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Abstract

Computational Fluid and Particle Dynamics (CFPD) simulations are of paramount importance for studying and improving drug
effectiveness. Computational requirements of CFPD codes demand high-performance computing (HPC) resources. For these reasons we
introduce and evaluate in this paper system software techniques for improving performance and tolerate load imbalance on a state-of-the-art
production CFPD code. We demonstrate benefits of these techniques on Intel-, IBM-, and Arm-based HPC technologies ranked in the
Top500 supercomputers, showing the importance of using mechanisms applied at runtime to improve the performance independently of
the underlying architecture. We run a real CFPD simulation of particle tracking on the human respiratory system, showing performance
improvements of up to 2x, across different architectures, while applying runtime techniques and keeping constant the computational

resources.

I. INTRODUCTION AND RELATED WORK

Aerosolized delivery of drugs to the lungs is used to treat
some respiratory diseases, such as asthma, chronic obstruc-
tive pulmonary disease, cystic fibrosis, and pulmonary in-
fections. However, it is well known that a significant fraction
of the inhaled medicine is lost in the extrathoracic airways.

During the last decade an exponential growth in the ap-
plication of Computational Fluid-Particle Dynamics (CFPD)
methods in this area has been observed, [34, 12]. CFPD
simulations can be used to help scientists to reproduce and
reduce the lost aerosol fraction and improve the overall
performance of the drug [18} [13].

Validated CFPD methods offer a powerful tool to predict
the airflow and localized deposition of drug particles in
the respiratory airways, to improve our understanding of
the flow and aerosol dynamics as well as optimize inhaler
therapies. Moreover, a model of lung inflammation pro-
duced by pollutant particle inhalation is critical to predict-
ing therapeutic responses related to the chronic obstructive
pulmonary disease. Deposition maps generated via CFPD
simulations and their integration into clinical practice is an
essential point to develop such a model. The understanding
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of this kind of dynamics can give hope for improving the
living conditions of affected patients and reducing the costs
associated with hospitalizations.

Accurate and efficient numerical simulations tracking the
particles entering the respiratory system pose a challenge
due to the complexities associated with the airway geom-
etry, the flow dynamics, and aerosol physics. Due to the
complexity and computational requirements of the models
simulating such phenomena, the use of large-scale compu-
tational resources paired with highly optimized simulation
codes is of paramount importance.

A successful study of aerosol dynamic strongly depends
on two challenges: on the one hand, we have the physics of
the problem, that needs to be translated into more and more
precise models increasing the accuracy of the simulations;
on the other hand, we have the computational part of the
problem, that requires the development of more efficient
codes able to exploit massively parallel supercomputers
reducing the simulation time.

Looking closer at the computational challenge, we can
note that, not only the number of computational resources
available to run CFPD simulations is growing but also the
diversity of hardware where simulations are performed is
increasing (e.g., special purpose architectures and emerging
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technologies). As proven by previous studies on other fluid
dynamics codes [4} 6], it is essential to be able to efficiently
exploit state-of-the-art architectures maintaining at the same
time correctness and portability of the code.

Given these observations, we consider in this paper
Alya [35], a simulation code for high-performance com-
putational mechanics developed at the Barcelona Supercom-
puting Center (BSC). Alya is part of the Unified European
Applications Benchmark Suite (UEABS), a selection of 12
codes scalable, portable, and relevant for the scientific com-
munity. Alya is also currently adopted by industrial players,
such as Iberdrola and Vortex for wind farms simulations
and Medtronic for medical device and bio-mechanics exper-
iments.

To deep dive into the computational challenge, we test
Alya on three state-of-the-art HPC technologies ranked in
the Top500 list of November 2018: i) MareNostrum4, based
on the latest Intel Skylake CPU; ii) IBM Power9, powered
by the same IBM architecture driving Summit, the fastest
supercomputer according to the Top500 list of November
2018 [33]; iii) Dibona, a production-ready cluster based on
Marvell ThunderX2 CPU, the same Arm-based architecture
sitting inside the Astra supercomputer, the first Arm-based
supercomputer entering the Top500 list. A performance
evaluation of Dibona can be found in [2].

The efficient execution and portability of codes like
Alya on modern HPC architecture such as MareNostrum4,
Power9, and Dibona are of fundamental importance. There
have been previous evaluations of relevant scientific ap-
plications on emerging HPC platforms targeting both per-
formance improvement [1, 30} [19, 28| [7] and energy reduc-
tion [8, 24], however, we want to stress the fact that we
study in our paper a production code evaluating a real
use case on state-of-the-art HPC technologies ranked in the
Top500 list and targeting code performance and portability.

As already mentioned, the complexity and the size of
production CFPD codes do not allow machine dependent
fine-tuning of the applications for each case study and each
platform. For this reason we propose here two software
techniques: multidependences, for improving performance
avoiding atomic operations while running on a shared mem-
ory system [36] and DLB, a dynamic load balancing library
able to solve load imbalance within a parallel system by
redistributing the computational resources in order to mini-
mize the inefficiency [15, 9].

The problem of homogeneously distribute the workload
among computational nodes can be tackled using static or
dynamic strategies and it is well studied in the literature.
The static workload balance is handled in our case by the
graph and mesh partitioning library Metis [22]. Some ex-
amples of dynamic strategies to handle load balance by
redistributing the workload at runtime are PAMPA, a util-
ity for redistributing mesh based arrays [23] and Adaptive
MPI (AMPI), an object-oriented parallel programming lan-

guage that migrates objects to dynamically achieve load
balance [3]. However, we chose DLB for this study for two
reasons: we avoid the costly reallocation of data in favour
of the reallocation of idle resources. Also, DLB is a library
that plugs directly into OpenMP and MP]I, both well known
and community supported industrial standards, while the
previous approaches require specific programming environ-
ments.

