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Abstract

The valuation of interest rate contingencies relies on simulation
methods that integrate models of the term structure of interest rates
with estimations of the contingent cash flows. Such simulations are
quite complex and computationally intensive.

In this paper we describe the development of massively parallel
procedures for financial modeling simulations on systems like the Con-
nection Machine. Several primitives — generic among multiple ap-
plications — are first presented, and the discussion culminates in an
option adjusied aenalysis model for mortgage-backed securities. The
primitives achieve sustained computing rates in the range 30 — 120
MFLOPS on a 4K processor Connection Machine, model CM-2a. The
response time for a complete option adjusted analysis (1 - 2 seconds)
makes the model] usable for real time analysis and trading applications.



1 Introduction

It is difficult to find an area of the fixed income market that does not rely
on analytic techniques for instrument pricing. When the instruments under
studv embodyv features of options. and are contingent on the prevailing inter-
est rate environment, the pricing methodology is often based on statistical
simulations. Interest rate sensitive instruments appear in several forms in
European and American stvle options, callable and putable bonds. mortgage
backed securities and their derivatives, and products from the insurance in-
dustry such as guaranteed insurance products and single premium deferred
annuities.

For several of those instruments the cash-flows are not only contingent
on the prevailing interest rate, but also depend on the path of interest rates
during the lifetime of the instrument. Path dependencies create huge sam-
ple spaces from which the simulation model has to draw a representative
sample. Consider, for example, a binomial lattice model of interest rates —
as explained later in Section 2.2.2 — over a period of 30 vears in monthly
intervals. Short term interest rates can be at any one of 360 possible states
at the end of the period, and the number of paths that lead to these states is
2360 Even with the use of variance reduction techniques, a sample of several
hundred paths — typically around 1000 — has 1o be analyzed in order to
obtain pricing estimates within acceptable error bounds. It is not surpris-
ing then that the veluation of interest-rate-contingent and path-dependent
instruments Jeads 1o compute intensive simulations.

The computational complexities of these models led users to investigate
parallel computers a5 suitable compute-servers for such applications. The
rapidly changing environment where the analyses are performed makes the
quest for faster response times even more pressing. The interest of Wall
Street anzlysts in parallel computers has been the topic of recent articles in
popular magazines *. It appears. however, that no significant progress has
been made in utilizing this technology and we are not aware of any publica-
tions that discuss parallel computing applications in financizl analysis.

In this paper we report on the use of massively parallel architectures
— like the Connection Machine CM-2 — for the simulation of interest-
rate-contingent and path-dependent cash fiows. Simulating multiple paths
of interest rates is indeed an embarrassingly parallel procedure. Exploiting

*See the ariicle “Supercomputers: Era Dawns on Wall Street” in the November 198¢
issue of Wall Street Computer Review and the specizl report “Supercomputers Break
Through™ in the May 1988 issue of Datamation.



parallelism in performing the path-dependent calculations appears, on first
examination, to be impossible. However, with suitable reformulation of the
models and use of the parallel prefix primitives of the Connection Machine
we are able to exploit parallelism both in executing multiple simulations
and in performing the path-dependent calculations along each path. The
result is a library of primitives that run efficiently on the CM-2 and achieve
sustained computing rates of 30 — 120 MFLOPS on a 4K processor system
CM-2a. The library is used in building an option adjusted analysis model
for mortgage backed securities. This system can price mortgage backed
securities in real time. It is, therefore, now feasible not only to price complex
instruments in real time, but also compare alternative instruments under a
host of interest rate scenarios and other exogenous factor that affect the
price of such instruments. For example analysing the large variety of pools
of mortgage pass through securities that exist today in the U.S. (say 3000)
would require over 14 hours on a CRAY supercomputer and a more than
three weeks on an Apollo workstation. This analysis can be carried out on
a2 4K CM-2a in approximately 1.5 hours, and in less than 5 minutes on a
fully configured CM-2 with 64K processing elements.

