
Automatizing the creation of specialized
HPC containers

International Journal of High Perfor-
mance Computing Applications
XX(X):1–12
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Jorge Ejarque1 and Rosa M Badia1

Abstract
With Exascale computing already here, supercomputers are systems every time larger, more complex, and
heterogeneous. While expert system administrators can install and deploy applications in the systems correctly, this
is something that general users can not usually do. The eFlows4HPC project aims to provide methodologies and tools
to enable the use and reuse of application workflows. One of the aspects that the project focuses on is simplifying the
application deployment in large and complex systems. The approach uses containers, not generic ones, but containers
tailored for each target High-Performance Computing (HPC) system. This paper presents the Container Image Creation
service developed in the framework of the project and experimentation based on project applications.
We compare the performance of the specialized containers against generic containers and against a native installation.
The results show that in almost all cases, the specialized containers outperform the generic ones (up to 2× faster), and
in all cases, the performance is the same as with the native installation.

Keywords
HPC applications and workflows, Architecture-specific containers, Automatic deployment, Exascale systems,
Heterogeneous workflows

Introduction
One of the barriers to adopting High-Performance Com-
puting (HPC) is the complexity of developing, deploying
and executing complex workflows in federated HPC envi-
ronments. New scientific and industrial applications require
implementing workflows that combine traditional HPC sim-
ulation and modelling with big data analytics (DA) and
machine learning (ML) algorithms. Integrating these differ-
ent technologies in a single workflow increases the com-
plexity of managing its entire lifecycle. Starting from the
development phase, integrating different HPC, DA and ML
phases requires additional programming efforts, for example,
by introducing additional glue code, which deals with the
execution and data integration between the different parts of
the workflow. In the deployment phase, users need to perform
complex software installations in HPC systems beyond their
technical skills. Nowadays, this is performed in most cases
as a manual process by system administrators. Having the
workflows ready for execution in a supercomputer can take
time and human resources, which increases if there is a need
for replication in several clusters, for example, due to reli-
ability requirements. Finally, in the execution phase, all the
different components must be dynamically and intelligently
orchestrated to use resources efficiently.

The eFlows4HPC project Ejarque et al. (2022) aims to
widen the access to HPC to newcomers and, in general,
simplify the development, deployment and execution of
complex workflows in HPC systems. It proposes to simplify
this process in two ways. From one side, the eFlows4HPC
software stack aims to provide the required functionalities to
manage this complex workflow’s lifecycle. On the other side,
it introduces the HPC Workflow as a Service (HPCWaaS)

concept, which leverages the software stack to widen access
to HPC by the different communities. This service offering
tries to bring the Function as a Service (FaaS) concept to
the HPC environments trying to hide all the complexity
of an HPC Workflow execution to end users. Through
three application Pillars with high industrial and social
relevance (manufacturing, climate and urgent computing
for natural hazards), the project demonstrates how the
implementation of forthcoming efficient HPC and data-
centric applications can be developed with the proposed
novel workflow technologies.

The article focuses on the deployment phase of the
eFlows4HPC methodologies, which are based on the use
of container images and their automatic creation. Standard
creation processes for container images are normally relying
on OS packages which are compiled for generic architectures
in order to maximize the package portability. However,
these packages are benefiting of particular features of
HPC processors, such as vector instructions. Moreover,
OS distributions only provide packages for certain library
versions. If you want to use other versions, the container
image creation must be compiled from sources. In this case,
the compilation flags must be carefully selected. Otherwise,
images would be created that would not be generic enough
and could only be used on the same architecture as the

1Barcelona Supercomputing Center, Spain

Corresponding author:
Jorge Ejarque, Barcelona Supercomputing Center, Workflows and
Distributed Computing, Barcelona, 08034 - Spain
Email: jorge.ejarque@bsc.es

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 International Journal of High Performance Computing Applications XX(X)

machine that is building the container image. This library
version limitation can also affect the usage of specific
hardware available in HPC clusters, such as network fabric
or accelerators. To benefit from this hardware, the versions
of some libraries (MPI, CUDA, etc) must be compatible with
the ones installed in the HPC Cluster.

In this article, we present a Container Image Creation
service that takes into account all these issues. It leverages
HPC and multi-platform container builders to automate
the creation of container images tailored to specific HPC
platforms. The contributions of this article are:

• Design and implementation of a Container Image
Creation (CIC) service for HPC systems

• Integration of the CIC service in the eFlows4HPC
deployment process

• Validation through real use cases from manufacturing,
climate modelling and urgent computing.

The structure of the paper is the following: the next
section presents state-of-the-art, and some background
description about the eFlows4HPC project follows it. Next,
the Container Image Creation service, which is the article’s
core, is described. We also present some experimentation
with application workflows from the project, and some final
remarks conclude the paper.

State of the Art

HPC builder systems
Spack Gamblin et al. (2015) is a package management tool
designed to support multiple versions and configurations of
software on a wide variety of platforms and environments. It
was designed for large supercomputing centres, where many
users and application teams share common installations of
software on clusters with exotic architectures, using libraries
that do not have a standard Application Binary Interface
(ABI). Spack is non-destructive: installing a new version
does not break existing installations, so many configurations
can coexist on the same system.

Most importantly, Spack is simple. It offers a simple spec
syntax so that users can specify versions and configuration
options concisely. Spack is also simple for package authors:
package files are written in pure Python, and specs allow
package authors to maintain a single file for many different
builds of the same package.

More specifically, for container image creation, Spack
provides the Spack Environments. An environment is used
to group together a set of specs for the purpose of
building, rebuilding and deploying in a coherent fashion.
Environments separate the steps of (a) choosing what to
install, (b) concretizing, and (c) installing. This allows
Environments to remain stable and repeatable. Also,
environments allow several specs to be built at once. In
addition, an Environment that is built as a whole can
be loaded as a whole into the user environment. The
environment to be created is defined in a manifest file in
YAML format (spack.yaml).