The idea is to demonstrate how tools such as the mul-
tidependences and DLB, deployed at the level of system
software, require minimal or even no changes in the source
code, boosting the performance without harming portabil-
ity nor the semantic of the source code. On the longer term,
we believe tools like the multidependences and DLB will
allow programmers to survive to the waves of architectural
novelties without drowning into fine-tuning optimizations
of the code.

Within the code of Alya, we already tested runtime mech-
anisms to mitigate load imbalance penalties on an Intel-
based HPC cluster [16]]. This work is an extension of our
previous work [17]. While the underlying runtime tech-
niques are substantially the same in the two papers, we
include in this extension a more extensive evaluation, in-
cluding state-of-the-art HPC CPU architectures. We re-
placed the performance measured on the Arm-based SoC,
Cavium ThunderX, with ThunderX2, the latest CPU by
Marvelﬂ We also complement our experimental data with
measurements on the latest IBM Power9 CPU.

The main contributions of this paper are: i) we provide
the evaluation of a production use case of real biological
HPC simulation on three HPC clusters, based on different
architectures, Intel x86, IBM Power9, and Marvell Arm-
based ThunderX2. ii) we introduce programming models
techniques applied to a production simulation that show
benefits on current and emerging HPC architectures.

The remaining of this document is organized as follows:
in Section [[] we introduce the architectural challenge includ-
ing details of the three HPC clusters on which we performed
our experiments. Section [lll is dedicated to the scientific
challenge: we introduce here the Alya simulation infras-
tructure as well as its computational profiling. Section
introduces the computational challenge of our work, i.e.,
the key ideas of the runtime techniques that we evaluate. In
Section [V|we briefly introduce the software configurations
used for our tests and the results of our evaluation. In Sec-
tion [V we discuss the lessons learned and the conclusions
of our work.

II. THE ARCHITECTURAL CHALLENGE

The tests presented in this work have been executed on
three state-of-the-art production clusters based on different

ICavium has been recently acquired by Marvell, so that we will refer to
its latest CPU model in the remaining of the text as Marvell ThunderX2



M. Garcia-Gasulla et al. @ Apr 2019

HPC architectures.

MareNostrum4 is a supercomputer based on Intel Xeon
Platinum processors, Lenovo SD530 Compute Racks, a
Linux Operating System and an Intel Omni-Path intercon-
nection. Its general purpose partition has a peak perfor-
mance of 11.15 Petaflops, 384.75 TB of main memory spread
over 3456 nodes. Each node houses 2 x Intel Xeon Platinum
8160 with 24 cores at 2.1 GHz, 216 nodes feature 12 x 32 GB
DDR4-2667 DIMMS (8 GB/core), while 3240 nodes are
equipped with 12 x 8 GB DDR4-2667 DIMMS (2 GB/core).
MareNostrum4 is the PRACE Tier-0 supercomputer hosted
at the Barcelona Supercomputing Center (BSC) in Spain
and ranked 25 in the Top500 list of November 2018 [33].

Power9 is also hosted at Barcelona Supercomputing Cen-
ter. This cluster is based on IBM Power9 8335-GTG pro-
cessors with 20 cores each CPU operating at 3 GHz. Each
compute node contains two CPUs, plus four GPUs NVIDIA
V100 with 16 GB HBM2. Each compute node is equipped
with 512 GB of main memory distributed in 16 DIMMS of
32 GB operating at 2666 MHz. Nodes are interconnected
with an Infiniband Mellanox EDR network, and the oper-
ating system is Red Hat Enterprise Linux Server 7.4. The
Power9 cluster has been included in our study because
its computational elements are architecturally identical to
the ones of the Summit supercomputer, ranked first in the
Top500 of November 2018 [33]. It must be clarified that
we do not consider in our evaluation the accelerator part
composed by the GP-GPUs.

Dibona is an Arm-based HPC cluster, designed and de-
ployed by ATOS/Bull within the Mont-Blanc 3 project and
announced as a product during 2018 [25]. Each compute
node is powered by two Marvell’s ThunderX2 CPUs with 32
cores each operating at 2.0 GHz. The main memory on each
node is 256 GB of DDR4 running at 2667 MHz. Nodes are
interconnected with Infiniband Mellanox EDR network. The
Dibona cluster has been considered for our study because it
features the same CPU technology that composes the Astra
supercomputer, the first Arm-based system ranked 204 in
the Top500 list of November 2018 [31].

Platform ‘ Compiler ‘ MPI version
MareNostrum4 | GCC 8.1.0 | OpenMPI 3.0.0
Power9 GCC8.1.0 | OpenMPI 3.0.0
Dibona GCC 721 | OpenMPI2.0.2.14

Table 1: Software environment employed on different platforms

In all platforms we have used GNU as Fortran compiler
and OpenMPI as MPI library, the exact version used in each
platform can be found in table I} We use the same version
of the DLB library (2.0.2) and the OmpSs programming
model (17.12.1) composed by the Mercurium 2.1.0 source to
source compiler and the Nanox 15a compiler.