In Section 2 we discuss the methodology for valuating interest rate con-
tingencies. Section 3 provides a brief overview of the Connection Machine
CM-2. Section 4 provides details on the parallelization of key modules of the
valuation methodology, and Section 5 reports timing results and comparisons
with an identical model running on a CRAY X-MP vector supercomputer.
Concluding remarks are the topic of Section 6.

2 Valuation of Interest Rate Contingent Cash-
flows

In this section we review the methodology commonly adopted in the val-
uation of interest rate contingent cash flows as given, for example, in the
generalized pricing framework of Jacob, Lord and Tilley [1986]. Applica-
tions in the mortgage-backed securities market are reported in Brazil [1988],
Hayre and Lauterbach [1988] or Pinkus et al. [1987] and the valuation of
single premium deferred annuities is discussed in Asay et al. [1989].

The general framework of the valuation analysis has three phases:

Phase I: Generate arbitrage free interest rate scenarios that are consistent
with the prevailing term structure of interest rates.
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Phase II: Generate cash flows along each interest rate scenario.

Phase III: Use the cash flows and the short-term interest rates along each
path to compute expected net present value of the cash flows, or to
compute an oplion adjusted spread over the Treasury vield curve.

In the approach we take here — known as option adjusted analysis —
it is assumed that the interest rate contingency is priced by the market,
and hence the purpose of the analvsis is to calculate the option adjusted
spread (oas for short). This quantity indicates the incremental spread of
the contingency over the Treasury yield curve, that is implied by the market
price — a precise definition of oas is given in the following section, equation
(1). The significance of this measure in the context of investment decisions is
documented in Hayre and Lauterbach [1988] for mortgage backed securities,
and in Asay et al. [1989] for insurance products.

2.1 Option Adjusted Analysis

The overall design of an option adjusted analysis (OAA, for short) model
is illustrated in Figure 1. For each iteration of the simulation the model
accepts as input a series of short term forward rates, estimated cash-flows
at every point in time, and the market price of the security. Let

S . be the sample of interest rate scenarios (paths) with cardinality | S|,

s , be the short term forward rate at time period t € {1,2,3,...,T}
under scenario $ € .5,

cff , be the cash-flow at time period ¢ under scenario s.

The option adjusted spread is the incremental spread over the short-term
rates that equates the expected present value of the cash-flows under all
scenarios with the market price. If P denotes the market price, the option
adjusted spread is obtained by solving for oas the equation

Pz ‘ij"t———-—l 1
1S C’H(1+ri+oas) )

s€S (=1 =1

We assume in the sequel that a fair price for the security (P) is deter-
mined by the market, and we want to estimate the value of oas that will
satisfy equation (1). Hence, we need to solve a nonlinear equation in the
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Figure 1: The Option Adjusted Analysis Model.




unknown cas. This nonlinear equation is solved using an iterative method,
see Kahaner et al. [1989], that generates a sequence {oas;} until the differ-
ence between the right and left hand sides of equation (1) is less than a user
specified tolerance (e.g., .1 basis point). For every trial point oasy of the
nonlinear equation solver we have to evaluate the expression on the right
hand side of equation (1). The massivelv parallel evaluation of this expres-
sion is the topic of Section 4.1. We turn now to the problem of generating
the sample of interest rate paths S.

2.2 Generating Scenarios of Interest Rate Paths

Models for the evolution of the term structure of interest rates are of central
interest in financial modeling applications. Two commonly used procedures
— for which we have developed massively paralle] methods — are based
on (1) the Monte Carlo simulation of a diffusion process, and (2) on the
construction of binomial lattices.

2.2.1 Monte Carlo Simulation

Interest rates are assumed to follow a lognormal distribution with mean
reversion modifications that keep the interest rate paths within historically
acceptable bounds, (Cox, Ingersoll and Ross [1983]). Drift factors are used
to calibrate the model for consistency with the term structure of interest
rates.

