UC Davis
UC Davis Previously Published Works

Title
A terminology for in situ visualization and analysis systems

Permalink
https://escholarship.org/uc/item/2001s494

Journal
The International Journal of High Performance Computing Applications, 34(6)

ISSN
1094-3420

Authors

Childs, Hank
Ahern, Sean D
Ahrens, James

Publication Date
2020-11-01

DOI
10.1177/1094342020935991

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/20q1s49z
https://escholarship.org/uc/item/20q1s49z#author
https://escholarship.org
http://www.cdlib.org/

A Terminology for In Situ
Visualization and Analysis
Systems

To appear in:

International Journal of High Performance Computing Applications
34(6):676—691

DOI: 10.1177/1094342020935991

Hank Childs, Sean D. Ahern, James Ahrens, Andrew C. Bauer, Janine Bennett,

E. Wes Bethel, Peer-Timo Bremer, Eric Brugger, Joseph Cottam, Matthieu Dorier,
Soumya Dutta, Jean M. Favre, Thomas Fogal, Steffen Frey, Christoph Garth, Berk Geveci,
William F. Godoy, Charles D. Hansen, Cyrus Harrison, Bernd Hentschel, Joseph Insley,
Chris R. Johnson, Scott Klasky, Aaron Knoll, James Kress, Matthew Larsen, Jay Lofstead,
Kwan-Liu Ma, Preeti Malakar, Jeremy Meredith, Kenneth Moreland, Paul Navratil,

Patrick O’Leary, Manish Parashar, Valerio Pascucci, John Patchett, Tom Peterka,

Steve Petruzza, Norbert Podhorszki, David Pugmire, Michel Rasquin, Silvio Rizzi,

David H. Rogers, Sudhanshu Sane, Franz Sauer, Robert Sisneros, Han-Wei Shen,

Will Usher, Rhonda Vickery, Venkatram Vishwanath, Ingo Wald, Ruonan Wang,

Gunther H. Weber, Brad Whitlock, Matthew Wolf, Hongfeng Yu, Sean B. Ziegeler

Abstract

The term “in situ processing” has evolved over the last decade to mean both a specific strategy for visualizing
and analyzing data and an umbrella term for a processing paradigm. The resulting confusion makes it difficult for
visualization and analysis scientists to communicate with each other and with their stakeholders. To address this
problem, a group of over fifty experts convened with the goal of standardizing terminology. This paper summarizes
their findings and proposes a new terminology for describing in situ systems. An important finding from this group
was that in situ systems are best described via multiple, distinct axes: integration type, proximity, access, division of
execution, operation controls, and output type. This paper discusses these axes, evaluates existing systems within the
axes, and explores how currently used terms relate to the axes.

Keywords
In Situ Processing, Scientific Visualization

1 Introduction

For decades, the dominant paradigm for visualization
and analysis has been “post hoc” processing. With post
hoc processing, simulation codes save data to permanent
storage (e.g., “spinning disk”), and visualization and analysis
programs load this data after it is stored. Simulation codes
typically store data iteratively, checkpointing the state of the
simulation at a given time (a “time slice”), advancing for a
while, saving their state again, and so on.

“In situ processing,” meaning visualizing or analyzing
data as it is generated, is an alternative processing paradigm
to post hoc. Historically, a number of terms have been used
to describe in situ processing and its many variant strategies.
However, the community has yet to agree on a consistent
taxonomy. Notably, over the last decade, the term “in situ”
has been broadly used to 1) describe a specific strategy for
processing data, and 2) as an umbrella term for the entire
processing paradigm. This mixed use leads to confusion both
for the visualization and analysis community and for its

stakeholders.
The phrase “in situ” comes from Latin, and translates to

“on site,” “in position,” or “in place.” The term “in situ”
very precisely describes the strategy where a visualization

Prepared using sagej.cls

or analysis algorithm is applied to simulation data that
has not been moved (i.e., is already in the processor’s
memory). However, the concept of “processing data as
it is generated” applies much more broadly than to just
data in registers, causing some researchers to question
whether “in situ” is the best term to describe the overall
processing paradigm. To illustrate this concern, consider the
case where simulation data is moved to distinct resources
for visualization, e.g., nodes dedicated for visualization and
analysis on a supercomputer. On the one hand, the term “in
situ” still applies, since the data is being processed “in place,”
i.e., resident on the same computer (or supercomputer). On
the other hand, the data has been moved to distinct resources.
In this scenario, is data still being processed “in place?”
While the term “in situ” is dominant today, early research
used equally applicable terms, often in reference to specific
variants: “concurrent processing” Ellsworth et al. (2006) to
refer to processing data at the same time as the simulation
is running, “co-processing” Haimes (1994); Haimes and

Corresponding author:
Hank Childs, University of Oregon, Eugene, Oregon, USA
Email: hank@uoregon.edu

2 To appear in: International Journal of High Performance Computing Applications 36(6)

Barth (1995); Haimes and Edwards (1997); Fabian et al.
(2011); Ayachit et al. (2016a) to refer to visualization
routines directly coupled with simulation code, and “runtime
visualization” Ma (1996); Tu et al. (2006); Insley et al.
(2007) to refer to applying visualization in place. In each
case, the terms used previously were likely as suitable in
describing this processing paradigm as the “in situ” term,
although they did not ultimately garner the same popularity.

That said, the terminology problems we consider go well
beyond whether or not “visualizing or analyzing data as it
is generated” should be described using the term “in situ.”
Our community also uses a variety of sub-terms, like “in
transit,” “in-line,” “loosely-coupled,” and “tightly-coupled,”
to describe specific forms of in situ processing. These terms
are not used consistently, creating confusion within the
community, and this confusion served as the main motivation
for our effort.

To remedy this lack of consistent terminology, a group
of visualization and analysis practitioners convened over the
course of a year; this paper summarizes the outcome of
their efforts. An important contribution of this effort is the
identification of six axes to more precisely characterize in
situ systems. These axes show that there are a diverse set
of approaches behind in situ processing. Another important
contribution is our new proposed terminology for in situ
systems. In our terminology, an in situ system is described
via the options it employs for each of the six axes. As a
further contribution, we analyze existing systems and terms
within the axes.

The paper is organized as follows:

e Section 2 defines the six axes to describe an in situ
system, as identified by our group.

e Section 3 describes some notional in situ systems, and
classifies them according to our axes.

e Section 4 describes how to apply our axes in the
context of complex workflows.

e Section 5 looks at recent in situ systems and classifies
them based on our axes.

e Section 6 documents the process our group used to
organize, discuss issues, and reach consensus.

Finally, our group also discussed whether to continue
advocating for the usage of the term “in situ” to describe
“processing data as it was generated.” Ultimately, we decided
that we were in favor of continuing to use the term, although
consensus was not achieved on this point. In a vote, 70%
of our participants supported continuing to use the “in
situ” term, in large part because it had too much inertia to
reverse course. In particular, it was noted that this term has
been adopted by our stakeholders and funding agencies, and
promoting an alternate term — even if more precise — could
create confusion. On the other side, 30% of our participants
voted that we should focus on a more appropriate term.