III. TuaE SciENTIFIC CHALLENGE

In this section, we introduce the biological use-case on
which we validate our runtime techniques. The effect of
aerosol therapies depends on the dose deposited beyond
the oropharyngeal region as well as its distribution in the
lungs. The efficiency of the treatment is affected by the
amount of drug lost at the airway as well as its deposition
on regions that are not affected by the pathology. At the
same time, factors as the size of the aerosol particles, breath-
ing conditions, the geometry of the patient, among others,
are decisive in the resulting deposition maps of the lung.
All these parameters must be considered in clinical practice
to personalize therapies involving treatments with aerosol.

i. Particle tracking in the respiratory system

In this work, we simulate the transport of particles injected
in an unsteady flow in the large human airways during
a rapid inhalation. The use of massive computational re-
sources allows capturing all the spatial and temporal scales
of the flow necessaries to reduce the lost aerosol fraction
and improve the effectiveness of treatments.

The CFPD simulation is performed on a complex subject-
specific geometry extended from the face to the 7th branch
generation of the bronchopulmonary tree and a hemisphere
of the subject’s face exterior [5]]. In particular, the mesh is
hybrid and composed of 17.7 million elements, including:
prisms, to resolve the boundary layer accurately; tetrahedra,
in the core flow; pyramids to enable the transition from
prism quadrilateral faces to tetrahedra. Figure [1f shows
some details of the mesh and in particular the prisms in the
boundary layer.

Outlet

Figure 1: Detail of the mesh representing the human respiratory system.

As introduced in Section [} the application used in this
document is the high-performance computational mechan-
ics code, Alya [35]. Alya is parallelized using MPI and
OpenMP, but, production runs are usually performed using
a MPI-only parallelization approach. The mesh partition in
subdomains to distribte the work among the different MPI
processes is done using Metis [22].

CFPD implies the solution of the incompressible fluid
flow obtained through Navier-Stokes equations as well as
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the Lagrangian particle tracking.

The Navier-Stokes equations express Newton’s second
law for a continuous fluid medium, whose unknowns are
the velocity u; and the pressure py of the fluid. Two phys-
ical properties are involved, namely j; be the viscosity,
and py the density. At the continuous level, the problem is
stated as follows: find the velocity u; and pressure ps in a
domain () such that they satisfy in a given time interval

ou
PfT;[ +pf(uf'V)uf—yfAuf+fo = (1)

0,
Veug = 0, ()

together with initial and boundary conditions. The nu-
merical model of the Navier-Stokes solver implemented
in Alya code and used in this study is a stabilized finite-
element method, based on the Variational MultiScale (VMS)
method [21]. As far as time integration is concerned, a sec-
ond order backward differentiation formula (BDF) scheme
is considered.

Particles are transported solving Newton’s second law,
and by applying a series of forces. Let m, be the particle
mass, dp its diameter, Pp its density, ap its acceleration.
According to Newton’s second law, if F, is the total force
acting on the particle, then

F, = mpay. (3)

The different forces considered in this work are the drag,
gravity and buoyancy forces, given by

FE = mpg, (4)
F, = —mpgpf/pp, ®)
FD = (7T/8)yfdedRep(uf — up), (6)

respectively, where Re and Cp are the particle Reynolds
number and drag coefficient given by Ganser’s formula [14],
respectively:

Re, = pfdp|uf — up|/yf, (7)
24 0.4305
= ——[140.1118(Re,)"6>%7 :
CD Rep[ +0 8( eP) ] + 1+ % (8)
r

By considering only gravity, buoyancy and drag, the pre-
vious model assumes that particles have a sufficiently low
inertia to neglect history effects, meaning that particle ve-
locity tends to the fluid velocity almost instantaneously.
Lift force has also been neglected, assuming particles are
sufficiently small not to be sensitive to local shear. Finally,
Ganser’s formula is a correlation to fit experimental data of
non-spherical particles, and valid up to particle Reynolds
number sufficiently high to be considered valid in our case.
For the sake of simplicity, the sphericity of unity has been
assumed in Equation[7] thus making the formula valid only
for spherical particles.

The time integration of particle motion is based on New-
mark’s method. From time step n to time step n + 1, the
following sequence is solved to update the particle dynam-
ics, acceleration a,, velocity u, and position x):

a;+1 _ P;l+l/m‘y, (9)

uZ“ =u,+[(1—7)a, + 'yuZH]cStp, (10)
2

n+1 n n (Stp n n+1
xp = xp w0ty + 7[(1 —2B)ay +2pay""],  (11)
where 6t is the particle time step, and B and 7y are constants
to control the stability and accuracy of the scheme. We note
that because of drag, the acceleration is position and velocity
dependent. To increase robustness, a Newton-Raphson is
also considered to solve the non-linearity in velocity. Once
the Newton-Raphson scheme is converged, the position is
then updated with Equation

The fluid time step used in this paper is 10~# seconds,
providing sufficient accuracy to the fluid solution. From
one fluid time step to the next one, an adaptive time step
based on an error estimate is used to control the accuracy of
particle trajectories. In practice, the particle adaptive time
step leads to dt, in the range of [107¢,107*#], depending on
the local conditions of the airflow.

IV. Tuae CoMPUTATIONAL CHALLENGE

In this section, we analyze the different parts of a time
step of Alya to identify the challenges and quantify the
performance of the different parts that compose the respira-
tory simulation. We also introduce the Multidependences
and a Dynamic Load Balancing library, the runtime tech-
niques that we apply to Alya and evaluate on the platforms
introduced in Section

i. Profile and performance analysis

To identify the different parts of a simulation and how they
can be improved, we use a trace of the Alya simulation gath-
ered on four nodes of the MarenNostrum4 supercomputer
(introduced in Section [I).

We use Extrae [32] to obtain a performance trace and
then Paraver [29] to visualize it. In this simulation, 4 - 10°
particles where injected in the respiratory system during
the first time step.

