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Introduction
Motivation
Many time series contain sequences of frequently 
occurring patterns, often called motifs. Motif discovery 
is used to reveal trends, relationships, and anomalies, 
and assist users in hypothesis evaluation and knowl-
edge discovery. Efficient algorithms for detecting motifs 
in time series data1 have been used in many applica-
tions, such as identifying words in different languages, 
detecting anomalies in patients’ medical records over 
time,2 and chiller efficiency in data centers.3

Figure 1 shows an example of the visual analysis of 
a pair of data center chillers (chiller 1 and chiller 2), a 
percentage utilization time series in which different 
motifs were discovered. A chiller is a key component of 
the cooling infrastructure of a data center.4,5 The cool-
ing efficiency of a chiller unit, also called its coeffi-
cient of performance (COP),6 indicates how 
efficiently the unit provides cooling and is defined as 

the ratio between the cooling provided and the power 
consumed. In Figure 1, chiller 1 is the primary chiller. 
Chiller 2 is the secondary chiller, which is used only 
when the utilization of the primary chiller becomes 
high (close to 100%). Motifs are a sequence of frequently 
occurring patterns, depicted by rectangles. Each motif 
is specified in terms of its starting and ending times. 
Motifs can be of varying lengths, with many shorter 
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motifs nested within longer motifs, as a consequence of 
the level-wise motif mining algorithm.3 Motifs are 
colored according to how efficiently the chiller ensemble 
performs within the motif.

In addition to discovering frequent patterns in the 
past data, users also want to predict future behavior. 
For example, data center service managers and system 
analysts want to predict the next day’s chiller utiliza-
tion from the past data. A retailer needs to predict the 
number of products to be stored in the warehouse this 
month using last year’s sales data. In this paper, we also 
apply pattern-preserving methods to predict the next 
day’s resource utilization, thus avoiding the risk of 
exceeding the provided resource capacities, which can 
lead to damage or unavailability of equipment.

Chiller operators can examine and explore the 
motifs discovered in the historical data (before 7 
September in Figure 1). The motifs are color-coded by 
their efficiency; the red motifs are less efficient than the 
blue. Figure 1 has 1 day of predicted data, starting at 
09-08 00:00 and ending at 23:59. The motifs in the 
predicted period inform the operator of the future effi-
ciency of the system. When low efficiency motifs (red) 
are predicted, the service manager could make suitable 
configuration changes, if possible to transform the 
operation to more efficient motifs. Furthermore, in this 
specific instance, the predicted time series indicates 
that chiller 2 would probably switch on during the time 
interval 11:06–18:08 to assist chiller 1.

In summary, visual exploration of motifs in multi-
variate time series has to overcome the following 
challenges:

•	 displaying and predicting a large number of 
potentially overlapping motifs associated with 
multivariate time series;

•	 searching and retrieving the most efficient motifs 
by efficiency; and

•	 visually analyzing both the motifs and the con-
text around the motifs for root-cause analysis.

Related work
A common method to visualize time series patterns is 
to use line charts. Line charts are widely used and are 
intuitive and easy to understand. But if the dataset 
contains many time series with a large number of 
observations and many repeated patterns, the time 
series will have a high degree of overlap, which obscures 
important information. Buono et al7 provided the abil-
ity to interactively search patterns in multivariate time 
series by preselecting an interesting pattern. McLachlan 
et al.’s LivePRAC8 supports the analysis of large sys-
tem management time series with a visual comparison 
of devices and parameters. In work by Hao et al.,9 the 
problem of visualizing large time series is addressed by 
pixel cell-based high-density displays.