2 Axes of In Situ Systems

First, we use the phrase “in situ system” to describe an in situ
software solution. Specifically, we use the word “system,”
since there are often multiple components to coordinate,
whether across nodes on a supercomputer, across multiple

Prepared using sagej.cls

in situ instances, or even between the in situ routines and the
simulation code.

When choosing our axes, our group’s focus was on better
distinguishing between current in situ systems being lumped
together as similar, although they were taking different
approaches. To this end, our group identified six axes to
describe an in situ visualization and analysis system:

e Integration Type: how visualization and analysis
routines are integrated into the simulation code.

e Proximity: how close the visualization and analysis
routines are to the data.

e Access: how the simulation makes data available to
visualization and analysis routines.

e Division of Execution: how compute resources are
shared between simulation and in situ routines.

e Operation Controls: the mechanism for selecting
which operations are executed during run-time.

e Output Type: which types of operations are performed
on the simulation data before it is output.

Figure | provides an overview of the terms used for each
axis, and the remainder of this section describes these terms
in more detail.

Using our terminology, a system is described by its
choices for each of the six axes. Exemplar systems
for common instantiations (“loosely-coupled,” “tightly-
coupled,” etc.) are explored in Section 3.

2.1

Integration type refers to how the in situ visualization and
analysis routines are integrated into the simulation code.
In the majority of implementations, the simulation code
is aware of the integration and makes calls in support of
data marshaling. However, it is also possible to integrate
in situ routines without the simulation being aware. We use
this distinction — Application-Aware versus Application-
Unaware — as the top-level category describing integration
type.

We identified three distinct sub-categories of application-
aware integrations, although these sub-categories may be
viewed as points along a spectrum. The first, Bespoke, refers
to the case where custom visualization and analysis routines
are written specifically for a single simulation code, and
is tailored to its needs. This is also sometimes referred to
as “embedded routines.” The latter two sub-categories of
application-aware integrations cover configurations where
systems are integrated into the simulation code, and data
is marshaled into those frameworks via APIs. The second
sub-category, Dedicated API, describes the case where the
system is dedicated to visualization and analysis, and so
the simulation code is aware that interactions with this
API are for the purpose of visualization and analysis. This
is the approach used by systems like Vislt/Libsim and
ParaView/Catalyst. The final sub-category, Multi-purpose
API, describes the case where the scope of the system is
data, meaning that it includes visualization and analysis, but
that it also might include I/O or data movement between
components. This is the approach used by systems such as
ADIOS. With multi-purpose API, the simulation code may
or may not be aware whether the API is doing visualization

Integration Type

Childs et al. 3
Axes Describing an In Situ System
[
[[[[[|
Integration - Division of Operation
Proximit SS Output Type
Type Toxumty Access Execution Controls Hiput P
| | Applicatior || . Space || o || .
Aware On Node Direct Division Automatic Subset
Off Node Shallow Time .
L B k g Adapt — s
espore Same Copy Division aptive Transform
Com-
Dedicated puting Deep Non- L .
API Resource Copy adaptive Derived
Multi- . $ Human-
Distinct . . .
“— purpose Com- — Indirect — in-the- Fixed
API . loop
puting
L_|Applicatior Resource Blocking Proportional
Unaware
Inter- Non-
position blocking
Inspection

Figure 1. The top of this diagram has our six axes for describing in situ systems. Underneath each of the six axes are its

corresponding categories and sub-categories.

and analysis tasks. We still refer to this case as Application-
Aware, since the simulation code is aware of the framework’s
API, and does data marshaling to support the framework.

We identified two sub-categories of application-unaware
integration types. Interposition, the first sub-category, refers
to the practice of creating a dynamically-loaded library
which contains symbols known to the simulation code, and
inserting this library into the place of the original library
that the simulation code was expecting. For example, if
a simulation code writes data using the MPI-IO library,
then an interposition approach would create a new library
with function names matching those of MPI-IO, would
have its implementations of those functions perform in situ
processing, and would swap the new library in for the MPI-
10 library at runtime. Note that, although both this example
and the example for Multi-purpose API, focused on 1/O,
the key distinction for the Interposition approach is that a
library interface is used for something other than its original
intent. Inspection, the second sub-category, refers to the
practice of inspecting memory to infer patterns in data layout
and automatically adding in situ processing. Inspection-
based in situ relies on system facilities used by tools such
as debuggers and profilers. Finally, the application-unaware
approach is relatively new for in situ processing, and new
sub-categories may need to be added as this approach
evolves.

There are three main considerations motivating the five
categories of integration type. One is the effort to integrate
the in situ routines into the simulation code (referred to
here as “simulation code effort”). Another is the effort to
develop the in situ system (referred to here as “in situ
system effort”). The final consideration is the reusability of
the in situ system across multiple simulation codes. These
last two considerations are related, as increasing reusability
likely increases in situ system effort. Bespoke approaches
often require minimal simulation code effort (since they are

Prepared using sagej.cls

tailored to the simulation code) and in situ system effort
(since the approach often requires a trivial system), but its
reusability is often highly limited. Dedicated API and Multi-
purpose API require much more simulation code effort and
in situ system effort, but often have higher reusability. The
application-unaware categories may require the highest in
situ system effort, but they require no simulation code effort
(by definition), and the reuse possibilities are high.

2.2 Proximity

The Proximity axis characterizes the cost to access data. This
cost could be in time (how fast can we access data?) or in
energy (how much energy is required to access data?).

When considering proximity, it is important to consider
the path from where the data resides to where it
should be processed. That said, there are myriad possible
configurations this path can take. As such, we view this axis
as a continuous spectrum, not a discrete one with a fixed
number of choices. This is particularly true given innovations
in architecture, as any attempt to enumerate all options would
likely become stale quickly.

We divide the spectrum of options for proximity into three
broad categories:

e On Node
e Off Node, Same Computing Resource
e Distinct Computing Resource

With On Node access, the memory hierarchy forms the
basic model. The closest access occurs when visualization or
analysis algorithms are applied to data that is in the memory
data registers, followed by options such as L1-cache, L2-
cache, L3-cache, and random-access memory. Beyond this
are options such as NUMA accesses to memory on other
sockets, non-volatile memory on node, and local disks.
Placement for each of these options onto a spectrum requires

4 To appear in: International Journal of High Performance Computing Applications 36(6)

understanding of latency and bandwidth, and may vary based
on architecture, especially as hardware components improve
over time (e.g., NVLink).

With Off Node, Same Computing Resource, there are
fewer options: traveling one switch between nodes, two
switches, etc. Of course, there still may be costs within a
node, i.e., costs from pulling data from NVRAM on a node
to send it over the network to another node, which then
places it in an accelerator’s memory. In these cases, all costs
incurred along the path from where the data originally resides
to location where it is processed should be considered.

While Distinct Computing Resources strains the usage
of the term “in situ,” it fits within our terminology since we
define in situ processing as processing data as it is generated.
As an example, consider when data is streamed (maybe in
a reduced form) from a simulation’s source to scientists in
remote locations, who can then explore the data using local
resources. We call this “in situ,” since the data is being
processed while it is generated, but clearly it is not “in
place.” Further, it is worth noting that a recent Department of
Energy workshop on workflows Deelman et al. (2015) made
a different decision, and decided this use case should not be
called in situ processing.

