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Abstract
Biologists are keen to understand how processes in cells react to environmental changes. Differential gene
expression analysis allows biologists to explore functions of genes with data generated from different envir-
onments. However, these data and analysis lead to unique challenges since tasks are ill-defined, require
implicit domain knowledge, comprise large volumes of data, and are, therefore, of explanatory nature. To
investigate a scalable visualization-based solution, we conducted a design study with three biologists specia-
lized in differential gene expression analysis. We stress our contributions in three aspects: first, we charac-
terize the problem domain for exploring differential gene expression data and derive task abstractions and
design requirements. Second, we investigate the design space and present an interactive visualization sys-
tem, called VisExpress. Third, we evaluate the usefulness of VisExpress via a Pair Analytics study with real
users and real data and report on insights that were gained by our experts with VisExpress.
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Introduction

Biologists are keen to understand the processes in cells

in detail and how these processes react to environmen-

tal changes. Cells react to their environment, such as

temperature, light, or food sources, by producing a

variety of proteins. An understanding of the proteins

and cell processes supports, for instance, detecting

application points for drugs and is, therefore, a major

interest and research challenge for medical care.

However, the functions of many proteins are still

unknown.

A way to address the challenge of analyzing hun-

dreds of proteins with unknown functions is differen-

tial gene expression (DGE) analysis. However, quality

is still an issue since the whole data generation process

is error-prone and introduces biases and uncertainties

in the measurements. After applying the state-of-the-

art analysis tools and performing a comprehensive

literature search, we found that currently no system

meets the requirements of our domain experts. First,

the research question of our domain experts is different

from the state-of-the-art because of their demand to

perform quality aware analysis to reduce false-positive

findings. Second, since genes react differently to all

environmental changes (different experiment condi-

tions, e.g., different food sources), they demanded a

data perspective that focuses on all pairwise condition
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comparisons (n:n) instead of a condition to reference

comparison (1:n). This allows a comprehensive view

on the data. An expressive overview and cognitively

effortless recognition and interpretability of patterns

were, furthermore, identified as major points for

improvements of the state-of-the-art visual analysis

systems for DGE data.

We, therefore, conducted a design study to build an

interactive visualization system that covers all these points.

During this study, a VIS team of four visualization experts

collaborated with three domain experts to characterize the

problem and to evaluate the system with a Pair Analytics

study on a real-world data set. From the visualization per-

spective, this problem domain provides an interesting and

complex data exploration and hypotheses generation prob-

lem since expert hypotheses and background knowledge

need to be integrated in the analysis process. The chal-

lenges for information visualization and visual analytics1

are scalability due to the large amount of complex data and

the challenge of uncertainty due to quality issues of the

underlying data.

In this article, we present VisExpress which is the

outcome of our study. We present a gene fingerprint

visualization which allows a recognition and interpret-

ability of patterns by (n:n) comparisons of experiments

with low cognitive effort. Furthermore, it integrates the

data quality in the visual representation to address the

uncertainty challenge. With an expressive treemap-

based overview, we support the user to identify pat-

terns, to reveal connections, and to generate new

hypotheses in an overview. Thereby, we reduce the

analysis complexity by a divide-and-conquer approach

which addresses the scalability challenge of the large

volumes of DGE data. The three participants of the

Pair Analytics study mentioned that the analysis of the

real-world data set would have required several days

with the systems of their current use. With VisExpress,

the domain experts got a comprehensive overview of

the whole data set within an hour. Furthermore, they

detected interesting findings and generated hypotheses

for patterns that are easily overlooked by the state-

of-the-art systems. They identified the intuitive,

comprehensive, and quality aware overview as major

improvements over the state-of-the-art.

We claim the following three contributions: (1) the

problem characterization and abstraction for the visual

exploration of DGE data; (2) a three-level staged

visualization approach, to explore DGE data based on

gene fingerprints; and (3) a Pair Analytics study and a

discussion of biological results to evaluate VisExpress.

The remainder of the article is as follows: we dis-

cuss our design process in the following section.

Section ‘‘Problem definition’’ defines and abstracts the

domain specific problem and discusses the analysis

tasks of users as well as the requirements for solutions.

In the following, ‘‘Related work’’ is discussed and the

‘‘Architecture of VisExpress’’ is presented. Further we

discuss why and how we visualize gene fingerprints

(‘‘Visualizing GAR patterns’’), the ‘‘Components of

VisExpress,’’ and the ‘‘Interaction design of VisExpress’’.

We present a Pair Analytics study with three real

domain experts and a real data set in section ‘‘User

assessment’’ and discuss the study findings as well as

biological results in section ‘‘Results’’. Sections

‘‘Discussion and lessons learned’’ and ‘‘Conclusion’’

conclude the article.

Design process

Deploying visualizations for real-world problems is

problem-driven research. The aim of design studies is

to abstract and/or generalize domain problems as well

as designing visualization systems that are validated

with real experts and real data. In this process, a colla-

boration with domain experts (real users) is vital.

However, performing problem-driven research and

working with domain experts can lead to many pitfalls.

In order to avoid them, as well as to structure our

design study project, we followed the nine-stage design

study methodology framework of Sedlmair et al.2 (see

references therein for alternative approaches and a

comparison of methodologies) which also lists 32

common pitfalls.

Precondition phase

This design study was conducted in the settings of a

well-established, long-term cooperation between the

first author (VIS expert) and a group of biologists. The

whole design study team consisted of a BIO (three

front-line analysts) and a VIS team (four VIS experts,

including the first author). Just the first author (with a

background in bioinformatics) had contact with the

BIO team and acted as a Liaison between the BIO and

the rest of the VIS team.3 The Liaison role was intro-

duced by Simon et al.3 to bridge the gap between

domain and visualization experts by fostering a richer

communication and by mediating between domain

and VIS experts, for instance, by abstracting domain

problems to more generic VIS terms.3

Core phase

Discover stage — problem characterization and
abstraction. Starting with interviews and observations

of the current workflows of the BIO team, the Liaison

(first author) subsequently collected relevant state-of-

the-art systems based on her professional expertise as

a bioinformatician and VIS expert. In the second step,

the drawbacks of these systems were discussed and the
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problem characterization was refined. In the third

step, the VIS team discussed these, concretized tasks

and requirements, and improved the problem abstrac-

tion. The Liaison (first author) ensured in the whole

process that the problem abstraction was still valid

from the domain users’ perspectives.

Initial prototyping and expert feedback. The Liaison

(first author) created a low-resolution prototype to

receive feedback from the BIO team. This initial design

enabled the Bio team to precisely point out important

aspects that the system should cover which were trans-

lated and merged with the identified requirements.

Design refinements. Based on experts’ feedback, we

stepped back to the design phase. In order to fully

exploit the expertise of the four VIS team members,

we took the following approach to create and imple-

ment design ideas: (1) every team member created a

set of alternative solutions as paper mock-ups; (2)

these solutions were selected, merged, and refined in a

critique-and-creation round; and (3) we discarded or

refined ideas by evaluating them against tasks and

requirements. This entire process iterated until all VIS

team members were satisfied. The matching of the

mental model is one important point to support the

gaining of insights with a visualization system.4 The

Liaison (first author), therefore, ensured in this process

that the design matched the mental model of the

domain experts.

Formative assessment and final design implementation.
In this process, the VIS team improved design details

based upon formative assessment conducted by the

Liaison (first author) with one member of the BIO team.

Functionalities of the system were explained and demon-

strated. The constructive feedback led to design improve-

ments and an optimized user interface to resolve some

usability issues.

Summative assessment and design refinement. For

the evaluation of our design, we performed a Pair

Analytics study5 with the BIO team in order to verify

our design decisions for target tasks. Thereby, the

Liaison (first author) acted as analysis partner in the

collaborative analysis parts of the study. Based upon

the evaluation results, we refined our system designs

and reflected our findings.

Problem definition

The genetic information of organisms is encoded by

thousands of genes. Genes encode proteins which

perform a vast number of functions in cells. The pro-

tein hemoglobin, for instance, transports oxygen in

vertebrates and the protein collagen is the main part of

the connective tissue. Collagen is, therefore, responsi-

ble for skin strength and elasticity. Depending on envi-

ronmental conditions, a different composition of

proteins is produced. More hemoglobin is, for

instance, needed and produced if oxygen content of

the air is low, for example, in high altitude on a

mountain.

An understanding of protein functions and their

roles is of major interest for biologists. DGE analysis

by next-generation-sequencing (NGS) technology is,

thereby, an important technique which allows to

(indirectly) measure in parallel the protein activity lev-

els in cells under specific experimental conditions (see

Figure 1). The relative comparisons of the activity lev-

els between different experimental conditions allow

biologists to generate and test hypotheses of the reac-

tion of genes to experimental conditions. Therefore,

the whole data set needs to be explored, relating the

DGE data with metadata (e.g. the annotated function

of a gene) and implicit domain expert knowledge (e.g.

the ‘‘expected’’ reaction to the experimental condi-

tions). The problem, thereby, is the large amount of

data. Six tested experimental conditions for a bacter-

ium with 5000 genes result in 75,000 DGE data

values.

Finding unexpected patterns in the data and relat-

ing DGE data of genes and metadata is, therefore, a

challenge. In addition, (n:n) comparison of all experi-

mental conditions is beneficial to reveal unexpected

connections and patterns by providing a comprehen-

sive view on the data. Providing (n:n) comparisons is

in contrast to the state-of-the-art approach with (1:n)

comparisons (reference to experiments).

As stated in the introduction, quality is also an

issue. The whole sequencing process (by NGS tech-

nologies) is error-prone. Briefly, the technique is not

able to measure the activity levels of proteins directly

(see Figure 1). Instead, NGS machines transform frag-

ments, of the intermediate step of the protein synthesis

(messenger RNA [mRNA]), into (machine) readable

units, so-called reads. Due to several bias sources in

the whole data generation process, the distribution of

reads over genes is imbalanced,6 resulting in uneven

read coverage line charts (see Figure 1—read cover-

age). Consequently, also the DGE analysis results are

biased. It is, thus, necessary to inspect detected genes

of interest in detail to avoid false-positive findings.

