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Abstract: Time intervals are conventionally represented as linear segments in a one-

dimensional space. An alternative representation of time intervals is the Triangular Model (TM), 

which represents time intervals as points in a two-dimensional space. In this paper, the use of 

TM in visualising and analysing time intervals is investigated. Not only does this model offer a 

compact visualisation of the distribution of intervals, it also supports an innovative temporal 

query mechanism that relies on geometries in the two-dimensional space. This query 

mechanism has the potential to simplify queries that are hard to specify using traditional linear 

temporal query devices. Moreover, a software prototype that implements TM in a geographical 

information system (GIS) is introduced. This prototype has been applied in a real scenario to 

analyse time intervals that were detected by a Bluetooth tracking system. This application 

shows that TM has potential of supporting a traditional GIS to analyse interval-based 

geographical data.  
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1. INTRODUCTION 

Considerable work has been done in modelling and reasoning about time intervals, ranging 

from qualitative relational algebras1, 2, to rough and fuzzy extensions3-5, to applications in 



temporal queries6, 7 and temporal databases8, 9. Compared with the many contributions made to 

the reasoning aspect, methods and tools that visualise and analyse time intervals have received 

far less attention. This situation may be explained by the limitations of the conventional 

representation of time intervals, i.e. the linear representation. In this representation, time 

intervals are modelled as linear segments in a one dimensional space. The second dimension is 

often exploited as well (e.g. gantt chart and time table). However, this dimension is solely to 

differentiate the intervals of different entities and thus has no temporal meaning. Thus, in the 

linear representation, the visual distribution of intervals may vary, according to different 

ordering rules applied to the second dimension. This polymorphism prohibits the existence of a 

universal visual recognition approach for detecting patterns among time intervals. As a result, 

this hampers the development of visual techniques and tools to handle interval-based data,  for 

instance, techniques of exploratory data analysis (EDA)10 that greatly rely on information 

visualisation. Note that there exist other representations of time intervals, e.g. the cyclic 

representations11, 12 and the calendars13. However, they focus on special aspects of time 

intervals, and are not applicable in a broader range of contexts. 

This problem also exists in many information systems that deal with interval-based data, for 

instance, geographical information systems (GIS), which consider time as one of the most 

important components. In the recent development of GIS, great efforts have been made in 

spatio-temporal analysis14, 15, especially exploratory spatio-temporal data analysis (ESTDA)16-18. 

Nevertheless, the existing approaches and tools show limited ability in analysing geographical 

data with reference to time intervals. In traditional GIS, time intervals are usually represented 

by cartographical variables (e.g. symbols, labels and colours)19, animations20 or spatio-temporal 

composites21. These representations cannot explicitly display the distribution of time intervals, 

and thus limits their suitability for pattern detection. Also the lack of interactivity obstructs 

their application in ESTDA. Recently, thanks to the developments of computers science, a 

variety of innovative techniques have been introduced to analyse spatio-temporal data22-26. In 

spite of that, since most techniques are still based on the linear time representation, their ability 

of analysing interval-based geographical data is not satisfactory. On the one hand, time is often 

directly integrated with the two-dimensional (2D) space into a three-dimensional (3D) space, i.e. 

the space-time cube27-31. Gatalsky et al. 32 implemented the space-time cube into an interactive 

environment to display geographical events that occur in very short intervals (i.e. instantaneous 

events). This approach can also apply to events with a temporal extent, for example, 

representing such events as linear segments parallel with the time axis in the cube33. However, 

implementations of the space-time cube suffer from typical problems of 3D visualisation34, 35 

which will be specifically explained in the discussion section of this paper. On the other hand, 

attempts have been made to display time and space through interactively coordinated 

visualisations36. Fredrikson37, for instance, utilised a visualisation coordination system  (i.e. 

Snap-Together Visualisation38) to analyse aggregates of spatio-temporal data. In this system, 

temporal, geographical and categorical attributes are displayed in several coordinated views. As 

the time view of this tool is still based on the linear representation, it is limited to instantaneous 

events and does not show any potential in analysing interval-based data. 

To overcome these difficulties, an alternative representation of time intervals can be considered. 

In 1997, Kulpa introduced a presentation of time intervals as points in a metric 2D space39. He 

elaborated the use of this diagrammatic representation in interval reasoning and arithmetic40, 41. 

