Vetter JS, Date P, Fahim F, et al. Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials. The International
Journal of High Performance Computing Applications. 2023;37(3-4):351-379. doi:10.1177/10943420231178537

Journal Title
Abisko: Deep Codesign of an Ohe Autho(s) 2023

Reprints and permission:

A rc h itect ure fo r S p i ki n g N eura I sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

- H www.sagepub.com/
Netwqus using Novel Neuromorphic
Materials

Jeffrey S. Vetter', Prasanna Date', Farah Fahim?3, Shruti R. Kulkarni', Petro Maksymovych',
A. Alec Talin®, Marc Gonzalez Tallada', Pruek Vanna-iampikul®, Aaron R. Young', David
Brooks®, Yu Cao?, Wei Gu-Yeon®, Sung Kyu Lim?, Frank Liu', Matthew Marinella2, Bobby
Sumpter’!, and Narasinga Rao Miniskar’

Abstract

The Abisko project aims to develop an energy-efficient spiking neural network (SNN) computing architecture and
software system capable of autonomous learning and operation. The SNN architecture explores novel neuromorphic
devices that are based on resistive-switching materials, such as memristors and electrochemical RAM. Equally
important, Abisko uses a deep codesign approach to pursue this goal by engaging experts from across the entire
range of disciplines: materials, devices and circuits, architectures and integration, software, and algorithms. The
key objectives of our Abisko project are threefold. First, we are designing an energy-optimized high-performance
neuromorphic accelerator based on SNNs. This architecture is being designed as a chiplet that can be deployed in
contemporary computer architectures and we are investigating novel neuromorphic materials to improve its design.
Second, we are concurrently developing a productive software stack for the neuromorphic accelerator that will also be
portable to other architectures, such as field-programmable gate arrays and GPUs. Third, we are creating a new deep
codesign methodology and framework for developing clear interfaces, requirements, and metrics between each level of
abstraction to enable the system design to be explored and implemented interchangeably with execution, measurement,
a model, or simulation. As a motivating application for this codesign effort, we target the use of SNNs for an analog
event detector for a high-energy physics sensor.

Keywords
microelectronics, codesign, spiking neural networks, neuromorphic materials, LLVM, chiplets

Introduction Our efforts consist of three key objectives. First,
we are designing an energy-optimized high-performance
neuromorphic accelerator based on SNNs by using new
materials. This architecture is being designed as a chiplet that
can be deployed in contemporary computer architectures.
Second, we are concurrently developing a productive
software stack for the neuromorphic accelerator that will
also be portable to other architectures, such as field-
programmable gate arrays and GPUs. Third, we are
creating a new deep codesign methodology and framework
for developing clear interfaces, requirements, and metrics
between each level of abstraction to enable the system

Experts predict that computing systems will become more
specialized over the coming years (Hennessy and Patterson
2019; Ang et al. 2021; Li et al. 2020a; Dally et al. 2020;
Schulte et al. 2015; Vetter et al. 2018), and we are already
seeing evidence of this trend within computing architectures
for high performance, machine learning, and mobile systems.
As this specialization happens, the coordinated development
of hardware, software, and algorithms—or codesign—is
critical to achieving the main goals of improved power,
performance, size, and effectiveness (Ang et al. 2021).

To explore the concept of codesign, we are executing
the Abisko project to engage every level of the computing
hierarchy—from materials up through algorithms. The
overarching goal of this Abisko project is to develop an
energy-efﬁment spiking neural network (SNN) computing 2Arizona State University
architecture and software system. To this end, we are 3Fermi National Accelerator Laboratory
exploring novel neuromorphic devices that are based on 4Georgia Institute of Technology
resistive-switching materials, such as tantalum oxide and ®Sandia National Laboratories
electrochemical RAM (ECRAM), for implementing these °Harvard University
SNN architectures. Taken together, Abisko is engaging
experts from across the entire range of disciplines: materials, corresponding author:
devices, circuits, architectures, packaging, software, and Jeffrey S. Vetter, Oak Ridge National Laboratory
algorithms. Email: vetter@computer.org

'0ak Ridge National Laboratory

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

Journal Title XX(X)

design to be explored and implemented interchangeably with
execution, measurement, a model, or simulation.

As a motivation, our effort will examine multiple real-
world uses of SNNs. Here, we will describe one of our major
design targets: using an SNN as an analog event detector for
a high-energy physics (HEP) sensor.

Spiking Neural Networks (SNNs)

The computational paradigm of neuromorphic computing
with SNNs offers the opportunity to realize machine learning
(ML) operations in hardware with orders of magnitude
improvements in energy efficiency when compared with
the current state-of-the-art digital hardware (Tavanaei et al.
2019). SNNs are a bio-plausible version of artificial
neural networks (ANNs), in which the compute units—
or neurons—communicate by using binary-valued spikes.
A typical SNN has parameters for the neuron (e.g., firing
threshold, leak) and parameters for the synapse (e.g., weight,
delay). These SNN features provide the opportunity to
explore various material, device, and circuit properties that
align with the neuron and synapse dynamics. To fully exploit
the benefits of this computational paradigm for real-world
applications, the entire compute stack must be redefined for
neuromorphic computing. Although there is a tremendous
amount of research on the development of devices and
materials for neuromorphic computers, this research is often
focused on one portion of the computing stack and does not
connect to applications, algorithms, or even architectures,
in some cases. Without the context of higher levels of the
compute stack, it is difficult to evaluate the impact of these
new materials and devices on the performance of a full
neuromorphic implementation.

Abisko Overview

Our approach has been to assemble experts from each level
of the computing stack to design a specific hardware and
software system for a chiplet that provides the computational
capability of a SNN. Our team will be organized into six
research thrusts along layers of the computing stack (See
Table 1): algorithms, software, architectures and integration,
devices and circuits, and materials. The algorithms thrust
will identify computational motifs for SNN algorithms
and tailor those motifs for our software and hardware
interfaces for SNN implementation. The software thrust
will extend the LLVM compiler ecosystem to create a
compiler intermediate representation for SNN execution
and an asynchronous instruction set architecture for general
neuromorphic computing. The architecture and integration
thrust will design a conceptual SNN chiplet, including the
models and tools needed to integrate it into contemporary
packaging technologies. The devices and circuits thrust will
model and simulate a range of neuromorphic devices and
interconnects by using computer-aided design simulation
and TCAD (Stettler et al. 2021) models to provide a standard
library of modules to the higher levels. The materials thrust
will investigate new resistive-switching materials for energy-
efficient neuromorphic devices that offer scalability, CMOS
compatibility, and good radiation characteristics while
simultaneously investigating more aggressive molecular-
based materials and ferroelectric semiconductors. It will

Prepared using sagej.cls

Layer Description
Application | Design applications using SNN as a fundamental
computing paradigm
Algorithms | Develop suite of algorithmic motifs for neuromorphic
computing; develop simulations of candidate applica-
tion solutions
Software | Develop meuromorphic programming abstractions

implemented as C++ embedded DSL on

LLVM/MLIR

Architecture | Design neuromorphic chiplet as integrated in 2.5D or

3D with classic computing components

Devices | Study Neuromorphic devices and circuits as (mod-
ified) TCAD models, simulations, and experimental
data

Materials | Perform atomic characterization of neuromorphic

materials including resistive switching, electrochemi-
cal, and more aggressive molecular-based candidates

Table 1. Codesign layers and interfaces for Abisko.

also identify new pathways to abstract material performance
to the device level by using numerical compact modeling
coupled with ML.

As shown, it is clear that each layer can be refined and
optimized internally; however, our deep codesign framework
is trying to formalize the abstractions and interfaces across
this design space and allow us to drive this process
automatically with experiment, simulation, and Al, which is
described in the Codesign section.

Motivating Problem: Pixel Detectors for
High-Energy Physics (HEP) Collider
Experiments

The HEP community is actively searching for a new
paradigm to replace the standard model. After the discovery
of the Higgs boson in 2012 at the Large Hadron Collider
(LHC) (Aad et al. 2012; Chatrchyan et al. 2012), many
fundamental questions are still left unanswered, and signals
of long-sought new physics have not yet been observed.
In preparation for the High Luminosity Large Hadron
Collider (HL-LHC), the LHC detectors are undergoing major
upgrades, which include the replacement of the tracking
systems and the insertion of new subsystems for precision
timing to disentangle hard collisions from the background of
inelastic interactions per bunch crossing (pileup). The pileup
will dramatically increase in the HL-LHC—from an average
of 33 up to 200 events. The HEP community is also planning
to construct an electron-positron collider for operation soon
after the end of the HL-LHC, followed by a hadron collider
on a longer time scale. Higgs factories, which can produce
the Higgs boson for precision measurements, are also being
discussed as tools to discover new physics (of Particles and
of the American Physical Society 2021).

Specifically, the pixel detectors currently planned for the
HL-LHC experiments include approximately 145,000 pixels
per chip and read out an effective 11 bits per hit at 750 kHz,
which results in data rates of nearly 3 Gbps in the innermost
chips, and nearly 400 pixels are read out per event (Calligaris
et al. 2020) (see Figure 1).

Abisko Team

(217

(Hardware
Differentiator)
Voltage to
time pulse
converter

l

X
(13)

Particle Charge
Cluster

Charge (eV)

AL
High pT vs. Low
:>4L E> pT particle?
A1
13x21

(273) input
channels

Spikes

Figure 1. End-to-end in-pixel filtering of particle charge clusters into high pT or low pT samples. Each real-valued incoming signal
from the 13 x 21 array is converted into spike streams. The inter-spike times are related to the rise and fall time of the signal
waveform. There are two input spike channels per sensor waveform: one corresponding to the rising edge (in brown) and another

for the falling edge (in cyan).

Fermi National Accelerator Laboratory is developing
next-generation pixel detectors with high spatial and
temporal resolution for future experiments in which data
rates will increase by orders of magnitude relative to the HL-
LHC. Some approximate numbers are listed here:

Hit rates in the innermost tracking layers are expected
to increase from 3 GHz/cm® at the HL-LHC to
10 GHz/cm? at a future 100 TeV pp collider (Fleming
et al. 2019) (a 3x increase).

Consequently, detector granularity will also need to
increase by a similar factor with pixel areas going from
2,500 pm? to 625 ym? (a 4x increase).

Reading out precise time information for each pixel in
addition to the charge would increase data per pixel
from about 4 bits to 16 bits (a 4x increase for data
payload).

Including full tracking information in the readout or
trigger would require an increase in readout rate from
750 kHz to 40 MHz (a 20X increase).

The eventual solution to this incredible data challenge
will involve a carefully optimized combination of many
strategies: Al-enabled on-chip clustering that allows readout
of reduced cluster-level information rather than raw pixel-
level information; Al-enabled lossy data compression; and
physics-inspired, in-pixel data filtering.

The power consumption and area of the circuits for
readout and data processing must be kept manageable
despite the tendency for these to increase with detector
resolution and granularity. Strategies for managing power
consumption and area include using low-power smaller-
geometry technology nodes, power- and area-efficient
circuit design, and using novel beyond-CMOS structures,
including the memristors described in this work. The
competing needs for significant on-detector data processing
and minimal power consumption inspire the use of
neuromorphic, reconfigurable AI/ML networks for local data
processing. The methods and technologies developed to
solve the problem will have an impact on various industrial
applications that require compact, low-power sensors with
edge computing capabilities (e.g., autonomous driving, edge
10T, industry 4.0).

Prepared using sagej.cls

Algorithms

Neuromorphic computers perform computations by using
neurons and synapses. An SNN is a network of these
neurons connected to each other via synapses. Compared
with ANNs used in deep learning applications, SNNs more
closely emulate biological neurons and synapses (Schuman
et al. 2017). In particular, time is an inherent component
of the computation for SNNs, unlike ANNSs, in which time
has no such significance. In an SNN, neurons can leak
charge over time, and it takes time for information to travel
from one neuron to another along a synapse; this latency is
realized as either synaptic or axonal delay. These temporal
characteristics can differ from synapse to synapse and
from neuron to neuron. They can therefore add additional
dimensions to the processing capability of an SNN.

Unlike deep learning approaches in which back propa-
gation and stochastic gradient descent have been popular
training algorithms, a single best training algorithm has not
been developed for SNNs. Instead, there are a wide variety
of different training algorithms, including those inspired by
back propagation but adapted for SNNs (Bohte et al. 2000),
evolutionary approaches (Schuman et al. 2016), reservoir
computing or liquid state machines (Schliebs et al. 2011),
and synaptic plasticity mechanisms, such as Hebbian learn-
ing (Ferrari et al. 2008) and spike-timing-dependent plastic-
ity (Caporale et al. 2008). The types of algorithms most suit-
able for a given neuromorphic implementation depend on the
underlying architecture, devices, and materials of the imple-
mentation. Each training and learning approach has its own
requirements for the neuromorphic implementation, such as
dense, feed-forward connectivity for back propagation-like
algorithms and sparse, recurrent connectivity for reservoir
computing.

The neuromorphic algorithms developed in this work
leverage the model of neuromorphic computing proposed by
Date et al. (2022b). The neurons in this model are leaky
integrate and fire (LIF) neurons that have two parameters:
threshold and leak. Each neuron also has an internal state in
which signals from incoming synapses are accumulated over
time. The neuron leaks value from its internal state based
on its leak parameter. A zero leak implies that the neuron
instantaneously leaks all of its internal state, and an infinite
leak implies that the neuron never leaks its internal state (i.e.,
it remembers its internal state until it spikes). If at some point

Journal Title XX(X)

the internal state of a neuron exceeds the neuron threshold,
then the neuron spikes. After spiking, the internal state of
the neuron is set to the reset state, which is an optional
configurable neuron parameter. The spike, considered to be
a binary value, is then propagated to all outgoing synapses
of the neuron. Each synapse has two parameters: weight and
delay. Each synapse multiplies the incoming signal (spike)
by its weight, stalls for a time denoted by its delay, and
deposits the signal into its post-synaptic neuron. Several
applications leverage this model of neuromorphic computing
in the literature, including neuromorphic graph algorithms
(Kay et al. 2020, 2021; Hamilton et al. 2020b), sparse binary
matrix multiplication (Schuman et al. 2021), spiking graph
neural networks (Cong et al. 2022), autonomous vehicles
(Patton et al. 2021), epidemiological simulations (Hamilton
et al. 2020a), classifying supercomputer failures (Date et al.
2018), and many others (Aimone et al. 2022).

SNN Classification

In this work, we employ the Evolutionary Optimization for
Neuromorphic Systems (EONS) algorithm to train SNNs for
the HEP application (Schuman et al. 2016). EONS considers
the parameters of the underlying hardware during the
training process, thereby making it quite promising for this
neuromorphic codesign effort. Apart from EONS, several
other evolutionary algorithms have also been demonstrated
for training SNNs (Parsa et al. 2021). EONS begins
by evaluating a number of sparse randomly connected
SNNs (population of networks), followed by selection and
reproduction operations, which include introducing genetic
changes (e.g., mutation and crossover) to create the networks
(called offsprings) for the next generation of evaluation.
The selection operation is determined by the overall fitness
score obtained during the evaluation phase, which in a
classification task is typically the accuracy measure. This
sequence of steps proceeds until the desired fitness score is
reached.