2.3 Access

Access refers to how the simulation makes data available
to visualization and analysis routines. We consider this
axis from the perspective of logical memory spaces —
by considering virtual addresses, the axis generalizes to a
variety of memory models. The main options for access
are Direct access (where the in situ routines share the
same logical memory space as the simulation code) and
Indirect access (where in situ routines run in a distinct
logical memory space from the simulation code). Sometimes
Access is conflated with Proximity, because Direct Access
often occurs with On Node Proximity and Indirect Access
often occurs with Off Node Proximity. However, these axes
can pair oppositely. For example:

e Direct Access and Off Node Proximity pair when
a simulation code exposes data via remote direct
memory access (RDMA) or a partitioned global
address space (PGAS).

e Indirect Access and On Node Proximity pair when
the simulation code and in situ routines run as
separate processes (to minimize integration effort) and
exchanged data via the network or a local filesystem.

Within Direct Access, we distinguish between Deep
Copy and Shallow Copy implementations. With Deep Copy
implementations, in situ routines make a copy of their
input data from the simulation. One reason for using Deep
Copy is because the routines use a fixed data structure,
and this data structure does not match the simulation code,
for example because the simulation stores data in column-
major order and the in situ routine assumes row-major
order. This approach is expedient for software development,
but suboptimal in terms of resources, specifically using
extra memory and taking extra time to copy data. Another
motivation for the Deep Copy approach is to prevent stalling
the simulation — if the in situ routine makes a copy, then
the simulation is free to proceed even if the in situ routine

Prepared using sagej.cls

is not finished. Shallow Copy implementations, on the other
hand, adapt their data structures to those of the simulation
code. SCIRun Johnson et al. (2000) did this by using a
templated approach and adapting to the simulation code at
compile time. EAVL Meredith et al. (2012) did this through
a data representation that contained other arrays, including
arrays from simulation data, and then accessing data via a
layer of indirection. VTK Schroeder et al. (2004) takes a
similar approach to EAVL, although it handles variation in
data layout via virtual functions.

Both Direct Access and Indirect Access must deal with
data synchronization, as data should neither be consumed nor
overwritten too early. For the Direct Access case, this can
be achieved using standard synchronization methods, e.g.,
mutexes. For the Indirect Access case, this can be achieved
via a communication protocol between simulation code and
in situ system. There are several options for dealing with a
simulation producing data faster than the in situ system can
handle. These include: stalling the simulation until new data
can be taken on; buffering raw data, which will, however,
drive up memory consumption; and aborting the in situ
routine and restarting it on the new data.

2.4 Division of Execution

Division of Execution refers to how compute resources are
shared between simulation and in situ routines. The two
categories within Division of Execution are:

e Space Division. The simulation and in situ routines are
mapped to disjoint physical compute resources. That
is, a subset of the compute resources is exclusively
dedicated to in situ routines.

e Time Division. The simulation and in situ routines are
both mapped to the same physical compute resources.
Some (or all) of the compute resources alternate
between advancing the simulation and visualization
and analysis. That is, no compute resources are
exclusive to in situ routines.

The execution time and memory usage required by
in situ routines are generally less than those needed by
the simulation, often by a significant amount. Regardless,
division of execution between simulation code and in situ
system 1is a critical issue for the efficiency of the overall
system — allocating insufficient resources or insufficient
duration to an in situ system can slow down the simulation
code. That said, it is sometimes difficult to assess the
necessary computational resources and duration for an in situ
system to complete its tasks, since factors such as algorithm
scalability, computational bottlenecks, and sensitivities to
data layouts have large impacts on performance. Fortunately,
the division need not be fixed, as the simulation can choose to
adapt resource usage with many combinations of integration
type, proximity, and access. Indeed, current research seeks to
enable co-scheduling, i.e., dynamic management of system
resources at the runtime-system-level Pebay et al. (2016);
Peterson et al. (2015); Kale and Krishnan (1993), which
removes the complexity of dynamic resource management
from the application developer altogether.

Each division strategy has potential benefits and pitfalls,
with manifestations varying across in situ configurations.
Space Division facilitates both the efficient execution of the

Childs et al.

simulation as well as the appropriation of an ideal set of
resources to in situ routines. However, variations in the scales
and runtimes of the routines could lead to under-utilized
or oversubscribed subsets of resources. Managing this
synchronization as well as possibly necessary data transfers
may require significant additional infrastructure. Time
Division requires substantially less (or no) synchronization
and data transfer efforts. However, while in situ routines
are frequently I/O bound in many instances, optimal
efficiency is contingent upon data partitioning. For instance,
the parallel scaling of visualization algorithms relies on
infrastructure which can be sensitive to the size and shape
of data domains, for example ghost data generation. The
domain decomposition native to a simulation is sometimes
unfavorable for analysis and visualization, an issue more
easily addressable with post processing or Space Division.
Both Space Division and Time Division can have significant
cost if done poorly: Space Division can possibly block the
simulation if there are not enough resources to keep up, while
Time Division, when visualization or analysis routines run
slowly, prevents the compute resources from being returned
to the simulation.

2.5 CQOperation Controls

Operation Controls describes the mechanism for selecting
which operations are executed during run-time. We
identify two major categories within operation controls —
Automatic and Human-in-the-Loop — both of which have
sub-categories.

With Automatic Operation Controls, users select which
operations to perform in advance of the calculation, and there
is no human-in-the-loop during the simulation’s execution.
Within this category, we have identified two sub-categories.
With the Adaptive sub-category, the in situ routines can
adapt which operations are performed as the simulation
executes. As an example, some key criteria may trigger the
execution of some routines that were not executed otherwise.
With the Non-adaptive sub-category, the in situ routines are
static.

With Human-in-the-Loop Operation Controls, stake-
holders modify which visualization and analysis routines are
executed in situ. With the Blocking sub-category, the simula-
tion can pause when waiting for guidance from a stakeholder.
With the Non-blocking sub-category, the simulation will not
pause to wait for input from a stakeholder.

2.6 Output Type

Output Type describes which operations the in situ system
performs on the simulation data before it is output (meaning
either stored or sent to another in situ sub-system). While
a system can be described without understanding its output,
our group felt that this was a worthy inclusion regardless —
this category speaks to output size, which is an important
consideration. We identify three major categories for output
type: Subset, Transform, and Derived.

Subset refers to operations where a subset of the data
is selected, and the rest is discarded. Examples include
subsampling (e.g., coarse versions of the data), focusing
on regions of interest, or extracting portions with a certain
property, as with query-driven visualization Stockinger et al.

Prepared using sagej.cls

(2005) or as with topologies queries Heine et al. (2016) (e.g.,
N largest connected components).

Transform refers to operations that are performed on
each element of the data. Our notion of Transform does
not include reduction, meaning that we expect the data sets
created by the transformation process are the same scale as
the input data. Wavelet transformations would be an example
of a transform that may be applied in situ.

Derived refers to operations that generate new data of a
different nature than the input. Within the Derived category,
we consider two sub-types: Fixed and Proportional.
Products of Fixed operations are independent of the input
size. Examples include statistical summarizations, like
with Ye et al. (2016), and rendered images (when the image
size is fixed). Products of Proportional operations vary
based on input size. Examples include isosurfaces, indexing,
intermediate visualization representations, and topological
analysis. Proportional operations imply that the amount
of data saved varies with the input data size, but some
operations’ proportion are data dependent while others
are not. For example, the amount of data to save when
isosurfacing depends on both the input data and the isovalue,
but the amount of data to save when subsampling is not data
dependent.