Additionally, an awareness of quality issues on higher

levels of data exploration is beneficial to reduce the

number of false-positive pattern identifications which

is not covered in state-of-the-art systems.
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Data

For all genes gi 2 fg1, . . . , gng and tested experimental

conditions ek 2 fe1, . . . , emg, the activity level is calcu-

lated based on the gene annotation and the reads

resulting from the sequencing process. Only the rela-

tive comparisons between the activity levels of the

same gene under different experimental conditions are

meaningful for DGE analysis (see Figure 1). Specific

methods are used for this comparison that return a

gene activity ratio (GAR) and a quality value indicat-

ing the significance of the comparison calculation.

ck, l(gi)= (rk, l(gi), qk, l(gi)) is the comparison of the

activity levels of the experimental conditions k and l of

gene gi; it is a tuple with a GAR rk, l(gi) and a quality

qk, l(gi) of the comparison. In addition to the sequen-

cing data, a database with annotations of genes exists.

This metadata consists of gene location, gene length,

gene description, and functional category (COG) col-

lected from National Center for Biotechnology

Information (NCBI).7 See Supplement Material for

details about gene expression measurements.

Tasks

Biologists want to study the functions of genes in

organisms by their reactions on different experimental

conditions. For generation and validation of hypoth-

eses, biologists use DGE data. Genes with similar

functions or roles are assumed to have similar reactions

to different experiment conditions—similar GAR pat-

terns. In order to examine and verify these functions

and roles in detail, biologists require time-consuming

and/or expensive experimental validation. A series of

discussion between the first author and the BIO team

revealed that biologists aim to solve the following

tasks:

� T1: Generate hypotheses about the function of genes.

In this exploration task, biologists want to find new

hypotheses about genes and their potential func-

tions. To generate these hypotheses, they search for

genes with unexpected functions in a set of genes

with similar GAR patterns and similar functions.
� T2: Test hypotheses about the function and reaction of

genes. In this task, biologists make an assumption

about the reaction of a gene to the experimental

conditions. Through DGE analysis, they can con-

firm or reject their hypotheses, if genes with partic-

ular functions have an expected or unexpected

GAR pattern. In addition, hypotheses can also con-

sider the experimental conditions. For example,

conditions 1 and 2 should reveal the same GAR to

the other conditions for most of the genes. Remark:

for this task, a (1:n) comparison is not sufficient

since this involves the interrelation of all conditions.

Therefore, a (n:n) comparison is required.
� T3: Find genes related to a function. When biologists

analyze a single function, they are interested in

identifying genes yet unknown to be related to this

function. To find these genes, they need to com-

pare the GAR patterns of all genes with those

already known to be related to the function. Genes

with the most similar GAR pattern will become

potential candidates for further investigations.
� T4: Explore genes with unexpected GAR patterns. If unex-

pected GAR patterns exist in the data set, these genes

need to be explored in order to examine their similari-

ties to other known genes and their functions.

All tasks require a validation of the ‘‘expectedness’’

of insights which is ill-defined and depends on the

task, the context of the insight, and the background

knowledge of the domain experts. Biologists implicitly

know whether a function is just surprising but

Figure 1. Gene Expression is the production of proteins. Depending on the experimental condition, a larger or lower
amount of specific proteins is needed. (a) Next-generation-sequencing is a method used to indirectly measure the
amount of proteins in cells, by measuring the intermediate step (mRNA). Due to biases, the measured signal (read
coverage) of a gene is uneven. (b) For further analysis steps, the read coverage is expressed by a single normalized
activity level. (c) The comparison of the gene activity levels is called differential gene expression and is expressed as the
ratio (fold-change) between conditions. Biologist use differential gene expression to relate genes with unknown
functions with potential functions.
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explainable or whether this is really unexpected. This

implicit background knowledge cannot be externa-

lized. Furthermore, hypotheses generation cannot be

automatized. Thus, a tight integration of the domain

expert in the analysis process is vital.

Requirements

We use the multi-level typology of Brehmer and

Munzner8 to characterize the tasks and requirements.

The main aim of the system is the generation and veri-

fication of hypotheses about the behavior of genes. As

the locations of targets (interesting genes) are

unknown, users have to search the data set by browsing

and exploring. In order to discover new insights, users

have to identify interesting targets and compare and

summarize sets of targets. Based on this, we derived

the following requirements for an interactive visualiza-

tion system in order to solve the aforementioned tasks:

� R0: Interpret GAR patterns of genes. Users need to

identify the characteristics of the target genes which

are expressed by GAR patterns. A GAR pattern is

the change in the activity levels of a gene under dif-

ferent experimental conditions. The representation

of the activity ratios of a gene needs to allow the

identification of each pairwise (n:n) comparison

between conditions to interpret the GAR pattern

(T1, T2, T4).
� R1: Compare GAR patterns of genes. The tasks (T1,

T2, T3, T4) require the ability to compare the

GAR patterns of genes. Comparisons between sin-

gle genes, between groups of genes, and between a

single gene and a group of genes must be possible.
� R2: Summarize the functions of genes. The system

should be able to summarize the functions associ-

ated with a gene or a group of genes. When users

identify an interesting gene or find a group of genes

with a similar GAR pattern, they need to know

which functions are associated with them (T1, T2,

T3, T4).
� R3: Explore genes according to GAR patterns. The

system should allow exploring the data to enable

users to generate new hypotheses about genes (T1,

T3, T4). The exploration should be guided by the

GAR patterns to easily spot genes with similar

behavior.
� R4: Support different comparison measures. Different

measures can be used to compare the activity

levels of genes that are based on different proper-

ties. The analysis results are more trustworthy if

different measures produce similar analysis results.
� R5: Assess the trustworthiness of (automatic) results.

Automatic analysis results are useful to get an over-

view and to quickly come up with hypotheses, but

biologists do not trust them unconditionally. When

they find an answer with the automatic evaluation,

they want to assess the trustworthiness by analyz-

ing the raw sequencing output and metadata by

themselves, leading to several sub-requirements

(see section ‘‘Detail: Gene Board’’).
� R6: Highlight the quality of activity ratios. According

to our study, biologists do not trust automatic anal-

ysis results on one hand; on the other hand, they

also want to reduce exploration space without loss

of information. Therefore, they want to assess the

quality of GAR patterns.

Related work

Gehlenborg et al.9 provide a broad discussion of visua-

lization systems for gene expression data. Many sys-

tems were established for (differential) gene expression

data from DNA micro-arrays, for example, TM410

and Mayday.11 DNA micro-arrays used to be the state-

of-the-art for gene expression before the rise of NGS

technologies and the possibility to sequence DNA in a

cheap and high-throughput fashion without any pre-

knowledge.

The state-of-the-art visualizations of (differential) gene

expression data are heatmap-based visualizations (see

Figure 2). Rows represent genes and columns encode

experiment data or the comparison of experimental condi-

tions. Thus, the data of one entity (gene) is represented in

a linear fashion (as one row of the heatmap). Interactive

heatmaps provide the possibility to select parts of the heat-

map for further analysis (e.g. in INVEX14). Mayday11 uses

an enhanced heatmap which integrates metadata to

emphasize relevant genes by, for example, scaling of matrix

rows and an additional color gradient.15

Heatmaps are an appropriate and reasonable visualiza-

tion as long as the relation between the columns of the

heatmap is not relevant for the analysis. This is valid if

independent experiment data are represented or if all

experiments are compared to one reference (i.e., (1:n)

comparison) which is the focus of many biological studies.

However, the linear representation cannot appropriately

represent relations between columns, for example, (n:n)

comparison (see section ‘‘Visualizing GAR patterns’’).

NGS technology advancements and decreasing

costs lead to more and more complex experiment

designs with (n:n) comparisons of different conditions.

In this case, columns of the heatmap are related, for

instance, all columns with a relation to condition 1 or

all columns with a relation to condition 5 (see column

names in Figure 2). Furthermore, the quality of the

underlying data is not addressed sufficiently, if covered

at all. Thus, a preprocessing or post-processing has to

ensure quality. In our study, the analysis focuses on a
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quality aware (n:n) comparison (see section ‘‘Problem

definition’’). Therefore, the systems mentioned above

cannot satisfy our requirements.

For gene expression time series data, parallel coor-

dinates (profile plots) are often used to represent the

changes over time. In order to analyze differences

between clusters, these can be indicated by color-

coding in one chart or by small multiples of parallel

coordinates, such as in BiGGEsTS16 and Mayday.11

MulteeSum17 supports the inspection of gene expres-

sion data not only over time but also in conjunction

with the spatial cell location within an organism.

Clusterings are typically used in DGE analysis

to group genes with similar patterns (e.g. TM410,

Mayday11 and INVEX14). Different clustering meth-

ods have been used and proposed on that account. In

heatmaps, the clustering is mostly indicated by an

ordering of the genes based on clustering results and

along with a dendrogram next to the heatmap (see

Figure 2). BicOverlapper18 focuses on the visualization

of biclustering results from gene expression matrices.

Biclusters are represented as undirected complete sub-

graphs. Differential expression analysis and functional

enrichments are added in BicOverlapper 2.0.19

Functional enrichment (or gene set enrichment)

analysis is often a subsequent step after the identifica-

tion of a set of potentially relevant genes (see

Hung et al.20 for an overview). An enrichment search

refers to finding pathways or networks where a set of

genes is significantly over-represented. BicOverlapper

2.019 visualizes functional annotations of groups of

genes as word clouds. Systems such as GENeVis21

map gene expression data directly to networks. Gene

expression is represented as bars inside network nodes

(for an overview and alternatives, see Gehlenborg

et al.9). Pathline combines visualizations of multiple

genes, time points, species, and pathways by introdu-

cing a linearized metabolic pathway representation and

curve-maps representing the temporal expression

data.22 The data and focus of Pathline are different to

our problem definition as we only analyze one bacteria

species.

The pure visualization of a functional enrichment

analysis or pathway analysis is not the focus of

VisExpress. We focus on the visual exploration of DGE

patterns in relation to gene functions, providing qual-

ity awareness and (n:n) comparisons with expressive

overviews and visual representations that allow a cog-

nitively effortless recognition and interpretability of

patterns. An integration of functional enrichment

analysis will be part of future work.

Architecture of VisExpress

VisExpress is designed following the classical visual

information seeking mantra of Shneiderman23 ‘‘over-

view first, zoom and filter, then details-on-demand’’ in

order to support a divide and conquer approach for

exploration of multiple genes and also investigation

into details for genes of interest.