Motif mining is the task of finding approximately 
repeated subsequences in multivariate time series, 
which is studied in various works (e.g. references 5, 10 
and 11). Mining motifs in symbolized representations 
of time series can be found in the rich body of literature 
in bioinformatics, where motifs have been used to char-
acterize regulatory regions in the genome. As the work 
closest to ours, we explicitly focus on the SAX repre-
sentation,12 which also provides some significant advan-
tages for mining motifs. First, a random projection 
algorithm is used to hash segments of the original time 
series into a map. If two segments are hashed into the 
same bucket, they are considered as candidate motifs. 
In a refinement step all candidate motif subsequences 
are compared using a distance metric to find the set of 

Figure 1.  Exploring frequent patterns (motifs) in data center chiller utilization multivariate time series (x-axis: time; y-axis: 
percentage utilization of two chillers; blue, high cooling efficiency; red, low cooling efficiency). This figure shows a data 
center chiller utilization multivariate time series line chart with actual and predicted data measured in 1-minute intervals. 
Frequently occurring patterns in the time series, also known as motifs, are represented by rectangles of different sizes. 
The height of a motif is proportional to its average duration. The color of a motif represents its cooling efficiency, which is 
the ratio between the cooling it provides and the power it consumes. Efficiency-coded motifs allow service managers to 
compare chiller efficiency at different periods of time. Motifs discovered in the predicted data provide information about 
future chiller cooling efficiency. The certainty band shows the confidence of prediction. The key contribution is to discover 
and provide visual analytics of frequently occurring patterns for system monitoring and planning.
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motifs with the highest number of non-trivial matches. 
A contrasting framework, referred to as the frequent 
episode discovery, is an event-based framework that is 
also applicable to symbolic data that are non-uniformly 
sampled. This enables the introduction of junk, or 
‘don’t care’, states into the definition of what consti-
tutes a frequent episode.

To visualize motifs, Lin et al.’s VizTree13 transforms 
a large time series into a symbolic representation, 
encoding the data into a tree with branches to repre-
sent symbols and motifs. The frequency of a motif is 
encoded in the thickness of a group of branches. Lin  
et al. employ both tree and line charts to link different 
pieces of information. To understand a motif, VizTree 
requires user domain knowledge and interactions on 
the tree. To simplify the motif analysis process, Ordonez 
et al.14 add radial representations to their line charts 
for further analyzing the relationships among their 15 
patients’ medical records over time.

Holt15 and Winters16 both used exponentially 
weighted moving averages to forecast seasonal sales 
data. Their forecast is a function of past and current 
sales using exponential smoothing. Taylor17 applied the 
Holt–Winters techniques to predict daily supermarket 
sales using exponentially weighted quantile regression 
for inventory control. Taylor extended the exponential 
smoothing-based forecast to cumulative distributed 
function level forecast for better prediction. We apply 
Holt–Winters algorithms to predict the next day’s chiller 
utilization for the data center. The results from Holt–
Winters are very close to our prediction results, but 
peaks are missing from their prediction. Ichikawa and 
Tsunawaki18 introduced a visualization environment 
that allows users to view a large number of stock price 
predictions using different types of line charts, texture, 
color, and 3D graphs. Masse19 proposed a visual 
approach for the US presidential election prediction.

All the above techniques have contributed innovative 
visualization solutions emphasizing the finding of motifs 
and transforming large volumes of data into valuable 
information. However, analysts want to have an overview 
of repeated patterns and the transitions between those 
patterns in a single view. In addition, they want to iden-
tify a motif as the most or least efficient using a perfor-
mance metric, for example the chiller cooling efficiency 
metric for a data center or an oil well production metric 
for oil well data. For data center and resource utilization 
seasonal data, we would like to inform the analysts how 
many system resources are needed for the next day.

Our contribution
For analyzing frequent patterns in large time series, 
we derive four new techniques: (i) motif discovery and 
layout, using colored rectangles for visualizing the 
occurrences and hierarchical relationships of motifs in 
a multivariate time series; (ii) motif distortion, which 

enlarges either motif or non-motif areas to allow the 
analyst to focus on the content and the structure of 
the areas; (iii) motif merging, which allows analysts to 
combine repeated motifs into a single area for data 
reduction and visual uncluttering; and (iv) motif 
seasonal data prediction using pattern-preserving 
prediction algorithms that service managers can use 
for resource planning. In order to quickly identify the 
most efficient motifs from a large time series, each 
motif is linked to its performance coefficient for quick 
retrieval of information as needed.