Later, Van de Weghe et al. 42 named this representation the Triangular Model (TM) and applied 



it into an archaeological use case. Recently, Qiang et al. 43, 44 have extended TM to represent and 

reason about rough and fuzzy time intervals. Beyond their theoretical extensions, these 

contributions have presumed considerable potential of TM for visualising and analysing time 

intervals.  However, until present, the analytical power of TM has not been thoroughly 

investigated. To fill this gap, this paper investigates the use of TM for querying and analysing 

time intervals. In order to demonstrate the uses of TM, a prototype tool GeoTM is developed, 

which implements TM in a geographical information system (GIS). 

The remainder of this paper first introduces the basic concept of TM (Section 2). In Section 3, we 

describe how queries about time intervals can be defined in TM. Section 4 introduces the 

implementation of TM, i.e. GeoTM, including its graphical user interface and functionalities. In 

Section 5, this implementation is applied in a real scenario to analyse time intervals that were 

detected by a Bluetooth tracking system. In Section 6, the strengths and weaknesses of GeoTM 

are discussed and compared with alternative approaches. Finally, Section 7 draws conclusions 

and proposes the directions of future work. 

2. THE TRIANGULAR MODEL 

A crisp time interval � is usually modelled as a pair of real numbers [��, ��] with �� < ��, 

denoting the start and end of the interval respectively. In the linear representation, such a time 

interval is represented as a finite line segment (Figure 1 (a)). The two extremes of the segment 

respectively represent the start (��) and the end (��) of the interval, while the length of the 

segment expresses the duration of the interval (�	
(�)). This linear representation of time 

intervals is widely used in our daily life, for example in Gantt charts and historical time lines. In 

this paper, we assume a crisp time interval � to be closed at both sides, such that � = [��, ��]. In 

different reasoning systems, whether an interval is open (at one or both sides) is defined 

differently43. Since TM does not intend to solve reasoning issues that concern this controversy, 

whether an interval is open does not affect its representation in TM.  

The transformation from the linear representation to the Triangular Model (TM) starts from the 

construction of two lines through the extremes of an interval (Figure 1 (b)). For each time 

interval I, two straight lines (L1 and L2) are constructed, with L1 passing through �� and L2 

passing through ��. α� is the angle between L1 and the horizontal axis and α�  is the angle 

between L2 and the horizontal axis, with α�  = −α� = α. The intersection of L1 and L2 is called 

the interval point. The start of the interval (��), the end of the interval (��) and the interval 

point form an isosceles triangle. The angle α is a predefined constant that is identical for all time 

intervals, in order to ensure that each time interval is mapped to a unique point in the 2D space. 

The position of an interval point completely determines both, the start and the end of the 

interval. α  can be different values for specific purposes. In this paper, we set α = 45°, as to be 

consistent with earlier work 39, 41, 42, 44. In this way, all time intervals can be represented as 2D 

points in TM (Figure 1 (c)). With α�  = −α�, it is straightforward to deduce that, in the 

horizontal dimension, the position of the interval point indicates the middle point of the interval, 

i.e. ���(�). In the vertical dimension, the height of the interval point (ℎ) is proportional to the 

length of the linear interval (�), i.e. ℎ =
��� �

�
∙ �. As a result, the height of an interval point in TM 

indicates the duration of the interval, i.e. �	
(�). Note that TM is compatible with time instants, 



which can be characterised as time intervals with a zero length. Time instants are represented 

as points that coincide with the time axis, e.g. �� in Figure 1(c). Given that time instants are also 

modelled through horizontally aligned points in the linear representation, both TM and the 

linear representation can be considered identical for this specific class of intervals. 

 

Figure 1: The transformation from the linear representation to the Triangular Model (TM). (a): The linear 

representation of time intervals. (b): The construction of an interval point in TM. (c): The TM 

representation of time intervals. 

3. TEMPORAL QUERIES IN THE TRIANGULAR MODEL 

Since TM represents time intervals as points in a 2D space, TM coordinates have temporal 

semantics. In this section, we will describe how temporal queries can be modelled in TM. The 

implementation of these temporal queries will be illustrated in Section 4. 