As a motivating application, our interest in this algorithm
is how it can be applied to a pixel detector for the HEP
collider experiment as a demonstration of the neuromorphic
codesign effort. With this particular application, we would
benchmark the neuromorphic solutions for algorithmic and
architecture design requirements for an edge scenario.
Although the motivating problem (pixel detector) is from
HEP, the methods presented here would be applicable
to a broader class of problems that deal with temporal
data. The algorithmic approaches developed would inform
the underlying software and hardware architecture for an
optimized codesign approach.

As discussed in the previous section on pixel detection
for the HEP experiments, one of the tasks involves in-pixel
filtering: classifying the incoming sensor data into clusters
of high- or low-transverse momentum (pT) such that it
reduces the overall data transferred to off-pixel processors
by retaining and transferring only the high pT clusters.

The pixel detector’s simulated dataset consists of charge
values (in electrons) of the detected clusters. Each cluster
is a sequence of arrays of 13 x 21 pixels for 20 timestamps
every 200 ns. The dataset consists of over 4 million clusters,
with pT labels in the range [—4.9,4.9]. The goal of the
classification task is to classify the clusters into high pT

Prepared using sagej.cls

0.700

0.675

0.650

0.625

0.600

Accuracy

0575

0.550

0525

0.500

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch number

Figure 2. EONS Training curve for the positive pT clusters. In
this training simulation, we used only the positive pT samples
from the dataset with an equal number of high-pT and low-pT
clusters.

(> 0.2 or < —0.2), low positive [0,0.2] and low negative
[—0.2, 0] clusters. For our initial analysis, we consider only
the positive samples (i.e., pT > 0). The dataset that we use
is not balanced in the two classes. Hence, for the training
process, we use only a subset of the high-pT samples equal
in number to the low-pT samples.

SNNs operate on binary valued events (or spikes) sparsely
distributed in time. As a preprocessing step of the pixel
detector dataset, each pixel waveform (real-valued) is
translated into temporal spike trains, with the inter-spike
interval proportional to the rising or falling time of the
waveform. The translation of data into streams of binary
events (spikes) would eventually be carried out by the front-
end electronics of the pixel. Figure 1 shows the overall
scheme of preprocessing the sensor data and classifying it
into high- or low-pT clusters with SNNs.

The original dataset provided has charge arrays for each
cluster at every 200 ps. To convert the waveform into spike
trains, we perform an up-sampling of the original data to
capture the timing of the spikes as accurately as possible.
The time resolution of the encoding process can be set as
a hyperparameter in the classification process. The finer
the resolution, the more accurately the data is encoded as
spike trains; however, that also results in a higher number
of time steps for the SNN simulation. To begin with, we
choose 50 ps as the time step size to perform the encoding.
Our encoding process results in two spike trains per pixel,
with one that encodes the rising points and the other that
encodes the falling points in the waveform. There are many
details on how the physical pixels generate these rising and
falling points. These details can be expressed as parameters
to the simulated data encoding process, and through the
codesign effort, simulators can be used to evaluate the effect
these parameters have on the algorithm and neuromorphic
hardware.

After the encoding of real-valued signals into spike trains,
each input sample has 273 x 2 channels (for both rising
and falling edges). So, the SNN that we train has 546
input neurons and 2 output neurons. The training phase
has several hyperparameters (e.g., EONS configuration
parameters, number of epochs, number of time steps for
SNN simulation). The key EONS hyperparameters that
we consider in our study are population size of the
solutions, randomization fraction, and the starting number

Abisko Team

Figure 3. A virtual neuron that takes two 2-bit numbers as input
(X and Y") and returns their sum, a 3-bit number, as output (2).

Figure 4. Multiply by —1 function enabled by the virtual neuron.

of hidden nodes and edges within each network. As EONS
training proceeds, the networks can potentially grow or
shrink depending on the fitness of each generation. The
optimization across the entire hyperparameter space is
conducted with the Data-efficient Exploration Framework
(DEFFE). Our initial EONS training results are shown in
Figure 2. Here, we ran the training process for 10, 000 epochs
with a population size of 100 networks and a randomization
fraction of 0.1. The training accuracy on the balanced dataset
reaches 70%. The trained SNN consists of about 700 neurons
and 1, 000 synapses.

As next steps, we are exploring the possibility of further
reducing the number of input channels passed to the SNN.
We noted that the overall number of spikes required to
represent each of the signal waveforms is quite sparse,
with each channel having at most 4 spikes. Hence, we are
studying the secondary encoding process by looking at only
the rows or columns of the original sensor charge arrays. This
exploration will be carried out using the DEFFE framework.

SNN Regression

The next level of processing for the LHC detectors would
require the sensor values to be converted into physics
information, such as the particle position and angle, which
are real-valued entities. This task will require regression
algorithms in which the learning model outputs real-valued
data. Although the neurons in an SNN can receive real-
valued inputs, their outputs can only be binary. So, the
current SNN models cannot return real-valued outputs as

Prepared using sagej.cls

N Virtual /
Neurons

0O(log N) Steps

Figure 5. Adding N rational numbers using O(N log N) virtual
neurons in O(N log N) time. Each circle in the figure
represents a virtual neuron.

required in a regression task. To effectively perform a
regression task, an SNN must be able to (1) encode real-
valued numbers up to a certain precision efficiently, (2) add
real-valued numbers up to a certain precision efficiently, and
(3) multiply real-valued numbers up to a certain precision
efficiently.

To address the encoding and the addition functionalities
above, we introduce the concept of the virtual neuron, which
allows a spike-based neuromorphic computing platform to
operate on and output rational-valued data. The virtual
neuron is a spatial encoding mechanism that leverages the
binary representation of numbers to encode rational numbers
on neuromorphic computers. The virtual neuron is also
an adder, which takes two rational numbers as input and
returns their sum as output. Structurally, the virtual neuron
is composed of a group of LIF neurons and synapses
that are connected in a particular way. Functionally, the
virtual neuron mimics the behavior of an artificial neuron
with identity activation. The virtual neuron is an encoding
mechanism as well as an adder. It performs the addition
operation similar to a ripple carry adder.

Figure 3 shows a virtual neuron that takes two 2-bit
numbers X (z1,z9) and Y (y1,y0) as inputs on the left
and returns their sum Z (23, 21, 29), a 3-bit number, on the
right. The output is simply read as a binary-encoded number.
For instance, if (29, 21, 29) equals (1,0, 1), then the output
can be interpreted as the number 5 because (1,0,1) is the
binary representation of 5. Although other neuromorphic
encoding approaches (e.g., rate-based encoding, time-based
encoding, binning) take exponential time, exponential space,
or exponential energy to encode rational numbers exactly,
the virtual neuron takes constant time (O(1)) to encode
numbers exactly (Date et al. 2022a). For adding two numbers
exactly, the virtual neuron takes linear (O(N)) time, whereas
other neuromorphic approaches take either exponential time,
space, or energy or are incapable of adding two rational
numbers exactly.

We tested the performance of the virtual neuron on 8-,
16- and 32-bit rational numbers and verified that the virtual
neuron was able to correctly encode and add two rational
numbers (Date et al. 2022a). While the virtual neuron is
an essential component for neuromorphic regression, it can
also facilitate other applications. Figure 4 shows how the
virtual neuron can be used to implement the multiply by —1
function on a neuromorphic computer. Figure 5 shows how

Journal Title XX(X)

a collection of O(N log N) virtual neurons can be used to
add N rational numbers in O(N log N) time. The virtual
neuron is also used to implement a few u-recursive functions
in Date et al. (2022a). Finally, the virtual neuron will be
a vital component of neuromorphic compilers and can be
easily implemented in any neuromorphic language/compiler,
as shown in Figures 6 and 7.

Although the virtual neuron facilitates encoding and
addition, we still need an efficient way to multiply two
rational numbers exactly on a neuromorphic computer.
Multiplication will be the last piece of the neuromorphic
regression puzzle. To this extent, our future work consists
of developing the virtual synapse, which will be an efficient
method of multiplying two rational numbers exactly on a
neuromorphic computer. The virtual neuron and the virtual
synapse will allow us to perform regression tasks efficiently
on the neuromorphic processor. This will allow ML models
that run on a neuromorphic computer to output real-
valued outputs (e.g., particle position, angle, momentum) as
required by the HEP application.

DEFFE (Data-Efficient Exploration Framework)

Domain-specific computing is a viable solution to meet
the performance and energy requirements of current and
future computing workloads. These computing cores provide
several runtime tunable knobs and lead to a co-optimization
problem to find the optimal set of architecture knobs for
the given workload and workload parameters. One of the
challenges of such a co-optimization approach is the size of
the search space. By some estimates, the combined search
space can easily exceed 100,000 samples.

DEFFE (Liu et al. 2020) addresses this challenge from
both methodology and infrastructure perspectives. The ML
model in DEFFE can exploit the correlation among different
workloads. By casting the performance estimation as transfer
learning tasks in ML, the modeling method in DEFFE
can drastically reduce the number of samples needed when
constructing the performance model of a new workload
kernel. On the infrastructure side, DEFFE provides a scalable
computing platform to further reduce the run time needed
for performance estimation by harnessing the parallelism of
HPC clusters. The net outcome is that the run time of a
typical performance modeling task, which could take a few
months on a single-node computer, is reduced to a few days
by using the ML-learning method and further reduced to a
few hours when the simulation is executed on a 20-node
cluster.

In a codesign environment like the Abisko project, there
are many design parameters that are driven by different
levels of the design stack. DEFFE automates the process
of analyzing these design parameters, thereby extending our
ability to explore the trade-offs of various design options.
For example, in the case of exploring SNN classification,
DEFFE is configured with adjustments for the conversion
of the simulated dataset’s charge values to spike pulses,
adjustments for the hyperparameters for the EONS training
process, and adjustments for the design and configuration of
the neuromorphic processor. Then, the DEFFE infrastructure
can evaluate and collect relevant metrics for each of these
configurations by calling our modeling tools with each
configuration and then parsing the output to collect metrics

Prepared using sagej.cls

from that configuration. DEFFE evaluates the specific
configurations in parallel and collects the results into a
single table. By using DEFFE, the setup of experiments
is simplified. The DEFFE configuration file specifies the
adjustments that can be tuned and the metrics to be collected.
Scripts are added and used by DEFFE to take a specific
configuration and evaluate it. DEFFE then handles the
launching of each job on an HPC cluster to explore the design
space.

General-Purpose Computing Outlook

Although most algorithms for neuromorphic computers
are ML approaches that determine an SNN to perform a
particular task, there is also an opportunity to leverage the
underlying computational characteristics of neuromorphic
systems to perform more general-purpose computation.
Neuromorphic computers are inherently massively parallel,
perform event-driven computation, and have colocated
processing and memory. These characteristics are useful
for solving a variety of other types of problems, including
graph algorithms, such as shortest path (Schuman et al.
2019; Aimone et al. 2020); modeling epidemics (Hamilton
et al. 2020a); constraint satisfaction (Yakopcic et al.
2020); and generating Markov random walks (Severa et al.
2018a). However, the lack of programming abstraction for
more general-purpose uses of neuromorphic computing has
contributed to the lack of work in this area.

In recent years, several advancements have been made
toward the general-purpose applications of neuromorphic
computing. First, the Turing-completeness of neuromorphic
computing has been proven—this provides a compelling
theoretical argument that neuromorphic computers are
capable of general-purpose computation (Date et al.
2022b). In fact, from a theoretical standpoint, neuromorphic
computers can perform all those operations that today’s
computers can perform. The interesting question along this
line of research is as follows: if a neuromorphic computer is
made to do everything that today’s CPUs/GPUs can do, then
does it retain its energy advantage? The second advancement
toward general-purpose neuromorphic computing has been
the development of the computational complexity theory for
neuromorphic algorithms (Date et al. 2021). This allows us
to compare neuromorphic algorithms to their conventional
counterparts in the most theoretically fair manner possible.
Some efforts have also been made toward developing the
theory of energy complexity (Kwisthout and Donselaar
2020) and benchmarking the energy consumption and
latency of neuromorphic systems (Kosters et al. 2022).
These efforts, along with a strong focus on developing
a neuromorphic programming language, a neuromorphic
compiler, and a neuromorphic runtime system, are critical to
fully realizing the potential of general-purpose neuromorphic
computing.

Software

The Abisko software aims to implement a powerful system-
level C++ neuromorphic programming infrastructure that
enables the integration of conventional and neuromorphic
compute architectures. At the same level, the Abisko
software has a strong focus on HPC technologies. One

Abisko Team

objective for the Abisko software stack is to scale the main
neuromorphic processes (e.g., data encoding and decoding,
SNN training and inference, and structural analysis of SNNs)
to leverage their optimization at HPC scales as an effort
to deploy an HPC framework for neuromorphic computing
development.

Neuromorphic Programming Language

Within Abisko, the program specification is based on
a domain-specific language—the Aurora programming
language. The Aurora language is a functional and
declarative language implemented by using the Embedded
Compiler Construction (eCC) framework (Gonzalez-Tallada
et al. 2022). This framework enables the embedding of
domain specific languages within the C++ programming
language. Aurora is defined with the eCC API, and the
language is embedded in C++ and reuses all the existing C++
infrastructure. This strategy has proven extremely useful
in heterogeneous programming because it enables domain-
specific compiler technology (e.g., ML (Jin et al. 2020),
quantum computing (McCaskey and Nguyen 2021), tensor
algebra (mli 2023)).

The Aurora language is designed to specify the
computation as an SNN. The network is described as a
graph composed of nodes that correspond to neuromorphic
computing elements such as neurons and synapses. Edges
in the graph represent connections among these computing
elements. This program representation is widely used across
common neuromorphic programming systems. In general,
these systems originated from neusoscience frameworks
(e.g., Brian (Stimberg et al. 2019), NEST (Gewaltig and
Diesmann 2007), Arbor (Abi Akar et al. 2019), Nengo
(Sharma et al. 2016), and Rasmussen (2018)) or even
from deep learning frameworks (e.g., PyTorch (Paszke
et al. 2019), TensorFlow (Chien et al. 2019)), which
have been adapted or extended to provide support for
neuromorphic computing. Additionally, these neuromorphic
systems rely on application-level languages (e.g., Python)
that target vendor-specific coprocessor types, thereby
limiting benchmarking and portability. The Aurora language
was designed to incorporate the advances from all these
past experiences. For example, the Aurora language includes
graph data types and operators (e.g., Node, NodeSet, Layer)
to specify the nodes in the graph and native types (e.g., Edge,
EdgeType) to represent connections. Aurora also includes
specific native types and operators to define data models
associated to the elements of the graph (i.e., nodes and
edges). Within Aurora, both aspects are kept totally separate.
In this regard, Aurora follows a similar approach as followed
by Kozloski and Wagner (2011).