VisExpress uses matrix fingerprints to provide a

visual summary of a gene in order to make GAR pat-

terns interpretable (R0; see Figure 3). The matrix lay-

out enables to visualize conditions as rows and

columns. Therefore, the matrix layout reveals the

activity of genes in different experimental conditions

(n:n comparisons). The first level of VisExpress (Cluster

View) uses these fingerprints and word clouds to over-

view clusters of genes in a treemap. This reveals com-

mon characteristics of the clusters (R1: comparison)

as well as their biological functions (R2). The second

level (Gene Fingerprint View) visualizes all genes of a

selected cluster in a scalable, space-filling layout for

Figure 2. State-of-the-art heatmap of the differential
gene expression data used in this study (created with
the R function heapmap.212). Genes are depicted by
means of the rows and experimental conditions are
illustrated by the columns. The clustering of rows is
indicated by a dendrogram. All genes are included
(around 5000). Two large clusters at the top and at
bottom stand out. However, no clear pattern that
separates the clusters or conditions stands out, which
increases the efforts of visual analysis. The colormap
was adapted from ColorBrewer.org13 (saturation: high
gene expression ratio; white: low ratio; hue: direction).
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visual exploration of large amounts of genes (R3). The

third level (Gene Board) provides details-on-demand

for single interesting genes. This view reveals detailed

information related to the gene’s functions as well as

gene activity level trends and allows manual assess-

ment of findings (R5). The intended workflow of

VisExpress is illustrated in Figure 3.

The three levels are seamlessly connected for

smooth transition of analysis via a multiple view sys-

tem. Each level can also be instanced multiple times

with different data and settings. All instances are

linked to a central instance which synchronizes the

configuration of the designs and handles interactions

between instances and levels (see also Figure 12). The

system’s visual components were implemented with

JAVA Swing Components. An interface to R24 and

Bioconductor25 is used for preprocessing, statistical

analysis, and machine learning algorithms.

The next sections will describe the following in

detail: why and how we visualize GAR patterns

(‘‘Visualizing GAR patterns’’), the ‘‘Components of

VisExpress’’, and the ‘‘Interaction design of VisExpress’’.

Visualizing GAR patterns

Biologists aim to generate and verify hypotheses about

the behavior of genes. The main information units are,

thereby, the GAR patterns (focus of the tasks T1–T4).

Heatmaps are the state-of-the-art for visualizing DGE

data (see Gehlenborg et al.9 for an overview). Thereby,

GAR patterns are represented as rows in heatmaps

(see Figure 2). GARs are represented as color-coded

pixels. All comparisons are shown next to each other

and all genes are stacked horizontally. However, this

representation supports requirements R0 (interpret-

ability of GAR patterns) and R1 (comparison of GAR

patterns) only partially:

1. A linear representation of GARs does not allow to

directly identify the involved conditions (R0; see

Figure 4(a) and (e)).

2. A linear representation of GARs does not suffi-

ciently capture salient patterns (compare (a) and

(e) with (h) in Figure 4).

3. It is hard to compare and explore genes (see

Figure 2), since single genes are hard to identify

in a simultaneous representation of several thou-

sand genes (R1, R3).

Gene Fingerprints

Fingerprinting. Based on these considerations, we

decided to represent the GAR patterns of each gene as

a single entity (glyph-like) which we will name gene fin-

gerprint. Our design goal of gene fingerprints is to

Figure 3. Schematic workflow of the three views in VisExpress (based on the visual information seeking mantra of
Shneiderman23 ‘‘overview first, zoom and filter, then details-on-demand’’). A user can overview the whole data in the first
level with a treemap that reveals the clusters in the data (Cluster View). By selecting a cluster in the treemap, the user
can zoom to the second level which overviews all gene fingerprints in one cluster (Gene Fingerprint View). Users can
further filter out genes of interest and open them in a new Gene Fingerprint View. The third level gives details-on-demand
about selected genes (Gene Board). Furthermore, the user can extract interesting genes to a remember list for later
analysis. In order to relate the gene fingerprints with gene functions, the user can open a word cloud of gene functions
as a further details-on-demand view. The user is also able to switch between different designs that support different
analysis foci in the control GUI (see Figure 12).
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provide a visual summary of a gene which can be used

to compare the GAR patterns effectively (R1). The

idea of fingerprinting is based upon the work of Keim

and Oelke26 of literature fingerprinting. Each gene

consists of a tuple of a GAR rk, l(gi) and a quality

qk, l(gi) as well as functional description (plain text) for

contextual information. Gene fingerprints should sup-

port identification and comparison of GAR patterns

(R0, R1) and the assessment of quality (R6).

Therefore, we discussed dividing the tuple into mea-

sure and quality in order to focus the visualization on

the GAR measure.

The quality could be handled by threshold-filtering

and/or details on demand such that only GAR patterns

with a high quality are visualized. However, the BIO

team preferred to see all genes and to perform quality

aware analysis (R6). Even patterns with low quality

can be interesting and there is no fixed threshold that

can define interestingness which rejects the idea of

threshold-filtering. The challenge is to find visual

metaphors that can encode both GAR value and qual-

ity and also satisfy R0, R1, and R3 (interpret, com-

pare, and explore GAR patterns). In the following, we

discuss design alternatives for gene fingerprints.

Design of gene fingerprints. Due to the exploration

requirement (R3), the visualization design has to be

scalable. Highly scalable techniques are pixel-based

visualizations such as recursive patterns27 or pixel bar

charts.28 Therefore, the VIS team discussed several

alternatives to visualize GAR patterns with pixel-based

or pixel-cell-based techniques such as circular, ring, or

matrix representations. As in the linear arrangement of

a heatmap, identification of the involved comparisons

is not effective for circular or ring representations

which violates the interpretability requirement (R0)

(see Figures 2 and 4). Matrices support the identifica-

tion of the involved conditions since the matrix ele-

ment at row x and column y indicates the activity ratio

value of the xth condition and the yth condition (see

Figures 4 and 5). Biologists can, therefore, interpret

the GAR pattern of a single gene by inspecting ele-

ments of a matrix (R0). Subsequently, they can com-

pare the GAR patterns between multiple genes by

inspecting the distribution of patterns across multiple

matrices (R1).

Design alternatives for gene fingerprint
matrices

Each matrix has to represent a summary of a single

gene’s activity ratio values and their qualities for differ-

ent experimental conditions. Since there are several

variants to encode the data with this visual metaphor,

the VIS team came up with several design alternatives

(see Figure 5) which will be discussed in detail in the

following paragraphs.

Two symmetric or triangular matrices for value and
quality. One solution is to visualize the quality of each

gene as an additional matrix juxtaposed to the corre-

sponding value matrix. Although this design may

ensure more accurate perception of both values, there

are some significant drawbacks: (1) it wastes valuable

display space and (2) it is hard to visually align value–

quality pairs. Therefore, this design does not guaran-

tee effective inspection on the GAR and the quality

(R6) by burdening biologists with cognitive efforts to

find and check two locations for a single comparison.

The VIS team, therefore, excluded this design.

Value and quality triangles. Similar to the aforemen-

tioned design, Figure 5(a) shows a design where each

Figure 4. Design alternatives for gene fingerprints. All
sub-figures illustrate the same data of pairwise
comparisons of six conditions (black: low value, green:
high value). (a)–(d) All 15 unique comparisons and (e)–
(h) all 36 pairwise comparison of six conditions. (a, e)
Linear ordering, (b, f) circular layout, (c, g) ring layout,
and (d, h) matrix layout. In the illustrated data,
condition 4 is different to all other conditions (which
would be an important finding since this indicates that
this gene and its function are related to this condition).
From (a)–(c) and (e)–(g), the pattern is hardly readable.
Even though (b) and (c) show a pattern (black–green–
black–green), the pattern is not interpretable and not
salient. The pattern (condition 4 is different to all other
conditions) is most salient in (h).
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of two triangular portions represents the activity ratio

and its quality, respectively. This solution was dis-

cussed among the VIS team and with the BIO team as

well. We concluded that the cognitive efforts to find

and check two locations for a single comparison are

still a burden for the analysis.

Resizing matrix. A further possibility to encode the

quality would be to encode the GAR ratio with color

and quality with the size of matrix cells. However, this

solution is not scalable and the saliency of patterns is

highly dependent on the size and, thereby, on quality

which might suppress important patterns in the data.

The VIS team, therefore, excluded this design.

Stacked matrix. Another approach is to use a Stacked

Matrix. This approach is inspired by work of Oelke

et al.,29 where a stacked resizing matrix is used to rep-

resent user opinions on printers. The Stacked Matrices

in Figure 5(b) and (c) use the outer rectangle for

encoding the quality and the inner rectangle for encod-

ing the value. The size of the inner rectangle is fixed.

The Stacked Matrix with two different colormaps per-

ceptually separates the inner and outer rectangles.

This design is different from Oelke et al.29 since the

inner and the outer rectangle do not represent the

same measure in our design and the size is fixed. The

proximity between two values enables biologists to

read the activity ratio and its quality accurately and,

thus, it supports the interpretability (R0) and quality

requirement (R6). However, this design may suffer

when many fingerprints are shown in a small space.

Thus, zooming and panning interactions should be

used when the task requires exploration of many genes

(T1–T4; see also sections ‘‘Limitations and future

work’’ and ‘‘The size of gene fingerprints’’).

Colormap design of gene fingerprints. In addition to

the matrix structure, colormaps should be carefully

selected because they encode the activity ratios and

qualities in our design. The selection of colormaps

impacts upon the performance of all tasks (T1–T4)

because our visual cognition system is steered by sev-

eral attention effects. Our vision tends to focus on

strong contrasts especially when colors are fully satu-

rated and intense on dark backgrounds.30 Warm col-

ors will suppress cold ones if they are spatially close.31

Therefore, lightness, saturation, and temperature of

colors must be considered.30 For interpreting (R0)

and comparing (R1) GAR patterns as well as to assess

the quality, the analyst performs the elementary analy-

sis task of comparing encolored values and qualities.

Following the guidelines of ColorCAT30 for specific,

as well as combined, analysis tasks, we use percep-

tually uniform colormaps (value: black to green; qual-

ity: grayscale) for this elementary comparison task.

This colormap choice supports to pre-attentively per-

ceive value and quality differences. Furthermore, the

values appear more prominently in comparison to the

qualities which are encoded with a perceptually uni-

form grayscale.

One might also consider using the same colormap

for activity ratios and qualities (see Figure 5(c) upper

Figure 5. Design alternatives for matrix visualizations of gene fingerprints. Four different measures to characterize a
gene are illustrated for each design (see (c)). (a) Two triangular portions in a matrix representing the value (bottom left)
and the quality (upper right) of a gene. (b) and (c) Stacked matrices with inner and outer rectangles encoding value and
quality, respectively. (d) and (e) Two-dimensional colormaps for normal and dichromatic visions, respectively. The color
mapping in (c) highlights high values and low quality.
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matrices). Due to the Gestalt Laws of Similarity and

Pragnanz, we perceive regions of similar color as a

whole large rectangle, instead of several stacked rec-

tangles with different shades of green (see Figure

5(c)). This supports the detection of row and column

patterns (R3) which are important in the tasks of

building and associating groups (T1–T4). This design

alternative of a Stacked Matrix has a higher scalability

and can, therefore, be used in overviews with larger

amounts of fingerprints.