We have combined the above visual analytics tech-
niques to provide a better understanding of the results of 
the motif mining algorithms, allowing the service man-
agers to explore the big picture, namely the sequence of 
motifs and their behaviors, including their dependency 
on other attributes such as the cooling efficiency in a data 
center. Our motif discovery and data mining approach 
provides both qualitative and quantitative characteriza-
tions of the time series. Finally, we evaluate these tech-
niques with respect to three real-world applications: data 
center chiller utilization, oil well flow production, and 
system resource utilization prediction.

The paper is structured as follows: in ‘Pattern finding 
in large multivariate time series’, we introduce a visual 
pattern analysis pipeline and describe the main stages 
used to discover motifs in a large multivariate time series. 
In ‘Motif pattern visualization’, we present the construc-
tion of visual motif layouts, our new visualization tech-
niques, and pattern preserving prediction. ‘Applications 
and evaluation’ describes three applications and evalua-
tions in which real-world data are used. The final section 
contains the conclusions and future work.

Pattern finding in large multivariate 
time series
A schematic overview of our approach is provided in 
Figure 2. The illustrated process can be subdivided 
into three phases: (i) motif pattern discovery phase, 
where motifs are discovered in a multivariate time 
series and characterized in terms of an efficiency 
metric; (ii) the motif visual analytics phase, to lay out 
the discovered motifs in the same multivariate time 
series; and (iii) the visual prediction, to visualize the 
predictions for the next day’s data with preserved 
patterns. With the new motif distortion and merging 
techniques, users are able to visualize the relationships 
and efficiencies of the motifs. As we will show, a 
combination of visual and motif analysis is the key to 
finding trends and anomalies in the time series.

Motif pattern finding techniques have previously 
been described in reference 3. Our primary goal is to 
link the multivariate, numeric, time series data to high-
level efficiency characterizations. We decompose this 
goal into symbolic representation, event encoding, motif 
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mining, and efficiency characterization, and thus we use 
motifs as a crucial intermediate representation to aid 
data pattern analysis and reduction. The following are 
the main stages involved in discovering frequent motifs.

Event encoding
We are given a multivariate time series T = ‹t1,…,tm› 
where each real-valued vector ti, for example, captures 
the utilization values of an ensemble of chillers. We first 
perform k-means clustering on the multivariate time 
series, considering each time point as a vector, and use 
the cluster labels as symbols to encode the time series. 
The number of clusters can be appropriately chosen; in 
this particular instance we found 20 clusters provide a 
good trade-off between separation of clusters and size of 
individual clusters.3 Observe that the multivariate series 
is now encoded as a single (one-dimensional) symbol 
sequence.3 Essentially, we have stripped off the temporal 
information, clustered the data, and put the temporal 
information back, thus ‘redescribing’ the data. The 
resulting sequence of cluster labels is analyzed to detect 
change points. Change point detection transduces the 
symbol stream into a sequence of events where an event 
is defined as a transition in the cluster label.

Motif discovery and mining
Frequent episode mining is conducted on the transition 
event stream to detect repetitive motifs. The framework 
of serial episodes with inter-event time constraints is 
used. The structure of a serial episode α is given by:

α = E E Ed dn
n1

(0, 1]
2

(0, -1]      →  →

E1,…, En are the transition events characterized by a 
pair of cluster identifications participating in the 
transitions. Each pair of event-types in α is associated 
with an inter-event constraint, which specifies the 
maximum allowed time gap between them. The mining 
process follows a level-wise procedure similar to the 
Apriori20 algorithm, that is candidate generation fol-
lowed by counting.

The candidate generation scheme is based on match-
ing the n–1 size suffix of one n-node frequent episode 
with the n–1 size prefix of another n-node frequent epi-
sode at a given level to generate candidates for the next 
level. The time complexity of the candidate generation 

process is O(m2n), where n is the size of each frequent 
episode in the given level and m is the number of fre-
quent episodes on that level, as all pairs of frequent epi-
sodes need to be compared for a prefix–suffix match.

The algorithm for counting the set of candidate epi-
sodes is given in Algorithm 1. The frequency measure 
for an episode is based on non-overlapping counting. 
Two occurrences, that is sets of transition events cor-
responding to a motif, are said to be non-overlapping if 
they do not share any portion of the time series.