The one-year forward rate f; at time t € {1,2,3,...,7}, is generated
from the rate at period 7 — 1 as follows:
f! — o~ 1] 1
]Og 7 =Z%x0; 7T R(fi) - M (2)
Ji-1
where:

z is a normally distributed random variable, z ~ N(0,1),
oy 1s the volatility of interest rates per unit time, at instance t,

R(f1) is a mean-reversion term that forces the simulated rates to stay within
historically acceptable limits defined by

0 if 1< fi<u
R(f) = =7 (ft = ‘U»)2 of fi>u (3)
-yl - f:)/ft}2 if fi<l



where 59 and ~; are constants estimated from empirical data.

yy are drift factors estimated so that the model rates are consistent with
the term structure. Tley are estimated by requiring that the present
value of on-the-run treasuries, computed using the model rates, is in
agreement with the current market prices.

A large number of interest rate paths can be generated by repeated appli-
cation of equation (2).

2.2.2 Sampling from a Binomial Lattice

An alternative approach to Monte Carlo simulation is to assume that term
structure movements can be approximated by a discrete binomial process,
represented by a lattice as shown in Figure 2. Discrete points in time are
marked on the horizontal axis, and nodes of the lattice represent possible
states of interest rates at every point in time. The term structure can
move to one of two possible states between successive points in time —
conveniently called the “up” and “down” states. The lattice is connected
in the sense that an “up, down” and a “down, up” path starting from the
same state will lead to the same state after two periods. After ¢ time
periods from the origin the lattice has t possible states. Each one of this
states can be reached through 2' possible paths. For example, a binomial
lattice of interest rates over a 30 vear time horizon in monthly intervals has
360 possible states at the end of the planning horizon, and a formidable 236°
possible paths of interest rates that lead to these states.

Short term forward rates at the nodes of the lattice can be computed
based on market data, in such a way that the arbitrage free property is
satisfied. Alternative techniques for fitting a binomial lattice to market
data are bevond our present task. Readers are referred to Ho and Lee [1986]
or Sharpe [1985] for comprehensive discussions, and to Bookstaber, Jacob
and Langsam [1986] for critique. In our work we use the single factor model
of Black, Derman and Toy [1987].

Once the binomial lattice has been fit to the current term structure —
in itself a difficult and compute intensive process — we can represent the
short term rate at time period ¢ and at state w by the relation

Tiw = Teoky (4)

The quantities ryg. k; for t = {1,2,3,...,T} represent the 0-th (i.e., ground)
state, and the volatility of short term rates at period t; they are parameters
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Figure 2: Binomial Lattice of Interest Rates.

estimated by the binomial lattice model of choice. A large number of interest
rate scenarios is computed by sampling paths from the binomial lattice using
equation (4). A massively parallel procedure for this task is presented in
Section 4.3.

2.3 Cash-flow Calculations for Mortgage Backed Securities

We now complete the presentation of the valuation framework by reviewing
cash-flow generation methods for a particular class of interest rate contin-
gencies: mortgage backed securities (MBS, for short). For a comprehensive
treatment of this topic refer to Fabozzi [1987] or Bartlett [1988].

The cash-flow model determines the cash flow at discrete points in time,
(le., t € {1,2,3,...,T}) for each interest rate scenario. The first step is
to determine the monthly prepayment rate. We use data provided in the
form of tables of monthly survivorship (the complement of prepavment).
Each table has as its dimensions the range of possible interest rates —
e.g., 6% 1o 16% — and the age of the security. If the one-vear forward
rate from the simulation model is f; in month ¢, we simply look up the
monthly survivorship in the ¢ — th column of the table, and at the row that
corresponds to the interest rate closest to f;. These prepavment tables are
large datasets: the range of interest rates is divided into small increments
(e.g., in increments of .01 basis points), and the maximum number of months
under consideration for the security is 360. Hence, each table has 360,000
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entries.

Once the monthly survivorship is read from the table it is straightforward
to calculate the cashfiows: see for example Fabozzi [1985]. The interest rate
on the underlying mortgages, 7, and the servicing rate, «, are known. Also
known is the remaining term, n. and the current mortgage balance mlg.
For each month we calculate the monthly cashflow that would occur without
any prepayment of principal or servicing fees, and then add prepayment of
principal and net the servicing fee. We give details below.

