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Abstract

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to
run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the
CFD-DEM expertise embodied in the MFIX code – which was developed at NETL and is used widely
in academia and industry – with the modern software framework, AMReX, developed at LBNL. The
fundamental physics models follow those of the original MFIX, but the combination of new algorithmic
approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines
to optimize the modeling and design of multiphase chemical reactors.
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MFIX-Exa: A Path Towards Exascale CFD-DEM Simulations

Jordan Musser1, Ann S. Almgren2, William D. Fullmer1,3, Oscar Antepara2, John B. Bell2, Johannes Blaschke2, Kevin Gott2, Andrew Myers2, Roberto Porcu1,3, Deepak Rangarajan1,3, Michele Rosso2, Weiqun Zhang2, and Madhava Syamlal1

1 Introduction

In the United States, electricity production and industrial processes are responsible for approximately half of
all greenhouse gas emissions, the bulk of which is attributed to the burning of fossil fuels [United States Environmental Protection Agency(2017)].
Carbon capture and storage (CCS) technologies, such as oxy-fuel combustion, chemical looping combustion,
and post combustion absorption systems, offer the most promising approaches for decreasing CO2 emissions
from fossil fuel power plants. Large-scale commercial deployment of CO2 capture technologies requires un-
derstanding how to scale laboratory designs to industrial sizes. However, the direct scale up of the design of
multiphase reactors, which are often at the core of these devices, is known to be unreliable. Consequently,
the current approach is to build and test reactors at increasingly larger scales.

This paper describes the development of a high-fidelity computational tool capable of simulating dense
particle-laden flows in systems with complex geometries so that high-performance computing can be used
in place of physical testing at one or more intermediate scales. This would decrease both the time and
capital investment needed to bring new technologies to market. This work specifically targets the scale-up
of chemical looping reactors (CLR) by creating a massively parallel CFD-DEM code called MFIX-Exa, a
complete modernization of the legacy NETL code, MFIX (https://mfix.netl.doe.gov).

The computational fluid dynamics-discrete element method (CFD-DEM) is a highly accurate way to model
multiphase flows. DEM tracks individual particles and their interaction with the surrounding fluid. Unlike
models that treat the particles as a continuum, or aggregate particles into parcels, DEM does not require
constitutive relations for quantities that result from the averaging process, which are the greatest source of
uncertainty. However, DEM is computationally expensive, requiring particle tracking and collision detection,
coupling with the fluid phase (e.g., fluid-particle drag force), and evolution of the fluid fields. Additionally,
long simulation times are required to accumulate sufficient data for meaningful statistical analysis of these
highly transient flows. Consequently, DEM simulations are currently limited to laboratory-scale reactors
containing a few million particles, whereas small pilot scale reactors contain billions of particles.

The two primary components of a CLR are the fuel and air reactors. In the fuel reactor, oxygen from
particles, typically a metal oxide, is used in place of air to combust fossil fuels (e.g., methane). The spent
oxygen carrier then travels to the air reactor where it is regenerated with oxygen from air. The replenished
carrier particles return back to the fuel reactor, completing the chemical looping cycle.

The MFIX-Exa Exascale Computing Project (ECP) Challenge Problem is the simulation of NETL’s pilot-
scale 50kW CLR located in Morgantown, WV. A sketch of the system is given in Figure 1 along with an
illustration of its operation. We estimate that the baseline computational load will contain approximately
five billion particles and roughly half as many fluid (CFD) cells. A full solution requires calculation of 13
unknowns for every particle and 12 unknowns for every fluid cell, a significant computational footprint.

The computationally challenging aspect of simulating a CLR is the variety of flow regimes encountered as
particles traverse the loop. For example, the riser is relatively dilute in terms of solids concentration (roughly
5% by volume), yet is characterized by high-density particle “clusters” that travel laterally and continuously
break up and reform. The opposite is true in the bubbling bed fuel reactor, where flow instabilities instead
take the form of dilute “bubbles” that travel upward through a dense particle bed (roughly 60% solids volume
fraction). Both the clustering and bubbling instabilities are characterized by local particle concentrations
that vary greatly in space and time. The cyclone and air reactor operate between these two regimes. Finally,
the loop seal is characterized by very dense flow with sustained particle contacts, compared to the more
intermittent nature of particle contacts elsewhere. This combination of flow regimes present in the CLR
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Figure 1: Illustration of the Challenge Problem: NETL’s 50kW chemical looping reactor. Blue arrows
indicate gas inflows, and red arrows indicate gas outflows. Black arrows show the counter-clockwise solids
circulation path. Image adapted from [Bayham et al.(2016)Bayham, Weber, Straub and Breault]

presents the ultimate test for making DEM computationally efficient since (1) particle concentrations range
from the very dilute to the very dense between different CLR components, and (2) within a given component,
the particle concentration varies greatly in space and time due to flow instabilities.

In the following sections, we present the model equations followed by an introduction to AMReX. We
then describe the general algorithmic approach to solving the fluid and particle equations for flows without
chemical reactions or heat and mass transfer, followed by more detail for both the fluid algorithm and the
particle operations. Finally, we give a short overview of verification / validation results to date.

2 Governing Equations

CFD-DEM is a class of hybrid Euler-Lagrange numerical methods for multiphase flows in which the con-
tinuous phase is discretized by a grid and the dispersed phase, e.g., solid particles, are modeled as discrete
entities. Here and most commonly, CFD-DEM refers specifically to models in which the discrete phase
is not fully resolved by the fluid mesh, as in the case of particle-resolved direct numerical simulation ten-
neti14, although the mesh spacing is typically on the scale of a few particle diameters in order to achieve
mesh-insensitive solutions. For the systems of interest, e.g., as in Figure 1, the discrete particles are treated
with a soft-sphere approach [van der Hoef et al.(2008)van der Hoef, van Sint Annaland, Deen and Kuipers,
Deen et al.(2007)Deen, Annaland, Van der Hoef and Kuipers] which is well suited for the enduring collisions
and multi-particle contacts encountered in dense regions. For the sake of brevity, the details of the collision
model have been omitted here [see][]garg12,garg12b. In the remainder of this section, the governing equations
for the fluid and particles are summarized, along with the Eulerian-Lagrangian coupling required to close the
hybrid scheme.

2.1 Eulerian Gas Phase

CFD-DEM solves the particle-unresolved multiphase Navier-Stokes equations for the fluid (gas) phase. This
work concentrates on cold-flow (no heat or mass transfer), low speed (low Mach number) gas-solids flows. The
incompressibility assumption, Dρg/Dt = 0, is used to simplify the fluid mass and momentum conservation
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equations garg12 to
∂εg
∂t

+∇ · (εgUg) = 0 , (1)

and

∂

∂t
(εgρgUg) + ∇ · (εgρgUg ⊗Ug) =

− εg∇pg + ∇ · τg + εgρgg − β (Ug −Up) ,
(2)

where ρg, Ug, and pg are the gas-phase (thermodynamic) density, velocity vector and pressure. Gravity, g,
is the only body force acting on the system. The gas-phase viscous stress tensor is given by

τg = µg

[
∇Ug + (∇Ug)T

]
+ λg (∇ ·Ug) I , (3)

where µg and λg = −2µg/3 are the gas-phase dynamic and bulk viscosities. Unresolved turbulent stresses
are neglected here. The phasic volume fraction (i.e. the fraction of space occupied by fluid as opposed to
particles), εg, and interfacial momentum transfer terms related to β are computed from the Lagrangian field.