Some operations can be used in either Fixed or
Proportional approaches. For example, Lagrangian basis
flow extraction Agranovsky et al. (2014) can output a fixed
size (and potentially miss information about the vector field)
or a proportional size (and thus be more likely to capture
information about the vector field).

Finally, the value for Output Type for an in situ
routine can be more than a single entry. For example,
wavelet compression can be accomplished by first doing a
wavelet transform, and then discarding the least important
coefficients. This would be categorized as Transform —
Subset, which indicated that the data is transformed before
being reduced by a subset operation. Finally, some large,
dedicated in situ systems offer many simultaneous output
types, and may need multiple descriptions to describe those
outputs.

3 Classifying Notional In Situ System
Examples

In this section, we describe three notional systems, and
classify them according to our axes. Also, note that the terms
used in the subsection headings (tightly-coupled, loosely-
coupled, hybrid in situ) are ambiguous and can have multiple
interpretations, although we believe the examples specified
fall within most accepted definitions.

3.1 Example 1: Tightly-Coupled System

Consider the following system: A simulation code links an
in situ library into its code. When the simulation code calls a
function in the in situ API, it both specifies the operations
to perform and sends data to operate on. The simulation
code’s usage of the API is static; the simulation code
compiles against the API, and the same function is called
at a regular interval. When the simulation code invokes the
in situ function, the in situ library immediately executes its
operations on the same hardware, first transforming it to its

6 To appear in: International Journal of High Performance Computing Applications 36(6)

own data model, then applying the specified operations, and
finally creating images that are saved to disk. The function
then returns and the simulation code resumes execution.

In our terminology, this would be classified as:

Integration Type: Dedicated API

Proximity: On Node

Access: Direct: Deep Copy

Division of Execution: Time Division
Operation Controls: Automatic: Non-adaptive
Output Type: Derived: Fixed

3.2 Example 2: Loosely-Coupled System

Consider the following system: A simulation code links in
an API for data management. When the simulation code
calls functions in the in situ API, it believes it is doing I/O
operations. However, the in situ library instead sends data
to remote nodes which are dedicated to visualization and
analysis. A user is running a visualization and analysis tool
on these remote nodes, interacting with the data as it comes
over the network. When a new time slice comes over the
network, the data the user was looking at is flushed and
replaced with the new data.
In our terminology, this would be classified as:

e Integration Type: Multi-purpose API

e Proximity: Off Node

e Access: Indirect

e Division of Execution: Space Division

e Operation Controls: Human-in-the-loop: Non-
blocking

e Output Type: Derived: Fixed

3.3 Example 3: Hybrid In Situ System

Consider the following system whose sole purpose is to
render isosurfaces. In this system, the desired isovalues result
in a sparse isosurface (i.e., few triangles compared to the
number of cells), so, when data is produced, an isosurfacing
routine is immediately applied. This routine was written
specifically to work on data from this simulation code. The
resulting triangles are sent over the network to dedicated
visualization nodes, using a data transfer library. There,
separate visualization software renders the data. Since the
location of the isosurface varies, the software evaluates the
data set and determines the best camera angles to capture the
data. It saves the resulting images to disk.

In this case, this system is actually two distinct sub-
systems operating in tandem. We classify the sub-systems
separately. More discussion of this topic is in the next section
(In Situ Workflows).

e Sub-system #1

— Integration Type: Bespoke

Proximity: On Node

Access: Direct: Shallow Copy

Division of Execution: Time Division
Operation Controls: Automatic: Non-adaptive
Output Type: Derived: Proportional

o Sub-system #2

Prepared using sagej.cls

— Integration Type: Multi-purpose API
Proximity: Off Node

Access: Indirect

Division of Execution: Space Division
Operation Controls: Automatic: Adaptive
Output Type: Derived: Fixed

4 In Situ Workflows

In situ systems sometimes operate in a form where there are
multiple, distinct sub-systems, which operate in a workflow-
like fashion. That is, sub-system “A” will transform data and
transport it to sub-system “B,” sub-system “B” will transform
data and transport it to sub-system “C,” and so on. Of course,
the flow of data does not need to be sequential from “A” to
“B” to “C,” but instead can flow in arbitrary ways, including
forming cycles, acting as a source for multiple sub-systems,
accepting input from multiple sources, etc. In some cases,
“A,) “B,” etc., are the same program, but this program was
invoked in a way that causes it to function differently. In
other cases, the sub-systems are distinct programs, but those
programs come from the same source code repository, and
are branded under the same product name. In still other cases,
the sub-systems are truly distinct pieces of software.

For our categorization, we classify each sub-system in
the workflow separately (as seen in Example 3). That said,
many workflows contain sub-systems that do not relate
to visualization and analysis; when classifying an in situ
system, we recommend only including sub-systems that do
visualization and analysis operations in a categorization.
Finally, note that if the sub-systems have non-sequential flow
(i.e., splitting output, cycles, etc.), then the classifications
listing for each sub-system would need to be augmented with
a graph that captures the respective inputs and outputs of
each sub-system.

5 Surveying Existing In Situ Systems

In this section, we consider 15 existing in situ systems. The
systems we surveyed were the ones suggested by our co-
authors; we believe the resulting list is representative, but not
exhaustive. Table | summarizes these in situ systems based
on our axes to describe an in situ system.

We divide our treatment into three sections. Seven of the
fifteen systems do exclusively Time Division with On Node
proximity; these are discussed in Section 5.1. Six of the
fifteen systems allow for choice with respect to Division of
Execution (i.e., both Time Division and Space Division)
and Proximity (i.e., ranging from On Node to Off Node,
with a few also supporting Distinct Computing Resources);
these are discussed in Section 5.2. Finally, the remaining two
systems made specific choices for Division of Execution and
Proximity that were different than those of Section 5.1; these
are discussed in Section 5.3.

5.1 Time Division and On Node Proximity

The seven systems in this section all use Time Division
and On Node proximity. This means they all use a model
where the simulation advances, then pauses and hands
control to the in situ system which completes its operations,
hands control back, and so on. The seven systems are:

Childs et al.

Ascent, Freeprocessing, ParaView/Catalyst, SCIRun, QIso,
Vislt/Libsim, and XImage.