3.1. QUERIES OF ALLEN RELATIONS 

According to the outcome of the logical comparison (i.e. smaller than, equal to and larger than) 

between the starts and ends of two time intervals, James F. Allen1 defined thirteen relations 

between two time intervals (Table 1), which are referred to as Allen relations. In TM, Allen 

relations can be transferred to spatial relations39, 41. Given a study interval I [0, 100], all 

examined intervals are located within the isosceles triangle formed by ��, �� and the interval 

point of �. Let us consider a reference interval I1 [33,66] and several intervals (I2, I3, I4) that are 

before interval I1 (Figure 2 (a)). In TM, I2, I3, I4 are located in the zone in the left corner of the 

study interval (Figure 2 (b)). Therefore, it is easy to deduce that this zone (i.e. the black zone in 

Figure 2 (c)) encloses all intervals that are before I1. In like manner, all Allen relations with 



respect to an interval can be represented by such zones in TM37, 39 (see Figure 3). In each 

diagram in Figure 3, the reference interval I1 has been chosen in the centre of the study period 

to avoid visual bias. Each black zone represents the set of intervals that are in a specific relation 

to I1. Such a set of intervals is denoted as �(��), where � stands for a certain temporal relation 

(e.g. before, after, etc.). Thus, temporal queries based on Allen relations can be modelled as 

zones in TM. The query constraint is expressed by the extent of the zone, which encloses all 

intervals satisfying the query. The zones expressing temporal queries are called query zones. 

Table 1: Thirteen Allen Relations (Allen 1983) 

I1 equal I2 if  I1
- = I2

- ^  I1
+ = I2

+  

I1 starts I2 if  I1
- = I2

- ^  I1
+<  I2

+  

I1 started-by I2 if  I1
- = I2

- ^  I2
+<  I1

+  

I1  finishes I2 if  I1
+ = I2

+ ^  I1
- > I2

-  

I1  finished-by I2 if  I1
+ = I2

+ ^  I2
- > I1

-  

I1 meets I2 if  I1
+ = I2

-   

I1 met-by I2 if  I2
+ = I1

-   

I1 overlaps I2 if  I2
- > I1

- ^  I1
+< I2

+ ^  I1
+ > I2

- 

I1 overlapped-by I2 if  I1
- > I2

- ^  I1
- < I2

+ ^  I2
+ < I1

+ 

I1 during I2 if  I1
- > I2

- ^  I1
+ < I2

+  

I1 contains I2 if  I2
- > I1

- ^  I2
+ < I1

+  

I1 before  I2 if  I1
+ < I2

-   

I1 after I2 if  I2
+ < I1

-   

 

]23,10[2 =I

]25,20[3 =I

]25,6[4 =I

]66,33[1 =I

 

Figure 2: Temporal relations in the linear model and in TM, taking before as an example. 

 

Figure 3: The representation of the thirteen Allen relations in TM. Each black zone represents a set of 

intervals in a specific Allen relation to the reference interval. 

3.2.  QUERIES OF OTHER RELATIONS 



Besides queries of Allen relations, a variety of queries based on other temporal relations can be 

modelled in TM. In this section, we introduce four of them that have been implemented in the 

current version of GeoTM. First, intervals in-between two different time intervals are within a 

rectangle with sides in α or −α angle to the horizontal axis41 (Figure 4). ≪ ��, �� ≫ is used to 

denote the set of intervals in-between �� and ��. ≪ ��, �� ≫  consists of all intervals whose starts 

are in-between the start of �� and the start of ��, and ends are in-between the end of �� and the 

end of ��. The formal definition of ≪ ��, �� ≫ can be found in Eq. 1. A set of intervals in-between 

two time intervals is a convex set of intervals41, because it can be directly interpreted by Allen 

relations or combinations of Allen relations. If the rectangle intersects the horizontal axis, the query 

zone is only the part above the horizontal axis, because there is no valid time interval below the 

horizontal axis according to our definition. Additionally, starts-within (��) is defined as a set of 

intervals whose starts are in �� (Eq. 2). Analogously, ends-within (��) is defined as a set of 

intervals whose ends are in �� (Eq. 3). The query zones of starts-within (��) and ends-within (��) 

are illustrated in Figure 5 (a) and Figure 5 (b). Moreover, a set of intervals whose durations are 

in a specific range are located within a range along the vertical axis. For example, in Figure 5 (c), 

the set of intervals  �|" < �	
(�) < #$ is within the zone between " and # along the vertical axis.  

≪ ��, �� ≫≡  �| ��&(��
�, ��

�) < �� < �"'(��
�, ��

�) ∧ ��&(��
�, ��

�) < �� < �"'(��
�, ��

�)} Eq. 1 

starts-within (��) ≡  �|��
� < �� < ��

�$ Eq. 2 

ends-within (��) ≡  �|��
� < �� < ��

�$ Eq. 3 
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Figure 4: The query for intervals in-between two intervals. (a): The formation of the query zone of in-

between )* and )+. (b): Three examples of in-between query zones. 