2.2 Lagrangian Particle Phase

The particles are governed by

dXp

dt
= Vp , (4)

mp
dVp
dt

= mpg + Fgp + Fwp +

Np∑
q=1

Fqp , (5)

Ip
dωp
dt

= Twp +

Np∑
q=1

Tqp , (6)

where Xp, Vp, and ωp are the discrete position, and linear and angular velocity vectors, respectively, of the
p-th particle. In this work, all particles are assumed to be spherical so that the volume, mass and moment
of inertia of a particle are given by

Vp =
π

6
d3p , mp = ρpVp, and, Ip =

1

10
mpd

2
p ,

where dp and ρp are the p-th particle diameter and material density, respectively. In addition to gravity, other
possible forces acting on the p-th particle include transfer with the interstitial gas, Fgp, and contact forces
resulting from collisions with wall boundaries, Fwp, and other particles, Fqp. Change in any p-th particle’s
angular velocity are driven by contact torques resulting from collisions with wall boundaries Twp, and other
particles, Tqp. MFIX-Exa uses a soft-sphere type linear-spring dashpot (LSD) model cundall79 for collisions.
Details of the LSD contact force models can be found elsewhere, e.g., [see][]garg12,garg12b.

2.3 Phasic Coupling

Closure of the governing equations requires the coupling of the Eulerian and Lagrangian models. Generally,
volume filtering capecelatro13 is used to transfer the Lagrangian data onto the Eulerian grid. For example,
particle volume is mapped to a continuous volume fraction field by

εp(x) =

Ntot∑
p=1

G (‖x−Xp‖)Vp , (7)

where G is the (unit normal) transfer kernel. Direct application of Eq. (7) is computationally prohibitive
for large problems. In practice, G is compact so that only a small subset of Ntot particles local to x, Nloc,
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contribute to the transfer operation. The specifics of the deposition algorithm are provided in the Transfer
kernel section.

Because the particle interface is not resolved by the CFD-grid, a closure model for interfacial momentum
transfer is required. Due to the high density ratios and large Stokes numbers of our target applications, only
buoyancy and steady drag forces are considered

Fgp = −χp(∇pg)Vp − fdp (Vp − χp(Ug)) . (8)

In Eq. (8), χp is an interpolation operator that maps a continuous fluid property, here pg and Ug, to the p-th
particle position. The numerical details of χp are also provided in the Transfer kernel section. The linearized
drag coefficient in Eq. (8), fdp, is given by

fdp =
1

2
Cdρg ‖Vp − χp(Ug)‖Aproj . (9)

Due to the assumption of spherical particles, the projected area of the p-th particle is simply Aproj =
πd2p/4. Three standard multi-particle drag laws have been implemented to close Cd in Eq. (8): WenYu wen66,
Gidaspow ding90, lathouwers01, and BVK2 beetstra07, tang15. The drag force, when transferred to the grid,
becomes

β =

Nloc∑
p=1

G (‖x−Xp‖) fdp

βUp =

Nloc∑
p=1

G (‖x−Xp‖) fdpVp .

(10)

The equivalent continuum buoyancy force, (1 − εg)∇pg, is combined with the gas-phase pressure gradient,
leading to the −εg coefficient in Eq. (2), i.e., the particle buoyancy force is not explicitly deposited.

It should be noted that the interphase transfer terms are only absolutely conservative in theory. In
practice, time marching of the particles and gas-phase is asynchronous and at different time scales, resulting
in minor discrepancies in the interfacial forces experienced by the two fields. Finally, the fluid and particles
advances are executed sequentially. As outlined in the following sections, the fluid is updated first followed
by the particle advance. Consequently, the fluid sees a “frozen” particle field, such that the incompressibility
constraint of Eq. (1) may be further reduced to

∇ · (εgUg) = 0. (11)

due to the fixed volume fraction field, i.e., ∂εg/∂t = 0.

3 AMReX

MFIX-Exa is based on AMReX, a software framework that provides the data structures and iterators to
enable massively parallel simulation in single- and multi-level domain-decomposed geometries. In addition,
AMReX supplies some of the higher-level operations that are used in the time-stepping of the fluid and
particles.

In this section we focus primarily on the AMReX functionality for mesh data that is used by the MFIX-
Exa code. In particular, while AMReX is designed to support data and operations across multiple levels
of refinement, MFIX-Exa is currently run in a single-level mode so we focus on those capabilities. AM-
ReX support for particle data and operations is in the Particle Algorithm section. Additional detail about
how AMReX handles memory management, parallel reductions, and multilevel operations can be found in
[Zhang et al.(to appear)Zhang, Myers, Gott, Almgren and Bell].

3.1 Mesh Data

AMReX provides a flexible set of data structures that can be used to represent block-structured mesh data
in a distributed memory environment. The fundamental AMReX mesh data structure used by MFIX-Exa
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is the MultiFab which holds array data on a BoxArray, a union of non-intersecting boxes, aka grids, at a
single level of refinement. The array container for a single grid is known as a FAB, short for FArrayBox.
When running across multiple ranks, the BoxArray at each level is known on all ranks, but the data itself is
distributed. A single rank may hold multiple FABs, but a single FAB lives on only one rank.

An FArrayBox contains the Box that defines its valid region, and a pointer to a multidimensional array. For
three-dimensional calculations, the data accessed by the pointer in an FArrayBox is a four-dimensional array.
The first three dimensions correspond to the spatial dimensions; the fourth dimension is for components. An
important feature of an FArrayBox is that extra space is allocated to provide space for ghost cell data, which
is often required for efficient stencil operations. Ghost cell data are typically filled by interpolating from
coarser data, copying from other FArrayBoxes at the same level, or by imposing boundary conditions outside
the domain. The data in an FArrayBox (including ghost cells) are stored in a contiguous chunk of memory
with the layout of the so-called struct of arrays (SoA) (i.e., struct of 3D arrays, one for each component).

AMReX provides a class template, Array4<T>, that can be used to access the data in an FArrayBox

or other similar objects. This class does not own the data and is not responsible for allocating or freeing
memory; it simply provides a reference to the data. This property makes it suitable for being captured by a
C++ lambda function without memory management concerns.

The Array4 class has an operator() that allows the user to access it with Fortran multi-dimensional
array like syntax. The SoA layout of FArrayBox is typically a good choice for most applications because it
provides unit stride memory access for common operations.

Several steps of the MFIX-Exa fluid advance use stencil operations that require access to the data on
neighboring and/or nearby cells. When that data lies outside the valid region of the patch being operated on,
pre-filling ghost cells is an efficient way to optimize communication. The Boxes stored in MultiFabs determine
the “valid” region. The multidimensional array associated with each FArrayBox covers a region larger than
the “valid” region by nGrow cells on the low and high sides in each direction, where nGrow is specified when
the MultiFab is created. AMReX provides basic communication functions for ghost cell exchanges of data in
the same FabArray. It also provides routines for copying data between two different FabArrays at the same
level. Data between different MPI ranks are organized into buffers to reduce the number of messages that
need to be sent.

3.2 On-node parallelism

MFIX-Exa is designed to run on a variety of platforms, including individual workstations, many-core HPC
platforms such as NERSC’s Cori, and accelerator-based supercomputers such as Summit and Frontier at
OLCF and Aurora at ALCF. AMReX provides various features that enable MFIX-Exa and other codes to
obtain high performance on different architectures without substantial recoding.

AMReX uses a hierarchical parallelism model. At a coarse-grained level, the basic AMReX paradigm is
based on distribution of one or more patches of data to each node with an owner-computes rule to allocate
tasks between nodes. For many use cases, a node is divided into a small number of MPI ranks and the
coarse-grained distribution is over MPI ranks. For example, on a system with 6 GPUs per node, the node
would typically have 6 MPI ranks.

For code executing on CPUs, AMReX supports logical tiling for cache re-use using OpenMP threading.
Tile size can be adjusted at run time to improve cache performance; tile size can also vary between operations.
AMReX includes both a standard synchronous strategy for scheduling tiles as well as an asynchronous
scheduling methodology. AMReX also provides extensive support for kernel launching on GPU accelerators
(using C++ lambda functions) and for the effective use of managed memory, that allows users to control
where their data is stored.