The code in Figure 6 shows an extract of the Virtual
Neuron specification. Several layers are defined (lines 1-
2), and then a 1D view is used to create the neurons in
each layer (lines 4-7). Data views are generated when a
Layer is used with operator []. The View data type
is introduced to define a logical grid organization of the
nodes within a layer. In this case, the 1D view is only
used to describe how the nodes in the layers must be
created. But when using a view, no data layout in memory
is assumed. The compiler will later derive which data layout
is optimal for the final graph implementation. Aurora also

Prepared using sagej.cls

(1) def x_pos("x_pos", Layer); // positive number X

(2) def bits_pos("bits_pos", Layer); // positive bit neurons

(3) use create_neuron("create_neuron", (Real=0, Real=-1.0) ->* LIF);
(4) x_pos|0,positive_precision-1] = create_neuron(0);

(5) bits_pos[0,positive_precision][0] = create_neuron(0);
(6) bits_pos[0,positive_precision][1] = create_neuron(1);
(7) bits_pos[1,positive_precision][2] = create_neuron(2);

(8) varrange(Range);
(9) range = (0, positive_precision-1);

(10) Connect(x_pos[range],
bits_pos[range][0,1]) = Synapse("weight'’_m = 1.0,
"delay"_m = Real(range+1));
(11) Connect(x_pos[1, positive_precision-1],
bits_pos[range][2]) = Synapse("weight"_m = 1.0,
"delay"_m = Real(range+1));

Figure 6. Extract of Virtual Neuron graph specification in
Aurora. Layers are defined and combined with Range type
variables, which generates Views of the nodes in the graph
layers. Usage of Connect operator to connect elements in the
graph. Usage of Synapse type, which is a derived type from
EdgeType native type in Aurora.

def("create_neuron", (Real=0, Real=-1.0) ->* LIF,
Begin(in V_th, in internal_state) {
var neuron(LIF);
neuron["V_th"] = V_th;
neuron["V_m"] = internal_state;
neuron["tau_m"] = -1e-6;
neuron["t_ref"] = 0.0;
neuron["E_L"] = neuron["V_m"];

Return(neuron);

}); 11 def

Figure 7. Aurora definition of a function to generate a LIF
instance and update internal parameters of the LIF data model.

includes the Range data type to represent value ranges of
primitive types such as natural, integer numbers. Ranges
become useful when describing data views. In the example,
nodes in layers are connected with edges (lines 8-9). Ranges
appear in a 2D view. In frameworks based on application-
level languages (e.g., Python), this would require the use
of iterative structures in which in each iteration of the
graph elements would have been connected. Moreover, this
would usually determine the memory layout to implement
the graph. In Aurora, data views remove all of this, and
the code is not used to implement the graph; instead, it
is used to describe the graph and allow the compiler to
find an optimal implementation. Aurora includes specific
constructs and operators to connect the elements in the
graph. For example, the Connect operator connects a pair
of nodes (lines 10-11). A 2D view and a Range are
combined to relate the nodes from two layers (e.g., x_pos and
bits_pos). The nodes correspond to Neurons generated in the
create_neuron function. The edges correspond to Synapses.
In both cases, these two types correspond to data models and
are completely orthogonal to the actual graph structure.

Data models in Aurora follow a similar approach as
in NEST. Figure 7 shows the code for the function in

Journal Title XX(X)

which a Neuron is created. The Neuron corresponds to
the LIF data model. A model instance is generated with
a variable of type LIF. The data members of the LIF
model are updated by using dictionary-based access methods
(Figure 7). This is a common feature used in many previous
neuromorphic frameworks, and Aurora includes it. A data
model specification is divided into three sections (Figure 8).
The first two sections correspond to constants and global
variables associated with the model, which are shared by all
instances of the model. Section Data corresponds to values
for each instance of the model (i.e., per each Neuron in
the example). The Aurora data models allow the compiler
to identify read-only data, data shared among all model
instances, and per-instance data. This is essential to enabling
optimal data layouts (e.g., Struct-of-Arrays instead of using
Array-of-Structs) or using specific memory levels within
the memory hierarchy (i.e., map constant values to GPU-
specific memory components such as constant and texture
memory and data values to shared memory). In general, data
models in Aurora allow for introducing any neuromorphic
functionality (e.g., spike recorders, encoding and decoding
schemes). These can be introduced as data models and
instantiate them within the graph as layers connected
with other elements such as neurons and synapses. These
functionalities and others are supported as libraries that
contain data models similar to how high-level programming
languages support data type abstractions (e.g., vectors, lists,
queues, STL in C++, modules in Python).

In Aurora, the computations associated with a data model
are specified as Phases. A Phase identifies a computation
that by default is totally parallel among the instances of
the data model. In the case of the LIF model, the update
phase includes the code that describes the dynamic of this
neuron type (we omit its code for brevity). Similarly, the
Synapse model includes its computations as phases. Aurora
includes forall operators to indicate the execution of a
phase across a subset of graph elements (e.g., a NodeSet,
a Layer, or a single Node). Consequently, the computation
of an Aurora program corresponds to the execution of a
sequence of phases over the graph elements. Each phase
activates a set of graph elements in parallel. The Aurora
language deploys a massively parallel execution model that
matches the inherent parallelism in SNNs. This makes it
possible for common tasks within the neuromorphic domain
(e.g., data encoding and decoding, inference and training
processes) to be accelerated with HPC technologies. Abisko
targets the acceleration of existing optimization algorithms
(e.g., EONS (Schuman et al. 2020), Spike Timing-Dependent
Plasticity (Caporale et al. 2008)) or back propagation—
based training algorithms (e.g., Slayer (Shrestha and Orchard
2018), Whetstone (Severa et al. 2018b)).

Overall, Aurora presents two main advances within
the neuromorphic computing domain. First, its declarative
approach totally decouples the graph and model descriptions
from their actual implementation. The memory layout of
graphs and models and when memory is actually allocated is
never under the programmer’s control. Second, its massively
parallel execution model makes explicit the available
parallelism inherent in SNNs. With these two features, it
is possible to design the necessary compiler technology for
high-performance neuromorphic computing.

Prepared using sagej.cls

def LIF("LIF", Model(Neuron), Begin() {

def Constants("Constants", Begin() {
def("tau", Real=10.0);
def("c", Real=250.0);
def("t_ref", Real=2.0);
def("E_L", Real=-70.0);
def("l_e", Real=0.0);
def("V_th", Real=(-55.0 - E_L));
def("V_min", Real=-min(Real));
def("V_reset", Real=-70.0 -E_L);
def("with_refr_input", Bool=false);
}); // Constants

def Variables("Variables", Begin() {
def("P30", Real);
def("P33", Real);
def("RefractoryCounts", Int);

}); /I Variables

def Data("Data", Begin() {
def("y0", Real);
def("y3", Real);
def("r", Int;
def("refr_spikes_buffer", Real);
}); / Data

def("Phases", Begin() {
def("update”, Phase);
}); I/ Phases

}); // Model LIF

Figure 8. Aurora example of a model specification for a LIF
neuron type. Constants, global variables, and per-neuron data
are separated in different sections.

Neuromorphic Compiler

The Abisko compiler, nmhpc, targets a distributed-
memory heterogeneous architecture composed of nodes
with conventional processors (i.e., CPUs, GPUs) and
neuromorphic coprocessors. For the former case, nmhpc
implements analysis, optimization, and code generation
phases for three main tasks. nmhpc must analyze the graph
that represents the neuromorphic Aurora program to generate
an optimal memory layout for the graph implementation.
Second, the nmhpc compiler must generate code for
all computational kernels associated with model phases
described within the neuromorphic program. Finally, the
nmhpc compiler must elaborate the graph cuts to distribute
the graph computations across the computational resources.
This work distribution happens at two levels: between
the nodes and then inside the node, thereby distributing
work between the conventional processors and coprocessors.
The graph cutting process implies the use of performance
models to estimate both the weight of computations and the
communications. The design of the nmhpc compiler follows
a strategy based on targeting different runtime systems.
The Abisko runtime systems (1) implement the required
functionalities to instantiate the graph that represents the
program, (2) operate with it (e.g, allocate the graph, deploy
a namespace for nodes and edges and primitives to access
the data models), and (3) support the execution of phases
(e.g, threading, SIMD, GPU acceleration), message passing
primitives for communication across the graph cuts, and
graph cut algorithms based on performance models.

The Abisko compilation process is shown in Figure 9.
The actual Aurora embedding happens in steps 1, 2, and
3 in Figure 9, where C++ libraries implement the Aurora
language as an APIL. Aurora code (step 4 in Figure 9) is

Abisko Team

High-Level Abstraction

Low-Level Abstraction

! (1) eCC++ classes and operators embedded in C++.

nmhpc Compile

@ =
i
|

nmhpc stage
nmhpc stage
nmhpc stage

--1 nmhpc stage

Compile C++

Lift Aurora code
Verify Aurora code

MLIR Dialect

i
=

,,,,,,,,,,,,,,,,,,,,,,,,,

i eCC++ Language

: eCC++ Embeddings

i

| eCC++ Statements
LecTes]
'

,,,,,,,,,,,,,,,,,,,,,,,, ' 3(6) Staging: Optimization
' and Code Generation
eCC++ FE classes and operators (1) '
A I\ ﬂ ﬁ

H
v

H
v

MLIR Ilvm‘DiaIect

! (2) eCC++ language entities describing the Types, Embeddings, Statements and other
i extensions.

| (3) Definition of the Aurora neuromorphic language build on top of the eCC++
1 framework. Graph Specification (GS) and Model Definition (MD) types and operators
' compose the Aurora neuromorphic language.

‘
LWM'IR

3 (4) Application coded in C++ but using Aurora front-end as a C++ API.

| (5) Compilation process of the application: C++ compile the sources that implement
| the eCC++ framework, the Aurora neuromorphic language and the application
! implementation (5.1). Execution of the Abisko binary which lifts the program
| representation (5.2). Verify correctness of the lifted program (5.3).

i (6) Staging of the optimization process and code generation. (6.1) Staging happens
3 within the nmhpc++ compiler framework in several stages. Each stage lowers the
| program representation. (6.2) At some stage it is possible to generate code targeting
an MLIR dialect and continue the lowering within MLIR. (6.3) At some stage it is

C++ Code

C++ Programming Language u

possible to generate C++ code targeting the Abisko RTLs.

Figure 9. Abisko compilation process. Abisko is embedded in C++ using the eCC framework. Aurora programmers do the actual
programming using the C++ API that implements the Aurora language within C++.

compiled with the C++ standard compiler to generate an
executable that links with the libraries that implement the
Aurora language. Its execution instantiates the neuromorphic
program representation by using a multilevel intermediate
representation (IR) similar to that of the MLIR (Lattner et al.
2021) compiler infrastructure. Program verification is based
on this IR (step 5 in Figure 9), which is later lowered for
optimization and final code generation (step 6 in Figure 9).
After the program is verified, nmhpc is designed to allow
two paths within the compilation process. One option is to
target the MLIR/LLVM infrastructure for optimization and
final binary generation. For this purpose, nmhpc includes a
back-end code generation phase that emits MLIR code and
allows the output of nmhpc to enter the MLIR compiler
infrastructure. This makes it possible to implement lowering
stages of the nmhpc IR to reach a program representation
using the MLIR LLVM dialect (path 6.1 in Figure 9). It is
also possible to lower the nmhpc IR to reach an MLIR-based
representation by using other dialects located at higher levels
of abstraction within MLIR (path 6.2 in Figure 9). Finally,
nmhpc includes code generators that target C++ (path 6.3 in
Figure 9).

When targeting a neuromorphic coprocessor, the main task
of the nmhpc compiler is to generate bit streams from the
actual program representation in Aurora. These bit streams
conform to the specifications of the neuromorphic architec-
ture. The nmhpc compiler must generate configuration bit
streams or packets to configure the neuromorphic coproces-
sor. Similary, the nmhpc compiler generates packets that
result from encoding/decoding processes to be sent to and
from the neuromorphic coprocessor. The nmhpc also targets
a runtime system in which the primitives for configuring and
operating the neuromorphic coprocessor are implemented.
In this regard, the neuromorphic coprocessor is treated as a
conventional coprocessor, meaning that the Abisko software
includes similar functionalities as CUDA/HIP to move data
to and from the host and device and to activate and offload a
computation.

Architectures

One hallmark of contemporary microelectronics research is
heterogeneous integration. By allowing different semicon-
ductor technologies (e.g., digital, analog, DRAM, carbon
nanotube) to be closely integrated by 2.5D (e.g., silicon

Prepared using sagej.cls

bridge and interposer) or 3D (e.g., TSV, hybrid bonding),
heterogeneous integration can achieve better performance
at a lower cost compared with monolithic integration. Our
objective in this task is to use heterogeneous integration
to realize an agile codesign platform. More specifically,
we plan to use 3D integration to implement traditional
von Neumann processing cores (e.g., open-source RISC-
V cores) with neuromorphic coprocessors. At a high level,
our heterogeneous integration approach has the following
distinct advantages: (1) it enables rapid feedback between
the realistic applications and the material and device research
choices, (2) it enables the intelligent design-of-experiment
to explore novel material science and device research by
leveraging intelligent ML sampling techniques, and (3) as
a demonstration vehicle of neuromorphic computing, the
traditional von Neumann cores can perform crucial data
prepossessing tasks for neuromorphic training in real time.

The architecture task is positioned in the middle
of the codesign stack and ties together the higher-
level neuromorphic algorithms thrust with the lower-level
neuromorphic circuits thrust. The architecture thrust takes
the circuit-level implementation of a neuromorphic element
and is tasked with defining the architecture for how multiple
core circuits will be structured to build up a complete
neuromorphic chip. There are many ways a neuromorphic
chip could be designed when considering impacts on
the operation of the devices and algorithmically how the
system can be used. As part of the codesign effort,
the architectures thrust will evaluate different architectural
decisions concerning the design choices in the software
stack, circuit design, and device properties. We are
leveraging modern tools (e.g., SIAM (Krishnan et al. 2021))
and high-level design languages (e.g., high-level synthesis
and Chisel) to rapidly evaluate and prototype architecture
design options. Additionally, we are leveraging DEFFE to
further automate and accelerate design space exploration.

Multiple neuromorphic architectures exist, including
mixed-analog architectures (e.g., Neurogrid (Benjamin et al.
2014), Braindrop (Neckar et al. 2019), and BrainScaleS
(Schemmel et al. 2010)) and digital neuromorphic designs
(e.g., TrueNorth (Akopyan et al. 2015) and Loihi (Davies
et al. 2018)). However, the Abisko architecture effort is novel
based on the codesign integration with a unique software
compiler, the exploration of new neuromorphic devices, and

10 Journal Title XX(X)
Element Types:
Memory RISC-V p
Chiplet - - Chiplet
Neuromorphic
Element/Cluster
SXN
North Chiplet Router
Neuromorphic
Element/Cluster
" °3 o8
,,,,,, e g
52 §2
& o g‘i g9
é Neuromorphic Neuromorphic :4’ £8 s
< Element/Cluster Element/Cluster = Sz 8 g
S g 2| Procesor § 23 2| Analog
g g g Interface |g| é Chiplet
*—l :| Element [5|2° 2| Interface
oC NoC
|Rau;| {Router ousokes rpusphes 20050
Neuromorphic [1
Chiplet ™o |

|

Figure 10. Overview of Abisko chiplet design.

the exploration of new microelectronic design trends and
standard interfaces. Specifically, the architecture thrust is
exploring three main fronts in the design of a neuromorphic
processor: (1) the use of chiplets, (2) the interface between
the neuromorphic and traditional von Neumann processors,
and (3) the benefits of new 3D chip processes. The following
sections elaborate further on each of the research fronts.