Four of the systems (ParaView/Catalyst, SCIRun,
Vislt/Libsim, and XImage) use Dedicated API — when
simulation codes connect to these systems, it is known to
be for the purpose of visualization and analysis tasks. Some
other noteworthy aspects of these in situ systems:

e Libsim Whitlock et al. (2011) and Catalyst Bauer
et al. (2015); Fabian et al. (2011) are in situ libraries
that deliver the capabilities of Vislt Childs et al.
(2012) and ParaView Ayachit (2015), respectively.
In both cases, a post hoc tool began around the
year 2000, became popular, and was then reworked
to have an in situ form during the ensuing decade.
Both libraries support shallow-copying of simulation
data arrays that conform to the contiguous memory
layout used natively by the VTK library. For other
memory layouts, shallow copy support is possible via
subclassing of VTK’s data array modules. In both
cases, users can provide scripts prior to runtime that
control visualization and analysis (Automatic: Non-
Adaptive) or allow users to control the visualization
directly (Human-in-the-loop: Blocking). Finally, in
conjunction with other technologies, such as ADIOS,
these tools can be used to perform (Human-in-the-
loop: Non-blocking) by using separate, dedicated
visualization resources.

e SCIRun Parker and Johnson (1995); KnezZevi¢ et al.
(2012); Parker et al. (1997b,a) is different than
Catalyst and Libsim — it is not delivering a post hoc
tool, but rather was designed with in situ in mind
from the beginning. Overall, SCIRun is a scientific
programming environment designed for interactive
construction, debugging, and steering of large-scale
scientific computations. It is a framework in which
large scale computer simulations can be composed,
executed, controlled and tuned interactively. It
depends on a data flow design where users can
design and modify simulations interactively via
a dataflow programming model, and this design
allows for easy extensibility of new modules. An
especially interesting design choice for SCIRun was
the decision to incorporate templates with its data
model. This allowed SCIRun to adapt its data
model at compile-time to minimize memory footprint,
achieving Shallow Copy at a higher rate than other
systems.

e XImage Ye et al. (2018) is an in situ library committed
to Fixed output type. It produces only images,
although these images are “explorable,” meaning
that each produced image is a meta-image that can
produce additional images Tikhonova et al. (2010a). It
currently supports volume rendering Tikhonova et al.
(2010Db) and pathtube visualization Ye et al. (2013).

The remaining three systems have different choices for
integration type. They are:

e Ascent Larsen et al. (2017) uses a Multi-purpose
API, and simulation codes can use Ascent to perform
their I/O, as well as visualization and analysis. Ascent

Prepared using sagej.cls

uses VTK-m Moreland et al. (2016), which adapts its
data model to match simulation code layout, enabling
Shallow Copy in many instances. Ascent also has
invested in Automatic: Adaptive workflows, and
has an extensive system for triggers, which can be
customized by users Larsen et al. (2018). Finally,
Ascent can incorporate Jupyter notebooks to achieve
Human-in-the-loop: Blocking Ibrahim et al. (2019).

e Freeprocessing Fogal et al. (2014) is one of the few
systems we consider that uses Interposition. Its focus
has been on ease of use and programmability, and
works via a symbiont that uses binary instrumentation.
The data that it extracts can then be forwarded
to custom visualization routines, or to existing
visualization tools (which would share the same
resources).

e QlIso Ziegeler et al. (2015) is one of only two
Bespoke examples we consider. The library is
dedicated to generating and rendering isosurfaces in
MPI-based simulations. It uses the Marching Cubes
algorithm Lorensen and Cline (1987) on structured
grids obtained directly from a simulation’s arrays,
renders to an off-screen framebuffer, and parallel-
composites the result via MPI to a single image.
A library like this is powerful since it has minimal
dependencies and is simple to incorporate.

5.2 Choice in Division of Execution and
Proximity

The six systems in this section — ADIOS, Damaris,
DataSpaces, GLEAN, liblS, and SENSEI — all provide
options with respect to Division of Execution and Proximity.
In particular, each of these systems can execute like those
from Section 5.1. However, they can also operate in other
ways, for example running visualization/analysis alongside
the simulation on the same node, or sending data to distinct
nodes. A popular Off Node form is “data staging” Oldfield
et al. (1998), where data is moved from the simulation nodes
to a smaller pool of visualization/analysis/I/O nodes, where
data can be aggregated, processed, indexed, and filtered. This
sometimes has cost benefits for in situ visualization and
analysis Kress et al. (2019), but is regularly helpful for 1/O,
since dramatic reductions can be achieved in the total data
volume to store.

ADIOS and GLEAN both use Multi-Purpose APIs,
although GLEAN also can use an Interposition approach.
Some other noteworthy aspects of these systems:

e ADIOS, short for the Adaptable I/O System
(ADIOS) Liu et al. (2014), has a strong focus on
I/O (in addition to visualization and analysis), and
has been able to demonstrate strong I/O throughput
for simulations. The ADIOS API allows writing to
storage arrays and integrating with other workflow or
data analytics systems without detailed knowledge of
the underlying software and hardware stack (Multi-
Purpose API). This API allows users to combine
data storage, data staging, data compression, and/or
data reduction. Noteworthy products integrated into
ADIOS include ZFP Lindstrom (2014), SZ Di and
Cappello (2016) and BZip2 for data compression

8 To appear in: International Journal of High Performance Computing Applications 36(6)

and I/O, ICEE Choi et al. (2013), FlexPath Dayal
et al. (2014), and DataSpaces Docan et al. (2012)
for data staging, and ParaView, Vislt, and Ascent for
visualization and analysis.

e GLEAN Vishwanath et al. (2011) has a focus on taking
application, analysis, and system characteristics into
account to facilitate simulation-time data analysis and
I/O acceleration. In other words, its focus is on being
able to provide the least cost to carry out an operation.
Another important focus for GLEAN is to provide
an interface for in situ analysis with zero or minimal
modifications to the existing application code base.
It achieves non-intrusive integration by embedding in
higher-level I/O libraries such as PnetCDF and HDF5
(Interposition).

Damaris and SENSEI both use Dedicated APIs, and both
have the potential to share the same memory space with
the simulation (i.e., Direct access in addition to Indirect
access):

e Damaris Dorier et al. (2016) began as middleware for
I/O operations, and has increasingly added support
for visualization, first with Vislt, then with Catalyst.
Damaris operates with an XML-based system, which
was first used to allow users to describe the
data semantics to the backend I/O libraries, and
subsequently used to control in situ visualization with
Vislt. Finally, Damaris started with a focus on On
Node, and then added an Off Node option after its
initial deployment.

e SENSEI Ayachit et al. (2016b) provides a generic API
for in situ processing in order to enable a “write-
once, run-anywhere” environment. One advantage
from their approach is proximity portability, i.e.,
runtime selection between running On Node or Off
Node. Another advantage is tool portability, i.e.,
runtime selection between in situ technologies, such
as Libsim, Catalyst, and Ascent, as well as by
enabling use of custom user-written methods, such
as parallel Python scripts. Further, SENSEI enable
interoperability between the tools they integrate.

The OSPRay libIS library Usher et al. (2018) can do both
Space Division and Time Division, but it focuses solely
on Indirect access. 1ibIS exposes a Dedicated API to the
simulation, which it uses to listen for visualization clients,
and send data to these clients. Clients can connect and
disconnect to the simulation as needed, and, once connected,
request to receive data for the current time step.

Finally, while data staging was mentioned at the beginning
of this section and again in the ADIOS section, we briefly
focus on one data staging technology, DataSpaces Docan
et al. (2012), as an example system. DataSpaces is a
programming system that provides data exchange services
to support extreme-scale in situ workflows. It can be
accessed by many components and services in a workflow;
components/services can dynamically connect to it and use
it to coordinate their execution and to support dynamic and
asynchronous interactions and data exchange among them.
It also contains features similar to some of the systems
above — data querying, filtering, and data redistribution.