MFIX-Exa exploits the abstraction layer provided by AMReX that consists of a number of ParallelFor
looping constructs, similar to those provided by Kokkos kokkos or RAJA raja but tailored to the needs of
block-structured AMR applications. MFIX-Exa code contains loop bodies written as C++ lambda functions
that define the task to be performed over a set of cells or particles. The lambda function is then used in
a kernel with a launching mechanism provided by CUDA, HIP or DPC++ for GPU or standard C++ for
CPU.

When code using the ParallelFor construct is compiled to execute on CPUs with OpenMP, the MFIter

loop includes tiling and the ParallelFor translates to a serial loop over the cells in a tile. However, when
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compiling for GPU platforms, tiling at the MFIter level is switched off, and the ParallelFor translates to
a GPU kernel launch.

3.3 Linear Solvers

AMReX includes native geometric multigrid and Krylov (CG and BiCG) solvers for nodal or cell-centered
data, as well as interfaces to external solvers such as those in hypre hypre-paper and PETSc petsc-web-page.
The external solvers can be called at the finest multigrid level, or as a “bottom solve” where the native solver
coarsens one or more levels, then calls the external solver to reduce the residual by a specified tolerance at
that level.

In each fluid time step, MFIX-Exa uses AMReX multigrid solvers to solve three different types of equa-
tions: the variable coefficient elliptic solve in the MAC projection (see Convective update), which solves for a
single variable located at cell centers; a viscous tensor solve – which solves the coupled system corresponding
to discretizing the full viscous stress tensor implicitly (see Diffusive update); and an approximate projection
that is used to update the pressure on nodes and the velocity at cell centroids (see Nodal projection).

The multigrid algorithm itself is encapsulated in the MLMG class. Any MLMG object can be constructed
with a specific linear operator class, depending on the linear system to be solved. The AMReX classes
MacProjector and NodalProjector provide algorithm-specific interfaces to the linear operator and MLMG

classes.
The AMReX multigrid solvers include aggregation (merging boxes at a level in the multigrid hierarchy to

enable additional coarsening within the V-cycle) and consolidation (reducing the number of ranks to reduce
communication costs at coarser multigrid levels) strategies to reduce total cost.

4 Embedded Boundary Method for Complex Geometry

An embedded boundary (also known as “cut cell”) formulation is used to represent the non-rectangular
bounding geometry in the domain. The irregular boundary is defined by intersecting an analytically-specified
boundary with a uniform Cartesian grid, with irregularly shaped cells appearing only adjacent to the bound-
ary. The EB information is precomputed and stored in a distributed database at the beginning of the
calculation.

Following standard notation, we define each grid cell (i, j, k) to be either covered, cut, or regular. We
define the geometric volume fraction, Λ, (not to be confused with the phasic volume fraction, εg) of each cell
to be the fraction of that rectangular cell volume that is inside the fluid/particle region: covered cells have
Λ = 0, regular cells have Λ = 1, and for cut cells 0 < Λ < 1. Area fractions are stored on each cell face,
again with values in [0, 1] representing the fraction of the face not covered. Finally, the location of the cell
centroid (which for regular cells is identical to the cell center), and the locations of the face centroids are
stored. Additionally, there is connectivity information between neighboring cells. For additional details on
the embedded boundary implementation, we refer to the AMReX documentation https://amrex-codes.

github.io/amrex/docs_html/. Algorithm-specific adaptations for cut cells are discussed in each algorithm’s
subsection.

4.1 Complex Geometry Generation

The simulation geometry – i.e., the embedded boundary – is specified using AMReX implicit functions with
operations like union, intersect, and translate. A listing of the available shapes and operations is provided
in the AMReX documentation. MFIX-Exa makes several basic geometries (e.g., cylinder and box) and
advanced geometries accessible to users by specifying the mfix.geometry parameter in the project input file.
Additional geometries can be incorporated into MFIX-Exa, however this requires modifying the source code
to define a geometry using AMReX implicit functions. The following example illustrates how to construct
a simple cylindrical hopper using the AMReX embedded boundary capabilities. First, the hopper’s chute
and bin are defined by planes given by a point and a normal. This is illustrated in Figure 2a where the red
dashed line defines the chute wall, and the blue dashed line is the bin wall. The normals point into the solid
(away from the fluid) so that taking the union of the two solid regions defines a half-hopper geometry (e.g.,
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Figure 2: Example of complex geometry generation. (a) The chute (red) and bin (blue) of a cylindrical
hopper are defined as planes. Their union –the red, blue, and purple regions– identify the covered region of
the domain. (b) The 2D geometry is lathed about the y-axis to create the 3D hopper geometry.

the white filled region). Finally, the 2D shape is rotated about the y-axis to create the final geometry, shown
in Figure 2b. The source code needed to generated the hopper geometry is provided in Listing 1.

1 // Arrays f o r plane po int and normal
2 Array<Real ,3> point , normal ;
3

4 // Construct plane r ep r e s en t i ng funne l ( red )
5 point = { out l e t r ad , chute he ight , 0 . 0 } ;
6 normal = { chute he ight , out rad−bin rad , 0 . 0 } ;
7 EB2 : : PlaneIF chute ( point , normal ) ;
8

9 // Construct plane r ep r e s en t i ng the body ( blue )
10 point = {bin rad , 3 . 0 , 0 . 0 } ;
11 normal = {3 . 0 , 0 . 0 , 0 . 0 } ;
12 EB2 : : PlaneIF bin ( point , normal ) ;
13

14 // Union body and funne l and hopper p lanes
15 auto hopper2D = EB2 : : makeUnion ( chute , bin ) ;
16

17 // Lathe to c r e a t e 3D geometry
18 auto hopper3D = EB2 : : l a th e ( hopper2D ) ;

Listing 1: Example of constructing a cylindrical hopper using AMReX implicit functions and geometric
operations.

4.2 Mesh Pruning

When the region enclosed by the EB surfaces is such that parts of the domain are completely covered, the
flexibility of the AMReX gridding strategy allows the use of “mesh pruning” to reduce the memory required
by a simulation. Mesh pruning eliminates fully covered grids at each level, i.e. grids in which all cells are
covered (in the EB sense).

The mesh pruning strategy implemented in MFIX-Exa first defines a BoxArray on which the geometry
is initially defined with all cells defined as regular, cut or covered. Then, using this information, MFIX-Exa
creates a second BoxArray in which all covered grids are removed from the initial BoxArray. The original
BoxArray covering the full rectangular domain is no longer relevant; all data is now allocated on the smaller
region.
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Figure 3: Left: Example of Mesh Pruning. Volume rendering of the mesh volume fraction > 0 covered by the
(pruned) grids. The figure on the right has a finer mesh resolution; the savings from mesh pruning increase
with resolution.

The purpose of this mesh pruning strategy is reduction in memory rather than reduction of computational
time. The computational load itself is not reduced since the usual load balancing strategies, and the MultiFab
iterators, effectively ignore FABs in which there is no work. However, without the mesh pruning strategy,
the covered grids on which no work is done still require the same amount of memory as if they were regular
grids (except for temporary arrays that would be constructed for specific operations). In cases where the
simulation is memory-limited, mesh pruning enables us to run larger calculations for the same number of
nodes.

Figure 3 shows two examples of pruned meshes; in both cases the fluid and particles are entirely contained
within the region enclosed by the EB walls.We note that the mesh reduction happens primarily on the
interior of the domain; we can not reduce the memory footprint by shrinking the domain size when solving
in geometries in which most of the “empty” space lies in the interior.

5 Fluid Algorithm

In this section we present the predictor-corrector fluid time-stepping algorithm and details on the computation
of the convective and diffusive terms. Additionally, the use of specific AMReX solver classes is highlighted
throughout.

5.1 Time-stepping algorithm

The fluid velocity is defined at cell centroids, and is advanced from time tn to tn+1 using a single timestep,
dtCFD. The dynamic pressure gradient is also defined at cell centroids, but the pressure itself is defined at
nodes; both are calculated at half-time steps, e.g. at time tn+1/2.