EasyBuild Geimer et al. (2014) is a software build and
installation framework that allows you to manage (scientific)
software on High-Performance Computing (HPC) systems in
an efficient way. Easybuild provides a flexible framework

for building and installing (scientific) software, that fully
automates software builds, diverting from the standard
configure, make, make install with custom procedures.
Easybuild allows for easily reproducing previous builds,
keeps the software build recipes and specifications simple
and human-readable, supports the co-existence of versions
and builds via dedicated installation prefix and module files
and enables sharing with the HPC community.

HPC Container Maker (HPCCM) McMillan (2018) is an
NVIDIA open-source tool to make it easier to generate
HPC application container specification files. It is able to
generate either Dockerfiles or Singularity definition files
from the same Python recipe. It is based on the idea of
having available a library of HPC building blocks that are
used in the Python recipe. While the building blocks have a
default configuration, they are also fully configurable with
multiple options. The set of building blocks includes, for
example, multiple MPI versions, compilers, HPC libraries
such as MKL or OpenBLAS, etc. CUDA is always included
through the base image used to build the image.

Since the methodology described in this paper is agnostic
of the builder system, we can use any of the former
methodologies. However, so far, we have used Spack. We
have found that Spack is more generic when defining the
spack.yaml and requires one single package.py per
software component. HPCCM mostly focuses on GPU-based
target systems. Easybuild requires specifying each variant
as a separate package. Another drawback of Easybuild is
that it requires the user to define the compiler flags for each
architecture, while Spack can determine this automatically.
In an automated environment like the one we have designed,
it was easier to base the implementation on Spack.

Container builder systems
Docker Build Merkel (2014) is one of Docker Engine’s most
used features. When creating an image, Docker Build is used.
Build is a key part of the software development life cycle
that allows packaging and bundling code and shipping it
anywhere. The most common method of executing a build
is by issuing a docker build command. The Command Line
Interface (CLI) sends the request to Docker Engine which,
in turn, executes the build. Recently Moby BuildKit has
been added to the Docker Engine, a new component to build
images.

The new client Docker Buildx, is a CLI plugin that extends
the docker command with the full support of the features
provided by the BuildKit builder toolkit. docker buildx
build command provides the same user experience as
docker build with many new features, like creating
scoped builder instances, building against multiple nodes
concurrently, outputs configuration, inline build caching, and
specifying target platform. In addition, Buildx also supports
new features that are not yet available for regular docker
build like building manifest lists, distributed caching, and
exporting build results to Open Container Initiative (OCI)*

image tarballs.
The build command from Singularity Kurtzer et al.

(2017) is able to download and assemble existing containers

∗OCI website: https://opencontainers.org

Prepared using sagej.cls

https://opencontainers.org

Jorge Ejarque and Rosa M Badia 3

from external resources like the Container Library and
Docker Hub, and it can also be used to convert containers
between the formats supported by Singularity. In addition,
it can be used in conjunction with a Singularity definition
file to create a container from scratch and customize it.
However, the feature that enables to perform remote builds
using build hosts of different architectures is only available
in the enterprise license.

Buildah† is a tool that facilitates building OCI container
images. Buildah is an open-source, Linux-based tool that
can build Docker and Kubernetes-compatible images and
is easy to incorporate into scripts and build pipelines.
In addition, Buildah has overlap functionality with other
container-related tools such as Podman‡, Skopeo§, and CRI-
O¶. Buildah can create a working container from scratch
but also from a pre-existing Dockerfile. In addition, it
does not need a daemon running in the system when
building container images. Buildah also supports building
and pushing multi-architecture container images, but it is less
streamlined compared to docker buildx.

Container deployment environments
The use of containers is common in the area of HPC.
For example, in Olaya et al. (2022) the authors present
an environment based on fine-grained containerization of
both data and applications which automatically creates data
lineage and record trail of workflow executions, enabling
traceability of data and explainability of results. However,
very few approaches to automating its deployment can be
found in the literature. EASEY introduces a framework
to enable container applications based on Docker to be
transformed automatically to Charliecloud containers and
executed on HPC systems via an integrated management
system Höb and Kranzlmüller (2020). The architecture of
the EASEY system is integrated as two building bricks in
the layered HPC architecture. On the Applications and Users
layer the EASEY-client is mainly responsible for a functional
build based on a Dockerfile and all information given by
the user. The middleware on the local resource management
layer takes care of the execution environment preparation,
the data placement and the deployment to the local scheduler.

Background: The eFlows4HPC project

Architecture
Figure 1 shows the overview of the eFlows4HPC software
stack. It includes a set of software components organised in
different layers: The first layer provides the syntax and pro-
gramming models to implement and automatically operate
complex workflows combining typical HPC simulations with
HPDA and ML. The second layer consists of a set of ser-
vices, repositories, catalogues, and registries to facilitate the
accessibility and re-usability of the implemented workflows,
software components, data sources and results. Finally, the
lowest layers provide the functionalities to automate the
deploy and execution of the workflow. This layer provides
the components to orchestrate the deployment and coordi-
nated execution of the workflow components in federated
computing infrastructures. Moreover, it provides a set of
components to manage and simplify the integration of large

Figure 1. The eFlows4HPC software stack architecture

volumes of data from different sources and locations with
the workflow execution. Actions in the layer are executed
according to the workflow description provided in the first
layer and to the metadata stored in the second layer services.

A workflow in eFlows4HPC is composed of three
different parts: the computational workflow, developed in
PyCOMPSs Tejedor and et al. (2017); the data logistic
pipelines, that describe the necessary data transfers between
external servers and the HPC system; and the topology of
the overall workflow, described in TOSCA OASIS (2022)
(see the top layer of the software stack in Figure 1). Once
developed, a workflow is stored in the Workflow registry to
enable its deployment and later execution.