 

Figure 5: Queries of three non-Allen relations in TM. (a): The query zone of  starts-within (��), containing 

intervals that start-within ��. (b): The query zone of ends-within (��), containing intervals that ends-within 

��. (c): The query zone of  �|" < �	
(�) < #$, containing intervals whose durations are greater than " and 

smaller than #. 

3.3. COMPOSITE QUERIES 

Since temporal queries are expressed as 2D geometries in TM, composition of temporal queries 

can be modelled by spatial operations. In TM, the query composition follows the same principles 

of Venn Diagrams44. The intersection of queries is represented by the intersection of the query 

zones (Figure 6(a)). The union of queries is represented by the union of the query zones (Figure 

6(b)) Furthermore, the subtraction of two queries is modelled as subtracting one query zone 

from the other, which selects intervals that satisfy only one out of two queries (Figure 6(c)).  

21 QQ I 21 QQ U 21 QQ −

 

Figure 6: The composition of temporal queries in TM. (a): The intersection of the two queries. (b): The 

union of the two queries. (c): The subtraction of one query from the other query. 

4. THE IMPLEMENTATION 

To demonstrate and exploit practical uses of TM, we implemented TM into a prototype software 

tool called GeoTM. In this section, we will introduce its user interface and functionalities. 

4.1. GEOTM 

GeoTM supports visualising, querying and analysing spatio-temporal data. More specifically, it 

has the ability to analyse entities that are referenced to spatial locations and temporal extents. 

In GeoTM, the spatial locations are modelled as vector geometries (i.e. point, line and polygon), 



while the temporal extents are modelled as crisp time intervals. Besides their spatial and 

temporal components, the entities may have other attributes that are stored in the attribute 

table. The spatial locations, temporal extents and other attributes are linked to entities by 

unique identifiers (ID) of entities. GeoTM is built on top of ArcGISTM, which is a desktop GIS 

produced by ESRI®. In GeoTM, the spatial locations, time intervals and other attributes are 

stored in ArcGISTM compatible formats, i.e. ESRI shapefile and dBase. Figure 7 gives an overview 

of how the spatio-temporal information is modelled and represented in GeoTM. 

],[ +−
II

  

Figure 7: The models and representations of spatio-temporal information in GeoTM. 

The graphic user interface of GeoTM consists of a map view, a TM view and other controls 

(Figure 8).  The map view is used to display spatial locations of entities, which are modelled as 

points, lines or polygons. The TM view represents time intervals of entities, using the TM 

representation. In GeoTM, users can zoom in and out in both views by scrolling or dragging a 

rectangle. In the map view, objects can be selected by dragging an orthogonal rectangle. In the 

TM view, special selection tools have been designed to select intervals according to specific 

temporal queries. The other attributes of entities are stored in the attribute table that can pop 

up when the user clicks the corresponding button. The map view, the TM view and the attribute 

table are connected through linked brushing. This means that when selecting objects from any 

of these three views, the other two views dynamically update according to the selection. 

Additionally, many common GIS functions are supported in GeoTM, such as the use of multiple 

data layers. Furthermore, objects in the map view and the TM view can be displayed in different 

sizes, colours and symbols, in order to express attribute information. In Figure 8, the map view 

displays the locations of 26 Bluetooth scanners that have been installed in the centre of Ghent, 

Belgium, the TM view displays the time intervals of Bluetooth devices that were detected by 

these scanners between 1:03:00 and 1:06:00 on 23 July, 2010 (note: 24-hour clock is used in 

this paper). In the remainder of this section, we use these time intervals to demonstrate the 

query functions of GeoTM.  The complete scenario of this dataset will be explained in the next 

section. 



 

Figure 8: The graphical user interface of GeoTM. 

4.2. TEMPORAL QUERIES IN GEOTM 

Traditionally, queries on time intervals are determined by formal expressions (e.g. SQL 

statements) or by manipulating controls (e.g. buttons, sliding bars, and check boxes) in 

predefined graphical user interfaces. At present, visual and interactive query tools are being 

increasingly supported in software45, including those that define queries by sketching or 

manipulating graphics on the screen46-49. These kinds of query tools have significantly enhanced 

human-computer interactivity and therefore play an important role in EDA18.  Despite the large 

variety of tools that have been developed to present and analyse temporal information50-52, 

most of them are designed for visualisation and do not support abundant temporal query 

functions. As a graphical representation of time intervals, TM provides a promising platform for 

visual temporal queries. In GeoTM, temporal queries can be defined by clicking and dragging 

geometries in the TM view. Users can indicate an interval by moving the mouse cursor to a 

specific position, and then query for intervals that satisfy an Allen relation to the indicated 

interval (Figure 9 (a) and (b)). In addition, the query zones of the thirteen Allen relations of 

indicated interval can be drawn (Figure 9 (c)), which offers an overview of the distribution of 

intervals in different relations to the indicated interval. 