The fluid equations are discretized using a predictor-corrector method-of-lines approach with an approxi-
mate projection; details of each step are given below. The reason we use this predictor-corrector approach is
to ensure the fluid algorithm is second order accurate in time. For simplicity of notation we use dt = dtCFD
below.
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5.1.1 Predictor:

The predictor step begins with defining an approximation Ug
P,∗ (where the superscript P stands for “pre-

dictor”) to the new-time velocity Un+1,∗
g by solving

(ρg εg + dt βn) Ug
P,∗ = (ρgεgUg

n)

− dt ρgAn
Ug + dt D(Un

g )

− dt εgGpgn−1/2 + dt εgρgg + dt βnUn
p

Here An
Ug

is a discretization of ∇ · (εgUn
g ⊗ Un

g ); Gpg
n−1/2 is an approximation to ∇pgn−1/2, and D(Un

g )

is an approximation to (∇ · τng ). Here the superscript “n” represents the state at time tn. After solving

for UP,∗
g , we do an approximate nodal projection to enforce the constraint (11). The results of the nodal

projection operation are p
n+1/2,∗
g , that is an approximation to the new nodal gas pressure, its nodal gradient

approximation Gp
n+1/2,∗
g , and the new velocity Un+1,∗

g which is defined as follows and satisfies the divergence
constraint (11):

Un+1,∗
g = UP,∗

g − dt

ρg
Gpn+1/2,∗

g .

The details of constructing the advective terms in addition to the details of the explicit and implicit con-
struction of the viscous terms, and the approximate nodal projection, are provided in later sections.

5.1.2 Corrector:

In the corrector step, we define a new approximation UC,∗∗
g (where the superscript C stands for “corrector”)

to the new-time velocity Un+1
g using time-centered advective and viscous updates and pressure gradient

ρuC,∗∗ = ρuC,∗

+
dt

2

(
D(UC,∗∗

g )−D(Un
g )
)
,

(12)

where the intermediate approximation UC,∗
g is computed solving the following equation

(ρgUg
C,∗ = (ρgεgUg

n)

− dt ρg
2

(
An

Ug + AP,∗
Ug

)
+ dt D(Un

g )

− dt εgGpgn+1/2,∗ + dt εg ρg g + dt βn,∗Un
p .

The new-time approximation to the advective term, AP,∗
Ug

, is calculated using Un+1,∗
g . The drag coefficient

βn,∗ is a mixed time level term, evaluated using particle data at time tn and fluid data at time tn+1,∗. To
enforce the divergence constraint (11) on UC,∗∗

g , we proceed similarly to the predictor step. We apply an

approximate nodal projection that computes the new-time approximate nodal gas pressure p
n+1/2
g , its nodal

approximate gradient Gp
n+1/2
g , and the new gas velocity Un+1

g which satisfies the constraint (11) and is
defined as follows:

Un+1
g = UC,∗∗

g − dt

ρg

(
Gpn+1/2

g −Gpn+1/2,∗
g

)
.

The details of constructing the advective and viscous terms, and performing an approximate nodal projection
of the solution, are provided in the subsequent sections.

5.2 Convective update

The convective update is a multistep algorithm based on a second-order upwind, method of lines approach.
The basic idea is to first compute normal velocities on faces that satisfy the divergence constraint discretely.
The resulting velocity field, referred to as UMAC

g is then used to compute the convective update of all three
velocity components

AUg = ∇ · (εgUMAC
g ⊗ Ug)

10



Details of the procedure are discussed below.
For each face with a non-zero area fraction, we first extrapolate the normal velocity component from the

centroids of the cells on either side to the face centroid, creating left (L) and right (R) states. When both
cells are regular, we compute limited slopes in each cell and define, in the x-direction as an exemplar,

uLi+1/2,j,k = ui,j,k +
dx

2
(ux)i,j,k

uRi+1/2,j,k = ui+1,j,k −
dx

2
(ux)i+1,j,k

where ux is an approximation to ∂u/∂x.
When one of the cells on either side is a cut cell, we instead use a least squares fit centered on (i, j, k)

that uses all regular and cut-cell neighbors, compute slopes in all three coordinate directions. We then define
the left and right states by extrapolating from the cell centroid to the face centroid using slopes in all three
coordinate directions as necessary.

We then upwind the left and right states to define a unique value of the normal velocity on each face,
which we call UMAC,∗

g . To enforce the constraint (11), we apply a discrete projection by solving the following
elliptic equation

DMAC

(
εg
ρg

GMACφMAC

)
= DMAC

(
εgU

MAC,∗
g

)
for φMAC. Here, DMAC represents the divergence at cell centroids of area-weighted velocities defined at face
centroids, and GMAC represents the gradient at face centroids of data at cell centers. The density ρg and
volume fraction εg are interpolated separately onto face centroids. The solution φMAC, which is defined at
cell centers, is then used to compute the constraint-compliant velocity UMAC

g defined as

UMAC
g := UMAC,∗

g − 1

ρg
GMACφMAC .

This projection is done using the AMReX EB-aware MacProjector class, whose method MacProjector::project

takes a vector field V and a specified RHS, and returns a vector field that satisfies ∇ · V = RHS.
We then extrapolate all three velocity components from cell centroids to face centroids to define Uadv

g ,

using UMAC
g in the upwinding procedure to define a unique value. We multiply εgU

adv
g by UMAC

g , using the
interpolated εg, to construct fluxes for the momentum equation. The divergence of each cell’s area-weighted
face-centroid-based fluxes, along with a “redistribution” operation which addresses the classic “small cell
problem”, defines AUg at cell centroids.

5.3 Diffusive update

In the predictor step, we calculate the diffusive term D(Ug) (approximating ∇ · τg) explicitly, followed by a
redistribution step for cut cells with small volume fraction analogous to that used to construct the convective
update. In the corrector step we solve for the diffusive term implicitly; this does not require redistribution.

The discretization of the tensor operator uses the same divergence operator as in the MAC projection.
Unlike the MAC projection, however, in which the contribution from EB faces is identically zero because
the boundary condition for the solution variable (an update to pressure) satisfies a homogeneous Neumann
condition there, in calculating the diffusive term we must include the contributions from the EB face in each
cut cell. The boundary condition on EB faces is Dirichlet (since the velocity, not its gradient, is specified at
no-slip boundaries); we currently calculate the normal gradient at the EB face by interpolating the velocity
to a point along the normal from the EB face centroid into the fluid region, and computing the difference
between the interpolated value at that point and the value on the EB face centroid.

We note here that although the gas itself is assumed to be incompressible, we cannot use the simplified
form of the viscous stress tensor (which results from exploiting ∇·Ug = 0) because the divergence constraint
satisfied by the fluid is in fact ∇ · (εgUg) = 0.

In conjunction with the MLMG class, we use the MLEBTensorOp class, which is specifically implemented for
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solving linear systems LDV = f of the following type

LDV := aV − b(∇ · (η∇V ) +∇ · (η∇V T )

+∇ · ((κ− 2

3
η)(∇ · V )I) ,

where η is the dynamic viscosity, κ is the bulk viscosity, and I is the identity tensor. In our case we set
η = µg and κ = 0.

In the predictor we use MLMG::apply to compute D(Un
g ) = LDV for a = 0, b = −1 and V = Ug . In the

corrector, we construct a right-hand-side

f = ρgεgUg
C,∗ − dt

2
D(Un

g )

then solve LDV = f with a = ρgεg, b = dt/2 using MLMG::solve to satisfy Eq. (12).