Figure [2| shows the timeline of one simulation step: on
the y-axis are represented the different OpenMP threads,
grouped by process, while on the x-axis we plot the execu-
tion time. The different colors identify the different parallel
regions. White color corresponds to MPI communication;
brown is matrix assembly of the Navier-Stokes equations;
yellow and green are algebraic solvers to compute the mo-
mentum and continuity of the fluid; pink represents the
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192 MPI processes

Il \atrix assembly
[ T"1Solver

I Subgrid scale
B Particles

Figure 2: Trace of respiratory simulation with 192 MPI processes gathered on 4 nodes of MareNostrum4

computation of the velocity subgrid scale vector (SGS). Fi-
nally, once the velocity of the fluid has been computed, the
transport of the particles is computed: this is shown in
orange on the right most of the trace.

From the trace, we can observe that the active work per-
formed by each process (i.e., each colored part in the trace)
within the same phase is not homogeneous: we call this phe-
nomenon load imbalance. Load imbalance is one of the main
sources of inefficiency in this execution and it is present in
different phases and with a different pattern in each phase.
We define L, the load balance among n MPI processes
within each phase as:

n
)t
i=1

Ly=——
. n .
n-max;_q t;

(12)
where t; is the elapsed time by process i during that
phase.

Using this metric, L, = 1 corresponds to a perfectly
balanced execution on n MPI processes, while L, = 0.5
is an execution that it is losing 50% of the computational
resources due to load imbalance.

Phase | Los | % Time | I
Matrix assembly | 0.66 | 40.84% | 0.09
Solver1 0.90 | 16.13% | 0.03
Solver2 0.89 4.20% | 0.12
SGS 0.61 | 21.43% | 0.07
Particles 0.02 3.37% | 0.05

Table 2: Load balance, percentage of the total execution time and arith-
metic intensity for different phases of the respiratory simulation
executed with 96 MPI processes.

In Table 2} the first column shows the load balance mea-
sured in each phase of the execution; the second column
shows the percentage of execution time spent by each phase,
within a time step.

We can observe low values of load balance in the matrix
assembly and the subgrid-scale (SGS) phases, both Log ~
0.6. But the lowest value of load balance appears in the
computation of particles: Lgs = 0.02 means that globally

98% of the time of that phase is wasted. For a complete
analysis of load unbalance in Alya see [16].

The rightmost column of Table [2| shows the arithmetic
intensity I, a metric common in the HPC community, that
characterizes the application with no (or very little) depen-
dence on the hardware platform where it will run. The
arithmetic intensity I is defined as I = %, where W is the
computational workload, so the number of floating point
operations executed by the application while D is the appli-
cation data set, so the bytes that the application exchanges
with the main memory. We measured W as the number of
double precision operations reported by the CPU counters.
Also, we measured D = (L + S) - 8, where L is the number
of load instructions and S is the number of store instruc-
tions on double precision data values (8 bytes) measured
reading hardware counters of the CPU. We show in Table
the values of I, arithmetic intensities, of the different phases
of Alya, ranging from 12 bytes transferred per hundred
floating point operations in the first type of solver to 3 bytes
transferred per hundred floating point operations in the
second solver of Alya.

It is important to note that the percentage of time spent
in the particle phase is directly proportional to the number
of particles injected into the system. In the simulation we
show in Figure [2| we are injecting O(10°) particles, but in
production simulations, we can inject up to O(107) parti-
cles or inject particles several times during the simulation
(e.g., when simulating the inhalation of pollutants when
breathing). This, of course, affects the load balance as well:
increasing the number of particles in the system, translates
in fact into higher and higher inefficiency.

Moreover, the high load imbalance of the particles com-
putation is inherent to the problem because the particles are
always introduced in the system through the nasal orifice.
Therefore, at the injection they are located in one or few
MPI subdomains, and as the simulation advances the parti-
cles get distributed among the different MPI subdomains,
changing the load balance between MPI processes.

To avoid the inefficient use of resources during the com-
putation of the particles phase, Alya offers the possibility of
running a coupled execution. A coupled execution runs two
instances of Alya within the same MPI communicator, one
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of them solving the fluid and the other one the transport of
particles.

L]
]
E
° n MPI processes { Fluid Particle Fluid Particle
S
g
>
«w —
FMPI processes Fluid k Fluid k
3 p MPI processes Particle Particle hE
s n=~f+p
3
O " MPI processes Fluid Fluid
p’ MPI processes Particle | Particle |
n=F + p7

= Send velocity

Figure 3: Execution modes for CFPD simulations with Alya

In Figure [3| we can see the different options to run the
same simulation. In the top, we can see the synchronous
execution, where all the processes first solve the velocity of
the fluid and then the transport of particles. In the bottom
the coupled execution is represented; in this case, some MPI
processes solve the velocity of the fluid and send them to
the MPI processes that are solving the transport of particles.

When using the coupled simulation, the user can decide
how many processes are dedicated to solving the fluid part
of the problem (f MPI processes) and how many processes
solve the particles part of the problem (p MPI processes).
The load of each MPI process depends on the number of
particles injected and the load distribution between pro-
cesses solving the fluid and the particle problems (i.e., the
distribution of f and p). This is depicted at the bottom
of Figure 3, where f > f" and p < p’. The conclusion
is that depending on the decision taken by the user the
performance of the simulation can vary. The optimum dis-
tribution of MPI processes depends on the parameters of
the simulation, the architecture and the number of resources
used.