Chiplet-Based Design

A chiplet-based design uses smaller functional dies, called
chiplets, that are built independently and then are connected
together with an interposer to form a single 2.5D or 3D chip.
As highlighted by Stark (2019), there are many benefits to
a chiplet-based design, including reduced investment costs,
lower cost of specialization, lower production costs, shorter
time-to-market, lower supply risks for OEMs, and simpler
architectural partitioning. Many of these benefits come
from the reusability and functional partitioning that chiplets
provide. The ability to use mixed-process nodes is of great
benefit to reduce cost and for novel device designs, which
benefit from specialized process nodes. Mixed-process nodes
also provides additional benefit in the Abisko project as
we explore various neuromorphic devices and materials,
which can be far less mature than traditional semiconductor
devices.

As part of the Abisko architecture effort, we explore
how a neuromorphic architecture could benefit from the
use of chiplets. From a high-level perspective, there
are three main chiplet types that constitute a chip (as
illustrated in Figure 10): traditional von Neumann chiplet(s),
neuromorphic chiplet(s), and memory chiplet(s). The von
Neumann chiplet manages the operation of the neuromorphic
chiplet and could be used to configure networks, interface
with traditional computers and sensors, and implement
more advanced on-chip learning algorithms. The memory
chiplet provides shared storage for the von Neumann and
neuromorphic chiplets.

As shown in Figure 11, the neuromorphic chiplet evaluates
the SNN and is built from digital or mixed-signal circuits
that implement the neurons and synapses. There are other

Prepared using sagej.cls

Connection to
1/0 Chiplet
Connection to
DMA

DRAM
DMA
Interface

Spike Output Router| 1

[output spikes

170
Interface
Element

Spike Output Rowter 1

[output Spikes

ey

Spike Input Router

Spike Input Router

input Spikes

input Spikes.

Figure 11. Abisko chiplet design with novel neuromorphic
materials.

chiplets that could also be included in the design. For
example, a hardened I/O interface could directly convert
a data stream into spikes to be fed directly into the
neuromorphic chiplet, thereby bypassing slower software-
based spike conversion by the von Neumann processor.

There are many open questions that we are addressing in
this effort, including how the neuromorphic chiplet should be
structured. The new devices are used to build neuromorphic
circuits, then the circuits are used to construct a neural
core that implements some number of neurons, and finally
the cores must be connected together to form the chiplet.
There are also scalability questions. How many neurons and
synapses should a chiplet implement? How can networks
scale to multiple chiplets on a chip? How about across
multiple chips in an accelerator? Once the chip is built, how
will the software stack compile code to be mapped onto the
hardware? We plan to answer these questions by modeling
different architectural designs and analyzing the designs for
power, area, scalability, and performance.

Interface and Communication

There are multiple challenges with designing the interfaces
between chiplets and between traditional and neuromorphic
processors and still more challenges with communication at
multiple scales within the neuromorphic processor.

Chiplets are still emerging as a standard in chip design,
and multiple chiplet interfaces and standards are being
proposed, including UClIe (Sharma 2022), BoW (Ardalan
et al. 2020), AIB (Kehlet et al. 2017), OpenHBI (McLellan
2020), and Cadence Ultra-Link. As part of the chiplet-
based design, we are evaluating if one of the emerging
standards can be used to connect the chiplets or if a custom
neuromorphic interface would be better suited for spike-
based communication. For each chiplet in the complete
design, the physical interface between the components must

Abisko Team

11

be defined. The interface will impact the number of vias
required to make the connection and the bandwidth and
latency available over the link.

There are also multiple options on how to interface
between a von Neumann and a neuromorphic processor.
One commonly used method is to define a packet structure
and have the traditional processor generate configuration,
input, and execution packets. These packets are then sent to
the neuromorphic processor, which parses and executes the
packets and generates output fire packets and status packets.
A DMA engine is commonly used to send commands
stored in memory as packets to the neuromorphic processor.
Another method would be to treat the neuromorphic
processor as a memory-mapped accelerator with addresses
defined to control the operation of the accelerator. A third
method could be adding custom instructions to the von
Neumann processor and having these instructions directly
executed on the neuromorphic processor for a very tight
integration.

There is also the challenge of how to route the
native spiking packets at different scales, internally within
the chiplet, between chiplets, and between chips as the
design is scaled. Spike-based communication is different
from traditional communication (Young et al. 2019). The
challenge comes both from the large number of messages
that contain a small amount of data and from the time-
sensitive nature of the spike packets. SNNs rely on binary
fire events, which must be routed to potentially thousands
of destinations per fire event. These spikes are typically
encoded into packets through Address-Event Representation
(AER). Traditional AER packets only store the address or
destination of the event, and the presence of the packet
represents a fire. Neuromorphic communication systems
can be categorized by the network structure of the routers
and by the information used to route packets, as shown
in Figure 12. The most common router structures are grid
and hierarchical tree routers. Packets can then be routed
based on a source address or a destination address. Some
neuromorphic systems have combinations of these options
with different levels of routing using different network
structures or routing methods. The challenge for the Abisko
design is how to handle spike packet routing within a chiplet,
between chiplets, and between chips as the scale of the
network increases.

Benefits of Face-to-Face 3D Integration

As a preliminary study, we evaluate the benefit of face-to-
face die bonding. To demonstrate the benefits of codesign,
we implement a digital convolutional neural network (CNN)
model from a pixel detector used in HEP experiments. The
top-level of the CNN implementation is a five-stage pipeline,
in which each stage implements a CNN layer as shown in
Figure 13. The implemented CNN model has a fixed network
structure, but the weights can be configured at run time via
a scan chain. The implementation target is a 28 nm CMOS
technology that uses a customized design flow. In the 2D
case, only six metal layers are used. In the 3D case, face-
to-face bonding is used, as illustrated in Figure 14.

An in-house model generator is implemented in Python,
and it flattens a pretrained CNN model and generates high-
level synthesis (HLS) code for each layer. The generated

Prepared using sagej.cls

3

Hierarchical Tree

Grid/2D Mesh NeL}rogrid
SpiNNaker BrainScaleS L2
BrainScaleS L1 p Dynap-SEL R2
TrueNorth i
Loihi

Memory Routing

Dynap-SEL R3 Darwin

Address

Element Packet

Destination|
Address

Packet Element

Source-Based Routing Destination-Based Routing

Neurogrid TrueNorth
SpiNNaker Loihi

BrainScaleS Dynap-SEL 1* Stage
Darwin

Dynap-SEL 2" Stage

Figure 12. Graphical summary of neuromorphic hardware
communication systems. The top half of this figure summarizes
the routing schemes used by the neuromorphic systems, and
the bottom half summarizes the routing methods (Young et al.
2019).

|

conv2d_0 (320)
}(6,10,32)
maxpool (0)
$3,5,32)
conv2d_1 (18496)

J128)

dense_0 (8256)

}(624)

dense_1 (325)

})

Figure 13. Topology of the CNN model. The numbers in each
module indicate the number of weights, and the numbers
between each component indicate the sizes of I/O tensors. The
CNN model is implemented as a five-stage pipeline.

2D Metal Stack 3D Metal Stack

cover cells

BEOL for
top tier

M-1

BEOL for
bottom tier

|
gate layer

Si substrate

Si substrate

cross-sectional view

cross-sectional view

Figure 14. Cross-sectional view of the material stack.

HLS code is then synthesized with the HLS tool to generate
the RTL for the ASIC design. Commercial tools from
Synopsys and Cadence are used for logic synthesis and

12

Journal Title XX(X)

1980 um

2D

Figure 15. Placement comparison between 2D and 3D

designs. SRAM arrays are placed on the sides in 2D and on the
top tier in the 3D case. The modules are colored as convO0 (red),
pool (yellow), conv1 (blue), dense0 (green), and dense1 (white).

1980 um

2D 3D (Bottom)

3D (Top)

Figure 16. Top-level shape comparison between 2D and 3D
designs. The 3D layout includes two metal layers of the bottom
tier to illustrate 3D nets (in red), when compared with 3D nets
(in yellow).

physical design. To explore the benefits between 2D and 3D
design flows, we use the pseudo-3D partitioning approach
(Park et al. 2020). The partitioning step uses the same RTL,
which generated the tier location. For 2D design, this step
is simply skipped. Figure 15 shows the placement results
of the 2D and 3D design flows. Notably, for the 2D flow,
the SRAM components are placed on the sides of the logic.
For the 3D design, the SRAM arrays are placed on the top
tier. The comparison of the routine is shown in Figure 16.

The performance comparison between 2D and 3D cases
are tabulated in Table 2. In addition to simple metrics such
as wire length, leakage, and switching power, we also list
comprehensive metrics such as PDP (power delay product)
and EDP (energy delay product). The comprehensive results
show that the 3D design approach achieved 30%-40%
improvements over the 2D implementation.

Devices

Neural network inference and training based on analog in-
memory computing (AIMC) can achieve energy efficiency
(i.e., performance per watt) 2 orders of magnitude beyond
what is possible with digital CMOS (Xiao et al. 2022b).
This is made possible by implementing common matrix
operations (e.g., vector matrix multiply [VMM]) with a
technique that is more natively matched to this operation than
traditional von Neumann approaches (see Figure 17). In this

Prepared using sagej.cls

Table 2. Full-chip power, performance, and area comparison.
The percentage values in the last column indicate the
improvements with the 3D design.

Design Full-chip design
2D 3D Imp. 3D
Effective freq. (MHz) 742 881 18.7%
Footprint (mm®~) 3.9 1.7 56.4%
No. of cells 892K | 806K 10.0%
Wire length (m) 64.7 40.6 37.2%
Total power (mW) 1,954 | 1,549 20.7%
— Internal power (mW) 995.9 826 17.1%
— Switching power (mW) | 957.5 | 688 28.1%
— Leakage power (mW) 40.7 34 16.4%
PDP 2,633 | 1,758 33.2%
EDP 3,549 | 1,996 | 43.8%
Mathematical Electrical
VW=l A A
1 P 1
11 12 1.3 ! L ! !
[ovwe] [e Ml R
Wai Wz Wy | = t : : C?;’lq a;‘,h C‘i?}. :
Was 12 1 Vyr—t 1
e W I S S
{ IR T PR I R —— — |
EIFIV\.‘W" L=EV W, |s=’-\"'|‘sw|‘::|] i_|1=t;._|_ﬁ'.‘_ Tf;:v_uc_.z_ T,=_E.VT,G_,_;I

Figure 17. (a) Mathematical and (b) electrical vector matrix
multiplication (Marinella et al. 2022).

technique, the neural network weights are stored in an analog
array of tunable resistors. The VMM operation requires a
multiply, which is accomplished using ohm’s law, and a sum
over each column, which is provided by Kirchoff’s current
law, as illustrated in Figure 17b. A complete VMM operation
can be accomplished in a single parallel step, thereby
avoiding the complex data shuttling between registers and
execution units that is required by von Neuman systems.

One of the key challenges for AIMC is that accuracy is
typically degraded compared to a digital processor because
analog tunable resistors in Figure 17b must be programmed
to a conductance that represents a corresponding 8-bit weight
in the neural network. However, it is typically not possible
to program a large array of memory devices precisely to
256 discrete levels. Instead, devices are programmed to
conductance values that represent the weight as closely as
possible but include an error tolerance that is a function
of device attributes (e.g., stochasticity and short-term drift).
This programming error depends on the specific device being
use for neural network weight storage (sometimes referred
to as a synaptic device). Despite this programming error,
it is possible to obtain high inference accuracy even on
modern deep CNNs that use AIMC circuits thanks to the
averaging over many values in each column. The accuracy
possible for a particular CNN and dataset (e.g., ImageNet
running on ResNet-50) depends on the details of the device
being used to represent the weight and the error at a given
conductance (Xiao et al. 2022b, 2021b).

Resistive random access memory (ReRAM) (Marinella
et al. 2018), phase-change memory (PCM) (Burr et al. 2010;
Raoux et al. 2008), and SONOS (Xiao et al. 2022b) are
the most mature in-production nonvolatile memory devices
being considered as the tunable resistor in Figure 17b. The
programming error of each of these devices is typically

Abisko Team

13

_ % v ® SONOS
S 6% v (this work)
g 5% e Y-a-- A PCM.
o 4% A/{,r—;-"i"“-l (Joshi et al.)
N L v HfO, ReRAM
(] 3AJ P2 i
E o | n Y aget bl (Mioetal)
S °|. % _med ©Linearly ® ||-- TaO,/HfO,
1% <«———————proportional ReRAM
0% error (Yao et al.)
0 02 04 06 08 1

Normalized conductance

Figure 18. Normalized error vs. conductance for SONOS,
PCM, HfO., and TaO,/HfOx ReRAM.

characterized as a function of conductance, which is plotted
in Figure 18 for ReRAM, SONOS, and PCM. The SONOS
(green curve) has the lowest error at low conductance, and
this is ideal behavior and provides the highest CNN inference
accuracy (Xiao et al. 2022b, 2021b). A drawback of SONOS
is the slow drift of the state following initial programming,
but this can be significantly accelerated under modest
ionizing radiation (Xiao et al. 2021a). Metal-oxide based
ReRAM is generally robust to ionizing radiation (Marinella
2021) but has a higher programming error, especially at
low conductances (blue and violet points in Figure 18).
Notably, this type of programming error benchmarking is in
early stages and does not yet represent the full potential of
ReRAM. As part of the Abisko project, we are investigating
new write-verify and filament-forming techniques that are
expected to reduce the programming error and enable
radiation-hard AIMC.

SONOS stores analog states as a charge trapped in the
nitride layer between the channel and gate of a MOSFET,
as shown in Figure 19b. SONOS is particularly attractive
due to its technological maturity and CMOS compatibility.
Motivated by these factors, high accuracy inference on 40 nm
SONOS arrays was recently demonstrated at 8 bits (Agarwal
et al. 2019). However, exposure of these arrays to a total
ionizing dose (TID) of 10-100 krad(Si) can degrade the
accuracy of ANNs from >90% to <10% due to shifts in
the SONOS MOSFET threshold voltage and therefore the
channel conductance, as shown in Figure 19¢ (Xiao et al.
2022a). The reason for state loss and accuracy degradation
stems from TID being very effective at generating charge
in the trap layer, particularly holes, and this forces the
MOSFET threshold voltage in the program 0 state to migrate
toward lower values.

The sensitivity of SONOS to relatively low levels of
radiation render it and other charge-trapping memory (CTM)
variants (e.g., flash) as unlikely candidates for in-sensor data
processing for high-radiation environments. Nevertheless,
developing and experimentally validating a compact model
for SONOS represents a valuable knowledge-generating
activity for modeling other three-terminal analog nonvolatile
memories such as ECRAM. To this end, we have recently
developed a well-poised physics-based compact model
for a SONOS analog synaptic element in collaboration
with Yi et al. (2022). The model contains a nonvolatile
memristor with the state variable Qy to represent the
memristor charge under the gate of the three-terminal

Prepared using sagej.cls

element. By incorporating the exponential dependence of the
memristance on Qy and the applied bias V' for the gate,
the compact model agrees quantitatively with the results
from Technology CAD simulations as well as experimental
measurements for the drain current (Figure 19d). This
compact model can now be used for design of analog ANNs
based on CTMs.