Efficiency characterization
Finally, each motif is characterized in terms of an 
efficiency metric. It is difficult (and subjective) to 
compare two motifs in terms of their efficiency by 
inspecting them visually. Therefore, it is necessary to 
quantify the efficiency of all motifs by computing a 
suitable metric for them. This enables efficiency 
comparisons between motifs: their categorization 
as ‘good’ or ‘bad’ from the efficiency metric point of 
view. Furthermore, this information helps to provide 
guidance to a service manager or a management 
system regarding the most ‘efficient’ configurations.

Figure 2.  A schematic overview of our approach.
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In general, we use the above methods to map a multi-
variate time series to frequent patterns. Now the chal-
lenge is to translate these discovered patterns back to the 
original time series for users to continue to analyze the 
patterns and their behaviors. This gap requires visualiza-
tion to map the discovered motifs back to the time series.

Motif pattern visualization
Motif layout
After applying the above-mentioned methodology, we 
present the discovered motifs in a single display. For 
nested motifs, it is often difficult to recognize their start-
ing and ending time; a long-duration motif can contain 
several short-duration motifs or can overlap other 
motifs. To overcome these difficulties, we derive a new 
layout algorithm which is based on the length of the 
motifs. In order to be independent of small variations 
length we use the statistical rank of the average length 
and use this information to represent the motifs with 
rectangles. The width of the rectangle is defined by the 
duration of the occurrence and the height is calculated 
using the following formula:

height motif
rank avg motif length

( )
( ( . ))

=
−nrOfMotifs

nrOfMotifs −−1

As stated in the formula above the height of the rectan-
gles of the same motif have the same height to ensure the 
visual similarity of rectangles belonging to the same 
motif. Additionally, we scale the result of the equation 
above to the interval from 0.5 to 1.0 to make sure that all 

occurrences – even the ones with low ranks – are visible. 
The color of a rectangle represents the efficiency of a 
motif – different colors are used to distinguish between 
different efficiency levels. The definition of efficiency is 
application-specific and is usually defined by the service 
manager. The nested rectangles are used for visualizing 
the hierarchical relationships among motifs. The rectan-
gle’s height is linearly proportional to the statistical rank 
of the average duration of a motif. The statistical rank is 
used to distinguish motifs with nearly the same height. 
Figure 2 shows 11 consecutive occurrences of motifs 
(blue rectangles) nested in two other types of motifs 
(yellow and pink rectangles).

Visualizing the properties and behaviors of motifs 
in a massive multivariate time series is a complex 
task because there may be a large number of motifs 
(hundreds or even thousands) and they may be nested 
and overlapping. We introduce two new techniques, 
motif distortion and motif merging, to enable analysts 
to perform the following tasks:

•	 explore motifs and their structure; and
•	 find the root cause of a low-efficiency motif by 

analyzing a sequence of transition events in a time 
series before the low-efficiency motif occurred.

Motif distortion
Distortion enlarges either areas that contain motifs or 
areas that do not contain motifs using a user-activated 
slider. Distorting the time series is done by applying a 
specific density-equalizing distortion technique. We 
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calculate weights for each time interval between two 
consecutive data points and use them as the input to 
the distortion algorithm.

These weights are based on the number of motifs 
occurring during that time interval. In a preprocessing 
step, we calculate the weights for both motif areas and 
non-motif areas within each time interval. To enlarge 
the motifs, we use the number of motifs in a time series. 
To enlarge areas without motifs, we use the inverse of 
the number of motifs in the time interval. If there are no 
motifs in the time interval, we use a constant weight of 
1. The calculation of weights for enlarging motifs and 
enlarging non-motif areas is depicted in Algorithm 3. 
Figure 3 shows how the distortion algorithm works. 
Our technique attempts to enlarge or shrink areas 
according to the weights.

When the user moves the slider to the left, areas with-
out motifs are enlarged. The slider’s middle position is 
its origin scale. When the user moves the slider to the 
right, motifs are enlarged. For determining the distor-
tion for the intermediate positions of the slider, we use a 
weighted interpolation between the original scale and 
the fully distorted view.

