelet transform is computed independently for each cube, which
we extend to include the halo region. One level of quantization is applied and the entire signal is encoded using
Zlib [31]. The result is a stream of compressed data for each cube of various length. All these streams are combined
into one large stream, which together with a header data is written to disk as a single file. Since we record the
size of each cube’s compressed byte stream it is straightforward to uncompress the data on any number of cores

14

Algorithm 3: Overlapped time-stepping

while (time < time end) do
call FracTimeStep ;
call PoissonSolve ;
call Velocity Correction ;
end

Function FracTimeStep:
call Exchange(Velocity) ;
call fluzes(internal_cubes) ;
call Integrate_in_time(internal_cubes) ;
call Finalize(Velocity) ;
call fluzes(external_cubes) ;
call Integrate_in_time(external_cubes) ;

Function PoissonSolve:
while Pressure not converged do
call Ezchange(Pressure) ;
call Update Pressure(internal_cubes) ;
call Finalize(Pressure) ;
call Update Pressure(external_cubes) ;
end

when loading/restarting from already written data. Also, since we use a hybrid parallelization, the compression
algorithm is also multithreaded such that each thread will transform and encode independent cubes, and a final
reduction will combine all temporary streams from the threads into the stream that will be written to disk. In
total, all necessary operations to compress our data account for about one forth of the total I/O time for writing
data to disk.

Algorithm 4: Compression algorithm

for i...ncyupe do
j i+ (thrdig —1);
if j <= ncype then
dwtstream < dwt(cube(5));
quantsream — quantification(dwtstream);
encodedgtream + encode(quantsiream);
end
141+ Nthrds;
end

The achieved compression ratio depends on at least two factors, the number of cells per cube and information
loss introduced by the quantization. For an error tolerance of O(10~%), which is sufficient for a lossy checkpoint
restart, the compression ratio ranges between ~ 1:4 — 1:15 for 43 — 163 cells per cube (see Fig. 10a), and for higher
errors O(1072) a ratio of up to 1: 43 can be achieved.

For a typical application, the I/O throughput is on an average around 10GB/s on the K computer (see Fig
10b), which is far away from the K’s theoretical peak bandwidth, but well above the average throughput of most
HPC applications [32].

However, if data compression is not sufficient, CUBE also includes in-situ visualization through Vislt [33], either
in traditional interactive mode or in batch mode, where a user can setup a user-defined pipeline that will be
rendered during the simulation directly from the simulations memory without any data copying or 1/O operations.

15

14 x4
o

g 12 s 12

- 10 10
é

g 6 £ 6

é 4 A 4
]

2 E 9

0 0

43 8 16° 251 618
Cells per cube File size (GB)
(a) Compression ratio test. (b) 1I/0O thorughput.

Figure 10: Achieved compression ratio for various cell discretizations (a) and I/O throughput (b) for a typical
application running on 16385 MPI ranks on the K computer, for two different cube discretization of a mesh
consisting of 32M cubes.

6.5 Load Balancing

Load balancing is an essential component in today’s large scale multiphysics simulations, and with an ever increas-
ing amount of parallelism in modern computer architecture it is essential to reduce even the slightest workload
imbalance. An imbalance could severely impact an application’s scalability. Traditionally, load balancing is seen
as a static problem, closely related to the fundamental problem of parallel computing, namely data decomposition.
For a CFD simulation based on BCM, since each cubes contains the same amount of cells the goal is to evenly
distribute the cubes among the available cores. However, such a decomposition assumes that the workload for each
cube is uniform. For most cubes this is true, but for cubes which contain Lagrangian particles the workload is
slightly higher, which implies a workload imbalance. Therefore, to retain good scalability we need to derive a load
balancing method that balances the workload not only considering the Eulerian computational mesh, but also the
additional workload from the immersed body.

6.5.1 Static Load Balancing

In parallel computing, the idea of data decomposition or static load balancing is simple, namely divide the workload
evenly across all the workers. This can be formulated as the partitioning problem.
Given a set of cells C from a domain 7, the partitioning problem for p workers can be expressed as, find p
subsets {7*}’_, such that:
T=U_ T, and T'NT? =0 wheni#j, (16)

with the constraint that the workload:
W('Ti) ={CeT|Ce Ti}|,

should be approximately equal for all subsets.

Solving Eq. (16) can be done in several ways. The least expensive geometric methods, such as space filling
curves [25], only depend on the geometry of the domain. These methods are fast, but don’t take into account the
topology, hence there is a data dependencies between different cells in the domain. For Cartesian meshes such as
BCM, neglecting to consider data dependencies will not lead to severe imbalances. In the scenario where all the
cells have the same amount of neighbors, if the decomposition method tries to assign cells, which are close to each
other, to one worker (in the geometrical sense) then the data dependencies will “automatically” be approximately
balanced. However, if cells have a non uniform workload, or the problem has asymmetric data dependencies between
cells, we have to resort to graph methods in order to solve Eq. (16).

Graph methods don’t solve Eq. (16) directly, instead they consider the k-way partitioning problem. To
understand k-way partitioning, consider an undirected graph G = (V| E), with nodes V" and edges E. The nodes

16

V are split into k subsets {Q; ;?:1 with the constraint that the number of nodes should be roughly equal in each
subset, and the number of edges cut should be minimized. If we model the computational work by V and the
data dependencies in the domain by E, we see that this method will balance both the computational work and the
dependencies. Furthermore, if we instead consider a weighted graph G and add the constraint that the sum of all
weights should be roughly equal in all subsets @;, the method can then, by allowing different weights in the graph,
handle a non uniform workload.