 

Figure 9: Querying intervals that are before )*[-*: -/: --, -*: -0: --] on 23 July 2010 and drawing the 

query zones of )*. (a): Move the mouse cursor to )* and right click to trigger the drop-down menu of Allen 

relations. (b): With the ‘Before’ option clicked, the zone of 123452()*) is drawn and intervals in this zone 

are selected. The larger dots represent the selected intervals and the cross represents )*. (c): With the 

‘Relational Zones’ option clicked, the query zones of the thirteen Allen relations of )* are drawn. 

Moreover, temporal queries can be defined by dragging a zone in the TM view. In line with the 

characteristics of the TM space, several special dragging tools have been designed in order to 

select intervals that satisfy certain temporal queries. The default dragging box is a non-

orthogonal rectangle that selects intervals in-between two time intervals. With this dragging box, 

every selected set of intervals is a convex interval set that can be interpreted by Allen relations 

or combinations thereof. Dragging a rectangle selects a convex interval set in-between two 

intervals (e.g. Figure 10 (a)), and dragging a triangle on the horizontal axis selects a convex 

interval set in-between two time instants (Figure 10 (b)). Besides convex interval sets, GeoTM 

supports range queries according to interval duration by dragging a range along the vertical 

axis (e.g. Figure 10 (c)). Furthermore, a range of two parallel lines can be dragged at α or −α 

angle with respect to horizontal axis to select the intervals that start-within or end-within an 

interval (Figure 10 (d)).  



 

Figure 10: Temporal queries by dragging geometries in TM. (a): selecting intervals in a convex set in-

between two time intervals. (b): selecting intervals in a convex set in-between two time instants. (c): 

selecting intervals that are longer than 30 seconds and shorter than 90 seconds. (d): selecting intervals 

end-within [01:05:00, 01:05:30]. 

4.3.  COMPOSITE QUERIES 

All the above mentioned queries can be composed in GeoTM. Users can make queries 

successively and compose them by logical operators (e.g. union, intersection or subtraction). 

Figure 11 illustrates how the composite query 67&8"�&9( ��) ∩ ≪ ��, �; ≫ ∩  �|�	
(�) >

90 9?67&�9$ ∩ end-within(�@) is constructed in GeoTM, given the intervals ��, ��, �;, and �@. The 

querying process consists of four steps. In each step, a component query is made, with a 

selected logical operator. As in this case component queries are composed with intersection, the 

result is the intersected area of the query zones. The intervals located in the intersected area are 

selected, which satisfy the entire composite query. 



),()( 321 IIbetweeninIcontains −I ]45:05:01,15:03:01[2 =I

]45:04:01,15:04:01[3 =I

}90)(|{),()( 321 secs.IdurIIIbetweeninIcontains >− II )(}90)(|{),()( 4321 Iwithinendsecs.IdurIIIbetweeninIcontains −>− III

]30:05:01,50:04:01[4 =I

(b)

(c) (d)

(a)

]00:05:01,00:04:01[1 =I

2I

1I

3I

)( 1Icontains

 

Figure 11: The creation of the composite query: A4BCDEBF( )*) ∩≪ )+, )G ≫∩  )|HI5()) > 90 JKLMNOJ$ ∩ 

end-within()/). In each step, the intersected areas of the queries are marked by bold boundaries and 

selected intervals are marked by larger dots. 

5. CASE STUDY 
Although existing as a communication technology since the mid-nineties, Bluetooth has only 

recently been employed for positioning and tracking individuals 30, 31, 53-56. Despite its limited 

positional accuracy, Bluetooth tracking is a low cost alternative for true location-aware 

technologies. Nowadays, due to the increasingly widespread use of Bluetooth-integrated devices, 

e.g. mobile phones, laptops and handsets, Bluetooth tracking has been more and more used for 

scientific experiments and observations. In this use case, the data were collected from the most 

basic form of a Bluetooth tracking system, in which a number of Bluetooth scanners were 

installed at certain strategic points. These scanners continuously make inquiries, listen for 

responses of other devices in their detection ranges and log the results with a time resolution of 

one second. Therefore, the period when a Bluetooth device is in the detection range of the 

scanner is a time interval. Technically, this interval starts at the first second that the Bluetooth 

device is logged by the scanner and ends at the last second that it is logged. Moreover, if a 

Bluetooth device has left the detection range of a scanner but it re-enters the range again within 

30 minutes, the two time intervals as well as the gap between them are merged to one time 

interval. The purpose of doing this it to eliminate the fractional intervals that are caused by 

unstable signals or Bluetooth devices moving on the border of the detection range. In this way, 



the scanners generate a dataset of time intervals, in which every single record consists of three 

major components: the MAC address of the Bluetooth device, the ID of the scanner logging this 

device and the time interval. 