5.4 Nodal projection

In both the predictor and corrector, we use an approximate nodal projection to enforce the divergence
constraint (11) on the predicted velocities at time tn+1. (The approximateness of the projection refers to
the fact that after the projection, the divergence of the resultant velocity field is only approximately zero;
∇ · (εgUn+1

g ) ≈ 0 to second order accuracy in the mesh spacing.) Specifically, in the predictor step we solve

Lερ p
n+1/2,∗
g = Dnodal

(
εg
dt
UP,∗
g +

εg
ρg

Gpg
n−1/2

)
,

for p
n+1/2,∗
g , while in the corrector step we solve

Lερ p
n+1/2
g = Dnodal

(
εg
dt
UC,∗∗
g +

εg
ρg

Gpg
n+1/2,∗

)
.

for p
n+1/2
g . In both equations, Dnodal is a divergence operator that returns a nodal divergence of cell-centered

vector fields, and Lερ is the standard bilinear finite element approximation to the operator Dnodal (εg/ρg ∇(•))
(see almgrenBellSzymczak:1996 for a detailed discussion of this approximate projection; see AlmgrenBell-
Crutchfield for a discussion of this particular form of the projection operand).

MFIX-Exa uses the AMReX EB-aware NodalProjector class to solve the variable coefficient elliptic
equations for the pressure. Specifically, the NodalProjector class implements functions for solving problems
of the following type:

Dnodal (σ∇φ) = Dnodal (V ∗)− S ,

for the unknown φ, and then sets
V = V ∗ − σ∇φ ,

where the vector field V (approximately) satisfies Dnodal (V ) = S. Setting S = 0 enforces the divergence

constraint (11). In our case σ = εg/ρg and V ∗ = εgÛg + (dt εg/ρg)Gp̂g, where Ûg = UP,∗
g and p̂g = p

n−1/2
g

for the predictor, and Ûg = UC,∗∗
g and p̂g = p

n+1/2,∗
g for the corrector.

6 Particle Algorithm

The particles are advanced from tn to tn+1 after the fluid advance. Most often with soft-sphere DEM models,
the timestep is taken as a (user-defined) fraction of the collisional time scale, τcoll [e.g. see][]garg12,fullmer19u.
For the low Mach number flows of interest, the collisional time scale is typically much smaller than the fluid
time step, i.e., the particles are subcycled several times per fluid dt. Therefore, we use a simple forward Euler
method for the particle subcycling.

Recalling equations Eq. (4-6), for each substep we first sum the forcing terms in the linear and angular
momentum equations for each particle. We then update the linear and angular velocity components, and use
the new linear velocity to update the particle position. In the rest of this section we describe how MFIX-Exa
uses the AMReX particle data structures and iterators to efficiently calculate particle-particle collisions and
particle-wall collisions, and to redistribute particles to different MPI ranks with minimal communication cost.
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6.1 Particle Data Structures and Iterators

AMReX provides data structures for representing and iterating over particles defined on a patch-based AMR
hierarchy. The core particle data structure in AMReX is the ParticleContainer, which stores a collection of
particles associated with a given Vector<BoxArray> and Vector<DistributionMapping>. The BoxArrays
describe the set of patches at each level, and the DistributionMappings describe how each patch is assigned
to an MPI rank. Note that, while particles are always associated with a set of patches, this does not necessarily
need to be the same set of patches used to store the mesh data in a simulation.

Particles in AMReX always have position coordinates and a unique 64-bit integer identifier. In addition,
each ParticleContainer can be configured to store additional Real (either single- or double- precision
floating point) and integer components, laid out in either Array-of-Structs or Struct-of-Arrays format. In
MFIX-Exa, particles carry floating point information about their size, mass, velocity, angular momentum,
moment of inertia, and information about the drag force between them and fluid, as well as integer components
representing their state and phase.

At each level, particles are assigned to a cell index by binning their positions using the level’s cell spacing
and the global, physical domain offset. They are then assigned to grids based on which Box in the BoxArray

contains that cell. All the particles on a level can then be accessed and iterated over on a grid-by-grid
basis, with the guarantee that all the particles associated with a given grid will have positions that map
to cells inside it. To reinforce this condition after the particle positions have been updated, we call the
Redistribute() method in AMReX that puts all particles back on the correct level, grid, and MPI task.

6.2 Particle-Particle interactions

Identifying pairs of particles that are within each other’s interaction radii can be computationally expensive.
To ameliorate this, MFIX-Exa uses a neighbor list algorithm, in which potential collision partners over the
next N substeps are pre-computed and stored for each particle. Once this is done, during the time advance
we can quickly loop over only those pairs of particles that could possibly interact with each other.

To construct neighbor lists, we use a standard “cell-list” approach. First, particles are binned into cells,
with a cell spacing that is related to the particle interaction distance. Then, for each particle, we perform a
direct search only over neighboring cells, looking for particles that are within the appropriate cutoff distance.
Particles that pass this check are added to the neighbor list for each particle.

The implementation details differ based on whether we are using OpenMP or CUDA/HIP/DPC++ as
the compute backend. For OpenMP, each grid is subdivided into tiles, with each OpenMP thread processing
the particles on one or more tiles independently. For the GPU case, we use a parallel prefix sum operation
(amrex::Scan) to bin the particles into cells. We then make two passes over the bin data structure. In the
first pass, we count the number of neighbors for each particle, so that the appropriate amount of memory
can be allocated. Then, in the second pass, we actually fill in the neighbor indices for each particle.

For the above process to work, each grid needs to have obtained copies of all the particles that are within
some number of cells of its valid region. The AMReX terminology for these copies of particles from other
grids is “neighbor particles”, which are obtained by calling the AMReX function FillNeighbors(). See
Figure 4 for an illustration of this operation. As with Redistribute(), all required parallel communication
is performed automatically. When using neighbor particles, it is common to compute a halo of particles (i.e.,
identify which particles need to be copied to which other grids) once with some extra padding, and then
reuse it for several time steps before computing a new halo. To enable this, AMReX separates computing
the halo and filling it with data for the first time (the FillNeighbors() operation) from reusing the existing
halo but replacing the data with the most recent values from the “valid” particles on other grids (the
UpdateNeighbors() operation).

6.3 Particle-Wall interactions

The forcing terms due to particle-wall collisions are computed separately from the particle-particle collision
terms. In the classic MFIX-DEM implementation, particle-wall collisions were identified by iterating over
planar facets (STL elements) and computing the distance between each particle and each facet. By contrast,
MFIX-Exa constructs a level set, defined on nodes of the mesh, that captures the distance from each node to
the nearest wall. Particle-wall collisions can then be computed with the distance of the particle to the wall
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Process 0 Process 1

Process 2Process 3

Figure 4: Illustration of the FillNeighbors() operation with four grids assigned to four different processes.
Particles belonging to each grid are illustrated with different colors. When FillNeighbors() is called,
particles that reside within a one-cell wide “halo” region of each grid are identified and copies of them are
sent to the correct MPI process. Periodic boundary conditions are also applied at this stage, so that a naive
distance computation between “valid” and “ghosted” particles on each grid will return the shortest distance
between them in the periodic domain. The “ghosted” particles can then be included in neighbor lists and
collision calculations.

computed by interpolating the level set values at the nodes of the cell holding the particle, and the normal
to the wall at the collision point defined by the gradient of the level set. In practice, for planar boundaries
such as those discussed here, the distance calculation is identical except at edges and corners where a slight
“rounding” occurs due to the resolution of the level set. When required to adequately represent nonplanar
geometry, the level set can be defined at a finer level than the rest of the simulation in order to exploit a
finer representation of the geometry for calculating collisions.