Prepared using sagej.cls

DataSpaces is built on an autonomic data-management
layer that leverages machine learning algorithms and
application hints to support application/system-aware data
placement and movement Subedi et al. (2018); Jin et al.
(2015), and an asynchronous, low-overhead, memory-to-
memory data transport substrate based on RDMA one-sided
communications.

5.3 Remaining Systems

The commercial ANSYS EnSight tool Frank and Krogh
(2012) focuses on Space Division. Its goal is to allow users
to explore data from a currently running simulation. EnSight
performs in situ analysis where new data from a running
simulation is continuously discovered and loaded. They refer
to this capability as “simulation monitoring.” The capability
is implemented via the file system — when new files are
found, EnSight loads the new time steps into its set of time
steps and updates its display. That said, the user can remain
on the current time step or automatically jump to the latest
one discovered. Although this usage pattern is performed via
files on disk, we include it in the survey, since it fits our
definition of “processing data as it is generated.”

InSt Malakar et al. (2010, 2011) is the other Bespoke
effort we consider, as it is strictly for weather applications.
InSt works in two settings. First, InSt automatically detects
critical weather events, such as cyclones, and refines the
simulation, to ensure that the simulation progresses without
stalling even with application dynamics. This is similar to
SCIRun in terms of a computational steering component.
Second, InSt also enables online remote visualization at the
user’s site, from where the user can concurrently visualize
the simulation output as well as steer the simulation. This
is an instance of Distinct resources, as domain scientists
around the world can visualize their data as the simulation
as running, and also adapt those visualizations.

6 Process for In Situ Terminology Project

This section describes the process for generating our
terminology. There were four main phases to this effort:
(1) form a community, (2) agree on the main axes of
terminology, (3) agree on the options for each axis, and (4)
document the result.

The main method of forming a community was via
outreach at conferences. An open call for participation was
made at a panel at the IEEE Symposium for Large Data
Analysis and Visualization (LDAV) and also at a lightning
talk at the Supercomputing Workshop on In Situ Analysis
and Visualization (ISAV). This led to approximately thirty
participants. Following this step, invitations were sent out to
senior voices in the community, almost all of which were
accepted.

Agreeing on the main axes of terminology and the options
for each axis was primarily done by teleconference. In total,
twelve conference calls were convened, featuring twenty
to thirty participants each. The early teleconferences were
devoted to deciding on the main concepts. This includes
a deep discussion of the scope of the term “in situ”
itself, and establishing that the terminology would focus
on classifying a system by stating its choices for largely
orthogonal axes, before specifying the axes themselves.

Childs et al.

Table 1. Categorization of various existing in situ systems with respect to terminology. Table entries are ordered alphabetically.

Name Ref Integration Proximity Access DWISIOP of Operation Controls
Type Execution
On Node; D-SC* Time: Automatic: Adaptive;
ADIOS Liu et al. MP-API Off Node; In direc’t g ace,t Automatic: Non-adaptive;
(2014) Distinct p Human-in-the-loop: Non-Blocking
ANSYS EnSight Frank and Interposition 8gtli\r11(c):(tje; Indirect Space Human-in-the-loop: Non-Blocking
Krogh (2012)
Ascent Larsen et al. MP-API OnNode D25 Time Automatic: Non-adaptive;
2017) D-DC Human-in-the-loop: Blocking
. D-SC; — Automatic: Non-adaptive;
Damaris Dorier et al. D-API 8;11\\11?)(31: D-DC; ?I::é Human-in-the-loop: Blocking;
(2016) Indirect P Human-in-the-loop: Non-Blocking
DataSpaces Docan et al. MP-API O gtz D_].)C; 1 Automatic: Adaptive
(2012) Off Node Indirect Space
Freeprocessing Fogal et al. Interposition On Node D-SC Time Automatic: Non-adaptive
(2014)
On Node; D-SC; . . .
Gea e MUATEomNow ppe Tme Avemicanie
etal. (2011) P Distinct Indirect “F U : pUv
InSt Malakar et al. Bespoke Op Node; D_S.C; Time Automatllc: Non-adtaptlve; .
2011 Distinct Indirect Human-in-the-loop: Non-Blocking
. — Automatic: Adaptive;
OSPRay LibIS Usher et al. D-API 8%%?)%2 Indirect ?I:; Automatic: Non-adaptive;
(2018) p Human-in-the-loop: Non-Blocking
Automatic: Non-adaptive;
ParaView Ayachit D-API On Node D-SC* Time Human-in-the-loop: Blocking;
(2015) Human-in-the-loop: Non-Blocking
QIso Ziegeler et al. Bespoke On Node D-SC Time Automatic: Non-adaptive
(2015)
. Automatic: Adaptive;
. Q- . ’
SENSEI Ayachit et al. D-API 8;%‘(’;11‘2’ Eadsifec} g":fé Automatic: Non-adaptive;
(2016b) p Human-in-the-loop: Non-Blocking
D-SC- Automatic: Non-adaptive;
SCIRun Parker and D-API On Node DD C’ Time Human-in-the-loop: Blocking;
Johnson Human-in-the-loop: Non-Blocking
(1995)
Vislt Childs et al. D-API OnNode D-SC* Time Automatic: Non-adaptive;
(2012) Human-in-the-loop: Non-Blocking
XImage Ye et al. D-API OnNode D-SC Time Automatic: Non-adaptive;
(2018) Human-in-the-loop: Non-Blocking

D-API = Dedicated API; MP-API = Multi-Purpose API

D-SC = Direct Integration - Shallow Copy; D-DC = Direct Integration - Deep Copy

* = does shallow copy when possible, otherwise deep copy

Subsequent teleconferences focused on specific options for
each of the axes. Discussions revolved around both ideas and
appropriate terminology — i.e., wording — that would convey

those ideas.

Documenting the results was again done by group. Major
discussion results were documented during each conference
call. The lead author would review and refine these points

Prepared using sagej.cls

after the call adjourned, which yielded an initial draft of
the concepts discussed. This draft was then placed on
Google Drive, and each co-author reviewed the document
and commented on it. Subsequent teleconference calls then
explored the comments in order to resolve them. Accepted
comments were addressed by assigning a lead contributor to

10 To appear in: International Journal of High Performance Computing Applications 36(6)

fix the respective issue, and additional co-authors to review
the change. Finally, all authors reviewed the final paper draft.

7 Conclusion

In this paper, we have presented a holistic terminology
for the design space of in situ systems. Our proposed
model comprises six axes along which an in situ system
can be characterized; each of these axes has multiple sub-
options. The motivation for this terminology is twofold.
First, it serves as a starting point for a uniformly understood
vocabulary that helps to navigate the in situ design space
at large. Second, and perhaps more important, it helps
characterize existing and possible systems, which facilitates
identifying similarities and differences, and even possibly
suggests new directions.

Developing this terminology by a community-driven
approach is a key contribution towards the second
aspect. The diverse discussions brought in many different
perspectives in the beginning. Through a series of
subsequently refined drafts, these were eventually distilled
into the terminology described here. This process not only
ensured that diverse views have been taken into account,
but also provided the end result with a solid foundation and
the backing of a significant number of practitioners in this
community.

Finally, this terminology should not be considered static.
As new systems are developed, we encourage future
researchers to introduce new options and axes as appropriate.
In response, we plan to update the terminology occasionally.