Two-dimensional colormap matrix. Two-dimensional

(2D) colormaps can also be used as illustrated in

Figure 5(d) and (e). However, 2D colormaps are not

suited for accurate value perception,32 but these color-

maps support the quick assessment of quality differ-

ences between different genes (R6) in data exploration

(R3). Thus, it is recommended to use this where biol-

ogists want to quickly estimate values of multiple

genes with a reasonable accuracy (R3). Furthermore,

one should note that two-dimensional colormaps fail

to function as intended for people with color vision

deficiencies. Addressing this issue, we used opponent

chromatic channels to encode the dimensions (nor-

mal: red-green, dichromatic: blue-yellow). As illu-

strated in Figure 5(d) and (e), the lower left matrix is

clearly different from the other matrices. This is

extremely useful to compare GAR patterns with the

quality in mind (R6) which is only partially supported

by other designs. Furthermore, this design is highly

scalable in overviews of vast amounts of fingerprints

(see Figure 14).

Triangle versus symmetric matrices and reordering.
The Stacked Matrix and the Two-dimensional Colormap

Matrix designs can be used with a full (symmetric)

matrix or even a triangle matrix since half of the matrix

comparisons are redundant. The advantage of a trian-

gle matrix would be to save the space of redundant

information. However, after a series of discussions

among the VIS team and a consultation of the BIO

team, we concluded that a symmetric matrix strength-

ens the visual saliency of patterns. The BIO team per-

ceived the pattern in Figure 8(b), for example, less

salient than that in (a) even though the two figures show

the same pattern. Furthermore, some patterns might

appear more interesting than others with the symmetric

layout (e.g. the cross in (a) appeared more interesting

than in (d) for the biologists on the first sight). However,

the BIO team always reflected the meaning of a pattern

and had no concern to realize that (d) reflects the same

pattern as (a) (one condition is different to all others;

condition 1 for (d) and condition 4 for (a)). The rows

and columns represent specific experimental conditions

which need to be maintained as references in order to

assess other matrices. Therefore, the idea of the VIS

team to use ordering emphasizing interesting patterns

was rejected. Inconsistent ordering may confuse biolo-

gists to interpret the comparison of results between mul-

tiple genes (R0, R1).

The size of gene fingerprints

In order to estimate the limitations of the matrix

design, we tested different numbers of conditions in a

perceptual study with eight participants. Our goal was

to estimate the number of conditions that can be effec-

tively read from the matrix visualization to interpret

the GAR pattern (R0). The task was to identify the

involved (correlating and active) conditions in a GAR

pattern which is the base for the analyst to generate

and validate hypothesis about the functions of genes

(T1, T2) as well as to explore genes with unexpected

GAR patterns (T4).

One condition is harder to determine than several.

Compare, for instance, sub-figures (a) and (b) of

Figure 6. Although the pattern in (b) is more visually

salient, the two involved conditions in (a) are easier to

identify than the single condition in (b). The reason

for this is that we can efficiently perceive one cell to

the left and one cell to the right. In contrast, to deter-

mine condition 4 (b), we need to mentally count the

three cells to the left. In this case, we cognitively pro-

cess if rather three or four is the correct answer which

needs more time. Since it is the hardest case to deter-

mine the concrete identity of one condition, we tested

matrices in which only one condition deviates from

the other conditions (see Figure 7).

We used matrices with 4-8, 10, 12, 14, 16, 18, and

20 conditions. For each matrix dimension size, each

condition was highlighted once. Since fingerprints are

used for overviews and should be intuitive and effi-

ciently read by the user, we limited the time frame a

matrix was shown to the user in each trial to 300 ms.

Within this time frame, the task was to determine the

identity of the highlighted condition (see, for instance,

Figure 7). We counted the number of correct and

incorrect trials as well as how often participants were

not able to give an answer.

The size of matrix cells is limited by the contrast

sensitivity of our eye. Patterns with high spatial fre-

quency (above 20 cycles per degree of the visual angle)

cannot be detected by the human eye.33 We selected

the size of a matrix cell with 6 3 6 pixels (1.96 mm2)

which accords to a ’ 0:138 of the visual angle (display

size: 27$ with width N ’ 60 cm; resolution:

2560 3 1440 with n= 2560; viewing distance:

D= 60 cm; px= 6; a(px)= arctan
(N=n)

D
� px

� �
. At this

size, the average human eye is close to the maximum
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contrast sensitivity (here 1
(2�0:138)

� �
’ 3:79 cycles per

degree of the visual angle).33 The cells should not

become smaller since already at 10 cycles per degree

(accords to 3 3 3 pixels) the sensitivity of our eye is

halved and further converges to zero.

The goal of the study was to estimate which num-

bers of conditions are accurately read by the partici-

pants. The study was within-subject designed; thus,

each participant was shown matrices with a different

number of conditions (in randomized order) and with

different highlighted conditions (in randomized order).

For four to six conditions, participants answered all

trials correctly (see Table 1). For up to 12 conditions,

the accuracy is still above 80%. At 14 conditions, the

accuracy drops to 64.29%. We assumed a relation

between accuracy and the identity of the highlighted

condition and had the hypothesis that conditions 1–3

and n-2 to n can be accurately identified (see (a–d)

and (i–l) in comparison to (e–h) in Figure 7.) We,

therefore, determined the accuracy per identity of the

highlighted condition. Table 2 clearly confirms this

hypothesis. Participants made most errors in case of

condition 5 resp. n-4. For 6 resp. n-5, the accuracy

decreases further, but participants mostly answered in

these cases that they could not give an answer.

We conclude that users can read 6 3 6 gene finger-

print matrices error-free. However, gene fingerprint

matrices up to 12 3 12 are still quite accurate, espe-

cially if we take into account that each matrix was just

shown for 300 ms with a small cell size in our study.

Support of different comparison measures

One requirement (R4) is to ‘‘support different com-

parison measures’’ because multiple measures can

increase the level of trust in findings and provide dif-

ferent views on the data set. Reasonable measures are

the fold-change and the significance of the fold-change

(see Supplement Material) since they are the state-of-

the-art for DGE data. Further useful measures are, for

example, the Euclidean distance (indicating the differ-

ence of activity levels) and dynamic time warping34

(indicating the similarity of activity levels) adapted

from time series analysis. We use small-multiples

design and, thus, each matrix of a gene fingerprint

represents one measure (see Figure 5(c)). This allows

easy comparison within and between genes and, there-

fore, also satisfies R0, R1, and R4.

Components of VisExpress

VisExpress gives an overview of gene expression data with

a Cluster View. The second level visualizes gene clusters

with gene fingerprints (Gene Fingerprint View), whose

design alternatives were discussed in the previous section.

The Gene Board provides a detailed view of a selected

gene (see section ‘‘Architecture of VisExpress’’ and Figure

3). In the following, we will introduce and discuss the

design of the components of VisExpress.

Overview: Cluster View

Our overview aims to provide a snapshot of genes

grouped with similar GAR patterns so that users can

immediately grasp the pattern distribution across

genes, select an interesting group of genes, and delve

into details. Therefore, the system must provide a

visualization that allows an overview of the clusters

(GAR patterns) in the data set, thereby fulfilling R0,

R1, and R3 (interpretability, comparison, and explora-

tion). To account for R2, the overview should also

show a summary of the gene functions of the clusters.

Alternatives for cluster overviews. In order to build

sets of genes with similar GAR patterns, heatmap-

based approaches such as used by TM410, Mayday11,

and INVEX14 use clustering. Genes naturally form

hierarchical clusters if the genes operate with the same

regulatory mechanism (regulon). In heatmap-based

visualizations, the hierarchical clustering is used to

order rows and a dendrogram is visualized next to the

heatmap (see Figure 2). However, this representation

does not clearly show which different clusters exist in

the data set since (1) clustering is ill-defined and,

therefore, clusters are often not visually separable and

(2) small clusters might be overlooked. Thus, these

approaches do not fulfill the comparison and explora-

tion requirements (R1, R3).

There are space-filling visualization techniques such

as self-organizing maps (SOMs) or treemaps that can

be used to overview gene clusters. However, SOM

Figure 6. (a) and (b) Matrices with the stacked matrix
design; (c) and (d) with the filled matrix design (2D
colormap). In (a) and (c), conditions 2 and 4 are
highlighted; in (b) and (d), only condition 4 is highlighted. It
is easier to determine that conditions 2 and 4 are
highlighted in (a) and (c), since the gaps have size 1. In (b)
and (d), we need to count the cells to the left. Counting is
easier in the stacked matrix design (a) and (b), since cells
can be distinguished.

58 Information Visualization 16(1)



clustering does not preserve the natural hierarchy.

Large clusters will span over large parts of the map,

whereas small clusters are suppressed. Furthermore,

the creation of cluster centroids will refine the cen-

troids of big clusters; however, suppress centroids of

small clusters such that interesting GAR patterns of

small clusters are consumed. This violates R0, R1, and

R3 (interpretability, comparison, and exploration).

Treemap overview. We choose to visualize groups of

genes with a squarified treemap35 showing the hier-

archical clusters. The number of cluster items is

encoded by its node size. This enables to assess the

importance of clusters and also small clusters are pre-

served. Inside the treemap, either a centroid gene fin-

gerprint of the corresponding cluster or a textual

representation of the gene functions in this cluster is

shown (see Figure 9). The representation of centroid

gene fingerprints allows an overview of GAR patterns

as well as their comparison (R1). The textual repre-

sentation allows relating the GAR patterns with the

gene functions (R2) and to relate clusters with hypoth-

eses (T2).

A straightforward solution to visualize gene func-

tions would be a list of words ranked by frequency.

However, there is a large number of different functions

in gene clusters which need to be summarized (R2).

Therefore, a scalable approach is required. Word

clouds are frequently used as visualization technique to

aggregate and visualize textual data (e.g. see Wordle36

or Bateman et al.37 for guidelines). Furthermore, word

clouds have already found their way in the biology

domain.19,38 We use the R package wordcloud.39 The

BIO team preferred the encoding of the word fre-

quency by size in word clouds as they could easily spot

the most prominent words (functions) as well as get an

overview of the distribution of functions (including

outliers) which is important to derive a conclusion

(R2).