To alleviate this decision we propose to use a dynamic
load balancing mechanism to adapt the resources given to
the different codes. This mechanism is explained in detail
in Section il

ii. Multidependences

As we have seen in the previous section, one of the main
computational tasks in a CFDP code is the algebraic system
assembly, depicted in Figure [2| as Matrix assembly. This
phase consists of a loop over the elements of the mesh (see
Figure [T): for each element, a set of local operations is
performed to assemble the local matrices. More details can
be found in [20] and [16].

From the parallelism point of view this phase has two
important characteristics:

1. On the one hand, the algebraic system assembly over

the elements is performed locally to each MPI pro-
cess. Thus, no MPI communication is involved during
this operation. This characteristic makes the assembly
phase well suited to apply shared memory parallelism
within each element.

2. On the other hand, the algebraic system assembly over
the elements for generating the local matrices consists
of a reduction operation over a mesh that is local to
each element but presents irregular connectivity. This
translates into indirect and irregular accesses to the
data structure storing the local mesh that can involve
two local elements that share a node. When this hap-
pens, it can mean that two separate OpenMP threads,
processing two independent local elements that share
a node, could update the same position of the ma-
trix, resulting in a race condition. To avoid the race
condition between two threads updating the same po-
sition of the matrix we evaluate in this section different
parallelization alternatives.

Elements Parallelization
- Q0000 QQ0Q0
E 88888 omp parallel do 88888
o +
=z QGO000 omp atomic 0}0.0!0]0
O0000 O0000
omp parallel do
o0 08888 omg Earallel do }8 8880
E §8888 omp parallel do $888880
S omp parallel do
° OOOOO omg Earallel do {OOOOO
£ 09 00 e
1° 88 xinemocerator) | B
_q': O 154 mutexinoutset (iterator -
: 0 80 %1

Figure 4: Parallelization approaches for the matrix assembly

In Figure[d we can see the three approaches to parallelize
the matrix assembly that we have considered. The straight-
forward approach would be to protect the update of the
local matrix with an omp atomic pragma. This approach
has a negative impact on the performance because when
computing each element an atomic operation must be per-
formed whether or not there is a conflict in the update of
the matrix. The pseudo-code of this approach can be seen
in Algorithm
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Algorithm 1 Parallelization of matrix assembly with atomic
1: '$0OMP PARALLEL DO &
2: '$0MP PRIVATE (...) &
3: !'$OMP SHARED (...)
4: for elements ¢ do
5. Compute element matrix and RHS: A€, b®
6 '$0MP ATOMIC
7. Assemble matrix A° into A
8
9

'$0MP ATOMIC
Assemble RHS b¢ into b
10: end for

To avoid the use of an atomic operation, a coloring tech-
nique can be used as explained e.g., in [11]. The coloring
technique, as can be seen in Figure [} consists in assigning
a color to each element. Elements that share a node can
not have the same color. Once each element is assigned
a color, the elements of the same color can be computed
in parallel (e.g., in a parallel loop without an atomic op-
eration to avoid the race condition). The main drawback
of the coloring approach is that it hurts spatial locality
since contiguous elements are not computed by the same
thread. Algorithm [2|shows the code corresponding to the
parallelization with coloring.

Algorithm 2 Parallelization of matrix assembly with color-
ing elements approach

1: Partition local mesh in nsubd subdomains using a col-
oring strategy
2. for isubd = 1,nsubd do
3 '$0MP PARALLEL DO &
4 '$0MP PRIVATE (...) &
5 '$OMP SHARED (...)
6: for elements e in isubd do
7 Compute elem. matrix and RHS: A¢, b*
8 Assemble matrix Af into A
9 Assemble RHS b® into b
10: end for
11: '$OMP END PARALLEL DO
12: end for

The third approach that we consider is multidependences.
For this approach we divide the domain assigned to each
MPI process into subdomains. To this end, we use Metis [22]
since is already used to partition the mesh among MPI pro-
cesses. We map each subdomain into an OpenMP task.
Knowing that two subdomains are adjacent if they share
at least one node, we can use the information about the
adjacency of subdomains provided by Metis to know which
OpenMP tasks cannot be executed at the same time. There-
fore those subdomains that are adjacent, i.e., that share at
least one node, will be processed sequentially, those that are
not adjacent, i.e., that do not share nodes, can be processed

in parallel.

Algorithm 3 Parallelization of matrix assembly using multi-
dependences betweent element chunks

1. Partition local mesh in nsubd subdomains
2: Store connectivity graph of subdomains in subd
3: for isubd = 1,nsubd do

4:  nneig = SIZE(subd(isubd)%lneig)
5: 1$0MP TASK &
6: '$omp task depend( iterator(i=1:nneig), &
7: mutexinoutset: subd(subd’lneig(i)))&
8: !'$0OMP PRIORITY (nneig) &
9: 1$0MP PRIVATE (...) &

10: 1$0MP SHARED (subd, ...)

11: for Elements e in isubd do

12: Compute elem. matrix and RHS: A, b*

13: Assemble matrix A° into A

14: Assemble RHS b° into b

15: end for

16: '$0MP END TASK

17: end for

18: !'$0MP TASKWAIT

In the multidependences version, we used two new fea-
tures that have recently been introduced in the OpenMP
standard in the 5.0 release [27]. On the one hand, the
iterators to define a list of dependences, this feature allow
defining a dynamic number of dependences between tasks
that are computed at execution time. On the other hand,
a new kind of relationship between tasks: mutexinoutset.
This relationship implies that two tasks cannot be executed
at the same time, but the execution order between them is
not relevant. This relationship can express “incompatibility”
between tasks. In Algorithm 3| we can see the implementa-
tion in pseudo-code of the multidependences version.