References

Agranovsky A, Camp D, Garth C, Bethel EW, Joy KI and Childs
H (2014) Improved Post Hoc Flow Analysis Via Lagrangian
Representations. In: Proceedings of the IEEE Symposium on
Large Data Visualization and Analysis (LDAV). Paris, France,
pp- 67-75.

Ayachit U (2015) The ParaView Guide: A Parallel Visualization
Application. Kitware. ISBN 978-1930934306.

Ayachit U, Bauer A, Duque EPN, Eisenhauer G, Ferrier N, Gu J,
Jansen KE, Loring B, Luki¢ Z, Menon S, Morozov D, O’Leary
P, Ranjan R, Rasquin M, Stone CP, Vishwanath V, Weber
GH, Whitlock B, Wolf M, Wu KJ and Bethel EW (2016a)
Performance analysis, design considerations, and applications
of extreme-scale in situ infrastructures. In: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC16). pp. 79:1-79:12.

Ayachit U, Whitlock B, Wolf M, Loring B, Geveci B, Lonie D
and Bethel E (2016b) The SENSEI Generic In Situ Interface.
In: Proceedings of the Workshop on In Situ Infrastructures
for Enabling Extreme-scale Analysis and Visualization (ISAV).
IEEE Press, pp. 40—44.

Bauer AC, Geveci B and Schroeder W (2015) The ParaView
Catalyst User’s Guide v2.0. Kitware, Inc.

Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire
D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H,
Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Riibel O,
Durant M, Favre JM and Navratil P (2012) VisIt: An End-User
Tool For Visualizing and Analyzing Very Large Data. In: High

Prepared using sagej.cls

Performance Visualization-Enabling Extreme-Scale Scientific
Insight. pp. 357-372.

Choi JY, Wu K, Wu JC, Sim A, Liu QG, Wolf M, Chang C and
Klasky S (2013) Icee: Wide-area in transit data processing
framework for near real-time scientific applications. In:
Workshop on Petascale (Big) Data Analytics: Challenges and
Opportunities, held in conjunction with SC13.

Dayal J, Bratcher D, Eisenhauer G, Schwan K, Wolf M, Zhang
X, Abbasi H, Klasky S and Podhorszki N (2014) Flexpath:
Type-Based Publish/Subscribe System for Large-scale Science
Analytics. In: IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. pp. 245-255.

Deelman E, Peterka T et al. (2015) The Future of Scientific
Workflows. Technical report, Report of the DOE NFNS/CS
Scientific Workflows Workshop.

Di S and Cappello F (2016) Fast error-bounded lossy hpc data
compression with sz. In: IEEE International Parallel and
Distributed Processing Symposium (IPDPS). pp. 730-739.

Docan C, Parashar M and Klasky S (2012) Dataspaces: an
interaction and coordination framework for coupled simulation
workflows. Cluster Computing 15(2): 163—181.

Dorier M, Antoniu G, Cappello F, Snir M, Sisneros R, Yildiz
O, Ibrahim S, Peterka T and Orf L (2016) Damaris:
Addressing Performance Variability in Data Management for
Post-Petascale Simulations. ACM Transactions on Parallel
Computing (ToPC) 3(3): 15:1-15:43.

Ellsworth D, Green B, Henze C, Moran P and Sandstrom T (2006)
Concurrent Visualization in a Production Supercomputing
Environment. IEEE Transactions on Visualization and
Computer Graphics 12(5): 997-1004.

Fabian N, Moreland K, Thompson D, Bauer AC, Marion P,
Geveci B, Rasquin M and Jansen KE (2011) The paraview
coprocessing library: A scalable, general purpose in situ
visualization library. In: IEEE Symposium on Large Data
Analysis and Visualization (LDAV). pp. 89-96.

Fogal T, Proch F, Schiewe A, Hasemann O, Kempf A and Kriiger
J (2014) Freeprocessing: Transparent in situ visualization via
data interception. In: Eurographics Symposium on Parallel
Graphics and Visualization. pp. 49-56.

Frank R and Krogh MF (2012) The EnSight Visualization
Application. In: High Performance Visualization-Enabling
Extreme-Scale Scientific Insight. pp. 429-442.

Haimes R (1994) pv3-a distributed system for large-scale unsteady
cfd visualization. In: 32nd Aerospace Sciences Meeting and
Exhibit. p. 321.

Haimes R and Barth T (1995) Application of the pV3 Co-
Processing Visualization Environment to 3-D Unstructured
Mesh Calculations on the IBM SP2 Parallel Computer. In:
Proc. CAS Workshop.

Haimes R and Edwards DE (1997) Visualization in a parallel
processing environment. In: 35th Aerospace Sciences Meeting
and Exhibit. p. 348.

Heine C, Leitte H, Hlawitschka M, Iuricich F, De Floriani L,
Scheuermann G, Hagen H and Garth C (2016) A survey of
topology-based methods in visualization. Computer Graphics
Forum 35(3): 643-667.

Ibrahim S, Stitt T, Larsen M and Harrison C (2019) Interactive
In Situ Visualization and Analysis using Ascent and Jupyter.
In: Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization (ISAV). pp. 44-48.

Childs et al.

11

Insley JA, Papka ME, Dong S, Karniadakis G and Karonis NT
(2007) Runtime visualization of the human arterial tree. IEEE
Transactions on Visualization and Computer Graphics 13(4):
810-821.

Jin T, Zhang F, Sun Q, Bui H, Romanus M, Podhorszki N,
Klasky S, Kolla H, Chen J, Hager R et al. (2015) Exploring
data staging across deep memory hierarchies for coupled data
intensive simulation workflows. In: Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). pp. 1033-1042.

Johnson C, Parker S and Weinstein D (2000) Large-Scale
Computational Science Applications Using the SCIRun
Problem Solving Environment.
2000 ACM/IEEE conference on Supercomputing.
http://www.sci.utah.edu/publications/

In: Proceedings of the
URL

crj00/super00_final.pdf.

Kale LV and Krishnan S (1993) Charm++: A Portable Concurrent
Object Oriented System Based On C++. In: Proceedings of
the eighth annual conference on Object-oriented programming
systems, languages, and applications. pp. 91-108.

KneZevié J, Mundani RP, Rank E, Khan A and Johnson CR (2012)
Extending the SCIRun Problem Solving Environment to Large-
Scale Applications. In: Proc. of The IADIS Applied Computing
2012.

Kress J, Larsen M, Choi J, Kim M, Wolf M, Podhorszki N, Klasky
S, Childs H and Pugmire D (2019) Comparing the Efficiency
of In Situ Visualization Paradigms at Scale. In: ISC High
Performance. Frankfurt, Germany, pp. 99-117.

Larsen M, Ahrens J, Ayachit U, Brugger E, Childs H, Geveci B
and Harrison C (2017) The ALPINE In Situ Infrastructure:
Ascending from the Ashes of Strawman. In: Proceedings of
the In Situ Infrastructures on Enabling Extreme-Scale Analysis
and Visualization (ISAV). pp. 42—-46.

Larsen M, Woods A, Marsaglia N, Biswas A, Dutta S, Harrison C
and Childs H (2018) A Flexible System for In Situ Triggers.
In: Proceedings of the Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization (ISAV). pp.
1-6.