In addition to ReRAM, PCRAM, and SONOS, other
device types have been investigated as potential solutions
to enable energy-efficient analog ANNSs, including electro-
chemical metallization cells (Valov et al. 2011; Liu et al.
2013; Barbera et al. 2015) and ferroelectric memristive
devices (Chanthbouala et al. 2012; Yang et al. 2013a). Perfor-
mance limitations that currently prevent these technologies
from challenging digital solutions include excessive write
noise (Yang et al. 2013a; Terai et al. 2010; Close et al. 2010),
write nonlinearities (Strukov and Williams 2009; Menzel
et al. 2011; Athmanathan et al. 2016; Chen et al. 2015b; Burr
et al. 2015), high switching voltages and currents (Wong
et al. 2010; Kim et al. 2010; Chen et al. 2015a), and, most
problematically, high read currents (Marinella et al. 2018). A
promising avenue to address these challenges is to add a third
electrode, the gate, to decouple the read and write operations.
Two prominent examples of three-terminal nonvolatile ana-
log memory devices are SONOS CTM (Agarwal et al. 2019)
and ECRAM (Talin et al. 2022). ECRAM was pioneered
by Talin and colleagues at Sandia National Laboratories
with the demonstration of the Li-ion synaptic transistor in
2017 and has emerged as another promising platform for
neuromorphic computing (Talin et al. 2022). In ECRAM,
a gate is used to drive defects (e.g., Li ions, protons, or
oxygen vacancies) from a reservoir layer in and out of a
channel to control its electronic properties (Figure 20a). An
electronically insulating solid-state electrolyte that allows
only the motion of the mobile defects is what separates the
channel and the reservoir. Just like SONOS, ECRAM decou-
ples the read and write operations to enable linear, symmetric
switching with low read and write currents. A principle
advantage of ECRAM compared to a CTM is the much
higher charge density available for tuning analog states. Our
recent analysis of SONOS reveals a charge trap density of
~10"/cm?, or approximately 1 out of every 1,000 atoms>.
For ECRAM based on transition metal oxide channels (e.g.,
LixCoO,, TiOx, or WO3x), every transition metal in the
lattice, or ~10?*/cm?, is capable of changing its redox state
and is thus available for tuning and storing analog states
(Talin et al. 2022). Long-term retention, however, remains
a major challenge for ECRAM. We define true retention as
measured at 85°C with the gate grounded (or shorted to the
source). Previously, we demonstrated a retention of /<3 hours
for TiOx ECRAM that utilizes YSZ solid electrolyte (Li et al.
2020b). More recently, we demonstrated in collaboration
with Y. Li’s group at the University of Michigan that a
retention of ~10 years is feasible for WO; x/YSZ ECRAM,
as shown in Figure 20 (Kim et al. 2022).

Materials

Neuromorphic algorithms can be implemented by a
combination of nonlinear conductance with time-retention
(memory) that can be further programmed with voltage

14 Journal Title XX(X)
(a) Deep neural SONOS matrix multiplication array () o e orare
twork ionizing radiation £) <0
networ! - / z 10° Total ionizing
5 Ly L L 7 g . dose (Si)
Ty ;/’Fé s .if—. a 10 =
T T rn;gf T g . ::r::::
210 50 krad
P A g FI L g 1
T ¥ -rrLH‘/"EL;; -r“'u*/ g0 L me
I - - '/l: 73 . 200 krad
; o o]
] Fod] o Jh L /]
3 l/ “ | | |
\ n. .. T 1T F Ll - - LI . N - L
JoFE 20 15 -0 05 00 05 10 15 20
= I"L.#—- ‘rrLA%r = Threshold voltage (V)
o LY
d OGF QF N
(b) Select gate Control gate () 10 0 Cuaa !t
[Physics A v | Ay
T t F Compact -= =—:- : \\
T 10w . \,
blocking oxide) D’ra\plrped E ,,}: ~ N
00K ‘/c arge g E A NN
" :eé: 100 .,Al : \\\ '_\
b ‘/ i \“: .
1 /_r I - Ay
10° Fera ¥y h
-10-8 6 -4 -2 0 2 4 6 8 10
V(Vv)

Figure 19. SONOS Device. (a) A SONOS memory array can store a matrix of weights for one layer of a DNN. (b) Memory cell
consisting of a SONOS transistor and an access transistor. When exposed to ionizing radiation (red arrows), the state of the
SONOS cells may be perturbed. (c) Measured VT distribution of the SONOS test chips at varying levels of TID. Reproduced with
permission (Xiao et al. 2021a). Copyright 2021, IEEE. (d) Memristance, M, as a function of voltage. Upward and downward
triangles represent the memristance values at two extremes (see ref. for details). Adapted with permission (Yi et al. 2022).

Copyright 2017, Wiley.

—
z

2401 -
2004 n
160+

120+ .

Conductance (uS)
V
G

0 400 800 1200
Pulse count

—_
(g)

—

—
o

200°C 85°C
T T

Conductance (uS)
Retention time (s)

1.5 20 25 3.0
1000/Temperature (K“)

0 2 4
Time (hr)

6 8 10

Figure 20. ECRAM device. (a) Schematic and cross-section
TEM of WO3.« ECRAM cell. (b) Analog switching characteristics
that demonstrate high state density. (c) ECRAM retention
characteristics when the gate and channel are shorted at
200°C. (d) Comparison of retention times of WOs3.« ECRAM with
filament-based ReRAM and past TiOx-based ECRAM. (Kim

et al. 2022). Copyright 2022, Wiley.

waveforms (Di Ventra and Traversa 2018; Yang et al. 2013b).
By contrast, semiconductors in ideal circumstances exhibit
no memory effects. Although a fairly large number of

Prepared using sagej.cls

devices that exhibit both nonlinearity and memory have been
demonstrated, the descriptive and predictive understanding
of the enabling phenomena is not on the same mature
level of semiconductor physics (Nili et al. 2020b; Brown
et al. 2022). Given that codesign of modern semiconductor
circuitry presently occurs across all contributing length
scales (i.e., from atoms to architectures (Stettler et al.
2021)), the argument in favor of fundamental understanding
of material mechanism that can best implement specific
neuromorphic functions is very compelling. However, the
intrinsic challenge is that both nonlinear and memory
functions imply that the desired properties originate from
non-equilibrium behavior (generally transient, metastable,
and temporal), so that many trusted methodologies for
materials design will, at best, have limited applicability to
the neuromorphic paradigm. Some of the specific challenges
that arise from incomplete understanding of nonlinear device
mechanisms include the limited level of reproducibility and
predictability over resistive switching devices, the challenge
of long-term retention of their programmed characteristics,
and even well-defined, physics-based compact models that
abstract the device properties for further integration with
computing architectures (Gao et al. 2021; Dao and Koch
2020; Hamdioui et al. 2017; Brown et al. 2022) .

In the Abisko project, we are pursuing a multimodal
approach to observe nanoscale processes in candidate
neuromorphic materials and connect the observation to
device performance and eventually device models. The first
task is to develop a combination of quantifiable nanoscale
characterization techniques that can directly reveal the
connection between conductance and material structure
with nanoscale spatial resolution. The most promising

Abisko Team

15

emerging experimental techniques for this task are scanning
microwave impedance microscopy, cathodoluminescence
microscopy, and spatially resolved time-of-flight secondary
ion mass spectroscopy. Notably, these techniques have
not been extensively applied to neuromorphic materials,
particularly in combination. However, their advantages stem
from the ability to gain complementary signals with high
spatial resolution and the ability to quantify the observed
signals.

Microwave microscopy directly measures local conduc-
tance with nanoscale resolution while minimizing the effects
of poor contact resistance (Barber et al. 2022; Chu et al.
2020). Some teams have successfully applied this method-
ology for quantitative measurements of local domain wall
conductivity in ferroelectric materials (Burns et al. 2022;
Tselev et al. 2016). From the functional point of view, the
locally conductive domain walls in ferroelectrics and fila-
mentary structures in resistive switching materials are remi-
niscent of each other, including their characteristic nanoscale
dimensions, two-terminal nonlinear conductance, and mem-
ory effects. Meanwhile, cathodoluminescence enables direct
characterization of electronic structure, defects, and trap
states (Coenen and Haegel 2017). Investingating the elec-
tronic structure of most practically relevant materials, includ-
ing amorphous solids, dirty semiconductors, and even metal-
insulator systems, has been a challenging goal for a very
long time, and any new insights will be highly relevant
for neuromorphic applications. Finally, another technique
called Time-of-Flight Secondary Ion Mass Spectrometry
(TOF-SIMS) complements the above measurements with
direct chemical sensitivity to ionic diffusion and elemental
modification (Belianinov et al. 2018).

As candidate model systems, the Abisko project is
pursuing resistive switching in TaOy, electrochemical
switching in VO, devices, and also the search for
new materials, which could offer distinct advantages
over binary oxides in terms of energy efficiency and
architectural design for accelerated feedback between
materials and device levels. For example, molecular-based
materials and ferroelectric semiconductors could avoid
costly and stochastic filamentary mechanisms while enabling
multilevel, temporal, and scalable switching properties.

A crucial ingredient that will enable connecting
microscopy observations to electronic properties relevant
for neuromorphic properties is the long-sought ability to
control electronic effects uniformly across active volume
of the material. The filamentary conductors ubiquitous
in memristor devices are notoriously difficult to observe
directly because stochastic and highly energetic processes
behind electroforming are fundamentally localized due
to the high local energy density required for chemical
transformation into an electronically conducting state. To
this end, we are pursuing the methods of ionic modification
of materials, whether by high ion irradiation or low-energy
ion intercalation, in an attempt to create electroforming-free
control over material conductance and therefore enable
both effective characterization and prospectively on-demand
control over electroresistive properties.

On the device level, successful control of resistive
switching by ion irradiation has been demonstrated (Vogel
et al. 2022), including by several members of the Abisko

Prepared using sagej.cls

10
L
(@] i
g 8]
C
-

(@] i
o
6_

0 50 100

Figure 21. Cathodoluminescence (CL) probe of amorphous
tantalum oxide, and the effects of He-ion irradiation measured
at the Center for Nanophase Materials Sciences utilizing the
films grown at Sandia National Laboratory. (a) CL spectrum
showing discrete signatures of oxygen vacancy states in the
amorphous lattice (red arrows). (b) Spectral decomposition of
the hyperspectral array of cathodoluminescence spectra.

team (Marinella et al. 2012; Jacobs-Gedrim et al. 2019).
Meanwhile, the fundamental mechanism of ionic transport
across interfaces is pursued within Abisko as the acting
principle behind ECRAM devices (Talin et al.), with an
implicit assumption of largely uniform transformations
within the active volume of the material. Electronic
characterization of ionically modified materials forms one
of the central codesign links between the device and
materials teams. Figure 21 demonstrates preliminary results
of cathodoluminescence and microwave imaging of the He-
irradiated amorphous TaOy films. Figure 21(a) shows the
CL spectrum with discrete signatures of oxygen vacancy
states in the amorphous lattice (red arrows). The energies
of these defect states can be mapped onto the structures
using state-of-the-art first-principles calculations of large
amorphous unit-cells. Inset shows the schematic of the
tantalum oxide film, involving the TaOx active layer, Ta
and TiN metallic contact layers, all grown atop silicon
wafer. Figure 21(b) shows the spectral decomposition of the
hyperspectral array of cathodoluminescence spectra carried

16

Journal Title XX(X)

out with non-negative matrix factorization (NMF). The maps
shows the spatial intensity of each matrix factor component
(H1 and H2), while the plots at the top show the components
themselves. NMF analysis very clearly reveals the square
region of the He-irradiated film, as well as other defect
sites in the film. Note that the modification due to He-
ion is remarkably subtle. The components only contribute
to about 2-5% of the luminescence intensity (see also the
error bars in (a)), and the matrix factors themselves are
quite noisy. Yet the patterns and defects are very clear due
to effectiveness of NMF (and similar) techniques, enabling
structural modification and concomitant electronic analysis
of neuromorphic materials. The eventual goal of these
studies is to identify reproducible paths to electroforming-
free activation and subsequent control of film conductance
using ion-beam irradiation.

Both techniques successfully reveal the irradiated areas
through both electronic and capacitive signatures. Remark-
ably, the films maintain a high local resistivity even at com-
paratively large He-irradiation doses, likely owing to their
amorphous structures. Meanwhile, by using TOF-SIMS, we
unambiguously detected the signatures of ionic redistribution
within TaOy under specific action of local electric fields
applied from an atomic force microscopy tip. The measure-
ments of local resistive switching characteristics of TaOy
as a function of ion irradiation and localized field-induced
electrochemical modification are currently under way.

The second goal of the materials thrust is to abstract
the experimental observations from spatially resolving
microscopy techniques into a compact representation.
Fulfilling this task will enable effective multimodal analysis
of the experimental observations. Even more intriguing is
the prospect of deriving data-driven low-dimensional device
and compact models (Messaris et al. 2018; Nili et al. 2020a)
by using heterogeneous nanoscale measurements. Indeed,
microscopy techniques are intrinsically data rich. The
aforementioned analysis of He-ion irradiation demonstrates
how well-established methods of statistical data analysis
(e.g., non-negative matrix factorization) are sensitive to even
the slightest signatures of He-ion irradiation. Such methods
are widely applicable to hyperspectral datasets and will
enable us to derive statistically meaningful trends from
all the spatially resolving techniques, including chemical
imaging and electronic and conductive measurements. Data-
driven modeling may bridge the critical gap between material
and device and, in turn, enable an effective codesign strategy,
even in the absence of a detailed physical understanding
of the mechanisms behind field-induced properties of
neuromorphic devices.

Codesign

As described in Abisko Overview, codesign is an
overarching goal of Abisko. Our motivating example will
be the abstractions and interfaces presented in Table 1.
For true codesign, we need a vertically integrated codesign
framework that helps to systematize relationships among
layers beyond informal correspondence and interaction.
More specifically, this codesign activity cross-cuts the
computing stack (Table 1) and we are working to
capture the overall design by extending existing modeling

Prepared using sagej.cls

tools (e.g., ASPEN/FLAME) to specify interfaces for
each layer as well their interfaces across this stack.
This representation will facilitate automatic design space
exploration. Moreover, neuromorphic computing provides
an excellent vehicle to study our deep codesign framework
because its computational paradigm can be represented
in low-level devices and materials that can, if properly
designed, offer tremendous benefits in terms of energy
efficiency and performance to applications at the highest
levels of abstraction.

In Abisko, we approach deep codesign in three ways. First,
we are identifying concrete interfaces across the conceptual
compute layers to capture idealized forms of information
exchange. Examples of these interfaces include using the
TCAD compact modeling language for modeling material
and device characteristics (e.g., Stettler et al. (2021)), which
can, in turn, be used to define new architectures, and using
the MLIR programming infrastructure to describe primary
concepts for SNNs as first class objects in the programming
language.