Figure 2. Workflow registry structure. Workflows are stored in
a Git repository with the structure shown in the figure

The Workflow registry is a Git repository which allows
developers to store the developed workflows. Workflows are
stored in different folders following the structure indicated
in Figure 2. Inside the workflow folder, there is a tosca
subfolder which stores the TOSCA topology of the workflow,
including references to the data logistic pipelines and the
PyCOMPSs computational workflows as steps of this global
workflow. Then, there is a set of folders that include
the PyCOMPSs workflow source code and the software
requirements of each workflow step. The data logistic
pipelines are registered in the Data Logistic Service (DLS).
The TOSCA workflow includes the corresponding URL of
the DLS and the identifier of the pipeline to be executed.

†Buildah website: https://buildah.io/
‡Podman website: https://podman.io
§Skopeo website:https://github.com/containers/skopeo
¶CRI-O website:https://github.com/cri-o/cri-o

Prepared using sagej.cls

https://buildah.io/
https://podman.io
https://github.com/containers/skopeo
https://github.com/cri-o/cri-o

4 International Journal of High Performance Computing Applications XX(X)

Figure 3. Software catalog structure. The workflows’ software
components are stored in a GIT repository with the structure
shown in the picture

To include new workflows in the registry, workflow
developers have to create a new fork or branch of the Git
repository. In this fork/branch, they have to include a new
folder for the workflow with a subfolder for the TOSCA
description and the different workflow steps, as explained
above. Finally, to make it available for the community, they
have to create a pull request of the branch/fork containing
the new workflow description to the main branch. This pull
request will be reviewed by the community and included in
the repository.

The Software Catalogue is a Git repository that allows
software owners and workflow developers to store the
description of the software used in the workflows in a
way that the eFlows4HPC Software Stack can manage it
transparently to final users. Figure 3 shows an example of
software descriptions. It follows a structure compatible with
software repositories of HPC builder systems such as Spack
or Easybuild. In the case of the figure, we show an example
for the Spack system. All software packages are stored in
a packages folder. In each folder, there is a subfolder
per software package. In each subfolder, developers have
to provide: the package.py file, which includes the
installation description according to the Spack schemas, and
different invocation.json files to describe the different
ways to invoke the software.

To include new software packages in the catalogue,
developers have to create a new fork or branch of the
git repository. In this fork/branch, they have to include a
new subfolder for the software with the installation and
invocation descriptions, as explained above. Finally, to make
it available for the community, they have to create a pull
request of the branch/fork with the new software description
to the main branch. This pull request will be reviewed by the
community and included in the repository.

HPC Workflows as a Service
The HPC Workflow as a Service (HPCWaaS) provides the
interfaces for workflow developers and final users to manage
the different steps of the workflow’s lifecycle. It comprises
two subcomponents that offer the interfaces according to the
user role. Workflow developers interact with Alien4Cloud|| to
develop and deploy workflows. Final workflow users interact
with the Execution API to execute the deployed workflows.

Alien4Cloud is a web-based GUI which allows developers
to create and deploy workflows as TOSCA topologies in
a user-friendly way. For a given workflow, the TOSCA
topology describes how to perform its deployment and
operation procedures in different infrastructures (HPC sites).

At development, it allows developers to create topologies
from scratch and save them in the Workflow Registry or reuse
existing ones to create new workflows. At installation time,
it enables the deployment of the same workflow in different
(new) environments.

The Execution API is a REST API and a CLI, which allow
the workflow users to check the deployed services in the
different environments, manage the credentials and execute
the deployed workflows using these credentials.

Deploying workflows with eFlows4HPC
Figure 4 provides an overview of how components interact
to provide the deployment functionalities. When developers
want to execute a workflow, they use the Alien4Cloud
interface of the HPCWaaS to indicate the workflow to
deploy, select the environment (computing infrastructure)
to deploy it and provide their access token. As a result of
this interaction, the Alien4Cloud will retrieve the TOSCA
description of the workflow (Step 1) and contact the Ystia
Orchestrator (Yorc). Yorc is in charge of orchestrating
the deployment of the main workflow components in
the computing infrastructures and managing their lifecycle
following the TOSCA part description (Step 2). The actions
orchestrated by Yorc include the interactions with the
Container Image Creation component to create the container
images for the selected environment (Step 3). It also includes
the interactions with the Data Logistics Service to set up the
data pipelines that transfer the generated container images
and other datasets or models that are required to execute
and specific workflow (Step 4). The access to the HPC
infrastructure can be either through the SSH/SCP protocols,
which is the typical access protocol to these types of
infrastructures, or through the Unicore services in case this
middleware is available in the HPC infrastructure.

The Container Image Creation Service
The Container Image Creation (CIC) service is a component
that automates the creation of container images tailored
to a specific HPC platform (HPC ready containers). This
component leverages specialised HPC builders (such as
Spack or Easybuild), and multi-platform container build
tools (such as buildx). It also uses as input the information
provided by the eFlows4HPC Software Catalogue and
Workflow Registry to automatically create optimised
container images required to execute a workflow in a specific
HPC machine.

Given a workflow registered in the Workflow registry
(see fig 5) and a description of a target platform (such as
CPU architecture, available MPI versions and accelerators),
the CIC orchestrates the creation of the workflow container
images for this platform. Based on a generated container
building environment and a recipe with the required
software, executes this recipe in the multi-platform container
build tool. At the end of this process, the generated image
will be stored together with metadata description to avoid
creating the same image again for a similar platform.

∥Alien4Cloud website, https://alien4cloud.github.io

Prepared using sagej.cls

https://alien4cloud.github.io

Jorge Ejarque and Rosa M Badia 5

Figure 4. Deployment overview. The figure describes how developers interact with Alien4Cloud to deploy workflows and how the
gateway services interact between them once a request is received.

Figure 5. Container Image Creation service overview. The
service has as input a workflow step and a target system. It is
able to generate HPC tailored container images by using a
multi-platform build tool (buildx) and HPC builder (Spack).

The service is implemented as a Flask service that enables
the request to build a container image, check the status of
a container building and download the image. As multi-
platform container builder, we have selected Docker Buildx,
and, as HPC builder, we have chosen Spack.