The dataset was collected during the Ghent Festivities 2010, from 10:00 on 17 July to 10:00 on 

26 July, 2010. 26 Bluetooth scanners are installed in selected locations (e.g. concert stages, 

parking lots, the tourist information office and major accesses) in the centre of Ghent. When the 

dataset is loaded to GeoTM, the time intervals are displayed as dots in the TM view and the 

Bluetooth scanners are displayed in the map view (Figure 12). In the TM view, some regular 

daily patterns can be observed: the number and durations of logged intervals increases from the 

afternoon, reach a peak around midnight and start to decrease after midnight. In GeoTM, if 

specific Bluetooth scanners are selected in the map view, the time intervals that are logged by 

these scanners turn to red in the TM view. With this function, users can observe and compare 

the distribution of time intervals detected at different locations. In the Ghent Festivities 2010, 

two concert stages were located at Sint-Baafs Cathedral and Sint-Jacob Church respectively. By 

successively selecting the scanners installed near Sint-Baafs Cathedral (i.e. Scanner 1, 2 and 3 in 

Figure 12) and the scanners installed near Sint-Jacob Church (i.e. Scanner 8 and 9 in Figure 12) 

in the map view, from the TM view one can observe that the distributions of intervals at these 

two sites are similar, which gradually increase from the afternoon or evening, and decrease 

more rapidly in the deep night or the early morning in the next day. However, the time intervals 

detected near Sint-Baafs Cathedral are generally distributed earlier than the intervals detected 

near Sint-Jacob Church (Figure 13). This finding reveals the fact that the crowd near Sint-Baafs 

Cathedral gathered and dispersed earlier than the crowd near Sint-Jacob church. 

 

Figure 12: The GeoTM interface with the complete Bluetooth dataset loaded. The squares and red dots in 

the map view indicate the two selections of scanners that generate the results in Figure 13. 



 

Figure 13: The time intervals logged by the two groups of scanners in Figure 12 become red in the TM 

view. (a): The time intervals logged by Scanner 1, 2 and 3 are red, and the rest remain black. (b): The time 

intervals logged by Scanner 8 and 9 are red, and the rest remain black. 

 

Figure 14: Zooming into the period from 16:00 on 18 July to 4:00 on 19 July and the period from 18:00 on 

22 July to 10:00 on 23 July in the TM view.  

In the TM view, users can also zoom into smaller areas to observe the interval distribution 

during specific hours. Zooming into the period from 16:00 on 18 July to 4:00 on19 July and the 

period from 18:00 on 22 July to 10:00 on 23 July (Figure 14), one can see that most interval 

points are distributed on the bottom, meaning that most detected time intervals in these two 

periods are relatively short. This reflects the high fluidity of people during the events. Moreover, 

some linear clusters that extend to the higher area can be observed (Figure 14). Some of these 

clusters are in  –α (α = 45°) angle to the horizontal axis (such as C1 in Figure 14). This kind of 

cluster is formed by intervals that start-within a very short period and end-within a much longer 

period, which can be interpreted as that a large number of people having Bluetooth devices 

intensively entered the detection range of the scanners within a very short period, and these 

people gradually left the ranges of the scanners during a much longer period. On the other hand, 

some other linear clusters are in α angle to the horizontal axis (such as C2, C3 and C4 in Figure 

14), which are formed by intervals that start-within a long period and end-within a very short 

period. This kind of cluster can be interpreted as a number of people with Bluetooth devices 

gradually entering the range of the scanners within a long period and intensively leaving within 



a short period. These linear patterns cannot be easily detected from traditional visualisation 

approaches, for example, line diagrams. In Figure 15, the detected patterns in the period from 

16:00 on 18 July to 4:00 on 19 July (i.e. C1, C2 and C3) do not clearly appear in the 

corresponding line diagrams, because the clusters of long intervals can be easily diluted by the 

large number of short intervals. 

 

Figure 15: Representing the dataset from 16:00 on 18 July to 4:00 on 19 July with line diagrams. (a): The 

numbers of Bluetooth devices that entered the detection range of scanners in every 15 minutes. (b): The number 

of Bluetooth devices that left the range of scanners in every 15 minutes. (c): The total number of detected 

Bluetooth devices in every 15 minutes. 