Second, we are extending our Aspen/FLAME domain-
specific language to capture hierarchical details of system
design. To address many of these concerns, ORNL created
the domain-specific languages called Aspen (Spafford and
Vetter 2012; Spafford et al. 2013; Spafford and Vetter
2015; Umar et al. 2016, 2018; Peng and Vetter 2018; Lee
et al. 2015) and FLAME (Belviranli and Vetter 2019) to
model applications and architectures. Aspen allows users
to create formal written descriptions of the applications
and the architectures. Prior Aspen work focused on system
architecture, including CPUs, GPUs, networks, and memory
systems.

Third, we are investigating formalisms built on top of
Aspen and FLAME that can automatically optimize and
refine abstractions across the stack with Al techniques to
expedite the exploration of these massive design spaces.
Our initial activity will use DEFFE’s transfer learning (see
DEFFE (Data-Efficient Exploration Framework)) capability
to reduce the computation cost of these explorations.

Summary

This paper describes an approach to deep codesign of an
architecture for spiking neural networks using novel neu-
romorphic materials. The deep codesign approach engages
experts from across the entire range of disciplines: materials,
devices and circuits, architectures and integration, software,
and algorithms. The novel neuromorphic devices are based
on resistive-switching materials, such as memristors and
electrochemical RAM (ECRAM). Abisko has three key
objectives. First, we are designing an energy-optimized high-
performance neuromorphic accelerator based on SNNs. This
architecture is being designed as a chiplet that can be
deployed in contemporary computer architectures and we
are investigating novel neuromorphic materials to improve
its performance and energy-efficiency. Second, we are con-
currently developing a productive software stack for the
neuromorphic accelerator that will also be portable to other
architectures, such as field-programmable gate arrays and

Abisko Team

17

GPUs. Third, we are creating a new deep codesign methodol-
ogy and framework for developing clear interfaces, require-
ments, and metrics between each level of abstraction to
enable the system design to be explored and implemented
interchangeably with execution, measurement, a model, or
simulation. As a motivating application for this codesign
effort, we target the use of SNN for an analog event detector
for a high-energy physics sensor.

References

(2023) Mlir tensor dialect. URL https://mlir.llvm.org/
docs/Dialects/TensorOps/.

Aad G et al. (2012) Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at
the LHC. Phys. Lett. B 716: 1. DOI:10.1016/j.physletb.2012.
08.020.

Abi Akar N, Cumming B, Karakasis V, Kiisters A, Klijn W, Peyser
A and Yates S (2019) Arbor — A Morphologically-Detailed
Neural Network Simulation Library for Contemporary High-

In: 2019 27th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). pp. 274-282. DOI:
10.1109/EMPDP.2019.8671560.

Agarwal S, Garland D, Niroula J, Jacobs-Gedrim RB, Hsia
A, Heukelom MSYV, Fuller E, Draper B and Marinella MJ
(2019) Using floating-gate memory to train ideal accuracy
neural networks. [EEE Journal on Exploratory Solid-State
Computational Devices and Circuits 5(1): 52-57. DOI:10.
1109/7XCDC.2019.29024009.

Aimone J, Date P, Fonseca-Guerra G, Hamilton K, Henke K, Kay
B, Kenyon G, Kulkarni S, Mniszewski S, Parsa M et al. (2022)
A review of non-cognitive applications for neuromorphic

Performance Computing Architectures.

computing. Neuromorphic Computing and Engineering .

Aimone JB, Ho Y, Parekh O, Phillips CA, Pinar A, Severa W
and Wang Y (2020) Provable neuromorphic advantages for
computing shortest paths. In: Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures. pp.
497-499.

Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J,
Merolla P, Imam N, Nakamura Y, Datta P, Nam G, Taba B,
Beakes M, Brezzo B, Kuang JB, Manohar R, Risk WP, Jackson
B and Modha DS (2015) Truenorth: Design and tool flow
of a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34(10): 1537-1557. DOI:
10.1109/TCAD.2015.2474396.

Ang J, Chien AA, Hammond SD, Hoisie A, Karlin I, Pakin S,
Shalf J and Vetter J (2021) Reimagining codesign for advanced
scientific computing: Unlocking transformational opportunities
for future computing systems for science. Technical report.
DOI:10.2172/1822198.

Ardalan S, Cirit H, Farjad R, Kuemerle M, Poulton K, Subramanian
S and Vinnakota B (2020) Bunch of wires: An open die-to-
die interface. In: 2020 IEEE Symposium on High-Performance
Interconnects (HOTI). pp. 9-16. DOI:10.1109/HOTI51249.
2020.00017.

Athmanathan A, Stanisavljevic M, Papandreou N, Pozidis H and
Eleftheriou E (2016) Multilevel-cell phase-change memory: A
viable technology. IEEE Journal on Emerging and Selected

Prepared using sagej.cls

Topics in Circuits and Systems 6(1): 87-100. DOI:10.1109/
JETCAS.2016.2528598.

Barber ME, Ma EY and Shen ZX (2022) Microwave impedance
microscopy and its application to quantum materials.
NATURE REVIEWS PHYSICS 4(1): 61-74. DOI:10.1038/
s42254-021-00386-3.

Barbera SL, Vuillaume D and Alibart F (2015) Filamentary
switching: Synaptic plasticity through device volatility. ACS
Nano 9(1): 941-949. DOI:10.1021/nn506735m.

Belianinov A, Ievlev AV, Lorenz M, Borodinov N, Doughty B,
Kalinin SV, Fernandez FM and Ovchinnikova OS (2018)
Correlated materials characterization via multimodal chemical
and functional imaging. ACS NANO 12(12): 11798-11818.
DOI:10.1021/acsnano.8b07292.

Belviranli ME and Vetter JS (2019) FLAME: Graph-based
hardware representations for rapid and precise performance
modeling. In: 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 1775-1780. DOI:10.
23919/DATE.2019.8747521.

Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran
AR, Bussat JM, Alvarez-Icaza R, Arthur JV, Merolla PA and
Boahen K (2014) Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations. Proceedings of the
IEEE 102(5): 699-716.

Bohte SM, Kok JN and La Poutré JA (2000) Spikeprop:
backpropagation for networks of spiking neurons. In: ESANN,
volume 48. Bruges, pp. 419-424.

Brown TD, Kumar S and Williams RS (2022) Physics-based
compact modeling of electro-thermal memristors: Negative
differential resistance, local activity, and non-local dynamical
bifurcations. APPLIED PHYSICS REVIEWS 9(1). DOLI:
10.1063/5.0070558.

Burns SR, Tselev A, levlev AV, Agar JC, Martin LW, Kalinin
SV, Sando D and Maksymovych P (2022) Tunable microwave
conductance of nanodomains in ferroelectric pbzr0.2ti0.803
thin film. ADVANCED ELECTRONIC MATERIALS 8(3). DOIL:
10.1002/aelm.202100952.

Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakr-
ishnan K, Jackson B, Kurdi B, Lam C, Lastras LA, Padilla A,
Rajendran B, Raoux S and Shenoy RS (2010) Phase change
memory technology. Journal of Vacuum Science & Technology
B 28(2): 223-262. DOI:10.1116/1.3301579.

Burr GW, Shelby RM, Sidler S, Nolfo C, Jang J, Boybat I, Shenoy
RS, Narayanan P, Virwani K, Giacometti EU, Kurdi BN and
Hwang H (2015) Experimental demonstration and tolerancing
of a large-scale neural network (165 000 synapses) using
phase-change memory as the synaptic weight element. /EEE
Transactions on Electron Devices 62(11): 3498-3507. DOI:
10.1109/TED.2015.2439635.

Calligaris L, collaboration C et al. (2020) Status of the phase-2
tracker upgrade of the cms experiment at the hl-lhc. In: Journal
of Physics: Conference Series, volume 1690. IOP Publishing,
p- 012039.

Caporale N, Dan Y et al. (2008) Spike timing-dependent plasticity:
a hebbian learning rule. Annual review of neuroscience 31(1):
25-46.

Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil
S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND,
Bibes M, Barthélémy A and Grollier J (2012) A ferroelectric
memristor. Nature Materials 11(10): 860-864. DOI:10.1038/

https://mlir.llvm.org/docs/Dialects/TensorOps/
https://mlir.llvm.org/docs/Dialects/TensorOps/

18

Journal Title XX(X)

nmat3415.

Chatrchyan S et al. (2012) Observation of a New Boson at a Mass
of 125 GeV with the CMS Experiment at the LHC. Phys. Lett.
B 716: 30. DOI:10.1016/j.physletb.2012.08.021.

Chen PY, Kadetotad D, Xu Z, Mohanty A, Lin B, Ye J, Vrudhula
S, Seo J, Cao Y and Yu S (2015a) Technology-design co-
optimization of resistive cross-point array for accelerating
learning algorithms on chip. In: 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 854—859.

Chen PY, Lin B, Wang IT, Hou TH, Ye J, Vrudhula S, Seo
J, Cao Y and Yu S (2015b) Mitigating effects of non-ideal
synaptic device characteristics for on-chip learning. In:
2015 [EEE/ACM International Conference on Computer-Aided
Design (ICCAD). pp. 194-199. DOI:10.1109/ICCAD.2015.
7372570.

Chien SWD, Markidis S, Olshevsky V, Bulatov Y, Laure E
and Vetter JS (2019) Tensorflow doing HPC. CoRR
abs/1903.04364.

Chu Z, Zheng L and Lai K (2020) Microwave microscopy and
its applications. In: Clarke D (ed.) ANNUAL REVIEW OF
MATERIALS RESEARCH, VOL 50, 2020, Annual Review of
Materials Research, volume 50. ISBN 978-0-8243-1750-8, pp.
105-130. DOI:10.1146/annurev-matsci-081519-011844.

Close GF, Frey U, Breitwisch M, Lung HL, Lam C, Hagleitner
C and Eleftheriou E (2010) Device, circuit and system-level
analysis of noise in multi-bit phase-change memory. In: 2070
International Electron Devices Meeting. pp. 29.5.1-29.5.4.
DOI:10.1109/IEDM.2010.5703445.

Coenen T and Haegel NM (2017) Cathodoluminescence for the
21st century: Learning more from light. APPLIED PHYSICS
REVIEWS 4(3). DOI:10.1063/1.4985767.

Cong G, Lim SH, Kulkarni S, Date P, Potok T, Snyder S, Parsa
M and Schuman C (2022) Semi-supervised graph structure
learning on neuromorphic computers. In: Proceedings of the
International Conference on Neuromorphic Systems 2022. pp.
1-4.

Dally WJ, Turakhia Y and Han S (2020) Domain-specific hardware
accelerators. Commun. ACM 63(7): 48-57. DOI:10.1145/
3361682.

Dao NC and Koch D (2020) Memristor-based reconfigurable
circuits: Challenges in implementation. In: 2020 International
Conference on Electronics, Information, and Communication
(ICEIC). pp. 1-6. DOI:10.1109/ICEIC49074.2020.9051174.

Date P, Carothers CD, Hendler JA and Magdon-Ismail M
(2018) Efficient classification of supercomputer failures using
neuromorphic computing. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, pp. 242-249.

Date P, Kay B, Schuman C, Patton R and Potok T (2021)
Computational complexity of neuromorphic algorithms. In:
International Conference on Neuromorphic Systems 2021. pp.
1-7.

Date P, Kulkarni S, Young A, Schuman C, Potok T and Vetter J
(2022a) Encoding integers and rationals on neuromorphic com-
puters using virtual neuron. arXiv preprint arXiv:2208.07468

Date P, Potok T, Schuman C and Kay B (2022b) Neuromorphic
computing is turing-complete. In: Proceedings of the
International Conference on Neuromorphic Systems 2022. pp.

1-10.

Prepared using sagej.cls

Davies M, Srinivasa N, Lin T, Chinya G, Cao Y, Choday
SH, Dimou G, Joshi P, Imam N, Jain S, Liao Y, Lin C,
Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J,
Venkataramanan G, Weng Y, Wild A, Yang Y and Wang H
(2018) Loihi: A neuromorphic manycore processor with on-
chip learning. IEEE Micro 38(1): 82-99. DOI:10.1109/MM.
2018.112130359.

Di Ventra M and Traversa FL (2018) Perspective: Memcomputing:
Leveraging memory and physics to compute efficiently.
Journal of Applied Physics 123(18): 180901. DOI:10.
1063/1.5026506. URL https://doi.org/10.1063/1.
5026506.

Ferrari S, Mehta B, Di Muro G, VanDongen AM and Henriquez
C (2008) Biologically realizable reward-modulated hebbian

In: 2008 IEEE

International Joint Conference on Neural Networks (IEEE

training for spiking neural networks.

World Congress on Computational Intelligence). 1EEE, pp.
1780-1786.

Fleming B et al. (2019) Basic research needs for high
energy physics detector research & development.
URL https://science.osti.gov/hep/

Community-Resources/Reports.

Gao L, Ren Q, Sun J, Han ST and Zhou Y (2021) Memristor
modeling: challenges in theories, simulations, and device
variability. JOURNAL OF MATERIALS CHEMISTRY C 9(47):
16859-16884. DOI:10.1039/d1tc04201g.

Gewaltig MO and Diesmann M (2007) Nest (neural simulation
tool). Scholarpedia 2(4): 1430.

Gonzalez-Tallada M, Valero-Lara P, Denny J and Veter J (2022)
ecc++ : An embedded compiler construction frameworkfor
domain-specific languages [manuscript submitted for publica-
tion] .

Hamdioui S, Kvatinsky S, Cauwenberghs G, Xie L, Wald N, Joshi
S, Elsayed HM, Corporaal H and Bertels K (2017) Memristor
for computing: Myth or reality? In: Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. pp. 722—
731. DOI:10.23919/DATE.2017.7927083.

Hamilton K, Date P, Kay B and Schuman D C (2020a) Modeling
epidemic spread with spike-based models. In: International
Conference on Neuromorphic Systems 2020. pp. 1-5.

Hamilton K, Mintz T, Date P and Schuman CD (2020b) Spike-
based graph centrality measures. In: International Conference
on Neuromorphic Systems 2020. pp. 1-8.

Hennessy JL and Patterson DA (2019) A new golden age for
computer architecture. Commun. ACM 62(2): 48-60. DOI:
10.1145/3282307.

Jacobs-Gedrim RB, Hughart DR, Agarwal S, Vizkelethy G,
Bielejec ES, Vaandrager BL, Swanson SE, Knisely KE,
Taggart JL, Barnaby HJ and Marinella MJ (2019) Training a
neural network on analog taox reram devices irradiated with
heavy ions: Effects on classification accuracy demonstrated
with crosssim. IEEE TRANSACTIONS ON NUCLEAR
SCIENCE 66(1, 1, SI): 54-60. DOI:10.1109/TNS.2018.
2886229. 55th IEEE Nuclear and Space Radiation Effects
Conference (NSREC), Kona, HI, JUL 16-20, 2018.

Jin T, Bercea GT, Le TD, Chen T, Su G, Imai H, Negishi Y, Leu
A, O’Brien K, Kawachiya K and Eichenberger AE (2020)
Compiling onnx neural network models using mlir.