HPC Ready Container Image Creation Process
To build the container image, the service receives a
JSON document (see Figure 6) describing the requested
characteristics: the target machine description, workflow and
workflow step. The target machine description indicates
different properties required by the CIC to create the
container. This description includes the supported container
engine (Docker and Singularity are currently supported),
the specific processor architecture** and the available MPI
versions and runtime libraries for accessing the accelerator
(e.g NVIDIA CUDA or AMD ROCm) for which the
container is needed. The workflow and workflow step
identify the specific step in a particular workflow that the
container image corresponds to.

With this information, the CIC service obtains from the
Workflow registry the spack.yaml file for the specific

workflow step. This file is a Spack environment manifest
that lists the software required to build the container image
for this workflow step. The service also obtains from the
Software Catalogue the package.py for the software
packages used in the step. This Python file is written
following the Spack spec syntax and describes how to build
the package. It allows specifying how to build different
software versions (i.e., version 1.1, version 1.2.3) or different
variants. The possibility of defining different variants is very
relevant for HPC since they allow specifying that a version
is using MPI or CUDA (including specific versions for these
libraries).

The JSON file provided to the CIC service also gives
information about the target platform, architecture and
container engine for which the container image is needed.
The service uses this information to particularize the
spack.yaml file for the specific target system.

The JSON file also specifies if the software requires MPI
or CUDA libraries since it is necessary to build the container
image with the specific library available in the host. In
this case, the JSON may include which specific MPI and
CUDA library is needed and the service will propagate this
information to the Spack environment, compiling for the
specific variant of the required software. An example of how
the original Spack environment is particularized for a target
HPC machine is depicted in Figure 7.

Once the Spack environment is particularized, the CIC
service creates a container creation context for the multi-
platform image creation with Docker Buildx. This context
includes the workflow step directory with the particularized
Spack environment, the package descriptions included in
the Software Catalog and a Dockerfile with the Spack
environment installation instructions as the one shown in
Figure 8.

∗∗Available architectures:
https://spack.readthedocs.io/en/latest/basic_
usage.html#support-for-microarchitectures

Prepared using sagej.cls

https://spack.readthedocs.io/en/latest/basic_usage.html##support-for-microarchitectures
https://spack.readthedocs.io/en/latest/basic_usage.html##support-for-microarchitectures

6 International Journal of High Performance Computing Applications XX(X)

1 {
2 "machine": {
3 "platform": "linux/<amd64|386|arm[64|v6|v7]|riscv64|ppc64le|s390x>",
4 "architecture": "<Spack supported archictures>",
5 "container_engine": "<docker|singularity>",
6 "mpi": "<openmpi|intel-mpi|mpich>@<version>",
7 "gpu": "<cuda|rocm>@<version>"
8 },
9 "workflow": "<Folder in Workflow Registry>",

10 "step_id": "<Step the workflow folder>"
11 }

Figure 6. Container configuration (JSON file. It specifies the target system’s architecture and specific libraries needed (for MPI or
GPU) and identifies the actual workflow step software to be built in the container image.

1 spack:
2 specs:
3 - fesom2

(a) Original Spack Environment

1 spack:
2 concretizer:
3 unify: true
4 packages:
5 all:
6 target:
7 - skylake
8 specs:
9 - fesom2

10 - intel-mpi@2018.4

(b) Generated Spack Environment

Figure 7. Spack Environment Particularization for specific HPC machine

FROM ghcr.io/eflows4hpc/spack_base:0.18.1

COPY %WF_STEP% /%WF_STEP%
COPY software-catalog /software-catalog
COPY .spack /.spack

RUN spack -C /.spack find && \
&& spack -C /.spack -e /%WF_STEP%

install --fail-fast -j2 \↪→

&& spack clean && spack gc -y

RUN echo ".
/opt/spack/share/spack/setup-env.sh &&
cd /%APPDIR% && spack -C /.spack env
activate ." >>
/etc/profile.d/%WF_STEP%_env.sh

↪→

↪→

↪→

↪→

Figure 8. Dockerfile with Spack environment installation

Then, the service invokes the Docker Buildx from the
container context indicating the platform required for the
target machine as indicated in Figure 9. After this execution
the image ready for a Docker engine is obtained. If
the machine supports other container engines, such as
Singularity, it can be converted to other formats as in the case
of the figure.

Once the container has been built it will be deployed in
the HPC system and pushed into an image repository, with
the goal of retrieving it in case it is needed in the future.

Sample CIC service client
In order to simplify the access to the CIC service, we have
developed a simple bash client. Figure 10 shows the usage

cd build_context_f23pdx45t
docker buildx build --progress plain

--builder multi-platform --platform
linux/amd64 --load --rm -t esm_skylake
-f Dockerfile .

↪→

↪→

↪→

if ["$engine" == "singularity"]; then
singularity build

$IMAGES_PATH/esm_skylake.sif
docker-daemon://esm_skylake:latest

↪→

↪→

fi

Figure 9. Sample buildx Command invoked from the CIC
service

of the client. It receives as input the service URL, and the
action to execute (build image, check status or download
the image). Depending on the actual action, it receives also
the path of the JSON file, the identifier of the image or the
path where to download the image. Examples of the different
commands are shown in Figure 11.

cic_client.sh <image_creation_service_url>
<"build"|"status"|"download">
<json_file|build_id|image_name>

↪→

↪→

Figure 10. Client usage for the CIC service

Experiments

Experimental setting
To validate the features of the Container Image creation
system, we have selected a set of use cases and

Prepared using sagej.cls

Jorge Ejarque and Rosa M Badia 7

$> cic_client.sh https://bscgrid20.bsc.es build exageostat_request.json
Response:
{"id":"f1f4699b-9048-4ecc-aff3-1c689b855adc"}

$> cic_client.sh https://bscgrid20.bsc.es status f1f4699b-9048-4ecc-aff3-1c689b855adc
Response:
{"filename":"reduce_order_model_sandybridge.sif",

"image_id":"ghcr.io/eflows4hpc/reduce_order_model_sandybridge",
"message":null,"status":"FINISHED"}

↪→

↪→

$> cic_client.sh https://bscgrid20.bsc.es download exageostat_skylake.sif
Response:
Resolving bscgrid20.bsc.es (bscgrid20.bsc.es)... 84.88.52.251
Connecting to bscgrid20.bsc.es (bscgrid20.bsc.es)|84.88.52.251|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2339000320 (2.2G) [application/octet-stream]
Saving to: ‘exageostat_skylake.sif’

exageostat_skylake.sif 0%[] 4.35M 550KB/s eta 79m
0s↪→

Figure 11. CIC client sample commands

heterogeneous systems. We have generated two container
images for each case and system, one using our approach and
another with a standard container build process with generic
packages. We compare the execution with these container
images against the native installation in the respective HPC
clusters.