7 Particle-Fluid Coupling

7.1 Transfer kernel

MFIX-Exa uses a trilinear transfer kernel with a compact stencil, Sp, of 23 fluid cells when interpolating fluid
properties (e.g., velocity) to a particle, and when depositing particle information (e.g., particle volume) onto
the fluid grid. Using the x-axis as an example, the high side stencil index is

i = b(Xp −Dlow,x) /dx+ 0.5c (13)

where Xp and dx are the the particle position and grid spacing, and Dlow,x is the physical location of the
low side of the domain. The j and k indices are calculated similarly. The cell indexing of the stencil is

Sp =


0 :(i− 1, j − 1, k − 1),

1 :(i , j − 1, k − 1),

2 :(i , j , k − 1),

3 :(i− 1, j , k − 1),

4 :(i− 1, j − 1, k),

5 :(i , j − 1, k),

6 :(i , j , k),

7 :(i− 1, j , k)


The centroids of the cell in Sp can be thought of as the corners (nodes) of a generalized hexahedral (brick);
therefore, the isoparametric mappings found in finite element methodologies can be used hughes2012. Specif-
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ically, for the eight cells in Sp the weight functions are

w0(ξ, η, ζ) = 1− ξ − η − ζ + ξη + ξζ + ηζ − ξηζ
w1(ξ, η, ζ) = ξ − ξη − ξζ + ξηζ

w2(ξ, η, ζ) = ξη − ξηζ
w3(ξ, η, ζ) = η − ξη − ηζ + ξηζ

w4(ξ, η, ζ) = ζ − ξζ − ηζ + ξηζ

w5(ξ, η, ζ) = ξζ − ξηζ
w6(ξ, η, ζ) = ξηζ

w7(ξ, η, ζ) = ηζ − ξηζ

(14)

where (x, y, z)→ (ξ, η, ζ) is the coordinate transformation from physical space to the unit cube with its origin
at (0, 0, 0). Thus, a fluid property, αg, interpolated to a particle position is given by

αp ≡ χp(αg) =
∑
m∈Sp

wmαm , (15)

and a particle property, βp, is deposited into the m-th cell in Sp through

βm ≡ Gm (‖x−Xp‖)βp = wmβp (16)

When all the cells in Sp are regular, the coordinate transformation is easily calculated,

ξ (x, y, z) =
Xp,x − x0

dx
,

η (x, y, z) =
Xp,y − y0

dy
,

ζ (x, y, z) =
Xp,z − z0

dz
,

(17)

where (x0, y0, z0) are the physical coordinates of the 0-th indexed cell centroid in Sp, and again, dx, dy,
dz are the grid spacings. Additional considerations are needed when interpolating and depositing near the
embedded boundary (e.g., one or more cells in Sp is cut or covered). These are addressed below.

7.1.1 Interpolation near EB.

If none of the cells in the interpolation stencil Sp are covered, then there is sufficient information to interpolate
fluid properties to the particle. However, the coordinate transformation (x, y, z) → (ξ, η, ζ) requires solving
the non-linear system of equations

f1(ξ, η, ζ) = x0 −Xp,x + x1ξ + x2η + x3ζ + x4ξη

+ x5ξζ + x6ηζ + x7ξηζ

f2(ξ, η, ζ) = y0 −Xp,y + y1ξ + y2η + y3ζ + y4ξη

+ y5ξζ + y6ηζ + y7ξηζ

f3(ξ, η, ζ) = z0 −Xp,z + z1ξ + z2η + z3ζ + z4ξη

+ z5ξζ + z6ηζ + z7ξηζ

(18)

This is done using a Newton-Raphson solver Kincaid2002 with the initial guess given by equation (17).
However, if one or more cells in Sp are covered, then there is not sufficient information to use trilinear
interpolation, therefore one of the following methods are used. For general fluid properties like volume
fraction, the property is assumed constant and the value of cell containing the particle centroid is taken. For
fluid velocity, a non-slip boundary condition is imposed and a 1D linear interpolation is performed from the
centroid of the cell containing the particle centroid and the embedded boundary.
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7.1.2 Deposition near EB.

There are two concerns when depositing particle information near the embedded boundary: (a) particle data
should not get deposited into covered cells, and (b) the particle volume deposited into a cut cell should not
exceed physical limits. These two cases are illustrated in Figure 5 where the stencil for particle-a (blue)
contains a covered cell, and the stencil for particle-b (red) includes a small cut cell. To prevent depositing
particle data into covered cells, the weight for each cell is multiplied by a mask, σ, that is zero if the cell is
covered, and one otherwise. Then, all weights are normalized by the total weight sum,

ŵm =
wmσm∑

n∈Sp
wnσn

.

a

b

Figure 5: Special consideration is needed for particles near embedded boundaries. Areas occupied by the
fluid are shown with a white background, the embedded boundary surface is shown with a black line, and
the covered/blocked area of the domain is shaded gray. The general interpolation stencil for particle-a would
deposit material outside the domain if the upper-right cell is retained in the interpolation stencil, Sp. Particle-
b may result in nonphysical volume fractions and excessive drag forces on the fluid if deposition into the small
cell, again the upper-right cell in the stencil, is unbounded.

For cut cells that have a particle volume fraction – the ratio of deposited particle volume to actual cell
volume – that exceeds a user-defined threshold, εp > εp,max, excess particle volume is transferred to the
33 neighborhood of cells, Sφ. Again, a masking function, σ, is used to exclude covered cells and cut cells
exceeding the maximum particle volume fraction, to prevent transferring material from one over-packed small
cell to another. First, a local averaged particle volume fraction is calculated,

ε̄p =

∑
m∈Sφ

σmΛmεp,m∑
m∈Sφ

σmΛm

where εp,m is the initial deposited particle volume fraction and, as before, Λm is the geometric volume fraction
for the m-th cell. To minimize the local gradient, the new volume fraction for the cut cell is taken as the
smaller of the neighborhood average and user-defined maximum, ε∗p = min {ε̄p, εp,max}. Next, the amount of
excess particle volume is computed,

δεp =
max

{
εp − ε∗p, 0

}∑
m∈Sφ

ŵm
,

transferred to the neighborhood cells,

εp,m = εp,m + σmδεp ∀m ∈ Sφ ,

and the new value of the cut-cell is imposed, εp = ε∗p. This approach is done in the context of particle volume
because a maximum value can be reasonably approximated (e.g., close-packing of spheres can be used to
guide the selection of εp,max). To maintain consistency, particle volume is included in the deposition of all
particle properties (e.g., drag force) to guide redistribution.
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7.2 Implementation in AMReX

The above particle-mesh operations are handled by the AMReX framework. A deposition operation is
used to represent the volume fraction of the solid phase on the mesh (Equation 7). Likewise, drag forces
between the fluid and solid phases are calculated via an analogous mesh-to-particle interpolation (Equation
8). To parallelize these operations, there are two aspects to consider; the “on-node” parallelization, which is
implemented using either OpenMP or CUDA/HIP/DPC++ depending on whether MFIX-Exa is compiled
with GPU support, and the “off-node” component, in which information must be exchanged between MPI
ranks. We consider each of these in turn.

In the “on-node” operation, we are concerned with interpolating between the particles and the mesh on a
single grid. In AMReX, these operations are expressed by having multiple threads (either on the CPU or the
GPU) loop over the particles simultaneously, accessing the appropriate mesh cells independently. In the case
of deposition, a potential complication is that race conditions can occur when multiple particles interact with
the same cell. Our strategy for dealing with these race conditions differs depending on whether we are using
GPUs. For the CPU case, we divide each grid into multiple tiles, and pre-sort the particles onto them so that
the particles on each tile can be accessed separately. Each CPU thread is then responsible for processing a
set of tiles. To handle deposition, each thread allocates its own private, tile-sized deposition buffer into which
it can deposit particles without needing to worry about race conditions. Then, once all the particles on the
tile have been deposited, the deposition buffer is added back to the main FArrayBox using atomic writes.
Thus, atomics are only needed on a per-cell basis, not a per-particle basis. When running on GPUs, on the
other hand, we do not use any deposition buffers, instead writing directly to global memory with atomic
operations. This approach works surprisingly well on V100 GPUs, particularly if periodic sorting onto tiles
is employed to exploit the GPU’s memory hierarchy. Evaluating and, if necessary, modifying this approach
for AMD and Intel hardware is ongoing work.

Once each grid is processed, we also must handle ghost cells between adjacent cells. For mesh-to-particle
interpolation, prior to interpolation, we simply call FillBoundary() with the appropriate number of ghost
cells to fully capture the support of all the particles with positions inside the grid. For deposition, we call
the analogous SumBoundary() operation in AMReX after performing the deposition on each grid. This
function takes the values in the ghost cells of each grid and adds them to corresponding valid cells. By
calling this method after deposition, we ensure that particles partially deposited into ghost cells have their
full contribution counted.