Kay B, Date P and Schuman C (2020) Neuromorphic graph
algorithms: Extracting longest shortest paths and minimum

https://doi.org/10.1063/1.5026506
https://doi.org/10.1063/1.5026506
https://science.osti.gov/hep/Community-Resources/Reports
https://science.osti.gov/hep/Community-Resources/Reports

Abisko Team

19

spanning trees. In: Proceedings of the Neuro-inspired
Computational Elements Workshop. pp. 1-6.

Kay B, Schuman C, O’Connor J, Date P and Potok T (2021)
Neuromorphic graph algorithms: Cycle detection, odd cycle
detection, and max flow. In: International Conference on
Neuromorphic Systems 2021. pp. 1-7.

Kehlet D et al. (2017) Accelerating innovation through a standard
chiplet interface: The advanced interface bus (aib) .

Kim DS, Watkins VJ, Cline LA, Li J, Sun K, Sugar JD, Fuller
EJ, Talin AA and Li Y (2022) Nonvolatile electrochemical
random-access memory under short circuit. Advanced
Electronic Materials n/a(n/a): 2200958. DOI:https://doi.org/
10.1002/aelm.202200958.

Kim MJ, Baek IG, Ha YH, Baik SJ, Kim JH, Seong DJ, Kim SJ,
Kwon YH, Lim CR, Park HK, Gilmer D, Kirsch P, Jammy R,
Shin YG, Choi S and Chung C (2010) Low power operating
bipolar tmo reram for sub 10 nm era. In: 2010 International
Electron Devices Meeting. pp. 19.3.1-19.3.4. DOI:10.1109/
IEDM.2010.5703391.

Kosters DJ, Kortman BA, Boybat I, Ferro E, Dolas S, de Austri
R, Kwisthout J, Hilgenkamp H, Rasing T, Riel H et al.
(2022) Benchmarking energy consumption and latency for
neuromorphic computing in condensed matter and particle
physics. arXiv preprint arXiv:2209.10481 .

Kozloski JR and Wagner J (2011) An ultrascalable solution to large-
scale neural tissue simulation. Frontiers Neuroinformatics 5:
15. DOI:10.3389/tninf.2011.00015. URL https://doi.
org/10.3389/fninf.2011.00015.

Krishnan G, Mandal SK, Pannala M, Chakrabarti C, Seo JS, Ogras
UY and Cao Y (2021) Siam: Chiplet-based scalable in-memory
acceleration with mesh for deep neural networks 20(5s). DOI:
10.1145/3476999. URL https://doi.org/10.1145/
3476999.

Kwisthout J and Donselaar N (2020) On the computational power
and complexity of spiking neural networks. In: Proceedings
of the Neuro-inspired Computational Elements Workshop. pp.
1-7.

Lattner C, Amini M, Bondhugula U, Cohen A, Davis A, Pienaar J,
Riddle R, Shpeisman T, Vasilache N and Zinenko O (2021)
Mlir: Scaling compiler infrastructure for domain specific
computation. In: 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). pp. 2-14. DOI:
10.1109/CG0O51591.2021.9370308.

Lee S, Meredith JS and Vetter JS (2015) COMPASS: A framework
for automated performance modeling and prediction. In:
Proceedings of the 29th ACM on International Conference on
Supercomputing. Newport Beach, California, USA: ACM, pp.
405-414. DOI:10.1145/2751205.2751220.

Li T, Hou J, Yan J, Liu R, Yang H and Sun Z (2020a) Chiplet
heterogeneous integration technology—status and challenges.
Electronics 9(4): 670.

Li Y, Fuller EJ, Sugar JD, Yoo S, Ashby DS, Bennett CH,
Horton RD, Bartsch MS, Marinella MJ, Lu WD and Talin
AA (2020b) Memory devices: Filament-free bulk resistive
memory enables deterministic analogue switching (adv. mater.
45/2020). Advanced Materials 32(45): 2070339. DOL:https:
//doi.org/10.1002/adma.202070339.

Liu D, Cheng H, Zhu X, Wang G and Wang N (2013) Analog
memristors based on thickening/thinning of ag nanofilaments
in amorphous manganite thin films. ACS Applied Materials &

Prepared using sagej.cls

Interfaces 5(21): 11258-11264. DOI:10.1021/am403497y.

Liu F, Miniskar NR, Chakraborty D and Vetter JS (2020) Deffe
A data-efficient framework for performance characterization in
domain-specific computing. In: Proceedings of the 17th ACM
International Conference on Computing Frontiers, CF *20.
New York, NY, USA: Association for Computing Machinery,
p- 182-191.

Marinella MJ (2021) Radiation effects in advanced and emerging
nonvolatile memories. IEEE Transactions on Nuclear Science
68(5): 546-572. DOI:10.1109/TNS.2021.3074139.

Marinella MJ, Agarwal S, Hsia A, Richter I, Jacobs-Gedrim R,
Niroula J, Plimpton SJ, Ipek E and James CD (2018) Multiscale
co-design analysis of energy, latency, area, and accuracy of a
reRAM analog neural training accelerator. leee Journal on
Emerging and Selected Topics in Circuits and Systems 8(1):
86-101. DOI:10.1109/jetcas.2018.2796379.

Marinella MJ, Dalton SM, Mickel PR, Dodd PED, Shaneyfelt
MR, Bielejec E, Vizkelethy G and Kotula PG (2012) Initial
assessment of the effects of radiation on the electrical
characteristics of taox memristive memories. IEEE
Transactions on Nuclear Science 59(6): 2987-2994. DOI:
10.1109/TNS.2012.2224377.

Marinella MJ, Xiao TP, Feinberg B, Bennett C, Agrawal V, Puchner
H and Agarwal S (2022) Achieving accurate in-memory neural
network inference with highly overlapping nonvolatile memory
state distributions. In: 2022 6th IEEE Electron Devices
Technology & Manufacturing Conference (EDTM). pp. 330—
332. DOI:10.1109/EDTM53872.2022.9797919.

McCaskey A and Nguyen T (2021) A mlir dialect for quantum
assembly languages.

McLellan P (2020) Hbi, a new standard to connect your
chiplets. URL https://community.cadence.com/

cadence_blogs_8/b/breakfast-bytes/posts/

hbi-a-new-standard-to-connect-your—-chiplets.

Menzel S, Waters M, Marchewka A, Bottger U, Dittmann R and
Waser R (2011) Origin of the ultra-nonlinear switching kinetics
in oxide-based resistive switches. Advanced Functional
Materials 21(23): 4487-4492. DOI:https://doi.org/10.1002/
adfm.201101117.

Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S and
Prodromakis T (2018) A data-driven verilog-a reram model.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37(12): 3151-3162. DOI:10.1109/
TCAD.2018.2791468.

Neckar A, Fok S, Benjamin BV, Stewart TC, Oza NN, Voelker
AR, Eliasmith C, Manohar R and Boahen K (2019) Braindrop:
A mixed-signal neuromorphic architecture with a dynamical
systems-based programming model. Proceedings of the IEEE
107(1): 144-164. DOI:10.1109/JPROC.2018.2881432.

Nili H, Vincent AF, Prezesio M, Mahmoodi MR, Kataeva I and
Strukov DB (2020a) Comprehensive compact phenomenolog-
ical modeling of integrated metal-oxide memristors. [EEE
Transactions on Nanotechnology 19: 344-349. DOI:10.1109/
TNANO.2020.2982128.

Nili H, Vincent AF, Prezioso M, Mahmoodi MR, Kataeva I and
Strukov DB (2020b) Comprehensive compact phenomenolog-
ical modeling of integrated metal-oxide memristors. I[EEE
TRANSACTIONS ON NANOTECHNOLOGY 19: 344-349.
DOI:10.1109/TNANO.2020.2982128.

https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.1145/3476999
https://doi.org/10.1145/3476999
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets

20

Journal Title XX(X)

of Particles D and of the American Physical Society F (2021)
The particle physics community planning exercise (snowmass).
URL https://snowmass21.org/.

Park H, Ku BW, Chang K, Shim DE and Lim SK (2020) Pseudo-
3D approaches for commercial-grade RTL-to-GDS tool flow
targeting monolithic 3D ICs. In: Proceedings of the 2020
International Symposium on Physical Design. pp. 47-54.

Parsa M, Kulkarni SR, Coletti M, Bassett J, Mitchell JP
and Schuman CD (2021) Multi-objective hyperparameter
optimization for spiking neural network neuroevolution. In:
2021 IEEE Congress on Evolutionary Computation (CEC).
IEEE, pp. 1225-1232.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan
G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison
A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A,
Chilamkurthy S, Steiner B, Fang L, Bai J and Chintala
S (2019) Pytorch: An imperative style, high-performance
deep learning library. In: Advances in Neural Information

Processing Systems 32. Curran Associates, Inc., pp. 8024—

8035. URL http://papers.neurips.cc/paper/

Schuman CD, Kay B, Date P, Kannan R, Sao P and Potok
TE (2021) Sparse binary matrix-vector multiplication on
neuromorphic computers. In: 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, pp. 308-311.

Schuman CD, Mitchell JP, Patton RM, Potok TE and Plank JS
(2020) Evolutionary optimization for neuromorphic systems.
In: Proceedings of the Neuro-inspired Computational Elements
Workshop. pp. 1-9.

Schuman CD, Plank JS, Disney A and Reynolds J (2016) An
evolutionary optimization framework for neural networks and
neuromorphic architectures. In: 2016 International Joint
Conference on Neural Networks (IJCNN). IEEE, pp. 145-154.

Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME,
Rose GS and Plank JS (2017) A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint
arXiv:1705.06963 .

Severa W, Lehoucq R, Parekh O and Aimone JB (2018a) Spiking
neural algorithms for markov process random walk. In: 2018
International Joint Conference on Neural Networks (IJCNN).

9015-pytorch-an-imperative-style-high-performadBEEggsri=8.carning-1library.

pdf.

Patton R, Schuman C, Kulkarni S, Parsa M, Mitchell JP,
Haas NQ, Stahl C, Paulissen S, Date P, Potok T et al.
(2021) Neuromorphic computing for autonomous racing. In:
International Conference on Neuromorphic Systems 2021. pp.
1-5.

Peng IB and Vetter JS (2018) Siena: exploring the design space
of heterogeneous memory systems. In: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage, and Analysis. Dallas, Texas: IEEE Press,
pp. 1-14.

Raoux S, Burr GW, Breitwisch MJ, Rettner CT, Chen YC, Shelby
RM, Salinga M, Krebs D, Chen SH, Lung HL and Lam
CH (2008) Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development
52(4.5): 465-479. DOI:10.1147/rd.524.0465.

Rasmussen D (2018) NengoDL: Combining deep learning and
neuromorphic modelling methods. arXiv 1805.11144: 1-22.
URL http://arxiv.org/abs/1805.11144.

Schemmel J, Briiderle D, Griibl A, Hock M, Meier K and Millner
S (2010) A wafer-scale neuromorphic hardware system for
large-scale neural modeling. In: Proceedings of 2010 IEEE
International Symposium on Circuits and Systems. pp. 1947—
1950. DOI:10.1109/ISCAS.2010.5536970.

Schliebs S, Mohemmed A and Kasabov N (2011) Are probabilistic
spiking neural networks suitable for reservoir computing? In:
The 2011 International Joint Conference on Neural Networks.
IEEE, pp. 3156-3163.

Schulte MJ, Ignatowski M, Loh GH, Beckmann BM, Brantley WC,
Gurumurthi S, Jayasena N, Paul I, Reinhardt SK and Rodgers G
(2015) Achieving exascale capabilities through heterogeneous
computing. Micro, IEEE 35(4): 26-36. DOI:10.1109/MM.
2015.71.

Schuman CD, Hamilton K, Mintz T, Adnan MM, Ku BW, Lim
SK and Rose GS (2019) Shortest path and neighborhood
subgraph extraction on a spiking memristive neuromorphic
implementation. In: Proceedings of the 7th Annual Neuro-

inspired Computational Elements Workshop. pp. 1-6.

Prepared using sagej.cls

Severa W, Vineyard CM, Dellana R, Verzi SJ and Aimone JB
(2018b) Whetstone: A method for training deep artificial neural
networks for binary communication. CoRR abs/1810.11521.
URL http://arxiv.org/abs/1810.11521.

Sharma DD (2022) Universal chiplet interconnect express (ucie)®:
Building an open chiplet ecosystem. Technical report,
Universal Chiplet Interconnect Express.

Sharma S, Aubin S and Eliasmith C (2016) Large-scale
cognitive model design using the nengo neural simulator.
Biologically Inspired Cognitive Architectures 17: 86-100.
DOL:https://doi.org/10.1016/j.bica.2016.05.001. URL
https://www.sciencedirect.com/science/
article/pii/S2212683X16300317.

Shrestha SB and Orchard G (2018) SLAYER: Spike layer

error reassignment in time. In: Bengio S, Wallach
H, Larochelle H, Grauman K, Cesa-Bianchi N and
Garnett R (eds.) Advances in Neural Information

Processing Systems 31. Curran Associates, Inc., pp. 1419-

1428. URL http://papers.nips.cc/paper/

7415-slayer—-spike-layer—error—-reassignment—-in—-time.

pdf.

Spafford K, Vetter JS, Benson T and Parker M (2013) Modeling
synthetic aperture radar computation with aspen. International
Journal of High Performance Computing Applications 27(3):
255-262. DOI:10.1177/1094342013488262.

Spafford KL and Vetter JS (2012) Aspen: A domain specific
language for performance modeling. In: SCI12: International
Conference for High Performance Computing, Networking,
Storage and Analysis. Salt Lake City, pp. 1-11. DOI:10.1109/
SC.2012.20.

Spafford KL and Vetter JS (2015) Automated design space
exploration with aspen. Scientific Programming 2015: 10. DOLI:
10.1155/2015/157305.

Stark J (2019) Chiplets: The path to iot diversity. Technical report,
Cambridge Consultants.

Stettler MA, Cea SM, Hasan S, Jiang L, Keys PH, Landon
CD, Marepalli P, Pantuso D and Weber CE (2021) Industrial
tcad: Modeling atoms to chips. IEEE TRANSACTIONS ON
ELECTRON DEVICES 68(11): 5350-5357. DOI:10.1109/

https://snowmass21.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1805.11144
http://arxiv.org/abs/1810.11521
https://www.sciencedirect.com/science/article/pii/S2212683X16300317
https://www.sciencedirect.com/science/article/pii/S2212683X16300317
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf

Abisko Team

21

TED.2021.3076976.

Stimberg M, Brette R and Goodman DF (2019) Brian 2, an intuitive
and efficient neural simulator. eLife 8: e47314. DOI:10.7554/
eLife.47314.

Strukov DB and Williams RS (2009) Exponential ionic drift: fast
switching and low volatility of thin-film memristors. Applied
Physics A 94(3): 515-519. DOI:10.1007/s00339-008-4975-3.

Talin AA, Li Y, Robinson DA, Fuller EJ and Kumar S (????)

Ecram materials, devices, circuits and architectures: A
perspective. Advanced Materials n/a(n/a): 2204771.
DOLIL:https://doi.org/10.1002/adma.202204771. URL

https://onlinelibrary.wiley.com/doi/abs/
10.1002/adma.202204771.