Motif merging
In order to merge multiple occurrences of motifs to a 
single rectangle and to reduce the number of motifs 

and the visual clutter we provide a second slider (see 
Figure 4b). If the slider is moved to the right, motifs 
of the same type that begin or end at adjacent posi-
tions are combined. We define two occurrences of the 
same motif as adjacent if the time duration between 
those occurrences does not exceed a given threshold. 
The threshold is set by the user via a slider. The value 
is measured in minutes and ranges from zero minutes 
to a calculated upper bound. For each motif, we com-
pute the minimum gap length between its occurrences 
and average values over all instances of the motif. 
Note that only the same types of motifs are merged. 
Users can mouse over the time series in a merged 
motif to display the current time interval and the effi-
ciency measure value.

After applying various degrees of distortion and 
merging, the motif time series is greatly simplified for 
further visual analysis.

Pattern-preserving prediction
For our application, in data centers, in addition  
to motif detection, it is important to predict the 
resource consumption for the immediate future. 
With standard methods such as the well-known 
ARIMA and Holt–Winters prediction models, 
described in reference 21, however, in many cases 
the prediction does not provide sufficiently good 
results, as shown in Figure 5.

One reason is that the data are usually very noisy. 
Smoothing based on moving averages using a varying 
time interval can help to reduce the negative effects of 
noise on the prediction. In our data center applica-
tion, however, this is not enough. In the prediction it 
is especially important to retain peaks as they are 
essential in planning resource consumption. To obtain 
a pattern-preserving prediction, we derive a variant of 
the well-known Douglas and Peucker22 algorithm, 

Figure 3.  Distorting the time scale according to given 
weights.
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which reduces a graph to its most significant data 
points. The algorithm starts with creating a connect-
ing line, which connects the first and the last value. 
Then, it searches for the highest or lowest data point 
in between these values with respect to the connecting 
line. If the absolute height of the data point exceeds a 
certain threshold, this data point is tagged as a peak. 
The algorithm performs these steps recursively again 
until no more peaks can be found, and then the pro-
cess terminates.

After smoothing, the pattern-preserving prediction 
algorithm (Algorithm 4) generates the predicted data 

points based on the time period of the historical data as 
following:

1.	 Compute the predicted data points in hours, days, 
weeks, and months across the entire dataset.

2.	 Use daily grouping. For example, we want to 
predict the data point for the time 0:00, we look 
for all measurements made at 0:00.

3.	 Assign each of the data points different weight 
factors and aggregate the values according to 
the weights. Then, we add the currently seen 
data value to the temporary storage slot by  

Figure 4.  Motif distortion and merging operations. (a) Motif visual distortion (x-axis: time; y-axis: percentage utilization 
of chiller R1; rectangles: motifs; color: cooling efficiency). Moving the distortion slider to the right enlarges motifs. 
Moving the distortion slider to the left enlarges the non-motif areas. In Figure 4a, our technique divides the time series 
into equally sized parts and resizes each part according to the aggregated weight of the part. We first calculate a fully 
distorted view for each task (enlarging motifs or enlarging areas without motifs) and then calculate the zero slider 
position. (b) Motif visual merging (x-axis: time; y-axis: percentage utilization of chiller R1; rectangles: motifs; color: 
cooling efficiency). Move the slider to the right to merge adjacent motifs of the same type.
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multiplying it with a combined weight. The 
combinedWeights method calculates a weighted 
average of two values, v1 and v2, by using the 
userSetValue (abbreviated to α):

combinedWeights v v v v( , , ) ( )1 2 1 2 1α α α= ⋅ + ⋅ −

Applications and evaluation

Motif visual analysis has a large number of applications, 
including anomaly detection, prediction, and cluster-
ing. We will demonstrate the above techniques with data 
center chiller sensor time series, oil well production 
sensor data (e.g. oil flow, pressure), and resource utili-
zation prediction. The identified motifs help the 
users to visualize cooling/oil production efficiency 
quickly. Most importantly, service managers are 

enabled to avoid the inefficient patterns and guide the 
operations towards more efficient ones.