6.5.2 Dynamic Load Balancing

In order to perform dynamic load balancing two components are needed. First, a way to evaluate the workload and
second, a way to decompose the data with the constraint to even out the workload. Using graph based methods
from Section 6.5.1 we can compute new constrained partitions of our computational domain. But the challenge is
to be able to evaluate the current and future workloads, and decide if load balancing is needed.

Figure 11: Example of the dual graph of a Building Cube mesh.

6.5.3 Workload Modeling

We model the workload by a weighted dual graph of the underlying Building Cube mesh (see Fig. 11). Let
G = (V, E) be the dual graph of the mesh, with nodes V' (one for each cube) and edges E (connecting two nodes
if their respective cubes share a common face), g be one of the partitions and let w; be the computational work
(weights) assigned to the graph. The workload of a partition ¢ € T is then defined as:

Wi(q) = Z W
wi;EwWq
Let Wayg be the average workload and Wy,.x be the maximum, then the graph is considered unbalanced if:

Wmax/Wavg > K

where k is the threshold value, determined depending on the problem at hand and/or machine characteristics.

To model a simulation’s workload we finally have to assign appropriate values to the graph’s weights w;. In
order to have a fine grained control over the workload, we let each node have j weights w;’, representing the
computational work for the given node, and we let each edge have k weights w;* representing communication costs

(data dependencies between graph nodes). The total weight for a given graph node is then given by,

wi:waj+wa’f. (17)
j k

17

Algorithm 5: Dynamic load balancing framework.

for each partition ¢ € T do
W(g) = Surew, (Z; 0l + Lpwit)
end
Winax «— ComputeGlobal M ax(W)
Wavg ¢— ComputeGlobal Average(W)
if Winaz/Wavng > K then
T’ +— ComputeNewPartitions(T)
S «— Construct Matriz(T")
G <— Solve MW BG(T")
T <— RedistributeData(G)
end

i

For a typical simulation, we assign the number of grid points in each cube to w;* and the size of the halo
(number of grid points to exchange between cubes) to w;* for each of the graph edges connected to node V;.
Additional weights can also be added to the edges, but in the present study we limit ourselves to modeling only
the halo exchange cost. We add an additional weight to the graph’s node to model the additional computational
cost of the immersed bodies. The additional immersed body cost w;? is added in Eq. (17), which is modeled as a
¥ - Nparticles- Here, 7y is a cost parameter for the particles and npgrticies is the number of particles in each cube.

The operations related to the immersed bodies involve computationally intensive operations of interpolation
and projection between the Eulerian and the Lagrangian meshes, and is done once every time-step. Unlike w;*,
which can be modeled as the number of cells in a cube, w;? cannot be modeled directly by the number of particles
in cube. This is because interpolation and projection of information involves operations in a small box of Eulerian
cells (n x n x n, where n depends on the discrete delta function) for each Lagragian particle. v = n® would be an
appropriate choice if interpolation and projection operations were carried out inside the pressure solver’s iterations
and in the Crank-Nicholson scheme’s iterative loop. But, the interpolation is carried out once every time-step
outside the pressure solver and the temporal integrator. Consequently, it is not clear what value of v would be
optimal. We choose v in the range of 1 — 4 to investigate an optimal value through a parametric study in sections
to follow.

The graph is finally partitioned by a graph partitioner, with the weights as an additional balancing constraint.
Once new partitions have been obtained intelligent remapping is used to assign new partitions in such a way that
data movement is kept at a minimum. This is achieved by solving the maximally weighted bipartite graph problem
(MWBG). A bipartite graph is one in which edges are weighted by the amount of data to be transferred with the
old partitions to the right and new partitions to the left. The MWBG problem is solved using a heuristic with a
linear runtime [34, 35]. The new load balanced partitions are obtained as illustrated in Fig. 15. The entire load
balancing framework is given in Alg. 5.

6.6 Performance Analysis

To evaluate the performance of the load balancer, we used CUBE to solve two different incompressible flow problems
on the K computer. And, the total execution time for performing a fixed number of time steps for both an unbal-
anced (no load balancing) and a balanced case (using load balancing) on various numbers of cores are compared.
For both problems we used the QUICK scheme for the convective terms and a geometric multigrid solver for the
pressure. Time integration was performed using a second order Crank—Nicholson method. The constraint based
immersed boundary method, presented in this work, was used to represent the complex geometries (Fig. 12b &
Fig. 12a) used in the present analysis.

The geometries for the numerical experiments, namely the landing gear and the vehicle, were chosen to represent
different types of immersed bodies over which + can be studied. Although both the geometries are relatively
complex, the overall particle density due of the two geometries are different. The particle density of the vehicle
geometry is 2.68 particles for every 100 Eulerian cells, while that for the landing gear is 1.16 particles. Here, particle
density is defined as the ratio of the number of Lagrangian particles and the number of Eulerian cells. Carrying
out the numerical experiments on these two geometries will be helpful in understanding how the cost parameter
varies across a range of immersed bodies.

18

6.6.1 Nose Landing Gear

The first problem is based on the nose landing gear (Fig. 12a) case from AIAA’s BANC series of benchmark
problems. Our setup uses a mesh consisting of 48255 cubes, subdivided into 16 cells in each axial direction, and
the landing gear consists of ~ 0.5M surface triangles, resulting in ~ 2.3M particles.

44

(a) The landing gear geometry. (b) The full vehicle model.

Figure 12: Geometries used during performance analysis.