The applications evaluated are the use cases of the
eFlows4HPC project. These applications use a wide variety
of HPC features suitable for evaluating the system. The
first application (Digital twins) mainly uses shared memory
parallelism with OpenMP and Linear Algebra systems
solved using the Eigen and BLAS libraries. The main kernel
of the second application (Earth System Model) mainly
uses distributed memory parallelism with MPI and BLAS
libraries. Finally, the main kernel of the third application
(PTF/FTRT) uses GPUs to perform its computations.

Regarding the computing infrastructures, we have used:
the General purpose cluster of MareNostrum 4, the CTE-
Power Cluster and the Nord3 supercomputer. All of them are
hosted by the Barcelona Supercomputing Center and support
the Singularity container engine. The General Purpose
Cluster MareNostrum 4 (MN4)†† is composed of 3456
compute nodes with two 24-core Intel Xeon Platinum 8160
CPU (Skylake) each, with 96 GB of main memory and
100 Gbit/s Intel Omni-Path interconnect. The CTE-Power
Cluster‡‡ is composed of 52 computing nodes, each with
two 20-core IBM Power9 8335-GTH20 512GB and 4 GPU
NVIDIA V100 (Volta) with 16GB HBM2. Finally, the Nord
3 cluster comprises 84 IBM dx360 M4 compute nodes with
two Intel 8 core SandyBridge EP processors each, with 32GB
connected through a 100Gbit/s Infiniband Network.

Digital twins in manufacturing: eFlows4HPC
Pillar I application

The Pillar I of the eFlows4HPC project aims to develop
a flexible workflow for the construction of Reduced Order
Models (ROM) to define Digital Twins for manufacturing
applications Boschert et al. (2021).

The process starts by defining a detailed model: the
Full Order Model (FOM). The FOM considers multiple
scenarios, storing the results in a database. The results
are collected to find common patterns in the solution,
defining the ”reduced basis” used to construct the ROM. The
ROM supports approximate predictions at a much reduced
computational cost. Refining the model leads to a hyper-
reduced model to further reduce the computational cost. The
hyper-reduced model results are compared to the FOM ones
to decide if further iterations are needed or if the model is
final.

The FOM is built through a training campaign, which
defines a set of simulations of the KRATOS Multiphysics
software Dadvand et al. (2013, 2010). These results all
together form a large data matrix used to generate the
ROM. For the example shown in this article, the ROM is
obtained by implementing a Randomized Singular Value
Decomposition (RSVD) method. The RSVD has been
implemented as a Python script that combines PyCOMPSs
tasks and dislib methods. The dislib Álvarez Cid-Fuentes
et al. (2019) is a distributed machine learning library
implemented on top of PyCOMPSs. The next step generates
new auxiliary data using the computed ROM, used to
build the hyper-reduced model. The hyper-reduced model
is validated by assessing its performance against the FOM
data. According to the results of this step, the workflow
may need to go back to the beginning and improve the
initial training set data. Once the model is final, it can
be deployed in the cloud or in edge devices close to
the manufacturing environment. This generic workflow is
applied in the framework of the project to model the
overheating of industrial electrical engines. For the safe

††MareNostrum 4 system overview:
https://bsc.es/supportkc/docs/MareNostrum4/intro
‡‡CTE-Power system overview:
https://bsc.es/supportkc/docs/CTE-POWER/intro

Nord3 system overview:
https://bsc.es/supportkc/docs/Nord3v2/intro

Prepared using sagej.cls

https://bsc.es/supportkc/docs/MareNostrum4/intro
https://bsc.es/supportkc/docs/CTE-POWER/intro
https://bsc.es/supportkc/docs/Nord3v2/intro

8 International Journal of High Performance Computing Applications XX(X)

operation of the type of engine considered in the project,
the temperature in the windings must not exceed a critical
temperature, as the electrical insulation will be damaged due
to thermal degeneration.

Image Creation and Deployment A prototype version of
the workflow has been developed and it is available in the
eFlows4HPC Workflows Repository. We have tested the CIC
service with this workflow. To invoke the service, a specific
JSON file is provided to the service (see figure 13). The
information in the JSON file is used to retrieve from the
workflow repository the spack.yml file, which is shown
in figure 12. This file lists the three different software
components that are used in the workflow: PyCOMPSs,
dislib and Kratos. In addition, for Kratos, the file indicates
the specific Kratos applications that are used in the workflow.

This information is passed to Spack which then retrieves
the different package specs package.py files (one for each
of the software components involved: PyCOMPSs, dislib
and Kratos) from the Software Catalog. The variants that
are needed and the target machine architecture are passed
in the JSON file. In the example shown in figure 13, we
are requesting to build a Singularity container image for an
Intel SandyBridge architecture which is the architecture of
the Nord3 supercomputer.

Once the image has been built, it is uploaded into an image
repository for further reuse and Alien4cloud deploys it in the
target system. The same procedure has been used to generate
the image for the Intel Skylake architecture which is the one
of the MareNostrum 4 supercomputer.

Besides the automated method provided by the
eFlows4HPC stack, we have manually created and deployed
a similar container image following standard container
processes. In this case, we have created a Singularity image
using the default deb packages of an Ubuntu distribution
and the x86 64 pip packages for the PyCOMPSs, dislib and
Kratos Multiphysics.