Data center cooling monitoring
The motif time series in Figure 6 show the utilization 
of four chillers (R1–R4) with 13,578 records at 1-min-
ute intervals. The color shows the motif efficiency 
computed from the cooling efficiency metric. The 
cooling efficiency metric, or COP, is calculated by 
dividing the heat extracted by the power consumed. 
Service managers can quickly identify that motif 5 is 
more efficient than the other motifs (blue color of 
motif 5). Furthermore, service managers are able to 
interact with the other motifs to analyze the character-
istics of these motifs. For example, in motif 5, chiller 
R2 runs at medium utilization, while chiller R4 runs at 

Figure 5.  A comparison of prediction between ARIMA and Holt–Winters prediction model and pattern-preserving 
prediction. The predicted power consumption trend line is flat in the top graph. The pattern-preserving prediction is 
better.
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high utilization. In motif 8, chiller R1 operates in a low 
utilization with many small oscillations. As motifs are 
overlaid on the time series, it is easy to observe that 
the utilization of chiller R4 is the highest in motif 5.

Evaluation.  The new motif finding, distortion, and 
merging visualization techniques have been success-
fully used on two production data centers of different 
sizes, about 300 sq. m to 13,000 sq. m, respectively, 
and containing up to hundreds of racks. Several mil-
lion records from data centers have been analyzed.

Using existing regular time series plots, as shown in 
Figure 7, can potentially take hours for data center ser-
vice managers to analyze and observe the variation of 
utilization over time. However, service managers can-
not easily determine which set of patterns represent an 
efficient mode of operation, nor can they determine 
whether a pattern had occurred previously. Usually, 

such operational patterns are characteristic of a delay 
in matching chiller cooling supply with data center 
cooling demand. Not all chillers can scale uniformly in 
capacity with a rise in demand. Also demand does 
not change uniformly over time. However, this kind of 
monitoring is essential in building efficient manage-
ment systems.

The motif time series, as shown in Figure 6, helps 
service managers identify motifs and their cooling 
efficiencies and provides guidance on how current 
performance compares with past performance. Our 
new techniques can assist service managers to move 
the chiller system to a more efficient state.

Oil well production motif observations
The picture on the left of Figure 8 is a typical oil well. 
The figure on the right shows oil flow and pressure 

Figure 6.  Visual analytics of data center cooling management. Motifs 5 and 8 are enlarged to compare their chiller 
utilization. Motif 5 is more efficient than motif 8. Motif 8’s chillers R1 and R3 have some oscillatory behavior (x-axis: 07-02 
01:48 to 07-04 21:33; y-axis: percentage utilization of chillers R1–R4; color: cooling efficiency).
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Figure 7.  Data center chiller (R1–R4) percentage utilization regular time series without motif.

Figure 8.  Oil well production time series with seven different frequent patterns with distinct colors (x-axis: time; y-axis: 
percentage oil flow and pressure; green, high oil well production; yellow, low oil well production).

time series (85,035 records) with different frequent 
patterns (motifs) identified by the efficiency of the oil 
well production volumes. A critical problem in the oil 
industry is to reduce production losses. The common 
questions are:

•	 Which oil well flow pattern is the most 
productive?

•	 What transitions occur after a big drop in oil well 
flow? How can this be recovered from?

Figure 8 illustrates the use of a combination of dis-
tortion and merging to make the motif visual analytics 
most effective. The production manager can see that 
the green motif is the most productive with an oil flow 
of up to 74%. Also, the production manager can deter-
mine that after a big drop in oil flow it is best to gradu-
ally increase the pressure as shown in the green motifs.

Evaluation.  Oil well pressure and flow are normally 
strongly correlated. However, variations do occur as a 
result of well-head problems or geological issues. The 
variations can be complicated and depend on the 

geology of the oil well and its composition. Identifica-
tion of motifs in oil well pressure and oil flow can help 
in the classification of such issues. Finding the motifs 
that are able to maximize oil flow at the normal  
pressure is the goal of the well production manager. 
Without our motif layout, it is almost impossible for 
the production manager to find these frequent patterns, 
as shown in Figure 9. Using motifs, as illustrated in 
Figure 8, the production manager can quickly find the 
most efficient motifs (green). Furthermore, production 
managers can reduce the motifs (yellow) that cause 
fluctuations in pressure (or flow). The motifs with 
high oscillations can be detrimental to well operation 
and lead to reliability issues.