In Fig. 13 we present the relative time required to perform one time-step. We define relative runtime per
time-step (RRPT) as the runtime per time-step (RPT) of a simulation normalized by runtime per time-step of
unbalance base case, for each core count. The RRPT measure is helpful in gauging improvement (or the lack of it)
of a load balanced simulation with respect to an unbalanced base case. From the results in Fig. 13 we can observe
that by using the load balancer the runtime can be reduced to as much as ~ 60% of the unbalanced case. As the
number of cores are increased, the gains of load balancing is less.

The load balancing, or more specifically the estimated workload is also sensitive to the parameter v which
controls how much more expensive it is to perform Lagrangian particle related operations compared to Eulerian
operations. We can see that for v = 1, the lack of runtime improvement in the balanced case is independent of
the core count. Except of the improvement at 4096 and 16384 cores, where the balanced case is slightly faster, the
balanced and the unbalanced cases consume similar time per time-step. When v = 2, the balanced case outperforms
the unbalanced case at all the core counts except at 256 and 32768 cores, while at 256 the runtime for balanced and
unbalanced is almost same, at 32768 the balanced case is slower than the unbalanced case. Unlike y =1 & v = 2,
the remaining two cost parameters, v = 3 & v = 4, the balanced cases outperform the unbalanced case for all the
core counts.

The estimated workload imbalance before and after the use of the load balancer is shown in Fig. 14. The
estimated imbalance before the load balancing is termed predicted imbalance, and the estimated imbalance after
load balancing is called actual imbalance. The first observation that can be made is that, with the exception of
v = 1, the predicted imbalance is typically greater than the actual imbalance when the load balancer is invoked.
The load balancer is invoked when the predicted imbalance is greater than the threshold value of 4%, i.e. k = 1.04.
When v = 1, for core count up to 2048, the predicted imbalance is less than 4%. As a result, the load balancer is
not invoked, thus the actual imbalance and predicted imbalance are equal.

Next, we find that there are a few cases in which the predicted imbalance is less than the actual imbalance, yet
the RRPT of these balanced cases is smaller than the base case. In other words, despite there being no reduction
in the actual imbalance compared to the predicted imbalance, we see a speed-up in the runtime of the balanced
case. Examples of these cases are (y = 3, core = 256), (y = 2, = 512), and (v = 1, core = 4096) in Figs13 &14.
The likely reason for this unusual behavior is our choice of the definition of workload imbalance, Wiax/Wayvg > k.
This definition of workload imbalance relies entirely on relative difference between maximum workload (Wi,ax) and
average workload (W,vg) and makes no consideration of the standard deviation of the workload of the system. For

19

& 2+ base 1
£ y=1==
E150 A
. '
o, —
o1 y=3 == |
R |1
g
£0.5
E
' S S N S N
AN T S
cores

Figure 13: Realtive runtime per time-step for the load balanced and unbalanced cases for the nose landing gear.

45 T T T T T
@40_Pre.fy:1: Pre. v =
§35 - Bal. y =1 === Bal. v=
=
§307Pre.7:2:| Pre. v =
© 25
= Bal. y=2 Bal. v =
920 | al. v === Bal. v
S15}

810_
Tol il
oL

Figure 14: Comparison of estimated workload imbalance before and after load balancing for the landing gear
geometry. The imbalance data before the load balancing is shown in bars filled with white shade and labeled "Pre.’,
and imbalance data after load balancing is shown in bars shaded in non white colors and labeled 'Bal.’

20

distributions with large standard deviation in workload distribution prior to load balancing, there is a large gap
between maximum workload and minimum workload. And, there could be a large difference between maximum
workload and median workload. For such a distribution there is scope for workload optimization through load
balancing and overall speed-up in runtime. The data redistribution algorithm used in the load balancer always
results in a ‘balanced-distribution’ whose standard deviation in workload is small. But, it does not guarantee that
maximum workload will be close to the average. As a result, there could be situations where the standard deviation
in the workload has been reduced by the load balancer, but the maximum workload has not changed much (or may
even have increased). Because the standard deviation has reduced, there could be speed-up in the runtime of the
balanced case yet the actual imbalance based on our definition of imbalance may remain unchanged.

Lastly, another interesting observation we can make from the imbalance data in Fig. 14 is the trend of the
predicted imbalance. The predicted imbalance progressively increases with core count. This trend implies that there
is much scope for improvement the runtime of the base case through load balancing as the core count is increased.
Yet, in Fig. 13 we see that the speed-up in runtime for the balanced case progressively decreases with increasing core
count. This counter intuitive behavior is likely due to the lack of workload model for Lagrangian domain particle
communication for imbalance estimation and for data redistribution by the load balancer. When the core count is
low, overall number of partitions cutting the Lagrangian domain and the resulting communication cost would be
small compared computational cost of Lagrangian operations. As the core count is increased, progressively more
and more partitions cut the Lagrangian domain increasing the communication cost while the cost of Lagrangian
computations on each partition decreases, which in turn increases relative cost of the Lagrangian communication.
Modeling the workload due to communication of Lagrangian particles is important when core count is high. Thus,
when the core count is high, where cost of communication dominates (Lagrangian or otherwise), data redistribution
by the current load balancer can result in a distribution whose communication pattern may not be very different
from that of the unbalanced distribution. As a result, the runtime, which is now dominated by communication
costs, of the balanced case may remain unchanged because the workload of Lagrangian communication was not
modeled.

6.6.2 Full Vehicle Model

We consider the flow past a full vehicle model (see Fig. 12b) to evaluate the performance of the load balancer for
geometries that result in higher particle density. The numerical methods used for this problem are identical to the
ones used for the landing gear benchmark. We use a mesh consisting of 38306 cubes with 162 cells per cube, and
with a vehicle model consisting of ~ 12.5M surface triangles, resulting in ~ 4.2M particles.