Using the query tools in GeoTM, users can select intervals in these observed clusters, and 

analyse the spatial distribution of the selected intervals. In GeoTM, when a selection is made in 

the TM view, the dot size of scanners in the map view will be updated, indicating the proportion 

of intervals logged by every scanner. Since we observe that the intervals in Cluster C1 more or 

less start-within [17:00, 17:30] on 18 July, we can drag a query zone of start-within [17:00, 

17:30] to select intervals in C1 (Figure 16). And then, the updated map view shows dots 

corresponding to the different scanners in similar sizes, meaning that the selected intervals are 

more or less evenly logged by the 26 scanners. In order to focus on the people that come for the 

events of the Ghent Festivities, the user may want to eliminate the short intervals of people 

passing by and the very long intervals of people living in the neighbourhood. To this end, 

another query zone is drawn to select intervals that have a duration between 15 minutes and 10 

hours upon the previous selection (Figure 17). In the map view, the dot sizes of Scanner 4 and 

10 become much bigger than the other scanners, meaning that large proportions of retrieved 

intervals are logged by these two scanners (21.5% and 21.6%). Considering Scanner 4 and 10 

are installed respectively near the stage at Graslei and the stage at Baudelopark, it is 

straightforward to infer that a large number of people intensively went to the events at these 

two stages between 17:00 and 17:30 and gradually left afterwards. Consulting the schedule of 

Ghent Festivities 2010 57, one can find out that the concert of the band Maximum Basie at Graslei 

and an oriental dance activity at Baudelopark started at 17:00, which probably attracted people 

and kept them staying around for a long time. 



 

Figure 16: Select intervals that start-within [17:00, 17:30] on 18 July. 

 

 

Figure 17: Select intervals that start-within [17:00, 17:30] on 18 July and have a duration 

between 15 minutes and 10 hours. The numbers in the map view indicate the scanner IDs, and 

the numbers between brackets indicate the proportions of logged intervals.   

In the same way, the user can successively drag query zones of ‘end-within [0:00, 1:00] on 23 

July’ and ‘have a duration between 15 minutes and 10 hours’, in order to select the intervals in 

the cluster C4, excluding the short intervals of passing people and long intervals of people living 

around (Figure 18). Here, the map view shows that a large proportion of intervals are logged by 

Scanner 1 (23.5%) and Scanner 4 (23.7%). Considering that Scanner 1 and 4 are respectively 

installed near two stages at Sint-Baafs Cathedral and Graslei, one can infer that a large number 

of people gradually gathered at these two stages and then intensively left these two stages 

between 0:00 and 1:00 on 23 July. Consulting the schedule of the Ghent Festivities 201057, we 



can see that the performances at these two stages ended during this period, which probably 

caused a wave of leaving people.  

 

Figure 18: Select intervals that end-within [0:00, 1:00] on 23 July and have a duration between 

15 minutes and 10 hours. 

6. DISCUSSION 

As an alternative representation of time intervals, TM shows a promising performance in some 

aspects that are inherent difficulties of the traditional linear representation. In the linear 

representation, a given set of time intervals may show different patterns, when different 

ordering rules are applied (e.g. Figure 19). The characteristics of the distribution are not easy to 

observe from an individual display. However, TM offers a compact and fixed visualisation of 

time intervals. Because every interval has a unique spatial position in TM, the structure of a set 

of intervals is fixed, which potentially benefits pattern detection. When a dataset of intervals is 

represented in TM, one can have a first image of the interval distribution. For example, in the 

dataset of the case study in Section 5, the distribution of time intervals can be directly observed 

from the TM visualisation, which not only shows where the intervals are located in time, but 

also their durations. In this visualization, some interesting patterns (e.g. linear clusters) can be 

detected, which gives clues to analyse the phenomena behind these patterns. Moreover, points 

are apparently more space-saving than linear segments. Within the same display extent, TM is 

capable of displaying a larger amount of intervals than the linear model. For instance, it would 

be much more difficult to use linear segments to represent the time intervals in the datasets 

similar to that of the case study that consists of millions of time intervals. 



 

Figure 19: Time intervals in the linear representation, with different ordering rules. (a) Ascending order 

by the start. (b) Ascending order by the end. (c) Ascending order by the midpoint. (d) Ascending order by 

the duration. 