Experimental Results Figure 14 and Figure 15 show the
execution times of the Pillar I workflow with the different
container build processes and various core counts per task.
These times are compared with the execution times using the
native installation in bare metal.

Figure 14 shows the execution time comparison for
the MareNostrum 4 cluster. We can see that our HPC
ready approach reaches almost the same performance and
scalability as the native installation. This is possible since the
container creation process includes processor optimizations
for the target architecture. In contrast, the generic containers
are between 27% and 35% slower than the HPC ready
containers. Similar results are obtained for the Nord3 cluster
(depicted in Figure 15). In this case, the gain of using HPC
ready containers is between 13% and 17%. The gain is more
significant in the MN4 case because the architecture has
some features (such as AVX instructions) not available in the
Nord3 cluster.

Earth System Model workflow: eFlows4HPC
Pillar II application
eFlows4HPC Pillar II develops innovative adaptive work-
flows for climate modelling. One of these workflows focuses

on the development of the Earth System Model (ESM) by
performing ensemble member simulation with AI-assisted
member pruning. This workflow is one of the most challeng-
ing HPC use cases due to very high computational cost and
additional challenges related to intensive I/O patterns, huge
data volumes, and the necessity of not only data on HPC
but also in-situ post-processing. The goal is to make a better
use of computational and storage resources by performing a
smart (AI-driven) pruning of ensemble members (and releas-
ing resources accordingly) at runtime. The overall workflow
is orchestrated with PyCOMPSs and uses Hecuba to store
some intermediate simulation results. Hecuba is a set of tools
and interfaces that implement a simple and efficient access to
data stores for big data applications.

The workflow starts with an initialization step that
determines the number of ensembles, initial conditions, the
path to input datasets and definition of other execution
parameters. The workflow bases its simulations on the
Finite Element Sea Ice-Ocean Model (FESOM2) Danilov
et al. (2017). FESOM2 is a multi-resolution ocean general
circulation model that solves the equations of motion
describing the ocean and sea ice using finite-element and
finite-volume methods on unstructured computational grids.

The main execution step involves the execution of the
model and simultaneously performs a periodic check of the
state of the members. If the dynamical analysis recommends
discarding members, the PyCOMPSs runtime manages their
cancellation from the ensemble. All the outputs and files
generated by the pruned members are discarded.

While the final version should include the different
software components involved in the workflow, the results
shown in this article are based on a container image that only
consists of the FESOM2 simulator.

Image Creation and Deployment To create and deploy the
images, we have followed the same procedure as for the
Pillar I. In the workflow software requirements (spack.yml),
we have just added FESOM2 as mentioned above. As
FESOM2 depends on MPI, we have also included the MPI
version installed in the machine in the JSON request. This
will allow the Container Image Creation service to create a
container with a compatible MPI version. Figure 16 shows
the container creation request for the Nord3 supercomputer.
A similar request is performed for MareNostrum 4 cluster
with the same intel-mpi version but changing the
processor architecture to Skylake.

Regarding the generic image, we have manually followed
the instructions from the FESOM2 website to create a
Docker image. It uses an Ubuntu distribution as base
image, the FESOM2 dependencies are installed from Debian
packages, and FESOM is installed from a source code
installation with the generic x86 64 flags. This image has

Workflow Registry:
https://github.com/eflows4hpc/workflow-registry

Software catalog:
https://github.com/eflows4hpc/software-catalog

Hecuba website https://github.com/bsc-dd/hecuba
FESOM2 Docker installation: https://fesom2.readthedocs.
io/en/latest/getting_started/getting_started.html#
docker-based-installation

Prepared using sagej.cls

https://github.com/eflows4hpc/workflow-registry
https://github.com/eflows4hpc/software-catalog
https://github.com/bsc-dd/hecuba
https://fesom2.readthedocs.io/en/latest/getting_started/getting_started.html##docker-based-installation
https://fesom2.readthedocs.io/en/latest/getting_started/getting_started.html##docker-based-installation
https://fesom2.readthedocs.io/en/latest/getting_started/getting_started.html##docker-based-installation

Jorge Ejarque and Rosa M Badia 9

1 spack:
2 specs:
3 - compss
4 - py-dislib
5 - kratos apps=LinearSolversApplication,FluidDynamicsApplication,

StructuralMechanicsApplication,
ConvectionDiffusionApplication,RomApplication

↪→

↪→

Figure 12. Sample spack.yml file for the Pillar I workflow. This file lists the software components that will be installed
in the Pillar I container.

1 {
2 "machine": {
3 "platform": "linux/amd64",
4 "architecture": "sandybridge",
5 "container_engine": "singularity"

↪→

6 },
7 "workflow":"rom_pillar_I",
8 "step_id" :"reduce_order_model"
9 }

Figure 13. Container configuration for Pillar I (JSON file)

Figure 14. Execution times for the Pillar I workflow in the MN4
supercomputer with different core counts per task

Figure 15. Execution times for the Pillar I workflow in the Nord3
supercomputer with different core counts per task

been converted to a singularity image and copied to the
Nord3 and MareNostrum clusters.

Experimental Results Figure 17 and Figure 18 show the
execution times of a 10-day simulation of the FESOM2

1 {
2 "machine": {
3 "platform": "linux/amd64",
4 "architecture":

"sandybridge",↪→

5 "container_engine":
"singularity",↪→

6 "mpi": "intel-mpi@2018"
7 },
8 "workflow": "pillar_II",
9 "step_id": "esm"

10 }
11

Figure 16. Container Configuration for Pillar II

model with the Core2 mesh and the containers generated
with the two methodologies. The same simulation has been
executed with 72, 144 and 288 MPI processes. These times
are compared against the execution times with the native
installation in bare metal.