Relative runtime per time-step data are presented in Fig. 16. It is seen that for all the chosen values of 7,
1 —4, the load balanced cases perform better than the unbalanced case. For the cases with 256 cores, the runtime
reduced to = 40% or less of the unbalanced case when v was set to 2, 3 or 4. This improvement in the runtime
gradually decreases with increasing core count. Unlike the landing gear case, in which a consistent improvement
in runtime was seen only for v = 3 and v = 4, an improvement is seen for all values of « for the vehicle case.
Although the trend may be a subtle one, it can seen that v = 3 and 7 = 4 more consistently result in a faster
runtime compared to the other values of . Thus, with regards to the optimal choice of 7, based on the trend
observed for the landing gear and the vehicle model cases, v = 3 or v = 4 are reasonable first approximations.

The estimated workload imbalance data for the full vehicle case is presented in Fig. 17. It can be seen that
the actual imbalance is consistently smaller than predicted imbalance for every all v and core count. This unlike
the landing gear case in which we found that for a few case, the actual imbalance was greater than the predicted
imbalance. This difference in trend, with respect to predicted and actual imbalance, between vehicle and landing
gear could be due to particle density and volumetric distribution of particles. The particle density, of landing gear
is 0.0116 and that of the full vehicle is 0.0268. The particle density of the vehicle is & 2.5 times that of the landing
gear case. Owing to a greater volumetric space occupied by the vehicle model (as opposed to the smaller spatial
volume occupied by the landing gear), there is greater volumetric spread of the particles relative to the mesh. A
consequence of these two factors could be a workload distribution with a small standard deviation from the average
workload which ensures that the actual imbalance is always smaller that the predicted imbalance. The trend of
predicted imbalance, for all v, with core count is identical to that of the landing gear case. The reason for this
trend is already discussed in detail in the previous subsection.

21

(a) Unbalanced (Z-ordering). (b) Balanced wrt. geometry.

Figure 15: Load balancing wrt. immersed geometry and fluid cells, colored by MPI rank.

2 21 base E
%
d y=1c=—=
E150 .
5‘ ’)’— —/
a, =3 ==
o 1 v=3 B
£ 744
=]
£0.5
E
0

N o
& F O
NS

N > (8}
o N O
PSRN

q)Q
cores
Figure 16: A comparison of relative runtime per time-step of the load balanced and unbalanced cases of the full
vehicle simulation at various core counts.

140 — . ‘ ‘ ‘ . —
@1207Pre.7:1'_1 Pre. y=3—3 1
1007Ba1.’y:1: Bal. v =3 mmmm |
80*Pre.’yz2: Pre. vy =41)
Bal. vy =2 === Bal. 7+ 4 mse=m

=
(a)
T

imbalance percentag
o
S
T

IS
=1
==

N o)
D Ge)) Vv > o
Q8 Vi O) S %) \
,\,Q \) O “9’
cores

Figure 17: Comparison of estimated workload imbalance before and after load balancing for the landing gear
geometry. The imbalance data before the load balancing is shown in bars filled with white shade and labeled "Pre.’,
and imbalance data after load balancing is shown in bars shaded in non white colors and labeled 'Bal.’.

22

7 Parallel Scalability

The parallel scalability and computational efficiency of a software environment depends on the numerical algo-
rithms involved as well as the design and implementation of each component of the software. In previous sec-
tions we have discussed the various components of the software, namely halo exchange, overlapped time-stepping,
Lagrangian-Eulerian framework, etc., that we have attempted to optimize. While the gain through the optimization
of individual components may not be necessarily high, the small gain in each of the components contributes to the
overall computational efficiency and parallel scalability of the software. In this section we present results of strong
scaling analysis of CUBE with and without immersed geometries. In order to do this, we carried out simulations
of flow around a Full-vehicle (Fig. 12b). The vehicle geometry was chosen because it is relatively large, dense
and has a complex geometry, representative of geometries likely to be used in large scale simulations. Processor
cores ranging from 1024 to 65536 were used to carry out the simulations to analyze the cost of the immersed body,
and the scalability of CUBE. The mesh used for these simulations had 131,072 cubes, with 163 cells in each cube.
QUICK scheme was used for the convection term and a geometric multigrid solver for the pressure. The maximum
number iterations for the iterative conjugate gradient solver on the coarsest level was fixed at 10 and the maximum
number of v cycles were set to 50. A motion was imposed on the vehicle by setting the axial velocity of the vehicle
to 1m/s. The magnitude of the vehicle’s velocity is inconsequential because for any non-zero velocity of the vehicle,
the Lagrangian particle MPI communicator is initiated. The particle communicator is not necessary when the
vehicle is stationary. A non-stationary configuration of the vehicle is chosen for the strong scaling analysis because
it is the computationally more expensive and severe IB simulation configuration.

Two sets of simulations were carried out, first without any immersed geometry and the second with the immersed
geometry. These two sets of simulations will enable us to compare the strong scaling of the CUBE with and without
the immersed geometry. The chosen geometry and mesh resulted in 5,097,567 Lagrangian particles. In this
subsection, we shall refer to simulations without immersed geometry as ‘channel’ simulations (implying channel
flow simulations), and the one with the immersed geometry as the ‘IB’ simulation. In order to trigger the pressure
solver in the channel flow simulation a no-slip boundary condition was imposed on the computational domain walls
in the y direction. Slip boundary conditions were used along z-direction, and inflow-outflow boundary condition
along x-direction. The same set of boundary conditions were used for the simulations with the immersed geometry.