Furthermore, TM provides a platform for visual temporal queries. In TM, temporal queries can 

be specified by creating 2D zones. These zones give a visual impression of the query range. This 

unique feature stems from the fact that every interval has an absolute position in TM and 

intervals in the same temporal relation are grouped in convex zones. Moreover, in TM, the 

composition of temporal queries can be defined by spatial operations, following the concept of 

Venn diagrams. This graphic representation of temporal queries is likely to be more intuitive 

than alphanumerical expressions, because previous research shows that humans have excellent 

ability in processing spatial and graphical information58, and the transformation from 

alphanumeric expressions into graphic representations has gained considerable success in 

various disciplines59. Moreover, TM supports an integration of the temporal query and the 

visualisation. In other words, temporal queries in TM can be directly carried out by creating 

zones on top of the visualisation of time intervals. In this way, one can directly observe the 

range of the query over the dataset and instantaneously adapt the query. This feature is 

valuable when the query constraints are vaguely specified, or tailor-made queries need to be 

designed to select intervals in special clusters, e.g. the observed clusters in the case study. One 

can instantaneously redefine the query range with respect to the distribution of intervals. On 

the contrary, the traditional query tools (e.g. dynamic sliders, drop-list and text boxes) are 

standalone and do not visualise data. They normally cooperate with a data visualisation to do 

analytical jobs. For example, when using dynamic sliders, one needs to query with the slider and 

keep eyes on the graph next to it. 

With these promising features, TM shows potential in assisting a GIS to analyse interval-based 

geographical data. In this work, TM is implemented in a GIS in order to better exploit this 

potential. For the moment, not many tools have the capability of analysing this kind of 

geographical data. As one of the few possibilities, the tools based on the Space-Time Cube 

concept represent spatio-temporal entities in a 3D space in which the time axis is added to a 

flattened topography. For example, the tool developed by Huisman et al.30 represents 



geographical entities referenced to time intervals as linear segments in the Space-Time Cube. 

The extents of these linear segments along the time axis indicate the time intervals. However, 

this tool suffers from some typical problems of 3D visualisation34, 35. For example, the structure 

of objects varies when the view point varies. Moreover, foreground objects block one’s view of 

background objects. Also, compared with 2D environments, it is cumbersome to manipulate 

objects (e.g. selecting objects) in a 3D environment given that the prevalent computer screens, 

touch pads and mouse pads are 2D. Since GeoTM is based on a 2D visualisation, it does not 

suffer from these difficulties. We contend that GeoTM can bring the advantage of TM in 

visualisation and temporal queries to the GIS, enhancing its capabilities regarding, for instance, 

ESTDA.  

7. CONCLUSION AND FUTURE WORK 

In this paper, we have investigated the use of TM in visualizing and analysing time intervals. In 

order to better demonstrate the use of TM, we have implemented it into a software prototype 

(i.e. GeoTM) that integrates TM with a GIS. In addition, GeoTM has been applied in a real 

scenario to analyse time intervals that were detected by Bluetooth scanners in the Ghent 

Festivities of 2010. Since abstracting Bluetooth tracking data as time intervals is a new 

methodology and there are no mature approaches to analyse these kinds of datasets, GeoTM can 

be considered as an assistant tool that provides ESTDA functionalities. Although this analytical 

approach needs further investigation and validation, it provides unique insights into interval 

distributions, and can reveal interesting patterns that cannot be clearly presented by the other 

approaches. Moreover, TM offers a mechanism for temporal queries that we contend is 

innovative and likely to support analysis effectively due to its graphic, flexible and direct 

representation on top of the visualisation. GeoTM shows that the querying and analytical power 

of TM can be better exploited when it is implemented into an interactive tool. Furthermore, the 

integration with a GIS brings the merits of TM in visualisation and temporal query to the GIS, 

enhancing its capabilities of analysing interval-based geographical data. 

In the future, the analytical methodology based on TM needs to be further investigated, 

including the interpretations of atomic patterns and metric measurement of the patterns. Also, 

this methodology will be tested in more use cases, preferably covering different research 

contexts. On the other hand, the usability of GeoTM needs to be further evaluated. To this end, 

empirical experiments will be systematically designed and conducted to assess whether GeoTM 

can help people, particularly non-expert people, to solve practical questions. In addition, more 

user-friendly and interactive functions will be added to GeoTM to improve its usability, helping 

users understand the TM concepts and make use of the corresponding functionalities. Other 

possible extensions exist in supporting the representation of rough and fuzzy time intervals22, 

or the representation of continuous temporal information (e.g. time series) rather than discrete 

time intervals 60.   
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