These two new features of the standard were first imple-
mented in the OmpSs programming model [10, 26]. The
OmpSs programming model is a forerunner of OpenMP
where extensions to the OpenMP model are implemented
and tested, and some of them are finally added to the
standard [36]. We take advantage of these early implemen-
tations to test these two new features in a real code.

An important added value of the multidependences ver-
sion is that its implementation does not require significant
changes in the code and leaves the parallelization quite
clean and straightforward. For large production code, such
as Alya, this is highly desirable.

With the parallelization introduced with multidepen-
dences, we do not need omp atomic and the elements that
are consecutive in memory are executed by the same thread,
so a certain degree of spatial locality is preserved.

iii. Dynamic Load Balancing (DLB)

Dynamic Load Balancing (DLB) is a library that aims
to improve the load balance of hybrid applications [9].
In an application leveraging multi-level parallelism, e.g.,
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MPI+OpenMP, DLB uses the second level of parallelism
(usually OpenMP) to improve the load balance at the MPI
level and achieve so better overall performance. The load
balancing library acts at runtime, reacting to the load imbal-
ance whenever it is appearing. It has been proved beneficial
in several HPC codes [15].

The DLB library is transparent to the application; there-
fore it does not require to modify the source code. It uses
standard mechanisms provided by the programming mod-
els, such as PMPI interception from MPI and OpenMP call
omp_set_num_threads().

Figure 5: Left: Unbalanced hybrid application. Right: Hybrid applica-
tion balanced with DLB

In Figure 5| we can see the behavior of DLB when load
balancing a hybrid application. On the left side, we can
see an unbalanced MPI+OpenMP application with two MPI
processes and two OpenMP threads per process. On the
right side, we can see the same execution when load bal-
anced with DLB. We can observe that when the first MPI
process reaches a blocking MPI call, it lends its resources
to the second MPI process. At this point, the second MPI
process can use four OpenMP threads and finish its compu-
tation faster. When completing the MPI blocking call, each
MPI process recovers its original resources.

The DLB approach can be used with any of the paral-
lelizations (i.e., Multidependences or Coloring), but as DLB
relies on the shared memory parallelism to load balance, its
performance is dependent on the performance of the shared
memory parallelization. For this reason, all the runs with
DLB, both for the current research and production runs,
are performed using the Multidependences version for the
assembly phase and atomics for the subgrid scale.

V. PERFORMANCE EVALUATION

i. Experimental setup

In this evaluation, we simulate the transport of particles in
the human airways during a rapid inhalation. The details
of the simulation are described in Section [ and have been

obtained running the latest version of Alya (r8941) averag-
ing 10 time steps. Production simulations can run for up to
10° time steps.

We evaluated the runtime methods on three different plat-
forms that are explained in Section [lI} All the experiments
have been executed in two nodes of each platform.

ii. Multidependences

In this section, we evaluate the performance of multidepen-
dences compared with the implementation using a coloring
algorithm or atomic. We will evaluate the performance in
two phases of the simulation, the matrix assembly and the
subgrid-scale (SGS).

The benefit of using multidependences in the matrix
assembly is to avoid the use of atomic and preserve the
spatial locality. In the case of the SGS, no update of a
shared structure is involved; therefore, there is no need for
using atomic pragmas. Nevertheless, we will evaluate the
performance in this phase to see the overhead added by the
multidependences.

We have executed three different versions of each simula-
tion, using atomic pragmas labeled as Atomics, a coloring
algorithm labeled as Coloring or the multidependences im-
plementation labeled as Multidep. For each version we
have executed different combinations of MPI processes and
threads, with 1, 2, 4, 8 or 16 threads per MPI process. In
the charts the combination is shown as: Total number of MPI
processes x Number of OpenMP threads per MPI process.

In this section, we show the speedup obtained by each
hybrid execution with respect to the MPI-only version using
the same number of nodes in each cluster (i.e., running
with 96 MPI processes in MareNostrum4, 80 in Power9
and 128 in Dibona). Within the same cluster, we compute
the speedup S as: S. = tp/t,, where f. is the time spent
for simulating a given problem with the configuration c
of MPI processes and OpenMP threads and ty; is the time
spent for simulating the same problem using an MPI-only
implementation.

Platform ‘ #MPI ‘ Ass. [s] ‘ SGS [s]
MareNostrum4 96 6.75 4.16
Dibona 128 7.48 4.72
Power9 80 9.30 6.45

Table 3: Time spent in each phase of Alya when running the MPI-only
version in two nodes of the evaluation platforms

Table 3| contains the average duration in seconds of the
two phases of Alya that we are considering when running
with the MPI-only implementation. These numbers have
been obtained running in two nodes of each platform fill-
ing the nodes with MPI processes. The values shown in
this table are the ones used to compute the speed up in
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Figure 6: Speedup of the assembly phase of Alya with respect to the MPI-only version of the code (higher is better).

the following plots. We show them here for completeness
although our goal is not to compare the architectures in
terms of absolute performance.

In Figure [f] we can see the speedup obtained by each
version with different combinations of MPI processes and
threads in the matrix assembly phase.

We can observe that adding the second level of paral-
lelism with the most naive approach (using the atomic
pragma) have worse performance than the MPI-only ver-
sion (the speedup is in fact below one in all the cases).
Although this observation is correct for all the clusters,
the negative impact of the atomic in the performance is
higher in MareNostrum4 (based on Intel technology) and
Power9 (based on IBM technology) than in Dibona (based
on Arm technology). The different impact of the atomic in
the performance can be due to the architectural differences
between the three clusters.