The strong scaling results of the channel flow simulations and the simulations with moving immersed geometry
are shown in Fig. 18. Where, the speed up of cube is compared with the ideal speed up compared to the run-time
of base case (1024 cores case). CUBE shows good scalability and parallel efficiency all the way up to 65536 cores for
the both channel and IB cases. Furthermore, both channel and IB show very similar speed-up trend with the core
count, which implies that the underlying scalability of the solver is not strongly influenced by the introduction of
a geometry into the solver. This can also be seen in Fig. 18b, which is described next. The relative run-time per
time-step is plotted in Fig. 18b. We define relative run-time per time-step as the run-time per time-step (RPT)
of a simulation scaled by that of the corresponding channel simulation. For example, for any core count, say 4096,
RPT of the IB simulation as well as that of channel simulation is normalized by the RPT of channel simulation of
the 4096 cores case. This means that relative RPT will always be 1 for the channel case, as seen in Fig. 18b. We
can make two observations from this plot. First, scalability of CUBE is not strongly influenced by the inclusion
of an immersed geometry in the solver. Second, the plot reveals the relative cost of the inclusion of a complex
geometry such as a full vehicle geometry. We find that the additional cost of inclusion of the IB varies between
10% and 25%, which on average is around 15% which makes the simulation of large-scale industrial applications
in CUBE viable.

8 Industrial applications

8.1 Flow around a vehicle in turning maneuver

In this section we proceed to demonstrate the capability of CUBE to simulate complex geometries undergoing
complex motion. For this demonstration, we consider the flow around a vehicle in a turning maneuver. For this
case a full-vehicle “dirty” CAD geometry is used. The CAD geometry is not subjected any special surface treatment
to fix surface imperfections. All the intricate details of the vehicle geometry, except passenger seats and steering
wheel, are retained. The passenger seats were removed to avoid generation of fine mesh inside the vehicle where
the flow is not of interest.

The aerodynamic performance and stability a vehicle is strongly influenced by the crosswinds during cruise

23

[N}

100 T T T T T] J T T
] 53 Channe] =
] 27
] 5.5 IB —= |
o, b
2 5
0 4 a1
—%1 ; Ideal] QE’
»n 1 B
Channel —5— | 8.5
B | T
1 1 | 1 1 1 O N S o
> ® o > > © v e S 2
> NS © SV P Q P v S Q Q)) A «
& Y @ S S S R S YRR S
cores cores
(a) Strong scalability (b) Relative runtime

Figure 18: Strong scaling of CUBE with and without an immersed geometry (a). Comparison of the relative runtime
per time-step of IB simulation with that of a corresponding Channel simulation (b). The runtime per time-step of
each core cound case is normalized by that of the corresponding Channel case.

and while in turning maneuvers [36, 37]. It is difficult to simulate such real-world flow scenarios in wind tunnel
experiments [38, 39]. Furthermore, it is also difficult to measure unsteady aerodynamic forces in wind tunnel
experiments. Thus, it is desirable for numerical methods and frameworks to be able to efficiently and accurately
simulate such flow conditions. To this end, here, we present simulation of a vehicle undergoing a turning motion,
including wheel rotation and steer, chassis roll, turn and pitch, in a uniform flow.

The geometric extents of the vehicle are as follows: wheel base ~ 2.4 m, ground height ~ 1.5 m, width in
span-wise direction ~ 1.7 m. The computational domain extended from —25 m to 75 m in the axial direction (z),
—25 m to 25 m in the span-wise direction (y) and 0 to 25 m in the vertical direction (z). The mesh size on the finest
level near the vehicle surface was Ax |,= 6.1 mm. The mesh used for the simulation is shown in Fig. la. Slip
boundary condition was imposed on the boundaries along vertical and span-wise directions, and inflow, outflow
boundary conditions at 2~ and z T, respectively. The viscosity and density of the fluid were 1.82 x 10~ kg/(s'm)
and 1 kg/m3, respectively. The vehicle is assumed to be moving at 13.89 m/s (50 kmph) against an oncoming
wind of 28.78 m/s (100 kmph). Thus, a uniform flow of 41.67 m/s is specified as the inflow condition at the =
boundary. An outflow boundary condition used at the ™ boundary. A slip boundary condition is used on the
boundaries along vy & z directions. Reynolds number based on the height of the vehicle is 3.435 x 108,

The vehicle motion is divided in time into two types of motion. First, from ¢t = 0 s to ¢ = 0.3 s the vehicle is
assumed to be in a rectilinear motion, with a wheel rotation to match the vehicle speed of 13.89 m/s. Next, for
t > 0.3 s the turning maneuver is imposed on the vehicle. A vehicle in a turning maneuver involves the following:
Rotation of the chassis and wheels about the vertical axis (z-axis), roll of the chassis about the longitudinal axis
(z-axis), additional rotation of the front wheels about the vertical axis which causes the vehicle turn. The wheels
undergo rotation about the lateral axis (y-axis) when the vehicle is under motion relative to the fluid. The rotation
of the vehicle and the wheels are imposed through angular velocities along respective directions. The angular
velocity of the chassis is given by w™ = (wg", Wi, w") tanh (a(t — 0.3)), the factor tanh (a(t —0.3)) is used to
gradually impose the rotation instead of an impulsively start and a governs the rate of change of the angular
velocity. For our simulation we use w®® = (0.5,0,0.025) tanh (20(¢ — 0.3)) rad/s. Similarly, w®" = (w;"h,w;"h,w;"h)
is the angular velocity of the wheels. The wheel rotation about the lateral axis is imposed impulsively at the start
of the simulation (¢ = 0 s) with w;j’h = 51.44 rad/s. The angular velocity of the wheel turn of the front wheels is
specified as w?" = 0.5tanh (a(t — 0.3)). And, w?" = 0 for all the wheels and w?" = 0 for the rear wheels. It is
to be noted that no rectilinear motion is directly imposed on the vehicle, linear motion of the vehicle is indirectly
specified through the inflow condition which results in a relative velocity between the vehicle and the fluid that is
equivalent to the relative velocity due to vehicle motion. Only rotational, angular velocities are directly imposed
on the vehicle. This configuration is chosen to reduce size of the numerical mesh. By restricting the linear motion