When the particles and the fluid data are defined on the same set of grids, the above FillBoundary

and SumBoundary operations are the only MPI communications required. However, in situations where the
particles are non-uniformly distributed, it can be advantageous to use a different domain decomposition for
the fluid and the particles. In this case, temporary MultiFabs are defined to store the fluid velocity and
volume fraction data on the particle grids, and an additional ParallelCopy must be performed to copy this
information back and forth between the two decompositions.

8 Performance Assessment

Performance assessments of the MFIX-Exa code have been limited thus far; however, a pair of weak scaling
studies have been conducted to establish a baseline scalabililty metric for the fully GPU-enabled code. This
weak scaling study uses one of the simplest multi-particle gas-solid systems of relevance: the homogeneous
cooling system (HCS). The HCS is defined entirely by its initial state: particle locations are statistically
uniform, the particle velocity magnitude is characterized by a Maxwellian distribution (i.e. a thermal speed
but no mean motion), the fluid is at rest, and there are no external forces nor boundary conditions acting on
the system (i.e. triply periodic and g = 0). As time evolves, particle kinetic energy dissipates (i.e., ”cools”)
due to inelastic collisions and fluid-particle drag.

The single-grid serial problem size considers a 643 fluid mesh with mesh spacing 2dp. The particle and
fluid properties are: ρp = 1000 kg/m3, dp = 100 microns, ρg = 1 kg/m3 and µg = 2 × 10−5 kg/m-s. Two
variants are considered which differ only the number of particles: a dilute case with 40K particles per grid (1%
solids concentration by volume) and a dense case with 1,200K particles per grid (30% solids concentration
by volume). We expect that the ideal particle work load per GPU will be somewhere in this range, although
GPU computation is still somewhat in its infancy as applied to CFD-DEM simulation.
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Figure 6: Weak scaling efficiency of MFIX-Exa for dense and dilute HCS simulations.

We define a sequence of problem sizes, starting with 23 grids, and replicate the initial data from a
checkpoint file to define the initial conditions for these runs. Weak scaling performance data is collected
starting from the problem with 23 grids run on 8 ranks; this is successively doubled in the x-, then y-, then
z-directions up to a 4096-rank problem with 163 grids. Each problem size is simulated for 100 (fluid) steps on
OLCF’s Summit supercomputer at Oak Ridge National Laboratory. Each simulation is repeated five times,
the best of which (smallest average time per step) is reported in Figure 6. It is evident that the dense HCS
scales better than the dilute HCS, indicating that the particle work has been offloaded to the GPU more
efficiently than the fluid work. The average percentage of fluid and particle work per step is approximately
73.7% and 23.2% in the 8-rank dilute case and in the dense case shifts to 11.5% and 88.0%, respectively.
The remaining time is in coupling (drag force calculation and deposition), which is small in both cases. The
baseline results indicate that performance gains can be realized; however, the ideal nature of the HCS does
not require load balancing or mesh pruning, which are essential for the challenge problem of Figure 1 and
other complex reactor configurations.

9 Software Quality Assurance Program

In this work we use the term software quality assurance (SQA) as a blanket term to cover all code testing
practices that touch on performance, regression tests, algorithm verification and model validation. Similar
to the AIAA’s validation tiers aiaa98, we recognize that SQA is layered and multifaceted and perhaps best
tackled with a hierarchical approach. The SQA program we have developed, and indeed are still developing,
spans a range of problem complexity and computational overhead which vary inversely with the frequency
with which the tests are preformed. In the following, the SQA hierarchy is broken down into levels of testing
frequency, “continuous,” daily, weekly, annually, singularly, with an example problem for each level.

9.1 Continuous integration

The MFIX-Exa source code and case files for more frequent tests are hosted in NETL’s GitLab repository.
MFIX-Exa has a single branch for code development, develop, and bi-monthly tags pointing to specific
instances of develop. All contributors fork a personal copy of the main repository. Active development
takes place on the personal forks and changes to the code base are introduced by means of merge requests.
Each merge request initiates a pipeline job that is run through a series of Continuous Integration (CI)
tests before merging. The CI tests first build CPU and NVIDIA GPU (CUDA enabled) solvers, checking
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for compiler warnings or errors. After successful builds, a test suite is then carried out that includes five
particle-only tests, three fluid-only tests, and two coupled tests; all of the fluid tests contain single-grid serial,
multi-grid serial and multi-grid parallel variants. Furthermore, all tests are setup to run in each coordinate
direction to verify solution symmetry. All tests are small and quick-running, as the CI pipeline may be run
several times a day. The CI test suite is built and run in the cloud, using a docker image on Amazon Web
Service servers.

Example: Planar Poiseuille Flow. This is a simple and classic problem. We consider (laminar) pressure-
driven fluid flow between horizontal plane walls. The length and width of the domain are Lx = Ly = 0.01 m,
and the depth is Lz = Lx/2. The flow is periodic in the x- and z-directions with pressure drop of DP =
12 Pa. No-slip walls are placed at elevations of y = 1.25× 10−6 m and y = Ly− 1.25× 10−6 m. The fluid
viscosity is µg = 0.001 Pa s. The domain is resolved by a coarse 8 × 8 × 4 fluid grid and the result of the
MFIX-Exa numerical solution is compared to the analytical solution,

u(y) =
DP

Lx

y

2µg
(Ly − y) ,

in Fig. 7
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Figure 7: Left : Simple Poiseuille flow of the CI tests compared to the analytical solution. Right : Sketch of
the cylindrical riser of the nightly regression tests, particles and fluid slices colored by streamwise velocity.

9.2 Nightly regression tests

Regardless of the level of development activity, a regression test harness is executed nightly. The nightly
test problems are typically larger in size than the CI tests, therefore the additional computational overhead
is mitigated by running the tests for only a limited number of timesteps, typically less than 100. There are
two test harnesses, one for CPU and one for NVIDIA GPU, each consisting of benchmark problems with
particles and fluid. Additionally, four of the particle-only CI tests are also run. Plot files containing fluid
and particle states are written at the end of the brief simulations and a bit-wise comparison is made with
archived benchmark results.

Example: Cylindrical riser. As shown on the right of Figure 7, 620 particles having diameter of 0.1 mm
are pseudo-randomly initialized in a 2 mm diameter cylinder. The streamwise boundary is periodic with an
imposed pressure drop of 2 Pa over the riser length of 8 mm. Both fluid and particles are initially at rest and
the simulation evolves over 100 steps. The solution time is also collected and compared to a running average
of previous tests.

9.3 Weekly regression tests

Often in the development process, changes to the code base are anticipated to produce changes in the solution
and the benchmarks simply need to be updated. However, it is often difficult to determine if the changes
have adversely affected the prediction. Approximately once a week, a subset of the nightly regression tests
are run for a longer period of time, typically a few seconds of physical time are modeled, which takes up
to a few hours of wall clock time. The results are compared to benchmark MFIX-Classic solutions of the
same system. In this case, differences exist and the difficulty lies in ascertaining just how much code-to-code
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discrepancy is acceptable. However, it does provide a quick check that the code is predicting behavior similar
to the legacy code for some of the most fundamental problems of interest. The quantity of interest for each
problem is time averaged into a scalar and stored. The most recent twelve results are compared to the
averaged MFIX-Classic result and a table is populated linking the index to the code’s specific Git SHA-1
hash and the date the regression test was run.

Figure 8: The dimensionless bed pressure drop of the square fluidized bed in the weekly regression test
compared to a benchmark MFIX-Classic result of the same system. Instantaneous results of a single test
(left) and the time averaged values of the most recent twelve tests (right).