Although it is out of the scope of this paper to evaluate
how each architecture handles the atomic operations, we ob-
serve that the architectural differences among the platforms
are reflected in the Instruction Per Cycle (IPC) achieved
by the different versions in this phase. We chose IPC as
a high-level metric because it is a common metric in HPC
and it allows us to spot inefficiencies. A low IPC value will
in fact highlights problems such as stalls on the different
stages of the pipeline, sub-optimal memory access patterns
or architectural limitations hit by the applications.

When running the MPI-only version, the average IPC in
the Dibona cluster is ~ 1.56, while with the atomic version
the IPC is ~ 1.12. On the other hand, in MareNostrum4 the
IPC of the MPI-only version is ~ 1.79 and the IPC in the
matrix assembly when using atomics is ~ 1.23 (correspond-
ing to a reduction of 30%). In Power9 the IPC in the matrix
assembly when using the MPI-only version is ~ 1.38 and it
is reduced by 50% when using the Atomics parallelization
obtaining ~ 0.70.

The coloring version achieves a better performance than
the atomics version on the three architectures, in the case

of MareNostrum4, it is still far from achieving the perfor-
mance of the MPI-only code. In the Arm-based cluster, the
performance of the coloring version depends on the con-
figuration of OpenMP threads and MPI processes (varying
between a speed up of ~ 0.9 and ~ 1.1). Finally, in Power9,
the performance of the hybrid version using the coloring
parallelization is better than the MPI-only version for some
of the configurations.

We can observe that the performance of the coloring ver-
sion with respect the MPI-only version is different for each
architecture. The coloring version has worse data locality
than the other approaches; the difference in performance
that obtains in each cluster can be explained by the behavior
of the different memory and cache configurations that each
architecture leverages.

Nevertheless, the best version in all cases is the multide-
pendences version; this version has a good data locality and
does not need atomic operations. It is confirmed by the IPC
values obtained: in all the clusters IPC is, in fact, 94% to
96% of the one achieved by the MPI-only version.

Code MareNostrum4 Dibona Power9
version Ass. SGS Ass. SGS | Ass. SGS
MPI-only | 1.79 1.82 | 158 158 | 1.38 1.28
Atomics | 1.23 1.84 | 1.09 157 | 070 1.25
Coloring | 1.63 1.74 | 1.19 117 | 1.27 121
Multidep. | 1.88 194 | 155 157 | 134 1.22

Table 4: Instructions per Clock Cycle (IPC) for each of the experimental
platforms in two relevant phases of the code, Assembly (Ass.)
and SubGrid Scale (SGS)

Table {4] contains the average IPC obtained with the dif-
ferent versions in each cluster for each phase. These values
have been obtained instrumenting the executions with Ex-
trae and analyzing the traces with Paraver. For studying
the IPC, we filled the nodes with MPI processes and used
one OpenMP thread per process: this setting was selected
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to avoid interference of other factors like different data
partitioning.

In Figure[/]is presented the execution time of the subgrid-
scale computation for the different versions and clusters.
As we explained before, the subgrid-scale does not per-
form global operations, so it does not need to protect a
race condition, and therefore should not require atomic
operations. Nonetheless, we want to show the performance
of the coloring and multidependences versions to evaluate
the overhead introduced by these techniques.

We can see that in the three clusters and all configura-
tions the multidependences implementation obtains about
the same performance as the atomics version, while the
coloring version is the one with the lowest performance.
This is due to the loss of data locality when using the color-
ing algorithm. In all clusters, MareNostrum4, Dibona and
Power9, we can observe an overhead below 10% associated
with the use of coloring and multidependences.

We can observe that all the hybrid MPI+OpenMP versions
outperform the MPI-only execution in Dibona and Power9
with all the configurations of MPI processes and threads.
In MareNostrum4 only the hybrid configurations 96 x 1
achieves a performance close to the MPI-only version, while
the other ones perform worse than the MPI-only.

With the evaluation presented in this section, we can
conclude that the multidependences version is the best
option in all the platforms when performing a reduction
over a large array. We have also seen that the overhead
introduced by multidependences is negligible if used in a
code without a race condition (i.e., subgrid-scale).

ii. DLB

To evaluate the impact of using DLB on the performance
of CFPD codes, we run two kinds of simulations: in one of
them 4 - 10° particles are injected in the respiratory system,
and in the other one 7 - 10° particles are injected.

With these two simulations we represent two different
scenarios: one where the main computational load is in the
fluid code, injecting only 4 - 10° particles; and another one
where the main computational load is in the particles code,
injecting 7 - 10° particles.

All the experiments executed in this section were ob-
tained using the multidependences version of the code to
solve the matrix assembly and the atomic version for the
subgrid-scale because in the previous section were the ver-
sions that obtained the best performance in each phase.
Also, all tests have been performed using one OpenMP
thread for each MPI process.