24

(e) t=0.54s. (f) t=10.60s. (g) t =0.66 s. (h) t=0.72s.

Figure 19: Velocity magnitude visualized on an zy plane at z = 0.25 m from the simulation of flow around a vehicle
in a turning maneuver.

of the vehicle, the fine mesh is generated only in a small region around the vehicle. As the CUBE does not have the
capability to adaptively refine mesh as the immersed body moves, generating fine mesh around the vehicle path
would result in an excessively large mesh.

Visualization of the results from the simulation are presented in Figs. 19 &20. The velocity magnitude on
a horizontal plane (xy plane) at z = 0.25 m is plotted in Fig. 19. During visualization, the vehicle chassis is
box-sliced at y = 0 such that chassis is visible only for y > 0. This enables the visualization of the front left
wheel’s turning motion, as shown in Fig. 19. It can be seen in the figure that the vehicle and the wheel’s turning
begins at t = 0.3 s and proceeds until the end of the simulation. As the wheels turn and lose alignment with the
chassis (around t = 0.36 s in Fig. 19), a more pronounced separation flow is caused around the wheels compared to
relatively less separated flow around the chassis. This is more evident in Fig. 20a — 20d, in which iso-surfaces of the
vorticity magnitude is shown at four successive instants of the vehicle’s turn. The reason for this more pronounced
separation near the front left wheel is due to two likely causes. First, as the wheel turns, it looses alignment with
the chassis and projects out. Second, interaction between a rotating wheel and the oncoming fluid could interact
turbulently leading to the separation. In the sequence of images in Fig. 19 it can be seen that at all instances of
the turn, the separation is actually induced by the wheel, not by front bumper.

The forces on the vehicle during the turning maneuver is plotted in Fig. 20e. Forces normalized by the mean
axial force, F = F /F3v9, are plotted in the figure. The lateral force Fj oscillates about a zero mean until the
beginning of the turning motion after which an approximate linear increase with time is seen. The rate of change
of the lateral force is as expected. but the lateral force approximately equal in magnitude to the axial force despite
the small angle of turn. Furthermore, it is interesting to note that the rate of change of axial and lateral forces
during the turn are very different. The rate of change of the axial force is very small and consequently increase in
the force due to the turn is very small compared to the increase in the lateral force. Also, the axial force sees a
more rapid increase towards the end of the turn (between ¢ = 0.65 s to ¢t = 0.72 s), which implies that the axial
force is severely affected when the turn angle is greater than a certain critical value. If the vehicle continues to turn
in an axially dominant wind environment, the axial force could increase more rapidly affecting vehicle’s stability.

9 Conclusions

In this work we have presented CUBE, a highly scalable framework for large-scale industrial simulations. A
Lagrangian-Eulerian based constraint immersed boundary method adapted to the BCM framework was presented.
The immersed boundary method is implemented such that it almost entirely eliminates pre-processing of input
CAD geometries and allows that usage of ‘dirty’ CAD data, which was demonstrated in Section8. An Lagrangian
data structure, the building cube Lagrangian, that enables efficient Lagrangian-Eulerian interpolation was pre-
sented. A spatial decomposition strategy of parallelization for the Lagrangian-Eulerian system in CUBE was used
in this work.

25

02 04 06 08
t (s)

(e) Aeorodynamic forces

(c) t=10.60 s.

Figure 20: Iso-surface of vorticity magnitude, coloured by velocity magnitude, of flow around a turning vehicle at
different instants of the turn (a)—(d), and aerodynamic forces (e).

Various optimization strategies, overlapped halo exchange, overlapped time stepping, I/O strategies, incor-
porated in CUBE were presented. A multi-threaded halo exchange method was presented and a closely related
overlapped time-stepping scheme was also presented. Initial test of overlapped time stepping scheme showed a
gain by as much as factor 1.6 in runtime. Through MPI I/O we were able to achieve a throughput of 10 GB/s for
read performance on the K computer for file sizes of 251 and 618 GB. Through a wavelet based data compression
algorithm, a compression ratio of 15 was achieved on CUBE. A multi-constraint based load balancing framework for
the Lagrangian-Eulerian system was presented. Upto 50% gain in runtime was achieved through the load balancer.
Despite the large gains in runtime for most cases, for some cases when core count was large, lack of workload
modeling for the Lagrangian communication lead to a significant drop in the gain in speedup. Lastly, a strong
scaling analysis of CUBE was presented where we show good scalability upto 65536 cores.

Future work includes further optimization of communication patterns, especially on emerging hardware (e.g.
massively parallel multicore processors), tuning and improved workload modeling in the load balancing framework,
and further development of the numerical methods to extend the framework’s multiphysics capabilities.

Acknowledgments

This research was supported by MEXT as “Priority Issue on Post-K computer” (Development of innovative de-
sign and production processes) and used computational resources of the K computer provided by the RIKEN
Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp150284
and hp160232).