Lindstrom P (2014) Fixed-rate compressed floating-point arrays.
IEEE Transactions on Visualization and Computer Graphics
20(12): 2674-2683.

Liu Q, Logan J, Tian Y, Abbasi H, Podhorszki N, Choi JY, Klasky S,
Tchoua R, Lofstead J, Oldfield R et al. (2014) Hello ADIOS:
the challenges and lessons of developing leadership class 1/0
frameworks. Concurrency and Computation: Practice and
Experience 26(7): 1453-1473.

Lorensen WE and Cline HE (1987) Marching cubes: A high
resolution 3d surface construction algorithm. ACM siggraph
computer graphics 21(4): 163—-169.

Ma KL (1996) Runtime volume visualization for parallel CFD.
In: Parallel Computational Fluid Dynamics. Elsevier, pp. 307—
314.

Malakar P, Natarajan V and Vadhiyar SS (2010) An adaptive frame-
work for simulation and online remote visualization of criti-
cal climate applications in resource-constrained environments.
In: Conference on High Performance Computing Networking,
Storage and Analysis (SC).

Malakar P, Natarajan V and Vadhiyar SS (2011) Inst: An integrated
steering framework for critical weather applications. In:
Proceedings of the International Conference on Computational

Prepared using sagej.cls

Science, ICCS 2011. pp. 116-125.

Meredith JS, Ahern S, Pugmire D and Sisneros R (2012)
EAVL: the extreme-scale analysis and visualization library.
In: Eurographics Symposium on Parallel Graphics and
Visualization. pp. 21-30.

Moreland K, Sewell C, Usher W, Lo L, Meredith J, Pugmire D,
Kress J, Schroots H, Ma KL, Childs H, Larsen M, Chen CM,
Maynard R and Geveci B (2016) VTK-m: Accelerating the
Visualization Toolkit for Massively Threaded Architectures.
IEEE Computer Graphics and Applications (CG&A) 36(3):
48-58.

Oldfield RA, Womble DE and Ober CC (1998) Efficient parallel
I/0 in seismic imaging. The International Journal of High
Performance Computing Applications 12(3): 333-344.

Parker S, Beazley D and Johnson C (1997a) Computational steering
software systems and strategies. I[EEE Computational Science
and Engineering 4(4): 50-59.

Parker S, Weinstein D and Johnson C (1997b) The SCIRun
computational steering software system. In: Modern Software
Tools in Scientific Computing. Boston: Birkhauser Press, pp.
1-40.

Parker SG and Johnson CR (1995) SCIRun: A Scientific
Programming Environment for Computational Steering. In:
Supercomputing ’95: Proceedings of the 1995 ACM/IEEE

URL https://
ieeexplore.ieee.org/document/1383188.

Pebay P, Bennett JC, Hollman D, Treichler S, McCormick
PS, Sweeney CM, Kolla H and Aiken A (2016) Towards
asynchronous many-task in situ data analysis using legion.
IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) : 1033-1037.

Peterson B, Dasari HK, Humphrey A, Sutherland J, Saad T
and Berzins M (2015) Reducing overhead in the Uintah
framework to support short-lived tasks on GPU-heterogeneous

Conference on Supercomputing. p. 52.

architectures. In: International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC’15). pp. 4:1-4:8.

Schroeder W, Martin K and Lorensen B (2004) The Visualization
Toolkit: An Object Oriented Approach to 3D Graphics. Fourth
edition. Kitware, Inc. ISBN 1-930934-19-X.

Stockinger K, Shalf J, Wu K and Bethel EW (2005) In: Proceedings
of IEEE Visualization 2005 Conference (VIS’05). pp. 167-174.

Subedi P, Davis P, Duan S, Klasky S, Kolla H and Parashar M
(2018) Scalable data resilience for in-memory data staging.
In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC18).

Tikhonova A, Correa CD and Ma KL (2010a) Explorable images
for visualizing volume data. In: Proceedings of PacificVis. pp.
177-184.

Tikhonova A, Correa CD and Ma KL (2010b) Visualization
by proxy: A novel framework for deferred interaction with
volume data. /EEE Transactions on Visualization & Computer
Graphics (6): 1551-1559.

Tu T, Yu H, Ramirez-Guzman L, Bielak J, Ghattas O, Ma
KL and O’Hallaron DR (2006) From mesh generation to
scientific visualization: An end-to-end approach to parallel
supercomputing. In: Proceedings of the ACM/IEEE Conference
on Supercomputing (SC06). pp. 91—es.

http://www.sci.utah.edu/publications/crj00/super00_final.pdf
http://www.sci.utah.edu/publications/crj00/super00_final.pdf
https://ieeexplore.ieee.org/document/1383188
https://ieeexplore.ieee.org/document/1383188

12 To appear in: International Journal of High Performance Computing Applications 36(6)

Usher W, Rizzi S, Wald I, Amstutz J, Insley J, Vishwanath V, Ferrier
N, Papka ME and Pascucci V (2018) libIS: A Lightweight
Library for Flexible In Transit Visualization. In: Proceedings of
the Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization (ISAV).

Vishwanath V, Hereld M, Morozov V and Papka ME (2011)
Topology-aware Data Movement and Staging for I/O
Acceleration on Blue Gene/P Supercomputing Systems. In:
Proceedings of International Conference for High Performance
Computing, Networking, Storage and Analysis (SCI11). pp.
19:1-19:11.

Whitlock B, Favre JM and Meredith JS (2011) Parallel in situ
coupling of simulation with a fully featured visualization
system. In: Eurographics Symposium on Parallel Graphics and
Visualization (EGPGYV). pp. 101-1009.

Ye C, Wang Y, Miller B and Ma KL (2018) XImage: Explorable
Image for In Situ Volume Visualization. URL https://
chrisyeshi.github.io/ximage-scalar/.

Ye Y, Miller R and Ma KL (2013) In situ pathtube visualization with
explorable images. In: Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV). pp. 9-16.

Ye YC, Neuroth T, Sauer F, Ma KL, Borghesi G, Konduri A, Kolla
H and Chen J (2016) In situ generated probability distribution
functions for interactive post hoc visualization and analysis.
In: IEEE Symposium on Large Data Analysis and Visualization
(LDAV). pp. 65-74.

Ziegeler S, Atkins C, Bauer A and Pettey L (2015) In situ analysis as
a parallel i/o problem. In: Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization (ISAV). pp. 13-18.

Prepared using sagej.cls

https://chrisyeshi.github.io/ximage-scalar/
https://chrisyeshi.github.io/ximage-scalar/

	1 Introduction
	2 Axes of In Situ Systems
	2.1 Integration Type
	2.2 Proximity
	2.3 Access
	2.4 Division of Execution
	2.5 Operation Controls
	2.6 Output Type

	3 Classifying Notional In Situ System Examples
	3.1 Example 1: Tightly-Coupled System
	3.2 Example 2: Loosely-Coupled System
	3.3 Example 3: Hybrid In Situ System

	4 In Situ Workflows
	5 Surveying Existing In Situ Systems
	5.1 Time Division and On Node Proximity
	5.2 Choice in Division of Execution and Proximity
	5.3 Remaining Systems

	6 Process for In Situ Terminology Project
	7 Conclusion