Resource utilization prediction
Optimizing the utilization of servers has a major impact 
on costs in IT services centers. The basic power con-
sumption of an idle server is significant – approximately 
50% of peak power usage. This leads to the conclusion 
that a server is utilizing power best when it is fully 
loaded and idle servers should be turned off. To reduce 
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the risk of performance degradation, service managers 
have to analyze the server utilization patterns and relo-
cate applications away from underutilized servers. To 
get a reasonably high utilization, service managers are 
required to consolidate applications into fewer 
servers.

Figure 10 shows a server’s daily utilization based on 
two attributes (server utilization and number of user) of 
36,338 measurements. The time series on the left of 
Figure 10 shows the actual data. The time series on the 
right shows the predicted data on 10/15. The colored 
motifs are used to show resource utilization efficiency, 
which is the ratio between the server utilization and the 
number of user. The color of the motifs is used to show 
resource utilization efficiency (red: low; blue: high). The 
narrow certainty band indicates that it is safe to move 
the applications to another server and power down this 
server from 10 pm to 9 am the next day, as indicated by 
the red motifs. The peak time for running applications is 
during the day between hours 9 and 16 and at night 
between hours 20 and 21 for system work, as shown in 
blue motifs with high efficiencies. From our experi-
ments, a power saving of up to 30% seems realistic. 
Interestingly, the motif occurrences are highly correlated 
to the number of users as all motifs contain only those 
areas where the number of users is high. Combining 
motifs and prediction is, in this case, very important to 

enlarging the influence of motifs in the prediction pro-
cess, which leads to an overall better prediction result. 
Using motifs, service managers can quickly recognize 
which time intervals have a low utilization and which 
servers can be shut down to save energy.

Evaluation on prediction accuracy.  The server utiliza-
tion from 10/06 to 10/15 has been used to measure the 
accuracy of the pattern-preserving prediction tech-
niques. The values of each single day are predicted and 
compared with the observed actual data. The result of the 
comparison between actual and predicted data shows an 
accuracy of 70–80%, with an average accuracy of 75%. 
Figure 11 shows the predictions for one day, 10/14.

Conclusion
Finding frequently occurring patterns and analyzing 
them allows data center service managers and oil well 
production managers to determine which configura-
tions are more efficient and which ones result in poor 
efficiency so that the latter can be avoided. In this 
paper we address the whole visual analysis pipeline for 
motifs. First, we briefly describe a novel motif discov-
ery algorithm, which is based on cluster analysis, event 
encoding, frequent motif mining, and the efficiency 
characterization of those motifs. Second, we introduce 
three new visualization and interaction techniques 

Figure 10.  Resource utilization predictions using pattern-preserving visual analytics technique. An interesting 
observation shows a low-efficient motif occurred every morning from 6 am to 9 am because there were not enough users 
(x-axis: time; y-axis: server utilization and number of users; blue, high server efficiency; red, low server efficiency).

Figure 9.  Oil well production regular times series without motif.
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(motif layout, distortion, and merge) for the analysis of 
motifs discovered from mining. We allow users to 
adjust the degree of distortion and merge to generate 
the best view on a single display. To enable the users to 
find the most efficient motifs, our techniques link the 
motifs to the associated efficiency metrics for root-
cause analysis. Furthermore, our techniques provide a 
visual analytics approach for the pattern-preserving 
prediction of large seasonal multivariate data. Our 
results from both the real-world data center and oil 
production time series sensor data show that our 
techniques successfully enable users to identify both 
efficient and inefficient patterns. Furthermore, our 
techniques also provide reliable predictions. This dem-
onstrates the wide applicability and usefulness of our 
techniques. In the future, we want to detect motifs in 
real time to perform immediate intervention.
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