As explained in Figure 3} this CFPD simulation can be
executed in a synchronous or coupled mode. When run-
ning the coupled mode, the number of processes assigned
to the computation of the fluid f and the number of pro-
cesses assigned to the computation of the particles p must
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be decided by the user. We present experiments using
both modes and varying f and p when running coupled
simulations.
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Figure 8: Simulation of 4 - 10° particles in MareNostrum4

In Figure 8| we can see the execution time when simulat-
ing the transport of 4 - 10° particles in MareNostrum4. In
the x axis the different modes and combinations of MPI
processes are represented in the form f + p. We can observe
that depending on the mode and combination of MPI pro-
cesses the execution time can change up to 2x compared
to the original code. The use of DLB improve all the ex-
ecutions of the original code. The improvement obtained
running with DLB depends on the mode (synchronous or
coupled) and on the combination of MPI processes assigned
to each part of the problem (fluid or particle).
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Figure 9: Simulation of 4 - 10° particles in Dibona

In Figure [9)is shown the execution time for simulating 4 -
10° particles in Dibona. In the Arm-based cluster, the trend
in performance of this simulation is similar to the Intel-
based one. If the user takes a wrong decision (e.g., running
the coupled execution with 64 MPI processes for the fluid
and 64 MPI processes for the particles), the simulation can
be 2x slower than running the best configuration (e.g.,
synchronous execution). Also in Dibona, the use of DLB
improves the performance of all the configurations, and
minimize the effect of choosing a bad combination of MPI
processes.

Figure [10| shows the execution time when simulating
4.10° particles using the Power9 cluster. In this cluster,
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Figure 7: Speedup of the subgrid-scale (SGS) phase of Alya with respect to the MPI-only version of the code (higher is better)
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the conclusions are similar to the ones obtained with the
Intel and Arm ones. The performance can vary drastically
depending on the configuration of the coupled execution
chosen, and the use of the DLB library can alleviate this
effect improving all the executions.
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Figure 11: Simulation of 7 - 10° particles in MareNostrum4

The execution time when simulating the transport of
7 -10° of particles in MareNostrum4 can be seen in Figure
We can see that respect the simulation of 4 - 10° particles the
computational load has increased significantly. The impact
of using DLB in this simulation is even higher than in the
previous one, obtaining an improvement between 1.7 x and

Figure 12: Simulation of 7 - 10° particles in Dibona

In Figure (12| we can see the execution time when simulat-
ing 7 - 10° particles in the Dibona cluster. We can observe
that the trend in the performance of the original execution
when changing the number of MPI processes is different
respect to the simulation of 4 - 10° particles, and also when
compared to the same simulation in the Intel-based system.
This means that users can not rely on a single configu-
ration as the optimum one. The optimum configuration
depends in fact on the simulation (simulating 4 - 10° or
7 - 10° particles implies a different behavior), on the mode
and distribution of MPI processes chosen and also on the
underlying architecture.

The execution with DLB, in this case, speeds the simu-
lation up between 2x and 3 x with respect to the original
execution. Moreover, the performance when using DLB is
independent of the decision taken by the user in the mode
and distribution of MPI processes between codes.

Figure [13| shows the elapsed time when simulating the
transport of 7 - 10° particles in the Power9 cluster. We can
observe again that the trend when changing f and p is
different from the Arm and Intel-based systems. Neverthe-
less, DLB improves the performance in all the cases and
maintains an almost constant performance independently

11
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Figure 13: Simulation of 7 - 10° particles in Power9

of the coupling configuration chosen.

VI. CONCLUSIONS

In this paper, we analyzed the performance of a simulation
tracking the transport of particles within the human respira-
tory system. We showed that the performance of this kind
of simulations is affected by factors going from the sim-
ulation parameters (e.g., the number of particles injected)
to the underlying architecture of the HPC cluster. For this
reason, we rely on runtime techniques that will improve
the performance of CFPD simulations independently from
the simulation parameters and the architecture details.

One of the techniques that we evaluated are the iterators
over dependences that will be added in the new release of
OpenMP (5.0). Using these iterators, we can define multi-
dependences among tasks (i.e., the number of dependences
is decided at runtime, not compile time). We take advan-
tage of the early implementation of multidependences in
the OmpSs programming model to evaluate it in a CFPD
simulation on three different architectures: an Intel-based,
an Arm-based and an IBM-based system.

We have seen that the use of multidependences can im-
prove the performance of the matrix assembly phase when
using a hybrid parallelization. We have also observed that
its impact depends on the architecture we are using. In the
Intel-based cluster, the performance of multidependences
achieves a 1.7x speedup respect to the implementation
using omp atomic pragmas. In the Arm-based cluster the
speedup obtained by the multidependences version is 1.4 x
respect to the atomic version and in the IBM-based cluster
itis 2.0x.

The DLB library offers a load balancing mechanism trans-
parent to the application and the architecture. DLB relies
on the broadly adopted programming model OpenMP to
improve resource utilization. In this paper, we have ana-
lyzed its performance when applied to a CFPD simulation.
One of the main characteristics of CFPD simulations is
that they must solve two different physic problems: the
velocity of the fluid and the transport of the particles. The
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users running these simulations can decide whether to run
them in a synchronous mode or in a coupled mode and,
when running the coupled mode, how many computational
resources to assign to each of the physics problems.

We have shown that the execution time of the simulation
can be doubled if a bad decision is taken. Also, that the best
decision is not easy to find without a previous performance
analysis of the simulation. We have demonstrated that
using DLB improves the performance of the execution in
all the cases, independently on the architecture and the
configuration chosen by the user. We obtained a speedup of
up to 2x with respect to the original code using the same
number of resources.

Moreover, using DLB relieves the user of deciding which
configuration for the coupling of physics (synchronous or
coupled, number of processes solving the fluid, f and num-
ber of processes solving the particle transport, p) to choose
for his simulation. The performance of the simulation when
using DLB is, in fact, less dependent on the chosen configu-
ration.

Finally, the recommendation for code developers and
users is to rely on runtime techniques to avoid architectural
differences. In the case we have presented, the best option
is to use Multidependences when assembling the matrix and
the Afomics when computing the subgrid scale, and DLB
for all the runs.
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