Let the monthly cashflow, interest and principal, expected in month ¢
without prepavment or servicing fees be mp,, and the remaining balance at
the end of month ¢ be mb,. Then:

1(1 + ,")n—l+]

mp; = mby- - 5
o A+ g o ()

The dollar amount of interest paid by the homeowner, in month ¢, is
I, = mby_y %i (6)

The net interest ni; received by security holders in month ¢ is this interest
less the servicing fee, or

711{1 = mb,_l * ('l - 3) (7)

The scheduled principal payment, sp;, is the monthly payment less the
morigage interest, or

spr=mp; — I (8)

The amount of principal prepaid is determined by the monthly survivorship

factor, call it z;. Then, the prepayment in month ¢ of principal, prq, is
calculated as follows:

pri = (1 - z¢)(mbi~1 — sp:) (9)

The net cash flow to investors in this pass through security in month ¢,
cfi. is the sum of net interest, scheduled principal payments, and principal
prepayments:

cft = niy + sp; + pry (10)

Finally, the mortgage balance is computed recursively by the equation

}-a

mbt = mb1_1 - (-sz ‘:‘Prt) ( 1)
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Tor each iteration of the simulation, we determine the sequence of survivor-
ship factors {z;} from the prepayment table, and then compute the cash-
flow by month for the security under analysis. These cash-flows are then
used in equation (1).

3 The Connection Machine CM-2 System

3.1 Hardware Overview

The Connection Machine, see Hillis [1985], is a fine grain massively parallel
supercomputer. It uses a single instruction stream, multiple data stream
(SIMD) methodology: each processor executes the same instruction broad-
cast by a microcontroller on its unique piece of data, or optionally sits out
of the computation. The CM-2 has from 4096 to 65536 bit-serial processing
elements, each with local memory of either 8 or 32 Kbytes. Each processor
also has access to 32-bit or 64-bit floating point acceleration hardware.

The interconnection scheme for processors in the CM-2is an N-dimensional
hypercube. The hardware supports two distinct types of communication
patterns: local grid-based patterns, and general patterns. Local grid-based
patterns are supported through direct use of the hypercube wires, while gen-
eral patterns are supported through the router, which implements arbitrary
point to point communication.

The CM-2 is controlled by a serial front-end computer. Programs are
compiled, debugged, and executed on the front-end computer, passing CM-2
instructions to the microcontroller as appropriate. Data can also be passed
either way along this path.

3.2 Programming Model Overview

The programming model for the Connection Machine is called data paral-
lel computing, which means that the same computations are performed on
man)y data elements simultaneously. Each dzta element is associated with
a processor of its own. Applications are not restricted, however, to data
sets matching the phyvsical size of the machine. The Connection Machine
syvstem software supports the abstraction of an arbitrary number of virtual
processors (VPs), allowing users to easily handle data sets with potentially
millions of elements. VPs are implemented by partitioning the memory and
time-sharing the cycles of each physical processor. A collection of virtual
processors used to handle a data set is called a VP set, and the number of

12



virtual processors that cach physical processor must emulate is called the VP
ratio. Note that because of pipelining and other optimizations. the expected
linear slowdown from implementing VPs is actually a worst case scenario.

Applications that have no dependencies between data elements are of-
ten called embarrassingly parallel, and are easy to implement efficiently on
any parallel computer. Most applications. however. exhibit dependencies
between data elements. This gives rise to the need for communications be-
tween the processing elements. Furthermore, there is often a natural physical
shape to arrange the data, such that dependent elements are laid out close
to one another. Weather simulations, for instance, are naturallv laid out
in a three dimensional grid representing the volume of atmosphere being
simulated.