The clusters and hierarchies are separated with cate-

gorical colors that share equal lightness and saturation

based on guidelines of Healey40 and Harrower and

Brewer13 to prevent any attentional steering effects. We

also provide a linear blend around borders to offer

cushions to guide users’ attention through the hierar-

chy according to van Wijk and van de Wetering.41 In

order to indicate the quality of the current clustering,

we encode the variance within the clusters with satura-

tion of the categorical colors. Saturated colors indicate

high quality (low variance) and gray colors indicate low

quality (high variance) which implies that these clusters

should be refined. We enable the user to drill-down the

cluster hierarchy interactively (see section ‘‘Interaction

design of VisExpress’’).

Explore: Gene Fingerprint View

The comparison and exploration of genes according to

GAR patterns (R1, R3) requires inspecting sets of

genes with similar GAR patterns (R0) and their func-

tions (R2). Sets of genes with similar GAR patterns are

given by the clusters in the treemap. The layout of the

Gene Fingerprint View has to represent large volumes of

gene fingerprints. Furthermore, to effectively scan

through GAR patterns of a cluster to compare and

explore genes (R1, R3), the cognition load needs to be

minimized. Therefore, the layout has to use the display

space effectively and also provide a structured view on

the GAR patterns. Furthermore, quality issues need to

be highlighted (R6).

Alternative layouts for gene fingerprint overviews. One

way to structure the view is a sorting by interestingness

function. For instance, by sorting gene fingerprints by

their GAR values and/or their qualities, or the similar-

ity of GAR patterns. The selection of the interesting-

ness function depends on the analysis task and can be

changed by the user on-the-fly (see section

‘‘Interaction design of VisExpress’’).

Using an interestingness function allows several

alternatives for a structured layout. The most

Figure 7. Stacked matrices with 12 conditions. In each
matrix, a different condition is highlighted (a-1, b-2,., k-
11, l-12). One can count the number of cells left or right of
the cross to determine the identity of the highlighted
condition. For example, in (d) three cells to the left
indicate that condition 4 is highlighted. In (j), two cells to
the right indicate that condition 10 is highlighted
(12 2 2 = 10). Clearly in (e) to (h), it is harder to determine
the highlighted condition since the number of cells to the
left and right cannot be perceived as intuitive and
unconscious as in (a–d) and (i–l).

Simon et al. 59



straightforward alternative is, for instance, to layout

fingerprints line by line according to the interesting-

ness. However, this does not preserve local proximity

(e.g. the two first objects of the first and second rows

are spatially close but very distant in the interesting-

ness or data similarity). Hilbert curves42 preserve local

proximity but cannot guarantee a globally ordered lay-

out since curves might start and also end at the top

depending on the number of objects. This violates

intuition because intuitively all interesting genes are

on the top and the least interesting ones are on the

bottom.

Layout of gene fingerprints. We used the recursive pat-

tern algorithm of Keim et al.27 that is particularly suit-

able to arrange sorted data points in dense pixel

displays. This algorithm lays out the pixels with recur-

sive levels of arrangements (hierarchical ‘‘Z’’-arrange-

ments) that have specific widths and heights. Thereby,

recursive patterns can preserve local proximity and

global (intuitive) interpretation. Recursive patterns

can guarantee to show the interesting GAR patterns

on the top area and similar patterns in proximity.

As shown in Figure 10, the system arranges the fin-

gerprints on the first level by four columns to the right,

one row down, four columns left, one row down, and

four columns right to complete the ‘‘Z.’’ This pattern

is then repeated three times to the right and then three

times to the left in the lower row. In each level, the

ordering of the interestingness is preserved which pre-

serves local proximity and (intuitive) interpretation of

the whole layout (top: the most interesting ones; bot-

tom: the least interesting ones). A disadvantage of the

technique is that parameters of the algorithm have to

be selected in advance. The problem is to find a good

combination of widths and heights (e.g. four steps in

the example above) for each recursive level. Keim

et al.27 suggest determining the arrangements by inter-

action. However, this would disturb the exploration

Table 1. Summary of the accuracy and error rate as well as the percentage of no answers (counted as incorrect answer
for the accuracy) for the tested number of matrix dimensions.

Dimensions Correct (%) Wrong (%) No answer (%)

4 100.00 0.00 0.00
5 100.00 0.00 0.00
6 100.00 0.00 0.00
7 96.43 0.00 3.57
8 96.88 3.13 0.00
10 82.50 12.50 5.00
12 83.33 4.17 12.50
14 64.29 7.14 28.57
16 54.69 9.38 35.94
18 58.33 6.94 34.72
20 43.75 10.00 46.25

Table 2. Summary of the accuracy and error rate as well as the percentage of no answers (counted as incorrect answer
for the accuracy) per highlighted identity.

Identity Trials Correct (%) Wrong (%) No answer (%)

1 resp. n 22 100.00 0.00 0.00
2 resp. n-1 22 100.00 0.00 0.00
3 resp. n-2 19 93.42 3.95 2.63
4 resp. n-3 15 75.00 16.67 6.67
5 resp. n-4 12 54.17 20.83 25.00
6 resp. n-5 10 42.50 17.50 40.00
7 resp. n-6 8 12.50 0.00 87.50
8 resp. n-7 6 0.00 2.08 95.83
9 resp. n-8 4 0.00 0.00 100.00
10 resp. n-9 2 0.00 0.00 100.00

The number of trials shows how often a certain identity occurred in the experiment. For example, we highlighted 11 times the first
dimension and 11 times the nth dimension, resulting in 22 cases for ‘‘1 resp. n’’. ‘‘9 resp. n-8’’ includes the matrices 18 3 18 and
20 3 20 with condition 9 highlighted, as well as matrices 18 3 18 and 20 3 20 with condition 10 resp. 12 highlighted.
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process and we decided to determine the parameters

automatically by applying an optimization algorithm

to this combinatorial problem (see Supplement

Material).

Detail: Gene Board

This level supports detailed information about a single

gene for the manual assessment of the trustworthiness

and a detailed inspection (R5). The design of the Gene

Board was not the focus of this article but was highly

tailored by the given application specific specifications

(sub-requirements of R5) and closely coordinated with

the BIO team (see Figure 11).

The baseline for the design was the activity level

view and genome annotation information of a genome

browser. Genome browsers often represent trends of

the activity levels as line charts. A focus on ratios in the

data representation improves the interpretability as the

BIO team is mainly interested in the GARs between

conditions (achieved by a log scaling). Position of the

gene (red) and neighboring genes are indicated with

arrows (see (A2) in Figure 11). As the strengths of the

activity levels and their trend over the gene are major

assessment criteria, we decided to additionally show

the trend of the activity levels as horizon graphs.

Horizon graphs are a visualization for sequential data

that enable easy comparison between multiple condi-

tions.43 This enables the biologists to see at a glance

which conditions have a high activity level and to easily

assess the trend over the gene. Next to the horizon

graphs, the normalized gene activity levels (Reads Per

Kilobase per Million mapped reads [rpkm-values])44

are represented as color-coded pixels. We use a global

color-coding to allow a comparison between genes. In

this way, the trend of activity levels (horizon graphs

(B)) can be set directly in context with the normalized

gene activity levels (pixel-column (C)). The GAR pat-

terns are shown as a matrix representation (D) next to

the normalized gene activity levels. Thereby, biologists

can easily relate the GARs with the strength of the gene

activity levels. Gene descriptions and functions are

shown as plain text (E).

Interaction design of VisExpress

In this section, we explain how we have implemented

the requirements with interactions, classified accord-

ing to the multi-level task typology of Brehmer and

Munzner.8 See Figure 12 for an overview of interac-

tions. The numbers in brackets in the following sec-

tions correspond to the interactions in the figure;

interactions according to Brehmer and Munzner8 are

set in italics.

Interactions of the Cluster View

The Cluster View provides an overview of the data set

by showing the GAR pattern of the cluster representa-

tive per default (see Figure 13(a)). In order to summar-

ize the gene functions (R2) within a cluster and to

compare these with the GAR pattern representative of

one cluster, the user can navigate (details-on-demand)

by mouse over to the corresponding word cloud (1)

(see Figure 13). The quality of the cluster representa-

tive is encoded by the saturation of the colored sur-

round to indicate whether a cluster should be refined.

For identifying the corresponding subclusters and,

thereby, to explore the data set for interesting clusters

(R3), VisExpress enables the user to drill-down (navi-

gate) the cluster hierarchy by right clicking on the clus-

ter representative (2). In order to support the

exploration of genes (R3) and to compare or identify

interesting genes, users can navigate (zoom) to the

Gene Fingerpint View showing all GAR patterns of

genes by left-clicking on the cluster representative (3).

Finally, we allow the user to call up Gene Fingerpint

Views of several clusters in order to support a compari-

son between clusters and GAR patterns (R1) by arran-

ging the Gene Fingerpint Views next to each other (4).

Interactions of the Gene Fingerprint View

The Gene Fingerprint View visualizes all gene GAR pat-

terns of the selected cluster (see Figure 1(c)). See

Figure 12 for an overview; the numbers in brackets are

numbers from the figure. In order to identify a gene of

interest and to relate the GAR pattern of the gene with

its function, details-on-demand (navigate) showing the

gene name and function in a tool-tip (R3) are pro-

vided by mouse over (5). Right clicking on the gene

Figure 8. The perceptual differences between
symmetric gene fingerprint matrices (a and b) and
triangular gene fingerprint matrices (d–e). In (a) and
(d), condition 4 is different from the rest, and in (b) and
(e) condition 1. (c) The 2D colormap used for the sub-
figures. The patterns in (a) and (b) are more salient
than is (d)–(e). The pattern in (a) is, furthermore, more
salient than the pattern in (b).
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will record it on a remember list in the control graphi-

cal user interface (GUI), where the gene fingerprint of

the corresponding gene is saved with a thumbnail (see

Figure 10(b)) (6). Users can also select a set of genes

to summarize and relate the functions of the selected

genes by navigating (details-on-demand) to the corre-

sponding word cloud (see Figure 14) (R2) (7).

Furthermore, users can filter to a set of selected genes

by opening a new Gene Fingerprint View to compare

and identify interesting genes in the selection (R3) (8).

Allowing the assessment of the trustworthiness (R5),

users can navigate to the Gene Board showing details of

the read coverage and further summarized information

about the selected gene (9). Finally, we allow the user

to call up several Gene Boards. By arranging the win-

dows next to each other, a comparison between GAR

patterns (R1) and the underlying data is supported

(10).

Interactions of the Gene Board

So far no interactions are implemented for the Gene

Board which can be interpreted as a static Dash Board.

However, the user evaluation revealed a set of useful

interactions which will be implemented for the next

version of VisExpress. This includes browsing and

zooming in the line chart representation as well as the

possibility to call up Gene Boards of neighboring genes,

by clicking on the arrows indicating the gene locations.