References

[1] K. Nakahashi, Building-Cube Method for Flow Problems with Broadband Characteristic Length, in: Compu-
tational Fluid Dynamics 2002, Springer Berlin Heidelberg, 2003, pp. 77-81.

[2] A. A. Shirgaonkar, M. A. Maclver, N. A. Patankar, A new mathematical formulation and fast algorithm for
fully resolved simulation of self-propulsion, J. Comput. Phys. 228 (7) (2009) 2366 — 2390.

26

3]

[9]

[10]

[11]

A. P. S. Bhalla, R. Bale, B. E. Griffith, N. A. Patankar, A unified mathematical framework and an adaptive
numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys.
250 (2013) 446 — 476.

N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, T.-W. Pan, A new formulation of the distributed
Lagrange multiplier /fictitious domain method for particulate flows, International Journal of Multiphase Flow
26 (9) (2000) 1509-1524. doi:http://doi.org/10.1016/S0301-9322(99)00100-7.

R. Mittal, G. Taccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239-261.

C. S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479-517. doi:10.1017/
S50962492902000077.

R. Glowinski, T.--W. Pan, T. I. Hesla, D. D. Joseph, A distributed Lagrange multiplier/fictitious domain
method for particulate flows, International Journal of Multiphase Flow 25 (5) (1999) 755-794. doi:http:
//doi.org/10.1016/50301-9322(98)00048-2.

R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, A. von Loebbecke, A versatile sharp interface
immersed boundary method for incompressible flows with complex boundaries, Journal of computational
physics 227 (10) (2008) 4825-4852.

K. Onishi, S. Obayashi, K. Nakahashi, M. Tsubokura, Use of the immersed boundary method within the
building cube method and its application to real vehicle cad data, ATAA paper ATAA-2013-2713.

Y.-H. Tseng, J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal
of computational physics 192 (2) (2003) 593-623.

E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods
for three-dimensional complex flow simulations, Journal of Computational Physics 161 (1) (2000) 35 — 60.
doi:http://dx.doi.org/10.1006/jcph.2000.6484.

L. Oliker, R. Biswas, PLUM : Parallel Load Balancing for Adaptive Unstructured Meshes, Journal of Parallel
and Distributed Computing 52 (2) (1998) 150-177. doi:http://dx.doi.org/10.1006/jpdc.1998.1469.
URL http://www.sciencedirect.com/science/article/pii/S0743731598914691

X. Yang, X. Zhang, Z. Li, G.-W. He, A smoothing technique for discrete delta functions with application
to immersed boundary method in moving boundary simulations, Journal of Computational Physics 228 (20)
(2009) 7821-7836. doi:10.1016/j.jcp.2009.07.023.

B. E. Griffith, C. S. Peskin, On the order of accuracy of the immersed boundary method: Higher order
convergence rates for sufficiently smooth problems, Journal of Computational Physics 208 (1) (2005) 75-105.
do0i:10.1016/5.jcp.2005.02.011.

A. J. Chorin, On the convergence of discrete approximations to the navier-stokes equations, Mathematics of
computation 23 (106) (1969) 341-353.

M. Bozkurttas, H. Dong, V. Seshadri, R. Mittal, F. Najjar, Towards Numerical Simulation of Flapping Foils
on Fixed Cartesian Grids, in: 43rd ATAA Aerospace Sciences Meetings, American Institute of Aeronautics
and Astronautics, 2005.

R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, Dover Civil and Mechanical Engineering Series,
Dover Publications, 2005.
URL https://books.google.co.jp/books?id=UUrOmD8niUQC

T. Johnson, V. Patel, Flow past a sphere up to a reynolds number of 300, Journal of Fluid Mechanics 378
(1999) 19-70.

S. Taneda, Experimental investigation of the wake behind a sphere at low reynolds numbers, Journal of the
Physical Society of Japan 11 (10) (1956) 1104-1108.

S. Taneda, H. Honji, Unsteady flow past a flat plate normal to the direction of motion, Journal of the Physical
Society of Japan 30 (1) (1971) 262-272. doi:10.1143/JPSJ.30.262.

27

http://dx.doi.org/http://doi.org/10.1016/S0301-9322(99)00100-7
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/http://doi.org/10.1016/S0301-9322(98)00048-2
http://dx.doi.org/http://doi.org/10.1016/S0301-9322(98)00048-2
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.2000.6484
http://www.sciencedirect.com/science/article/pii/S0743731598914691
http://dx.doi.org/http://dx.doi.org/10.1006/jpdc.1998.1469
http://www.sciencedirect.com/science/article/pii/S0743731598914691
http://dx.doi.org/10.1016/j.jcp.2009.07.023
http://dx.doi.org/10.1016/j.jcp.2005.02.011
https://books.google.co.jp/books?id=UUrOmD8niUQC
https://books.google.co.jp/books?id=UUrOmD8niUQC
http://dx.doi.org/10.1143/JPSJ.30.262

[21]

[22]

[23]

P. Koumoutsakos, D. Shiels, Simulations of the viscous flow normal to an impulsively started and uniformly
accelerated flat plate, Journal of Fluid Mechanics 328 (1996) 177-227. doi:10.1017/80022112096008695.

M. Alnss, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes, G. Wells,
The fenics project version 1.5, Archive of Numerical Software 3 (100). doi:10.11588/ans.2015.100.20553.

H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics
using object-oriented techniques, Computers in Physics 12 (6) (1998) 620-631. doi:http://dx.doi.org/10.
1063/1.168744.