The Connection Machine software allows users to specify the shape of
a data set by associating a geometry with the VP set of the data. Geome-
tries can be any N-dimensional Cartesian grid. Because an N-dimensional
hypercube can be projected onto any lower dimensional Cartesian grid, the
software can lay out the grid on the machine so that there is either a hy-
percube wire between each neighboring grid point, or they are held in the
same physical processor (i.e., reside on VPs that are emulated by the same
physical processor), and therefore local communjcation is fast and efficient.
This kind of communication is called NEWS communication, and processors
in the grid can be uniquely identified by the N-tuple of Cartesian coordi-
nates called its NEWS address. General router-based communications is
performed with a single unique identifier for each VP called its send ad-
dress.

An important class of Connection Machine instructions that combine
computations and communications are the parallel prefix operations, (Blel-
loch [1988]). We discuss the scan and the spread primitives here, although
other variants exist. These primitives apply associative binary arithmetic
operators to a variable in 2 binary combining tree along one axis of the ge-
ometry that holds the variable. For example, a plus-scan zlong the first axis
of a 1-dimensional VP set for the variable x[0},x[1].... x[n] produces the re-
sult ¥[0],y[1].....¥[n), where y[i]=x[0)+x[1]+...+x[i) (i.e., the cumulative sum
to that point in the axis). User options allow the result to omit 2 processor’s
own value for x (e.g., y[i}=x[0]+x[1]+...+x[i-1]) and/or for the operation to
proceed in the reverse order (e.g., ¥[ij=x[ij+x[i+1]+...+x[n]). A spread is
2 scan without directionality. The result of an add-spread is defined by
yli}=x[0)+x[1]+...4+x[n).

The primitives have natural extensions to multi-dimensional geometries.
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For example, a plus-scan operation on the set of variables x[0}{0]. ... x{m][n]
along the first axis of 2 2-dimensional geometry, will produce the result ¥{i]{j)
= x[i)[0)+x[i)[1]+ ... = x[i]lj], for all i=1.2.3.....m, and j=1,2,3,....1. Finally,
note that with a binary combining tree implementation, the execution time
of such operations is proportional to the logarithm of the number of VPs,
and thus scales nicely to large data sets.

The programming languages supported for the Connection Machine are
C, Fortran, and Lisp. The Parallel Instruction Set (PARIS) subroutine
library contains all of the instructions that manipulate processors or data
on the CM, and can be called directly from serial programs running on the
front end for explicit low level control of the machine. In addition, higher
level versions of each of the Janguages have been built on top of PARIS: C*,
CM Fortran, and *Lisp.

4 Massively Parallel Computing for Option Ad-
justed Analysis

The simulation procedure parallelizes nicely if each processor carries out
all computations for a single interest rate path. Multiple processors can
then execute in parallel multiple simulations. Communication across pro-
cessors is only required in computing statistics across all simulations. This
form of parallelism has been proved very successful on shared memoryv and
distributed memory architectures with a limited number of processors, see
Zenios [1989].

On the CM-2. however, we want to exploit the massive parallelism in
performing the calculations for each path, in addition to simulating multi-
ple paths simultaneously. Otherwise, a large number of processing elements
will remain unused and the performance of the program will fall far short of
the typical performance of the hardware. The path dependencies that are
inherent in the OAA methodology appear, on first examination, to preclude
the exploitation of parallelism within each path. However, we have found
formulations of the method that do allow this form of parallelism. The fol-
lowing sections illustrate the efficient parallel implementation of the primary
components of the OAA model.

The key to our implementation is the configuration of the CM-2 process-
ing elements into a 2-dimensional NEWS grid of size 1024 x 512. Each one
of the 1024 rows of virtual processors of the 0-axis carry out the calculations
for a single path. The first 360 virtual processors in each row execute the
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path dependent calculations (the remaining 152 are idle). In the sequel we
will index virtual processors in the 0-axis by s = 1,2,3,....1024 indicat-
ing simulation paths, and virtual processors in the l-axis are indexed by
1=1.2,3,...,360 indicating time. Calculations along the 1-axis (time) are
explained in detail, and it is to be understood the identical calculations are

carried out simultaneously by all the VPs along the 0-axis (simulation).