Figure 17. Execution times for the Pillar II workflow (FESOM2
model simulation) in the MN4 supercomputer with different
number of MPI processes

Figure 17 shows the times for the MareNostrum 4 cluster.
Our approach has a similar performance to the native
compilation. In contrast, the generic container is from 30%
worst for the 72 processes case to 90% worst for the 288
processes case. In the Nord3 executions (Figure 18), we
have observed the generic container can be 115% slower
than the native compilation. In this case, the difference in
performance is due to two factors: processor optimizations
and MPI usage. In the HPC-ready version, we could apply
the processor optimizations at build time and select the MPI
version, which allows us to bind the container to the MPI

Prepared using sagej.cls

10 International Journal of High Performance Computing Applications XX(X)

host installation, supporting access to an efficient network
fabric. The machines used in the evaluation have different
capabilities. MN4 can run 48 MPI processes per node and
its processor supports vector instructions. Nord3 can run 16
MPI processes and its processor does not support vector
instructions. Since the execution is running in a reduced
number of MN4 nodes, the communication does not have a
big impact, and the gain is mainly achieved by the processor
optimizations. However, in the case of Nord3, the application
uses more nodes and communications are more important.
Therefore, in this case, the gain is mainly due to the MPI
efficiency.

Figure 18. Execution times for the Pillar II workflow (FESOM2
model simulation) in the Nord3 supercomputer with different
number of MPI processes

PTF/FTRT: eFlows4HPC Pillar III application
eFlows4HPC Pillar II develops workflows for urgent
computing for natural hazards, more specifically for
Earthquakes and their subsequent Tsunamis. The Pillar
III Tsunami Workflow (PTF – Probabilistic Tsunami
Forecast/FTRT - Faster Than Real Time) seeks to provide
a forecast of tsunami impact following a large offshore
or near-shore earthquake. The uncertainty in the source
is dealt with by considering a (potentially very large)
ensemble of earthquake scenarios. For each such scenario,
an efficient numerical simulation needs to be performed
in which the impact on the coastlines of interest is
calculated. Just as numerical weather prediction generates
a probabilistic forecast based on the outputs from multiple
ensemble members, PTF calculates a probabilistic prediction
of tsunami impact based on the outputs of the individual
simulations and their scenario probabilities. The simulations
in this workflow use the Tsunami-HySEA simulator Macı́as
et al. (2017).

While the final version should include the different
software components involved in the workflow, the results
shown in this article are based on a container image that only
includes the Tsunami-HySEA simulator.

Image Creation and Deployment To create and deploy the
images, we have followed the same procedure as for Pillar I
and II. In the workflow software requirements (spack.yml),
we have just added Tsunami-HySEA as mentioned above.
As Tsunami-HySEA depends on MPI and CUDA, we have
also included the MPI and CUDA versions installed in the

1 {
2 "machine": {
3 "platform": "linux/ppc64le",
4 "architecture": "power9le",
5 "container_engine":

"singularity",↪→

6 "mpi": "openmpi@4",
7 "gpu": "cuda@10.2"
8 },
9 "workflow": "pillar_III",

10 "step_id": "ftrt"
11 }

Figure 19. Container Configuration for Pillar III

machine in the JSON request. In this JSON request, we have
changed the platform to linux/ppc64le and as architecture
Power9, This will allow the Container Image Creation
service to create a compatible container with the platform
architecture and the available MPI and CUDA versions.
Figure 19 shows the container creation request for the CTE-
Power supercomputer.

For the generic container images, we have manually
created a generic image for the linux/ppc64le platform
using Docker buildx and the official NVIDIA CUDA 10.2
docker images for Ubuntu 18.04 (nvidia/cuda:10.2-devel-
ubuntu18.04). On top of this base image, we have compiled
the Tsunami-HySEA and its dependencies (OpenMPI and
netCDF) with a generic compilation from sources. This
was required since the CTE-Cluster has CUDA 10.2 and
OpenMPI 4 installed, and the Ubuntu 18.04 deb packages
only has OpenMPI 2 available. Therefore, there was a
version mismatch and the image with OpenMPI 2 was not
able to run in the CTE-Power. Finally, the build image has
been converted to Singularity and copied to the CTE-Power
cluster.

Experimental Results Figure 20 shows the execution time
of the Tsunami-HySEA for the Mediterranean region using
1, 2 and 4 GPUs for the container images created with
the two methodologies (HPC Ready and Generic) and the
native compilation in bare metal. The multi-GPU executions
are configured in a way that each Tsunami-HySEA process
executes a scenario. In the case of 1 GPUs, a single scenario
is simulated. In the case of 2 GPUs, two scenarios are
simulated in parallel, and four for the case of 4 GPUs. For all
the cases, we can see the three options are giving almost the
same times. This is mainly because most of the computation
is done in the GPU and the slight difference is due to the load
of the problem to be executed.

Conclusions
With the evolution of the technology, HPC systems are
every time larger, more complex and more heterogeneous.
At the same time, application developers are also willing to
leverage the huge performance that is offered to them and
provide more complex applications that comprise different
types of computations (i.e., traditional HPC modelling
and simulation, data analytics, machine learning, etc.).
However, very few efforts have been devoted to simplify
the development, deployment and execution of complex

Prepared using sagej.cls

Jorge Ejarque and Rosa M Badia 11

Figure 20. Execution times for the Pillar III workflow (T-HySEA
model simulation) in the CTE-Power supercomputer with
different GPUs

applications in HPC systems. Most approaches are based on
ad-hoc solutions for each of the workflow applications.

The eFlows4HPC project focuses on providing generic
methodologies and technologies that simplify the develop-
ment, deployment and execution of complex workflows in
HPC systems, and at the same time promoting the wider use
and reuse of applications in HPC systems. Within the efforts
in the project, this article describes the Container Image
Creation (CIC) service, which aims at automatically building
container images that leverage the feature of the target sys-
tem. The service is based on the use of HPC builder systems
(Spack) and container builder systems (Docker buildx). The
service is evaluated in this article with applications from the
three project Pillars in the areas of manufacturing, climate
and urgent computing for natural hazards. The evaluation
compares the specialized containers generated by the CIC
service against generic containers and a native installation.
The performance obtained demonstrated that the special-
ized containers have comparable performance to the native
installation and up to 2× faster execution than the generic
containers.