Talin AA, Li Y, Robinson DA, Fuller EJ and Kumar S (2022)
ECRAM materials, devices, circuits and architectures: A
perspective. Advanced Materials n/a(n/a): 2204771. DOIL:
https://doi.org/10.1002/adma.202204771.

Tavanaei A, Ghodrati M, Kheradpisheh S, Masquelier T and Maida
A (2019) Deep learning in spiking neural networks. Neural
Networks 111: 47-63. DOI:https://doi.org/10.1016/j.neunet.
2018.12.002. URL https://www.sciencedirect.
com/science/article/pii/S0893608018303332.

Terai M, Sakotsubo Y, Kotsuji S and Hada H (2010) Resistance
controllability of ta205/tiO2 stack reRAM for low-voltage and
multilevel operation. Electron Device Letters, IEEE 31: 204—
206. DOI:10.1109/LED.2009.2039021.

Tselev A, Yu P, Cao Y, Dedon LR, Martin LW, Kalinin SV
and Maksymovych P (2016) Microwave a.c. conductivity
of domain walls in ferroelectric thin films. NATURE
COMMUNICATIONS 7. DOI:10.1038/ncomms11630.

Umar M, Meredith JS, Vetter JS and Cameron KW (2016) A
study of power-performance modeling using a domain-specific
language. In: 2016 28th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD).
pp- 84-92. DOI:10.1109/SBAC-PAD.2016.19.

Umar M, Moore SV, Vetter JS and Cameron KW (2018)
Prometheus: Coherent exploration of hardware and software
optimizations using aspen. In: 2018 IEEE 26th International
Symposium on Modeling,
Computer and Telecommunication Systems (MASCOTS). pp.
244-250. DOI:10.1109/MASCOTS.2018.00032.

Valov I, Waser R, Jameson JR and Kozicki MN (2011) Elec-
trochemical metallization memories—fundamentals, applica-
tions, prospects. Nanotechnology 22(25): 254003. DOI:
10.1088/0957-4484/22/25/254003.

Vetter JS, Brightwell R, Gokhale M, McCormick P, Ross R, Shalf
J, Antypas K, Donofrio D, Humble T, Schuman C, Essen BV,
Yoo S, Aiken A, Bernholdt D, Byna S, Cameron K, Cappello
F, Chapman B, Chien A, Hall M, Hartman-Baker R, Lan Z,
Lang M, Leidel J, Li S, Lucas R, Mellor-Crummey J, Jr PP,
Peterka T, Strout M and Wilke J (2018) Extreme heterogeneity
2018 - productive computational science in the era of extreme

Analysis, and Simulation of

heterogeneity: Report for DOE ASCR workshop on extreme
heterogeneity. Technical report, USDOE Office of Science
(SC) (United States). DOI:10.2172/1473756.

Vogel T, Zintler A, Kaiser N, Guillaume N, Lefevre G, Lederer M,
Serra AL, Piros E, Kim T, Schreyer P, Winkler R, Nasiou D,
Olivo RR, Ali T, Lehninger D, Arzumanov A, Charpin-Nicolle
C, Bourgeois G, Grenouillet L, Cyrille MC, Navarro G, Seidel
K, Kaempfe T, Petzold S, Trautmann C, Molina-Luna L and

Prepared using sagej.cls

Alff L (2022) Structural and electrical response of emerging
memories exposed to heavy ion radiation. ACS NANO DOI:
10.1021/acsnano.2c04841.

Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B,
Asheghi M and Goodson KE (2010) Phase change memory.
Proceedings of the IEEE 98(12): 2201-2227. DOI:10.1109/
JPROC.2010.2070050.

Xiao TP, Bennett CH, Agarwal S, Hughart DR, Barnaby HIJ,
Puchner H, Prabhakar V, Talin AA and Marinella MJ (2021a)
Ionizing radiation effects in SONOS-based neuromorphic
inference accelerators. leee Transactions on Nuclear Science
68(5): 762-769. DOI:10.1109/tns.2021.3058548.

Xiao TP, Bennett CH, Agarwal S, Hughart DR, Barnaby HJ,
Puchner H, Talin AA and Marinella MJ (2022a) Single-event
effects induced by heavy ions in SONOS charge trapping
memory arrays. leee Transactions on Nuclear Science 69(3):
406-413. DOI:10.1109/tns.2021.3127549.

Xiao TP, Feinberg B, Bennett CH, Agrawal V, Saxena P, Prabhakar
V, Ramkumar K, Medu H, Raghavan V, Chettuvetty R,
Agarwal S and Marinella MJ (2022b) An accurate, error-
tolerant, and energy-efficient neural network inference engine
based on SONOS analog memory. [EEE Transactions on
Circuits and Systems I: Regular Papers 69(4): 1480-1493.
DOI:10.1109/TCS1.2021.3134313.

Xiao TP, Feinberg B, Bennett CH, Prabhakar V, Saxena P,
Agrawal V, Agarwal S and Marinella MJ (2021b) On the
accuracy of analog neural network inference accelerators.
CoRR abs/2109.01262. URL https://arxiv.org/abs/
2109.01262.

Yakopcic C, Rahman N, Atahary T, Taha TM and Douglass S
(2020) Solving constraint satisfaction problems using the loihi
spiking neuromorphic processor. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, pp.
1079-1084.

Yang JJ, Strukov DB and Stewart DR (2013a) Memristive devices
for computing. Nat Nanotechnol 8(1): 13-24. DOI:10.1038/
nnano.2012.240.

Yang JJ, Strukov DB and Stewart DR (2013b) Memristive devices
for computing. NATURE NANOTECHNOLOGY 8(1): 13-24.
DOI:10.1038/NNANO.2012.240.

Yi S, Talin AA, Marinella MJ and Williams RS (2022) Physical
compact model for three-terminal SONOS synaptic circuit
element. Advanced Intelligent Systems 4(9). DOI:10.1002/aisy.
202200070.

Young AR, Dean ME, Plank JS and Rose GS (2019) A review of
spiking neuromorphic hardware communication systems 7:
135606-135620. DOI:10.1109/ACCESS.2019.2941772. URL
http://ieeexplore.ieee.org/stamp/stamp.
Jjsp?tp=&arnumber=8843969&isnumber=8600701.

Acknowledgements

This research is funded by the DOE Office of Science Research
Program for Microelectronics Codesign (sponsored by ASCR, BES,
HEP, NP, and FES) through the Abisko Project with program
managers Robinson Pino (ASCR), Hal Finkel (ASCR), and Andrew
Schwartz (BES). We thank Olha Popova, Liangbo Liang and Anton
Ievlev at ORNL CNMS for their on-going role in the building and
development of the materials thrust of the project.

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204771
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204771
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://arxiv.org/abs/2109.01262
https://arxiv.org/abs/2109.01262
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&isnumber=8600701
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&isnumber=8600701

22

Journal Title XX(X)

This manuscript has been authored by UT-Battelle LLC under
contract DE-AC05-000R22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for US government purposes. DOE will provide
public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan)

This manuscript has been authored by Sandia National
Laboratories that is a multimission laboratory managed and
operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

Author Biographies

Jeffrey S. Vetter is a Corporate Fellow and the Section Head
for Advanced Computer Systems Research at Oak Ridge National
Laboratory (ORNL). Vetter earned his Ph.D. in Computer Science
from the Georgia Institute of Technology. He is the Principal
Investigator of the Abisko Microelectronics Codesign project.

Prasanna Date is a Research Scientist at the Oak Ridge National
Laboratory. He received his PhD from Rensselaer Polytechnic
Institute in 2019. He explores novel Al and machine learning
techniques on neuromorphic and quantum computing platforms.
For his research, Date was featured on the 2022 Forbes 30 Under
30 Asia list. He is an Associate Editor of IEEE TNNLS journal and
an Editorial Board Member for Nature Scientific Reports. Date is on
the organizing committee of marquee conferences in neuromorphic
and quantum computing such as ACM ICONS and IEEE Quantum
Week.

Farah Fahim (farah@fnal.gov) received her M.Tech research
degree from the University of Limerick, Ireland, in 2011 and
her Ph.D. degree in electrical engineering from Northwestern
University, Evanston, Illinois, USA, in 2019. She has been with
the Fermi National Accelerator Laboratory, Batavia, [llinois, 60510,
USA, since 2009, specializing in mixed-signal ASIC design, and
is currently the Division Head of Microelectronics. She is also
an adjunct professor at Northwestern University Department of
Electrical and Computer Engineering. For over 15 years she
has been developing low-noise, high-speed readout and control
electronics for detectors that operate in harsh environments such
as high-ionizing radiation for a wide range of applications. She
has been awarded five patents and has coauthored more than 40
publications.

Shruti Kulkarni is a research scientist at the Oak Ridge National
Laboratory in the Learning Systems group. Her research spans
different aspects of neuromorphic computing including algorithms,
applications, and hardware codesign. She earned her PhD in
2019 from New lJersey Institute of Technology supervised by
Dr. Bipin Rajendran, where she worked on bio-inspired learning
and hardware acceleration with emerging memories. She was
a postdoctoral research associate with Dr. Catherine Schuman
at ORNL studying evolutionary optimization for spiking neural
networks and scaling up SNN simulations to HPC systems.

Dr. Petro Maksymovych is a Distinguished Staff Scientist at Oak
Ridge National Laboratory and a Theme Leader at the Center for
Nanophase Materials Sciences. He received his Ph. D. from the
University of Pittsburgh in 2007, focusing on hot-electron dynamics

Prepared using sagej.cls

and surface chemical reactions as building blocks of molecular
electronic circuits. His research interests at ORNL are aimed at the
emergence of phase transitions in classical and quantum materials
and the fundamental material properties that can enable future
computational paradigms, including ferroelectrics, complex and
correlated vdW materials, and the development of new scanning
probe techniques for nanoscale characterization of phase-ordered
media.

Alec Talin received Ph.D. in Materials Science and Engineering
from UCLA in 1995. He is a Distinguished Member of Technical
Staff at Sandia National Laboratories, an Adjunct Associate
Professor of Materials Science at the University of Maryland,
College Park, and is a Fellow of the American Physical Society.
Prior to joining Sandia, Alec spent 6 years at Motorola Labs in
Phoenix, AZ and 3 years at the National Institute of Standards
and Technology in Gaithersburg, MD. His interests focus on
nanoelectronics and nanoionics, with applications to energy-
efficient computing, energy conversion, energy storage and national
security.

Marc Gonzalez Tallada is a Senior Research Scientist at the
Programming Systems Group at ORNL. He received the degree in
computer science in 1996 and the PhD degree in computer science
in 2003, both from the Universitat Politecnica de Catalunya (UPC).
His research interests are related to parallel programming models,
languages, and compilers for High Performance Computing
technologies.

Pruek Vanna-iampikul received the B.E degree in computer
engineering from King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand in 2012, and the M.E. degree
in microelectronics and embedded systems from Asian Institute
of Technology, Pathumthani, Thailand in 2017. He is currently
pursuing the Ph.D. degree under Prof. S. K. Lim’s guidance. His
current research focuses on design algorithms and methodology for
energy efficient 2.5D and 3D ICs.

Aaron Young is a Software Engineer in the Architectures
and Performance Group at Oak Ridge National Laboratory. He
received his Ph.D. in Computer Engineering from the University
of Tennessee in 2020, where he completed his dissertation on
a scaled-up neuromorphic array communications controller that
allowed neural networks to scale across multiple neuromorphic
processors implemented using FPGAs. His research interests
include neuromorphic computing, high-performance computing,
heterogeneous computing, computer architectures, embedded

systems, and high-speed communication.

David Brook the Haley Family Professor of computer science
with the School of Engineering and Applied Sciences, Harvard
University. His research interests include resilient and power-
efficient computer hardware and software design for high-
performance and embedded systems.

Yu Cao is a Professor of Electrical Engineering at Arizona State
University. He received his Ph.D. in 2002 from the University of
California, Berkeley. His research interests include neural-inspired
computing, hardware design for on-chip learning, and reliable
integration of nanoelectronics.

Dr. Wei received his B.S.E.E., M.S., and Ph.D. in Electrical
Engineering from Stanford University in 1994, 1997, and 2001,
respectively. In 2000, he joined Accelerant Networks (now a part
of Synopsys) in Beaverton, Oregon as a Senior Design Engineer.
In 2002, he joined Harvard University. His research interests
span a variety of topics such as integrated voltage regulators,

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

Abisko Team

23

flexible voltage stacking, power electronics, low-power computing
architectures and circuits, auto-parallelizing compilers, and more.

Dr. Sung Kyu Lim is the Motorola Solutions Foundation
Professor at Georgia Institute of Technology’s School of Electrical
and Computer Engineering, and he previously has served as the
principal investigator for multiple DARPA programs. Lim received
his bachelor’s, master’s, and doctorate degrees from the Computer
Science Department, University of California, Los Angeles in 1994,
1997, and 2000, respectively.

Frank Liu is the research manager (Group Leader) of the
Architecture and Performance Group at Oak Ridge National Lab.
His research interests include scientific machine learning and its
influence on computer architecture

Matthew Marinella is an Associate Professor of Electrical
Engineering at Arizona State University. From 2010 to 2021,
Matthew J. Marinella was with Sandia’s Microsystems S&T Center,
where he was a Distinguished Member of the Technical Staff.
At Sandia, Dr. Marinella led numerous internal and externally
funded research projects involving neuromorphic and low-power
computing with emerging electronic devices. He has served in
technical advising and leadership roles in various Lab- and DOE-
level initiatives on next generation computing for government
applications. Dr. Marinella is a member of the SRC Decadal
Plan Executive Committee, chairs the Emerging Memory Devices
Section for the IRDS Roadmap Beyond CMOS Chapter, and serves
on various technical program committees.

Bobby Sumpter is a Corporate Fellow and the Section Head
for Theory and Computing at the Center for Nanophase Materials
Science, Oak Ridge National Laboratory (ORNL).He received his
Ph.D. in Physical Chemistry from Oklahoma State University.
Sumpter’s research is focused on a fundamental understanding of
self-assembly processes, interactions at interfaces, the structure and
dynamics of molecular-based materials including multi-component
polymers and composites, and the physical, mechanical and
electronic properties of nanostructured materials.

Narasinga Rao Miniskar is research software engineer in archi-
tecture performance group at the Oak Ridge National Labora-
tory with broad experience in heterogeneous computing, hard-
ware/software codesign, reconfigurable architectures and high per-
formance computing. With a strong interest in Neuromorphic com-
puting, he currently focuses on the development of Neuromorphic
accelerators at ORNL.

Prepared using sagej.cls

	Introduction
	Spiking Neural Networks (SNNs)
	Abisko Overview

	Motivating Problem: Pixel Detectors for High-Energy Physics (HEP) Collider Experiments
	Algorithms
	SNN Classification
	SNN Regression
	DEFFE (Data-Efficient Exploration Framework)
	General-Purpose Computing Outlook

	Software
	Neuromorphic Programming Language
	Neuromorphic Compiler

	Architectures
	Chiplet-Based Design
	Interface and Communication
	Benefits of Face-to-Face 3D Integration

	Devices
	Materials
	Codesign
	Summary