4.1 Present Value Calculation

The present value calculation that appears in equation (1) can be written
in the form:

360 1

PV =Y eff ] e (12)

i=1 =1 (1 + T,f + OCZS)

A scan-multiply operation on the ratio m produces at virtual pro-

cessor with NEWS address (s,t) the value pj = [[t_, s=—=—=. Each

7=1 {1+ri+oes)
virtual processor proceeds to multiply the local values of ¢f! with p{ and a
scan-add on the product completes the calculation.

4.2 Monte Carlo Simulation

The generation of mean-reverting lognormally distributed series is not an
associative operation, due to the mean-reversion term (3). Hence, an im-
plementation that uses the scan primitives efficiently is not possible. It is
possible, for example, to generate the lognormally distributed series first
using the scans, and then proceed to apply the mean-reverting equation.
However, this approach implies that whenever R(f;) # 0 (see equation (3))
the generated series for periods ¢ to 360 has to be discarded, the mean-
reversion term R(f:) added, and a lognormally distributed series generated
anew using the scan primitives. This approach may lead 10 2s many as
360 repeated uses of the scan primitives and was observed. in a preliminary
implementation, to be inefficient.

The Monte Carlo simulation phase was implemented by marching for-
ward along the time-axis in steps of 1 and generating in parallel the states
of 1024 interest rate paths at each point in time. Of course this implemen-
tation requires the use of only 1024 virtual processors. Hence, instead of
operating on the NEWS grid of dimension 1024 X 512 we implement this
primitive on a NEWS grid of dimension 1024 x 4 at a VP ratio of 1. Now
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it is possible 1o associate cach column of VPs of the 1024 X 4 grid with a
column of the 1024 x 512 grid. Doing so we facilitate the transfer of data
from the 1024 X 4 grid where they are generated to the 1024 x 512 grid
where they are used for subsequent analysis without the need to use router
communications.

As will be shown in the section on computational results the generation
of mean-reverting interest rate paths is the most expensive part of the sim-
ulation. Futhermore, its performance does not scale with the use of larger
number of processors since it is already executed at a VP ratio of 1.

4.3 Sampling from a Binomial Lattice

In order to generate sample paths from the binomial lattice we need to
determine the state of each path at each point in time. Once the state
w of the s-th path in the binomial lattice is specified at virtual processor
with NEWS address (s,1) the short term rate can be computed by 2 simple
application of equation (4). The problem in constructing a continuous path
is that the state of the lattice at instance { must be attainable by either
an “up” or “down” step from the state at instance ¢ — 1. Such a sequence
of states is produced on the CM-2 as follows: A random bit m; € {0,1}
is first generated at each VP. A scan-add operation along the time axis on
these bits generates an index (w), indicating the state of the VP (i.e., its
distance from the ground state ry). Clearly, the distance from the ground
state at instance ¢ differs by at most one unit from the distance at instance
t — 1. Once the distance «; is determined equation (4) can be evaluated
simultaneously by all V'Ps. Figure 3 illustrates the sampling of two paths
from a binomial lattice using this procedure.

An alternative way to the sampling of binomial lattices has been de-
veloped by Shtilman and Zenios [1830]. Their method eliminates the need
to construct random path samples from the lattice. Instead, it generates a
prespecified set of paths. These paths are then used to provide estimates for
the path dependent discount functions that are within a user specified error
from the exact value, with a given probability. These paths are constructed
by sampling all possible paths from the first 7 time instances of the lattice
and completing each path from 7 + 1 to T by any arbitrary sequence of
change of state.

This sampling scheme is implemented as follows. The CM-2 is config-
ured as a two-dimensional NEWS grid of dimensions 27 x 512. The binary
representation of row index s of this grid specifies the change of states (i.e.,
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miy ) for the s —th path from instance 0 to 7. The change of states from in-
stance 7 +1 10 360 is completed by the (arbitrary) sequence {01010101...}.
Once the binary sequence is completed we use once more a scan-add opera-
tion to evaluate the state wy of each VP and equation (4) is used to evaluate
the short term rates. Figure 4 illustrates the sampling of all paths {from the
first three time periods of a binomial lattice.