Example: Rectangular Fluidized Bed A simple fluidized bed in a rectangular domain of width and depth
Ly = Lz = 2 mm, and length Lx = 8 mm is discretized by a 40×10×10 fluid mesh. The lower 5.6 mm section
of the bed is filled with approximately 12000 particles of dp = 0.1 mm diameter. The inflow velocity at x =
0 m is 15 mm/s. The outflow is zero constant pressure and the remaining boundary conditions are bounding
no-slip walls. The quantity of interest is the cross-sectional averaged pressure drop between the inflow and
exit planes normalized by the weight of the bed over the area, provided on the left of Figure 8. The last 1.0 s
of simulation is time averaged and compared to previous results on the right of Figure 8, showing generally
good agreement between the two codes.

9.4 Validation problems

As a further step up on complexity, specifically in simulation time and data processing, we consider validation
problems: real, physical systems for which experimental data has been collected. Validation experiments are
smaller in size, “bench-scale,” so that accurate measurements may be taken. In addition to experimental data,
MFIX-Exa predictions are also code-to-code benchmarked against MFIX-Classic predictions. The validation
suite fullmer19u currently consists of three rectangular fluidized beds goldschmidt03, mueller09, gopalan16
and one spout-fluid bed link08. The validation problem suite has been run once a year and takes roughly
one week to compile results. All required inputs, data processing scripts and supporting text is maintained
in a separate repository.

Example: Müller’s Bed. The fluidized bed experiments of [Müller et al.(2008)Müller, Holland, Sederman, Scott, Dennis and Gladden,
Müller et al.(2009)Müller, Scott, Holland, Clarke, Sederman, Dennis and Gladden] have been widely used for
CFD-DEM validation, including the original MFIX-Classic implementation [Li et al.(2012)Li, Garg, Galvin and Pannala].
The experiments consist of a thin, “pseudo-2D” clear bed of width Lx = 44 mm, height Ly = 176 mm, and
depth Lz = 10 mm, which is discretized by a uniform 16 × 64 × 4 fluid mesh. The bed is filled with 9240
poppy seeds approximately dp = 1.2 mm in diameter and a density of ρp = 1000 kg/m3. Moisture in the
seeds allows for magnetic resonance imaging to measure high-frequency particle concentration and velocity
contours of the 2-D (depth averaged) field. The bed is fluidized by ambient air at superficial velocities of
U/Umf = 2 and 3. Only the latter is considered here. Constant zero pressure is specified at the outlet and
all vertical walls are no-slip. MFIX-Exa monitors are used to collect particle concentration and velocity in
spatially-averaged zones for a simulation time of 55 s, the first 5 s being neglected and the remaining 50 s used
to compute time averages and confidence intervals from ten non-overlapping batch means.

Figure 9 compares the MFIX-Exa predictions to two MFIX-Classic models and the experimental data at
U = 3Umf . In general, we observe good code-to-code agreement and reasonable experimental agreement.
The most obvious deficiency being the over-estimation of the near-wall void fraction at the upper elevation.
This modeling error is consistent with both the original simulation results mueller09 and the MFIX-Classic
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Figure 9: Time-averaged mean void fraction profiles (top row) and streamwise particle velocity at U = 3Umf
in fluidized bed of mueller09.

validation study [Li et al.(2012)Li, Garg, Galvin and Pannala]. The velocity profiles show a positive velocity
in the center as particles move up with slugs and a negative velocity near the walls as particles move laterally
as the bubbles rupture at top of the bed and then fall back down along the walls. The simulated profiles
tend to under-predict the measured centerline velocity at the highest elevation, which is also consistent with
previous CFD-DEM studies.

9.5 Demonstration problems

Finally, at the top of the hierarchy, are large-scale, computationally intensive problems that more fully
demonstrate the code’s capabilities. Associated experimental measurements may be sparse and coarse (e.g.,
pressure signals at a few locations) or not available at all, i.e., true prediction. Due to the computational
expense and time commitment, demonstration problems tend to be one-off exercises and are not regularly
repeated. Unlike regression testing, application specific problems have the potential for contributions from
an extended user-base beyond the core code development team, as is the case of the predecessor code. While
MFIX-Exa has reached a level of maturity for undertaking demonstration problems, development remains
very active and the code has not yet been publicly released. Hence, large scale applications have been limited
thus far.

Example: Spouted bed. A spouted bed was recently constructed and operated at NETL that spanned a
range of flow conditions, bed weights and two different materials [Monazam et al.(2018)Monazam, Breault, Weber and Layfield].
Here, we are concerned with the pure spouted bed (i.e., no additional fluidizing gas) of high-density polyethy-
lene (HDPE) particles of diameter dp = 870 µm and density ρp = 855 kg/m3. The spout velocity is increased
and the quantity of interest is Ums, the minimum spout velocity (converted into a bed superficial velocity)
that forms an external spout through the bed. The bed is simulated with MFIX-Exa with a 40 × 512 × 40
fluid mesh with mesh spacing dx = 2.814 mm. The fluid grid is chosen so that the cross-sectional area of one
cell is equal to the spout area, i.e., dx =

√
πdj/2, where dj is the jet diameter in the experimental unit. The
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Table 1: Comparison of the minimum spout velocity between experimental observations, MFIX-Exa simula-
tion and the correlation of mathur55.

Experiment 15.42 cm/s
MFIX-Exa 12.65 cm/s
Eq. (19) 12.56 cm/s

D = 0.1009 m diameter bed is off-set in the domain; centered at x = z = 0.054 873 m, which corresponds to
the center of a grid cell that is assigned the spout inlet boundary condition. The spout velocity increases
linearly in time at a rate of 10 m/s2. The bed is initialized by fluidizing a larger than required bed mass
through a uniform mass inlet for 1 s, then settling with no flow for 1 s, and finally removing all particles with
centroids above the reported static bed height of h0 = 0.1524 m, approximately 2.2 million particles.

Figure 10: Visualization of the spouted bed just before (far left), just after (second from left) spout break-
through and the rising external spout (second and far right). Blender (blender.org) renderings courtesy of
Justin Weber (NETL).

During the simulation, the bed pressure is monitored near the inlet, which, consistent with experimental
observations, increases nearly linearly in time (proportional to the spout velocity) until it reaches a maximum
and then drops off sharply to a minimum and then remains nearly constant as the spout breaks through the
surface of the bed. Using the pressure signal to identify the key time period, the particle data was saved
and visualised to identify the exact moment of break-through, as depicted in Figure 10. The identified
break-through time is converted into Ums and reported in Table 1. We find that the predicted Ums value
is approximately 18% lower than the experimentally measured value. However, it should be noted that this
discrepancy is on the order of the uncertainty of the drag law, where here we have used used the model of
wen66 without calibration. Further, the empirical correlation of mathur55,

Ums =

(
dp
D

)(
dj
D

)1/3
√

2 |g|h0 (ρp − ρg)
ρg

, (19)

was found to agree well with the larger data set. Equation (19) gives a Ums in very good agreement with the
numerical prediction, also provided in Table 1.
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10 Future Work

Presently, work is underway to extend the fluid and particle models presented here to include heat and mass
transfer with interphase exchanges. This requires advecting density, species concentrations, and enthalpy for
the fluid, while tracking a unique temperature and composition for each particle. The fluid will be treated
as a multicomponent ideal gas and a new constraint will be used to ensure the evolution of the density and
temperature are consistent with the equation of state.

Additionally, a new solids model is being implemented that combines several particles into a single parcel
and replaces the particle collision model with a continuum stress formulation. Although less accurate, the
dense-multiphase particle-in-cell (PIC) approach is far more computationally efficient as there is less overall
work (fewer parcels) and the communication heavy neighbor-search routines are not needed. The goal is to
execute coarse, fast running simulations with this lower fidelity PIC model, and use the result to ’bootstrap’
the initial conditions for CFD-DEM simulations.

Finally, several algorithmic advances for the fluid solve are being explored to reduce the number of linear
solves needed per fluid advance while retaining second order accuracy in time.
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