Acknowledgements

This work has been supported by the Spanish
Government (PID2019-107255GB) and by MCIN/AEI
/10.13039/501100011033 (CEX2021-001148-S), by Generalitat
de Catalunya (contract 2021-SGR-00412), and by the European
Commission’s Horizon 2020 Framework program and the European
High-Performance Computing Joint Undertaking (JU) under grant
agreement No 955558 and by MCIN/AEI/10.13039/501100011033
and the European Union NextGenerationEU/PRTR (project
eFlows4HPC).

References

Boschert S, Bosco A, de Parga Regalado SA, Stabile G,
Hernández JA and Bravo R (2021) D4. 2 design of the
pillar i use cases URL https://eflows4hpc.eu/

wp-content/uploads/2022/09/eFlows4HPC_D4.

2-Design-of-the-Pillar-I-use_V1.0.pdf.
Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E,

Idelsohn SR and Oñate E (2013) Migration of a generic multi-
physics framework to hpc environments. Computers & Fluids

80: 301–309.
Dadvand P, Rossi R and Oñate E (2010) An object-oriented

environment for developing finite element codes for multi-
disciplinary applications. Archives of computational methods
in engineering 17(3): 253–297.

Danilov S, Sidorenko D, Wang Q and Jung T (2017) The finite-
volume sea ice–ocean model (fesom2). Geoscientific Model
Development 10(2): 765–789.

Ejarque J, Badia RM, Albertin L, Aloisio G, Baglione E, Becerra
Y, Boschert S, Berlin JR, D’Anca A, Elia D, Exertier F,
Fiore S, Flich J, Folch A, Gibbons SJ, Koldunov N, Lordan
F, Lorito S, Løvholt F, Macı́as J, Marozzo F, Michelini
A, Monterrubio-Velasco M, Pienkowska M, de la Puente
J, Queralt A, Quintana-Ortı́ ES, Rodrı́guez JE, Romano
F, Rossi R, Rybicki J, Kupczyk M, Selva J, Talia D,
Tonini R, Trunfio P and Volpe M (2022) Enabling dynamic
and intelligent workflows for hpc, data analytics, and ai
convergence. Future Generation Computer Systems 134:
414–429. DOI:https://doi.org/10.1016/j.future.2022.04.014.
URL https://www.sciencedirect.com/science/

article/pii/S0167739X22001364.
Gamblin T, LeGendre M, Collette MR, Lee GL, Moody A,

De Supinski BR and Futral S (2015) The spack package
manager: bringing order to hpc software chaos. In: Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–12.

Geimer M, Hoste K and McLay R (2014) Modern scientific
software management using easybuild and lmod. In: 2014 First
International Workshop on HPC User Support Tools. IEEE, pp.
41–51.

Höb M and Kranzlmüller D (2020) Enabling easey deployment
of containerized applications for future hpc systems. In:
International Conference on Computational Science. Springer,
pp. 206–219.

Kurtzer GM, Sochat V and Bauer MW (2017) Singularity:
Scientific containers for mobility of compute. PloS one 12(5):
e0177459.

Macı́as J, Castro MJ, Ortega S, Escalante C and González-Vida
JM (2017) Performance benchmarking of tsunami-hysea model
for nthmp’s inundation mapping activities. Pure and Applied
Geophysics 174(8): 3147–3183.

McMillan S (2018) Making containers easier with hpc container
maker. In: Proceedings of the SIGHPC Systems Professionals
Workshop (HPCSYSPROS 2018), Dallas, TX, USA, volume 10.

Merkel D (2014) Docker: lightweight linux containers for
consistent development and deployment. Linux journal
2014(239): 2.

OASIS (2022) Topology and orchestration specification
for cloud applications, version 2.0. URL http:

//docs.oasis-open.org/tosca/TOSCA/v2.0/

TOSCA-v2.0.html.
Olaya P, Kennedy D, Llamas R, Valera L, Vargas R, Lofstead J

and Taufer M (2022) Building trust in earth science findings
through data traceability and results explainability. IEEE
Transactions on Parallel and Distributed Systems 34(2): 704–
717.

Tejedor E and et al (2017) PyCOMPSs: Parallel computational
workflows in Python. The International Journal of High
Performance Computing Applications (IJHPCA) 31: 66–82.
DOI:10.1177/1094342015594678.

Prepared using sagej.cls

https://eflows4hpc.eu/wp-content/uploads/2022/09/eFlows4HPC_D4.2-Design-of-the-Pillar-I-use_V1.0.pdf
https://eflows4hpc.eu/wp-content/uploads/2022/09/eFlows4HPC_D4.2-Design-of-the-Pillar-I-use_V1.0.pdf
https://eflows4hpc.eu/wp-content/uploads/2022/09/eFlows4HPC_D4.2-Design-of-the-Pillar-I-use_V1.0.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X22001364
https://www.sciencedirect.com/science/article/pii/S0167739X22001364
http://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
http://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
http://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

12 International Journal of High Performance Computing Applications XX(X)

Álvarez Cid-Fuentes J, Solà S, Álvarez P, Castro-Ginard A and
Badia RM (2019) dislib: Large Scale High Performance
Machine Learning in Python. In: Proceedings of the 15th
International Conference on eScience. pp. 96–105.

Prepared using sagej.cls

	Introduction
	State of the Art
	HPC builder systems
	Container builder systems
	Container deployment environments

	Background: The eFlows4HPC project
	Architecture
	HPC Workflows as a Service
	Deploying workflows with eFlows4HPC

	The Container Image Creation Service
	HPC Ready Container Image Creation Process
	Sample CIC service client

	Experiments
	Experimental setting
	Digital twins in manufacturing: eFlows4HPC Pillar I application
	Image Creation and Deployment
	Experimental Results

	Earth System Model workflow: eFlows4HPC Pillar II application
	Image Creation and Deployment
	Experimental Results

	PTF/FTRT: eFlows4HPC Pillar III application
	Image Creation and Deployment
	Experimental Results

	Conclusions