4.4 Lookup of Prepayment Tables

The estimation of prepayment characteristics of a pool of mortgages is a cen-
tral issue in the use of OAA methods. Several models have been proposed
in the literature, and are used in practice with varying levels of success. See,
for example, Richard and Roll [1989] for a discussion of the key prepayvment
factors for mortgage-backed securities and a related model. The massively
parallel implementation of prepayment models is the topic of current re-
search and will be reported elsewhere, Hutchinson and Zenios {1990].

We consider here the case where the prepayment characteristics of a
mortgage-backed security have been generated by a separate model and are
stored in a table of monthly survivorship factors. This is not an unreasonable
modeling practice: prepayment characteristics of mortgage securities are re-
evaluated rather infrequently, e.g., on a monthly basis, whereas the OAA
model is usually run on a daily basis, or, potentially, in real time.

Our problem is then one of looking up the correct monthly survivorship
factor for the given level of interest rates and age of the mortgage. The
monthly survivorship data is given in a two-dimensional table. The 1-axis
indicates the age of the mortgage (1 — 360 months) and the 0-axis indicates
the interest rate in a given range (e.g., 6 — 16%) in small increments (e.g.,
0.01). This table is stored in a two-dimensional NEWS grid. The dimension
of the l-axis is 512, with only the first 360 columns being active. The
dimension of the 0-axis depends on the range and increment of interest
rates. In the example given above the 0-axis has dimension 1024 with only
the first 1000 rows being active. It is only by coincidence that the dimension
of the 0-axds of the NEWS grid used for the simulation is identical to the
size of the grid required by the survivorship table. Hence, these two grids
are associated with different VP sets. We shall refer to these sets as the
simulation- and data-vp-sels respectively.

Looking up the survivorship factors given a path of interest rates is
now a simple data transfer from the data- to the simulation-vp-set. Virtual
processor with coordinates (s.t) in the simulation-vp-set will find the row
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index 7 of the interval in the data-vp-set that corresponds to interest rate
Tst. Let Rg be thie lowest interest rate in the survivorship table, and ¢ be
the increment between successive rows. Then the row index is computed by

= |l (13)

The (s,1)—th VP from the simulation-vp-set will get from the (i.7)—th VP
of the data-vp-set the survivorship factor z, using router communications.
This factor is then used in the cash-flow calculations of the {ollowing section.

4.5 Cash-flow Calculations for Mortgage Backed Securities

The paraliel evaluation of the cash-flow equations of Section 2.3 presents
some difficulties due to the recursive equation (11). It is possible to develop
an alternative formulation of the cash-flow equations that lends itself to the
application of the scan paralle] primitives.

Let -1
(14 4)"
R SR T (24)
and
Pt = (1—I1)(1‘“Ci+i) (15)

After some algebrz using equations (5) — (10) we may rewrite the recursive
mortgage balance equation (11) as

mb; = mb;_y * py (16)

This in turn can be rewritten as

1
mb; = mbg H pr (17)

7=1

Equation (17) can now be evaluated using a scan-multiply operation that will
produce at the ¢ —th VP in each row of the NEWS grid the value []_; p-,
and a multiplication of the result by the constant mbg will produce the
correct mortgage balance exclusive of prepayments. Scheduled pavment,
net interest, prepayment and total cash flow at each point in time can then
be evaluated simultaneously for all ¢ = 1,2,3,...,T by the sequence of
equations
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Function CM time | Elapsed time | MFLOPS
(seconds) (seconds)
Present value 0.15 0.15 93
Monte Carlo simulation 0.50 0.53 38
Random sampling of binomial lattice 0.24 0.25 39
Prepayment table lookup 0.27 0.28 NA
Cash-flow calculations 0.23 0.23 117
Table 1: Execution times for 1024 simulations on the Connection Machine
CM-2a (seconds).
Spt = mbt_l(c, - 1) (18)
Tl.it = m‘bi_]_(i - 5) (lg)
pre = (1= =) (mbiy — sp:) (20)
cfe = spi+mnig+pr (21)

5 Computational Results

The procedures of the previous section were implemented in C/Paris for the
Connection Machine as part of a library of financial routines, and this library
was used to build an OAA model. The library was built on top of Paris
release 5.2. The results we report here are obtained using single precision
(i.e., 23 bits in the mantissa) arithmetic, although double precision (i.e., 52
bits in the mantissa) is also available. A partial listing of the entries of the
library is given in the Appendix.