As neighboring genes are of special interest, users also

requested to show the location of clicked neighboring

genes in the Gene Fingerprint View. Furthermore, the

BIO team requested a direct link to the gene database

entries at, for example, NCBI.7

Control GUI interface

Since the BIO team had no issues with the different

designs and understood their advantages and disad-

vantages, we decided to let the user freely configure

the system to the analyst’s needs. All these adjustment

possibilities give users the flexibility to adaptively test

powerful combinations as they encounter different

types of tasks. Additionally, visualizations can be fur-

ther customized, for instance, by hiding specific condi-

tions or enabling or disabling symmetric matrices (see

Figure 14(d)).

Allowing a comparison of the gene functions

between clusters the Cluster View can be changed to a

treemap showing word clouds (see Figure 9) (R2)

(11). To identify and compare interesting genes (R6,

R1), users can change the visual design of the Gene

Fingerprint View to best fit their current analysis task

(12). This includes changing the color mapping as

well as the design of the gene fingerprints (see Figure

5). Additionally, the gene fingerprints can be

arranged (ordered) by different interestingness func-

tions to sort the layout of gene fingerprints for differ-

ent analysis interests (13). In Figure 14, a 2D

colormap is used; the ordering is ‘‘value and quality

high.’’ The recursive pattern algorithm layouts the

genes in a way that high-value and high-quality genes

are shown at the top-left and genes with low value

and low quality are shown at the bottom right. The

2D colormap is well suited to separate ‘‘good’’

(green) from ‘‘bad’’ (red) genes. (Notice: we also

provide a 2D colormap for people with color vision

deficiencies.) To get a different perspective on the

data, users can also add further measures to the Gene

Fingerprint View (R4) (14). Users can import pre-

calculated measures and add them to the Gene

Fingerprint View (see Figures 5 and 10).

In order to allow the user to re-check genes saved to

the remember list and to assess the trustworthiness

(R5), users can navigate to the Gene Board showing

details of the read coverage and further summarized

information about the selected gene (15). The gene is

always saved with the design that was active at the

selection which allows the user to relate the gene to the

reasons for the selection (see Figure 10). The remem-

ber list allows the externalization of findings which

supports the exploration and verification loop of the

knowledge generation model of Sacha et al.45

User assessment

We conducted a qualitative evaluation with three pro-

fessional molecular biologists. As VisExpress is

intended to support a visual exploration of DGE data,

we decided to conduct an open-ended exploratory

Figure 9. Treemap visualization for representing the
hierarchical clusters of the genes. The clusters are either
characterized by the centroid fingerprint or a word cloud
of the functional categories of the genes (‘‘no COG’’: no
functional categories assigned). The saturation of the
cluster colors encodes how much variation exists within
the cluster. Users can interactively drill-down the
hierarchy or open the Gene Fingerprint View to explore one
cluster.
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study and to evaluate VisExpress with Pair Analytics5

where a domain expert (biologist) and a visualization

expert collaboratively explore a complex real-world

data set and generate conversations about the domain

experts’ analytic activities.

For the whole study, we captured screen activities

and verbal reports using Camtasia Studio46 and also

filmed the screen to capture when participants pointed

on the screen. We performed the Pair Analytics study

with the three participants B1, B2, and B3 (domain

experts; molecular biologists) and the first author as

the experimenter and Liaison3 (visualization expert with

a bioinformatical background) (see also Supplement

Material).

Data

The data set consists of six different conditions and

over 5000 genes are annotated for the used Salmonella

Typhimurium strain. The data set was already ana-

lyzed by B3 but was unknown by B1 and B2. We have

chosen this data set to evaluate how well VisExpress is

suited for an exploration of an unknown real-world

data set (B1 and B2) as well as to evaluate whether B3

could rediscover findings from her previous analysis.

See Supplement Material for more details.

Study procedure

The study was conducted according to the following

procedure:

Instruction. Each participant entered the user study

room separately which was reserved within experts’

workplace. The participant sat down next to the

experimenter with a notebook and one monitor (24$
LCD). The experimenter provided detailed instruc-

tions through a slideshow presentation. Details such as

visual representations, underlying data, measures, and

interaction capabilities were covered so that partici-

pants could use the functions later on.

Introduction to the system. In the introduction, the

experimenter asked a set of predefined easy questions

for each level of VisExpress (Cluster View, Gene

Finperprint View, and Gene Board) to make sure that

the participants understood the views, graphical repre-

sentations, and interactions. For example, the partici-

pants were asked ‘‘Which cluster has the largest

GAR?’’ Furthermore, design adjustment possibilities

were demonstrated. In this step of the study, the

experimenter operated the system and participants

were allowed to ask questions to clarify any uncertain

areas. See Supplement Material for more details.

Open-ended exploratory part. After participants had

completed all given tasks, we asked them to freely

explore the data set which was the main part of the

study. The participants were asked to verbally formu-

late, confirm, or reject hypotheses during the analysis

process and to report interesting or unexpected find-

ings along the way. The experimenter encouraged the

domain experts also to focus on patterns which

appeared interesting to her as a bioinformatician to

facilitate a more collaboratively exploration of the

given data and to generate deeper conversation about

the biologists’ analytic activities, their reasons, and

intentions. However, the experimenter made sure not

to unduly influence the analysis by only suggesting a

deeper look in a few cases and, otherwise, only acting

as an active listener who did not initiate conversation

unless she wanted to clarify unclear motivation or

action (e.g. ‘‘why?’’ or ‘‘how?’’). As participants had no

issues using VisExpress and since user interaction was

quite high, the experimenter decided to let the domain

experts operate the system themselves.

Coding procedure. We followed a top–down and a

bottom–up approach. Our goals were (1) to reveal the

domain expert’s workflows with the VisExpress system,

(2) to clarify expert tasks, and (3) to specify areas for

improvements. First, the experimenter of the Pair

Analytics study formulated findings from study

impressions and verified them with corresponding

clips of the video material. A second author checked

against these findings with the corresponding clips.

Second, the experimenter coded the whole video

material. The video material was first annotated and

split into clips according to the different used views

(Cluster View, Gene Fingerprint View, Gene Board). For

each clip, the experimenter coded the participants’

Figure 10. (a) Overview of gene fingerprints. Matrices are
sorted according to the interest of the user and layouted in
recursive patterns.27 (b) Users can add interesting genes
to a remember list for later inspection.
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analytic and visualization activities. In particular, the

attempt was to reveal the reason behind the partici-

pant’s actions and workflows that lead to findings.

From this analysis, the experimenter formulated fur-

ther findings. The findings were verified with the clips

by the second author.

Results

Three domain experts (B1–B3) participated in this

study. In addition, the managing director of the insti-

tute (professor for microbial ecology) gave feedback

about the VisExpress system (B4). In total, 7 h and

41 min were recorded (see Supplement Material for a

table with the study time per participant). We formu-

lated the following findings from the study and verified

them with video clips.

Biological findings—use case

In the following, we provide examples for some biolo-

gical findings our BIO team made while using

VisExpress in the Pair Analytics study with a real-world

data set:

B1 discovered that membrane proteins are dissemi-
nated between different clusters. B1 started the analy-

sis in the treemap Cluster View with the inspection of

cluster centroids and the according word clouds (by

hovering over the clusters one by one). Participant B1

observed many membrane proteins in cluster ‘‘condi-

tion 4 high’’ and cluster ‘‘condition 1, 5, and 6 high’’.

Such patterns (relations of different conditions) are

strikingly visible with our gene fingerprints which are

easily overlooked in the state-of-the-art representa-

tions where just (1:n) comparisons are shown. After

looking for the gene product names by hovering over

the gene fingerprints in the Gene Fingerprint View (see

tool-tip in Figure 13), B1 concluded that in the cluster

‘‘condition 4 high’’ more transporter genes are present.

Transporters are located in the membrane to trans-

port, for instance, nutrients into the cell. An increase

Figure 11. An example of a Gene Board is shown. (a) The
trend of the gene activity levels for the gene (red arrow in
(A2)) and gene neighbors (black arrows in (A2)), (b) the
trend of the gene activity levels for the gene region with
horizon graphs, (c) the normalized gene activity levels, (d)
the GAR pattern, and (e) gene descriptions and gene
functions. (b), (c), and (d) are closely arranged to set their
data into context. In detail: (c) shows that condition 2 has
the highest normalized activity level. Compared to other
genes, this value is in a medium range (see color legend).
(b) The activity level drops before the end of the gene
(probably due to a technical artifact). (d) The horizontal
green line indicates that condition 2 is up-regulated in
comparison to the other conditions. However, (b) and (c)
show that the gene is active in all conditions.

Figure 12. This figure summarizes the interaction possibilities with the three different views Cluster View (blue), Gene
Fingerprint View (orange), and Gene Board (green), and the control GUI (gray), as well as the details-on-demand word
cloud view (yellow). Interactions are indicated by arrows. Interactions are classified according to Brehmer and Munzner.8

See section ‘‘Interaction design of VisExpress’’ for explanations of the interactions (numbers are mentioned in the text).
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in transporters is reasonable since condition 4 is a sta-

tionary phase condition and, thus, nutrients are

reduced in the medium run and it would be important

for the bacteria to increase membrane transporters to

get a better yield. In the cluster ‘‘condition 1, 5, and 6

high,’’ B1 observed more membrane proteins related

to stress. This is an unexpected finding since condition

1 is the control/reference condition. B1 had no expla-

nation why these membrane proteins should react as

in conditions 5 and 6 but mentioned that it would be

interesting to analyze this surprising fact in detail. To

rule out false positives, B1 tried to reject the finding

by inspecting the genes in the Gene Board (e.g. B1

tried to verify if the expression signal is just an artifact

and the gene is not active under all conditions). Since

this finding seems not to be an artifact, further analysis

steps are required beyond VisExpress, for example, a

literature analysis about the genes in this cluster to

check whether such a correlation was observed before.