URL http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744

E. F. V. de Velde, Concurrent Scientific Computing, Vol. 16 of Texts in Applied Mathematics, Springer-Verlag,
New York, NY, USA, 1994.

M. Bader, Space-Filling Curves, Vol. 9 of Texts in Computational Science and Engineering, Springer Berlin
Heidelberg, 2013.

K. Schloegel, G. Karypis, V. Kumar, Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes, J.
Parallel. Distr. Com. 47 (2) (1997) 109-124.

C. Kuan, J. Sim, E. Hassan, W. Shyy, Parallel eulerian-lagrangian method with adaptive mesh refinement
for moving boundary computation, in: 51st ATAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition, 2013, p. 370.

E. Givelberg, K. Yelick, Distributed Immersed Boundary Simulation in Titanium, STAM J. Sci. Comput. 28 (4)
(2006) 1361-1378. doi:10.1137/040618734.

C. Olschanowsky, M. Strout, S. Guzik, J. Loffeld, J. Hittinger, A Study on Balancing Parallelism, Data
Locality, and Recomputation in Existing PDE Solvers, SC "14 Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (2014) 793-804doi:10.1109/SC.2014.70.

R. Sakai, D. Sasaki, K. Nakahashi, Data compression of large-scale flow computation using discrete wavelet
transform, in: Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, 2010, pp. —
URL http://dx.doi.org/10.2514/6.2010-1325

J.-L. Gailly, M. Adler, Zlib compression library (2004).

H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna, Y. Yao, A Multiplatform
Study of I/O Behavior on Petascale Supercomputers, in: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing - HPDC ’15, ACM Press, New York, New York, USA,
2015, pp. 33—44. doi:10.1145/2749246.2749269.

URL http://dl.acm.org/citation.cfm?doid=2749246.2749269

H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J. Whitlock, N. Max, A contract-based
system for large data visualization, in: Proceedings of IEEE Visualization 2005, 2005, pp. 190-198.

N. Jansson, J. Hoffman, J. Jansson, Framework for Massively Parallel Adaptive Finite Element Computational
Fluid Dynamics on Tetrahedral Meshes, STAM J. Sci. Comput. 34 (1) (2012) C24-C41.

N. Jansson, High performance adaptive finite element methods: With applications in aerodynamics, Ph.D.
thesis, KTH Royal Institute of Technology (2013).

K. R. Cooper, S. Watkins, The Unsteady Wind Environment of Road Vehicles, Part One: A Review of the
On-road Turbulent Wind Environment, in: SAE Technical Paper, SAE International, 2007. doi:10.4271/
2007-01-1236.

URL http://dx.doi.org/10.4271/2007-01-1236

K. R. Cooper, S. Watkins, The Unsteady Wind Environment of Road Vehicles, Part One: A Review of the
On-road Turbulent Wind Environment, in: SAE Technical Paper, SAE International, 2007. doi:10.4271/
2007-01-1236.

URL http://dx.doi.org/10.4271/2007-01-1236

28

http://dx.doi.org/10.1017/S0022112096008695
http://dx.doi.org/10.11588/ans.2015.100.20553
http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744
http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744
http://dx.doi.org/http://dx.doi.org/10.1063/1.168744
http://dx.doi.org/http://dx.doi.org/10.1063/1.168744
http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744
http://dx.doi.org/10.1137/040618734
http://dx.doi.org/10.1109/SC.2014.70
http://dx.doi.org/10.2514/6.2010-1325
http://dx.doi.org/10.2514/6.2010-1325
http://dx.doi.org/10.2514/6.2010-1325
http://dl.acm.org/citation.cfm?doid=2749246.2749269
http://dl.acm.org/citation.cfm?doid=2749246.2749269
http://dx.doi.org/10.1145/2749246.2749269
http://dl.acm.org/citation.cfm?doid=2749246.2749269
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236
http://dx.doi.org/10.4271/2007-01-1236

[38] A.R. Macklin, K. P. Garry, J. P. Howell, Comparing Static and Dynamic Testing Techniques for the Crosswind
Sensitivity of Road Vehicles, in: SAE Technical Paper, SAE International, 1996. doi:10.4271/960674.
URL http://dx.doi.org/10.4271/960674

[39] A.R. Macklin, K. P. Garry, J. P. Howell, Comparing Static and Dynamic Testing Techniques for the Crosswind
Sensitivity of Road Vehicles, in: SAE Technical Paper, SAE International, 1996. doi:10.4271/960674.
URL http://dx.doi.org/10.4271/960674

29

http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674
http://dx.doi.org/10.4271/960674

	1 Introduction
	2 Mathematical Framework
	2.1 Lagrangian–Eulerian approach
	2.2 Building Cube Method
	2.3 Lagrangian Data Structure
	2.4 Lagrangian-Eulerian Interaction

	3 Numerical algorithm
	4 Validation
	4.1 Flow around a sphere
	4.2 Impulsively started plate

	5 Software Environment
	5.1 Object-Oriented abstraction

	6 Enabling Large Scale Simulations
	6.1 Data Decomposition
	6.2 Lagrangian domain decomposition
	6.3 Halo-exchange
	6.3.1 Overlapped time-stepping

	6.4 I/O strategies
	6.4.1 Data compression

	6.5 Load Balancing
	6.5.1 Static Load Balancing
	6.5.2 Dynamic Load Balancing
	6.5.3 Workload Modeling

	6.6 Performance Analysis
	6.6.1 Nose Landing Gear
	6.6.2 Full Vehicle Model

	7 Parallel Scalability
	8 Industrial applications
	8.1 Flow around a vehicle in turning maneuver

	9 Conclusions