Individual modules of the library were first tested both for efficiency in
terms of solution times, and in terms of the sustained computing rate. All
experiments were carried out on a 4K processor model CM-2a with a Sun-
4/280 front end, 32-bit fioating point accelerators and 8§ Kbyvtes of memory
per processor. In our implementation we use a 1024 x 512 NEWS grid for a
total of 2° virtual processors. Hence, the implementation is executed on the
4K CM-2a at a VP ratio of 128. Some improvements in performance will be
realized if the programs were run on a bigger machine. Table 1 summarizes
the execution time for the key components of the library in executing a total
of 1024 simulations, together with the sustained MFLOPS rate.
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i Mode | 4K CM-2 | 8K CM-2 | 16K CM-2 | CRAY X-MP

| Monte Carlo Simulation 1.77 1.07 0.78
| Binomial Lattice Sampling 1.49 0.71 0.37

17.0
6.0

i

i

Table 2: Performance of the option adjusted analvsis model on the CM-2
and CRAY X-MP (seconds).

A complete option adjusted analysis was carried out for a single mort-
gage backed security (GNMA) and was compared to an identical model
implemented in Fortran 77 on a CRAY X-MP/48 vector supercomputer,
Zenios [1989]. The program typically takes 4-6 iterations of the nonlinear
equation solver to compute the oas to an accuracy of 0.1 basis points. The
solution time for both the CM-2 implementation and the CRAY X-MP code
are reported in Table 2. The CRAY code was compiled using the {77 vector-
izing compiler. It is possible that some gains in performance can be realized
with the CRAY code, with suitable modifications of the implementation to
take advantage of the vector architecture beyond what is already achieved
by the compiler.

6 Conclusions

Compute intensive financial simulations are well suited for execution on mas-
sively parallel architectures. While the execution of multiple simulations is
easily parallelizable, the efficient execution of path dependent calculations
is possible only with suitable modifications of the algorithms. It is then pos-
sible to implement the path dependent calculations by combining efficiently
communications with computations via the parallel prefix primitives.

The performance of the massively parallel option adjusted anzalysis model
on one of the smaller Connection Machine systems compares favorably with a
CRAY X-MP vector supercomputer. As a result of very short response times
it is possible to use such models in real time and to carrv out a wide range
of sensitivity analvses. We have implemented an interactive user interface
that allows users to compute option adjusted spreads, price, duration and
convexity, projected price paths or average cash-flow statistics. The response
time, including intializations, calculations and graph generations are only a
few seconds (2-10) for most functions. Even the generation of a complete
path of projected prices is generated well within half minute of wall clock
time.
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A The Connection Machine Financial Library

We provide in the following table a list of the financial modeling primitives
on the Connection Machine. Reported times are for the execution of calcu-
lations on a 1024 x 360 NEWS grid, on a 4K CM-2a with 32-bit floating
point co-processors and a Sun4-280 front-end.

No. | Function Real Time | CM Time | MFLOPS
{seconds) (seconds)

i 1 prval 0.15 0.15 93

b2 psa-prepavment 0.06 0.06 31
3 table-lookup 0.28 0.27 NA
4 rand-normal 0.25 0.25 94
5 rand-lognormal 0.42 0.40 73
6 rand-meanrev 0.53 0.50 58
7 sample-binomial-lattice 0.25 0.24 59
8 mortgage-cashfiow 0.23 0.23 117
9 vector-mean .00054 .00041 g
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