B2 quickly discovered low pH-responding genes. B2

discovered in the treemap Cluster View several cluster

representatives with gene fingerprint patterns which

indicate that several genes are similarly regulated in

low pH (acidic) conditions but have no or negligible

differences between other conditions (conditions 5

and 6 are low pH (acidic) conditions). By concentrat-

ing on this pattern, B2 discovered several genes anno-

tated as ‘‘hypothetical’’ by browsing the tool-tips and

GAR patterns of genes in the Gene Fingerprint View of

the corresponding cluster. He added interesting repre-

sentatives of this finding in each cluster to the journal

for later inspection. His aim for further analysis was to

examine these genes for their low pH (acidic)

response. In order to rule out false positives, B2 ana-

lyzed the functions of genes with the same pattern

(located in the same cluster) and inspected the genes

in the Gene Board. In summary, the regulation of the

acid-responsive genes appears to be more significant

Figure 13. Annotated screenshot of VisExpress on Level 1 (Cluster View) and Level 2 (Gene Fingerprint View). (a)
Treemap, showing all gene clusters with centroids represented by their fingerprints. (b) Hovering over a cluster shows a
word cloud with functional categories of the genes in the cluster. In this example, no functional annotation is given for
most genes (no COG and unknown). (c) A left click on the cluster in the treemap calls up the Gene Fingerprint View. In
this cluster, conditions 1 and 4 are prominent. Hovering over a gene fingerprint matrix shows the gene product and the
functional category in a tool-tip (top-left). Multiple gene fingerprint matrices can be selected (orange boarded). For
selected genes, the detailed Gene Board can be called up, users can also zoom to selected genes, create a word cloud
for a selection, or add them to a remember list. See also Figure 14 for another screenshot and Figure 12 for interaction
possibilities.
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than expected by B2 based on today’s literature. The

advantage of VisExpress for this finding was that the

world clouds allowed an intuitive relation of the cluster

to the gene functions. Thus, the word cloud allowed

identifying that some genes in the cluster are anno-

tated as ‘‘hypothetical’’ which was then analyzed fur-

ther by B2 in the Gene Fingerprint View. The further

required analysis step beyond VisExpress is a literature

analysis to verify the finding of B2. Furthermore, a

BLAST search could be performed to check whether

related sequences in other species have been annotated

with an acid-responsive function.

B3 rediscovered that there is a relation between experi-
mental conditions 5 and 6 and iron. The data set has

been analyzed by B3 before. One aim of B3 was to

analyze which genes are influenced by supplement B

(condition 5 vs. condition 6). In order to rediscover

findings related to this supplement, B3 explored the

treemap Cluster View for clusters with differences

between conditions 5 and 6. By inspecting genes in the

corresponding Gene Fingerprint Views, B3 discovered

several genes related to iron. B3 reported that she had

checked this correlation in the literature and found

studies describing this correlation as well in Escherichia

coli which is a species related to the analyzed species

Salmonella Typhimurium. A relation to iron is reason-

able since condition 6 is a stress condition which

affects iron–sulfur cluster-containing proteins.

Ribosomal genes are enriched in a cluster with down-
regulated GAR values in condition 4. This enrichment

was observed by all participants. In the treemap

Cluster View (see Figure 13), three clusters with a

cross-pattern of condition 4 are revealed. By mouse

over and inspection of the corresponding word clouds,

the participants discovered that ‘‘Translation’’ stands

out in one of the clusters. A closer inspection of this

cluster in the Gene Fingerprint Views and the Gene

Board revealed a down-regulation of a high number of

ribosomal genes (belonging to the functional class

‘‘Translation’’). This finding is not surprising because

condition 4 is a stationary phase (see Figure 14).

Bacteria move into stationary phase if their habitat

Figure 14. Annotated screenshot of VisExpress on Level 2 (Gene Fingerprint View) and Level 3 (Gene Board). (a) Gene
Fingerprint View ordered according to high GAR value and high quality is shown in the overview with the 2D colormap
(green: high value, high quality; red: low quality, low value). Green genes are selected and a word cloud is called up for
the selection. (b) In the word cloud 50S is the most prominent word. 50S and 30S are prefixes of ribosomal RNA that
identify an important function of this cluster. (c) The detailed Gene Board for one of the genes. It shows that this gene is
down-regulated in condition 4. (d) The control GUI. It is used to switch between the design of the gene fingerprints and
the colormaps, as well as interestingness functions. See Figure 12 for interaction possibilities.
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does not allow a further increase in the population size

due to space and low nutrient availability. In this state,

bacteria slow their metabolisms to conserve energy.

Consequently, less ribosomes are needed which pro-

duce proteins (encoded by genes). This cluster of

down-regulated ribosomal genes could be excluded

from now on, reducing the data set to more interesting

and biologically relevant functions (other than growth

speed).

Participants found several patterns they could not
explain. B1 observed that several genes with the same

function occurred in a cluster where condition, 1, 2,

and 5 stand out. Detailed analysis with the Gene Board

revealed that condition 5 is up-regulated, conditions 1

and 6 are slightly up-regulated, and condition 2 is

down-regulated. The genes are related to a substance

which is added in conditions 3, 4, and 6. The reaction

pattern was, therefore, not explainable and surprising

for B1. Such complex patterns were intuitively per-

ceived by our experts due to the gene fingerprint

design. Furthermore, VisExpress enables to inspect the

functions of genes by demanding word clouds or the

detailed Gene Board. The experts can query for a com-

prehensive view of such unexpected patterns more effi-

ciently than in the state-of-the-art tools which would

require the analyst to perform additional workflows.

Such findings are especially interesting in an open-

ended/hypotheses free data exploration because they

are starting points for new hypotheses and further

research.

Study findings

The used data set was new for B1 and B2. They

remarked that they just got an overview during the study

and would need more time to deeply analyze the whole

data. Nevertheless, B1 and B2 and also B3 were

impressed how fast they got an overview. B3 rediscovered

several findings regarding groups of genes and single

genes as well. We conclude the following points which

also distinguish VisExpress from the state-of-the-art sys-

tems (all participants agreed on the quotes stated here):

� The system is in line with the mental model of the

biologists and easy to learn. Actually, we observed

no learning curve at all for all participants. All par-

ticipants answered the introductory tasks correctly

and without much reflection. B2: ‘‘The system is

straightforward.’’ B4: ‘‘I have not heard of these

word clouds before but they are immediately com-

prehensible.’’ (fts—free translation(s)).
� VisExpress helps biologists to get a fast overview of

the data. B2: ‘‘I was astonished how fast I got an

overview of this [bacteria] project.’’; B1: ‘‘It is a

very nice tool since I got an overview of B3s data

set very quickly.’’ [The data set was not known to

B1 and B2.] (fts).
� Biologists integrated data quality in their workflow.

B1: ‘‘I liked that I could skip many genes since

their quality was low.’’ (ft).
� VisExpress facilitates to generate hypotheses and to

bring things into question. B2: ‘‘Based on the pat-

terns, it is easy to generate hypotheses and it is

quite fast.’’; ‘‘One can click on a certain [cluster]

pattern and look which [genes] belong to that clus-

ter and in no time one can generate a hypothesis.’’

(fts). See also section ‘‘Biological findings—use

case’’.

General workflow of participants. We observed the

same general workflow among the three participants.

They started with the Cluster View and selected a clus-

ter to analyze further. In order to decide for a deeper

analysis of a cluster, the cluster representatives were

inspected as well as the corresponding word clouds. In

the Gene Fingerprint View, participants selected genes

to analyze in detail with the Gene Board. Genes were

selected according to their GAR patterns, their quality,

and their functional category provided by tool-tips.

With the Gene Board, participants assessed the trust-

worthiness of the GAR pattern. For example, if the

pattern is surprising for the function, a closer look can

reveal that the strength of the gene activity levels is too

low to trust the GAR pattern. After the inspection of

all interesting genes in the Gene Fingerprint View, parti-

cipants switched to the Cluster View and looked for the

next cluster for further exploration. The outcome of

an analysis session is a list of genes of interest which

can be checked with literature research and database

comparisons. B2 states about next steps: ‘‘I would look

up the genes at NCBI, Uniprot, perform a similarity

search with BLAST and do a literature research’’ (ft).

Consolidated hypotheses could then be verified by fur-

ther experiments.

All participants used the quality to reduce the

search space. They did not pay much attention to

genes where all GARs had low quality after they were

convinced that the quality is really an indicator for

trustworthiness (checked with the Gene Board).

However, they still inspected low-quality genes later

on if the pattern was of interest.

Individual analysis processes and findings. The follow-

ing paragraphs quote and describe different examples

of the analysis processes and findings of each partici-

pant in detail.
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B1 said: ‘‘I will successively look at all clusters.’’

The word clouds were used to get an idea about the

included functional categories in a cluster. For exam-

ple, B1 said: ‘‘In this cluster should be [supplement A]

depended genes.’’ and for the corresponding word

cloud: ‘‘Energy production and conversion stands out.

This is reasonable. [Supplement A] is an energy sup-

plier.’’ (fts). B1 also systematically checked gene func-

tions by hovering over at least the first lines of gene

fingerprints in each cluster (high-quality ones). B1

explained: ‘‘I am looking for the gene functions. It is

striking that most genes have a functional annotation,

this was not the case for some other clusters.’’ (ft).

Genes with interesting functions were inspected with

the Gene Board. B1 tried to gather findings for each

cluster and explained whether he had expected them.

For example, B1 said: ‘‘Many genes are related to the

cell membrane. I interpret this as extrinsic stress. I am

surprised that condition 1 and condition 5 and 6 are

similar.’’ (ft; remark: conditions 5 and 6 are stress con-

ditions but condition 1 is not a stress condition).

B2 built a hypothesis about the data set at the

beginning and looked for the respective patterns. A

hypothesis about, for example, only small differences

between conditions 1 and 2 was rejected: ‘‘It is a sur-

prising finding that [supplement A] has an effect on

quite a number of genes. [.] I have not expected this.’’

The word clouds were less frequently used by B2.

After he had checked a few hypotheses, he checked

random clusters with interesting patterns and /or inter-

esting word clouds. B2 also compared similar clusters,

by arranging the Gene Fingerprint Views of two clusters

next to each other. In the Gene Fingerprint View, B2

randomly hovered over genes to get the functional

categories; he tended to focus more on varying pat-

terns. For example, B2 said: ‘‘These are the acid genes.

However, this gene stands out. This is obviously a gene

reacting on acid and [supplement B] stress only.’’

Genes with interesting patterns or functions were

inspected with the Gene Board. B2 gathered findings

for some inspected clusters and explained whether

they confirm or reject his hypothesis. For example, B2

said: ‘‘I have no explanation for this pattern. Standard

condition and a condition in stationary phase [1 and 4]

behave similar. I have no idea what these genes should

have in common.’’ and about the corresponding word

cloud: ‘‘Ah . mostly no functional prediction. Thus,

also others could not classify these genes.’’ (ft; see

Figure 13).

B3 had analyzed the data set before. On one hand,

she tried to rediscover her findings and on the other

hand, she inspected clusters with an interesting pattern

or an interesting word cloud. For example, B3 said for

one cluster: ‘‘Here we have no difference between con-

ditions 4 and 5 but between most others. I also rea-

lized that in my former analysis.’’ and for one gene in

this cluster: ‘‘I found exactly this gene in my own anal-

ysis. A database and literature analysis revealed that

this function has not yet been experimentally verified

for this organism. The annotation is only based on a

low sequence similarity.’’ B3 also looked more system-

atically at the genes in the Gene Fingerprint View and

hovered over at least the first part of the genes in each

cluster (high-quality ones) to check the functional

categories.

Discussion and lessons learned

The problem-driven nature of design studies with real

domain users generates synergy effects as stated by

Brooks:47 ‘‘Hitching our research to someone else’s

driving problems, and solving those problems on the

owners’ terms, leads us to richer computer science

research.’’ In this section, we will share our lessons

learned and discuss the limitations and future chal-

lenges that we identified during our design process.

Design discussions

Recursive pattern layout. The recursive pattern layout

preserves a global ordering as well as local proximity.

We found that local proximity was appreciated by the

domain experts in the Pair Analytics study to search

for neighboring genes with similar gene fingerprints.

In these cases, participants browsed the names of all

surrounding gene fingerprints of a gene of interest in

spiral fashion. It was, therefore, intuitive for the biolo-

gist to search for the most similar gene fingerprints in

the surrounding instead of browsing down the line in

line-by-line layouts.

However, we found in our Pair Analytics study that

participants often inspected all gene fingerprints or

they inspected all gene fingerprints with good quality.

The global ordering preserved by the recursive pattern

layout helped the participants to concentrate on the

gene fingerprints with a good quality. However, in the

case that domain experts inspect all genes of interest

sequentially, it is more intuitive to layout the gene fin-

gerprints line by line than following similar neighbor-

hoods in z-fashion. Therefore, we provide an option to

arrange the gene fingerprints line by line such that the

recursive pattern algorithm layouts the fingerprints

sequentially to the right and on the next line sequen-

tially to the left. This avoids that the analyst’s eye has

to jump from line to line (right to left) and allows to

sequentially browse the fingerprints.
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Gene Board increases trust in the visualization
metaphors. The direct integration of quality in the

data analysis process was new to the participants. In

order to assess the trustworthiness of the quality repre-

sentation within the gene fingerprint matrices, partici-

pants inspected several Gene Boards in which the gene

fingerprint matrix indicated low quality. Due to the

detailed view of the raw sequencing data provided by

the Gene Boards, participants concluded that the visual

representation is correct.

Expressiveness of the evaluation. We evaluated the

design of VisExpress with a Pair Analytics study with

three domain experts and a real data set. This evalua-

tion demonstrated the usefulness of the system. We

claim, furthermore, that the results of the Pair

Analytics study demonstrate that the design is in-line

with the mental model of the domain experts. This

comprises the general top–down workflow from tree-

map overview (Cluster View) to the detailed Gene Board

view as well as the single visualizations. Especially, the

specific request to add the functionality to drill-down

further in the cluster hierarchy by clicking on a cell in

the treemap showed how well the abstraction and

aggregation of the Cluster View and gene fingerprints

design was in-line with the mental model of the

domain experts. From this point of view, the design is

effective for our domain experts for whom the system

was designed. However, we cannot claim that the

design is effective in general since each domain has its

own mental model.

Interrelations between BIO and VIS experts

Synergy effects. During this design study, the first

author gained a deep understanding on the NGS data

preparation process. She was able to estimate and for-

mulate sources of errors from the computer science

point of view that lead to data uncertainties. This

understanding and description led to a biological

research project proposal dealing with uncertainty

introduced in the NGS data preparation process and

is now funded the German Research Foundation.

Furthermore, the VIS team had doubts about the

common practice to calculate gene activity and gene

expression values instead of analyzing the read cover-

age data directly (see Figure 1(b)). Here, for instance,

methods for comparing time series could be applied

which is again an interesting topic for VIS experts.

Do not underestimate biologists. Visualization experts

often suggest fancy visualizations in the first place and

have to realize in the end that a combination of state-

of-the-art techniques is sufficient and gains a better

acceptance by domain experts. However, a first refusal

of sophisticated visualizations does not mean per se

that everything should be simple. Domain experts can

often surprise how well they also understand complex

concepts. For instance, in a series of discussions, the

first author realized that the BIO team had no issue

with understanding the cluster hierarchy in treemaps;

they even wanted to interactively drill-down in the

cluster hierarchy and explicitly suggested splitting

clusters on demand to identify interesting GAR pat-

terns deeper in the cluster hierarchy (R3) (see section

‘‘Components of VisExpress’’). This was surprising

since even VIS students have often problems to under-

stand the hierarchy in treemaps in the beginning.

Furthermore, the experts demanded to sketch a GAR

pattern to search for similar patterns. The first author

had suggested a search by sketch functionality in

another context. B2 remembered this and remarked

he would like to look for patters that match his

(sketched) hypothesis. B1 and B3 agreed that this

would be a helpful functionality.

Find a good level of abstraction. To tackle complex

problems, abstractions are needed. However, it is often

hard to find a good level of abstraction. For instance,

in this design study, we visualize GAR values with a

green color scale. However, one biologist mentioned

in the Pair Analytics study that a binary representation

(green: any value, black: no value) would also be sufficient

for some tasks. This would ease some analysis processes.

However, after we had explained the bias of automatic

thresholding, the domain expert saw the danger of this

approach and withdrew the request. We, therefore, argue

to work closely with domain expert to determine a good

level of abstraction. One should ask for all parts whether a

further abstraction is reasonable. However, one should also

question abstraction requests for their meaningfulness

since biologists sometimes tend to abstract too much.

Furthermore, one should keep in mind that a reasonable

abstraction level might also depend on tasks in mind.

A visualization expert with application domain knowl-
edge helps to bridge the gap. Misunderstandings in

the requirement analysis lead to high costs if they are

recognized late in the design process. However, avoid-

ing misunderstandings is challenging especially in

design studies with molecular biology. The large

knowledge gap between molecular biology and visuali-

zation leads to an interdisciplinary communication

issue.3 The language between both domains differs

strongly, and to learn the language of the other

domain to bridge the knowledge gap requires a lot of

time. A cooperation partner with application domain

knowledge can reduce learning time by directly
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abstracting and translating application problems to

visualization terms. The Liaison role3 of the first

author highly reduced misunderstandings and devel-

opment time in this design study and, furthermore,

led to a comprehensive understanding of the problem

domain. Moreover, the background knowledge of the

first author was beneficial for the Pair Analytics study.

She acted as an informed analysis partner, facilitating

proficient discussions with the domain experts.

Limitations and future work

Dimensionality. We have applied VisExpress on a data

set with a maximum of six experimental conditions

resulting in six rows and columns in the matrices. This

is a reasonable number but also data sets of experi-

ments with a higher number of conditions exist. In

these cases, it is harder for the analyst to determine

which conditions form the patterns due to the high

number of rows and columns. To test which number

of conditions can still be distinguished, we performed

a perceptual study in section ‘‘The size of gene finger-

prints’’. From this study, we can conclude that 12 con-

ditions can still be distinguished with reasonable

accuracy. For further conclusions, a more rigorous

user study, including different patterns, matrix sizes

and, for example, the influence of matrix cell borders,

is desired. However, such a study is beyond the scope

of this article. Alternatively, details on demand, reveal-

ing the involved conditions in the analyst’s focus,

could be integrated.

Scalability. Regarding the limits of scalability of the

Gene Fingerprint View, the existing interaction possibi-

lities can reduce the number of gene fingerprints per

Gene Fingerprint View. First, users can select gene fin-

gerprints and open the selection in a new Gene

Fingerprint View. Second, users can split large clusters

in the treemap Cluster View (see Figure 12 arrows 2

and 8, as well as section ‘‘Interaction design of

VisExpress’’). Regarding perception, the readability of

gene fingerprint matrices is reduced below a cell size

of approximately 0:18 of the visual angle per matrix

cell (see section ‘‘The size of gene fingerprints’’). This

threshold, however, depends on the display size, the

resolution, the viewing distance, and the contrast sen-

sitivity of the user. Since this is different for each user

and setting, we integrated in our latest version of

VisExpress that the minimum cell size can be adapted

by the user. We then determine the size of matrix cells

in advance and split large clusters in the Cluster View if

the cell size in the according Gene Fingerprint View is

below this threshold.

Analysis of gene function enrichments. We focused for

this design study on the visual exploration of DGE

patterns. The relation of GAR patterns to the func-

tions of genes is revealed in VisExpress by word clouds.

To further enhance the analysis of gene functions, we

plan to integrate functional and gene set enrichment

analysis (see Hung et al.20 for an overview). Besides

statistical analysis of ‘‘unexpectedness’’ of gene func-

tions, this also requires a tightly integrated expert for

justification with visual analysis tools since ‘‘expected-

ness’’ depends also on implicit domain expert knowl-

edge and is, therefore, ill-defined. A similar problem

and solution was presented by Mittelstädt et al.48 that

required a tightly integrated physician for adverse drug

event detection.

Support of collaborative analysis. During our Pair

Analytics study, we observed that some findings were

interpreted and judged differently by the domain

experts. A possibility to facilitate the individual differ-

ences is to capture, present, and communicate analysis

results among the colleagues. This would also support

the verification loop of the knowledge generation

model for visual analytics.45 Also the externalization of

findings and insights in general plays an important role

in knowledge generation.

Support for bottom–up analysis. Our design specifies

a top–down analysis for exploration. Analysts start

with a cluster hierarchy and narrow down the subject

of analysis. Participants stated that they would also

like to have the opportunity to start an analysis with a

set of interesting genes, for example, genes that are

known to respond on acid. The system should import

a list of genes with a similar reaction (provided by the

analysts) and expand this set of genes with new simi-

lar candidates. A similar approach was presented by

Bertini et al.49 to explore large chemical libraries and

van den Elzen and van Wijk50 to explore multivariate

networks.

Conclusion

In this article, we presented the design rationales

which led to VisExpress—an interactive visualization

system to explore DGE data. VisExpress uses a gene

fingerprint visualization that allows recognition and

interpretability of patterns with low cognitive effort.

Compared to the state-of-the-art systems, VisExpress

provides (n:n), instead of (1:n), comparisons and an

integration of the data quality in the visual representa-

tion. This allows a more comprehensive and quality

aware overview.
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The whole system was evaluated with a Pair

Analytics study with three domain experts analyzing a

real-world data set. Participants mentioned that the

analysis with VisExpress was significantly sped up com-

pared to their current analysis tools and they identified

the intuitive, comprehensive, and quality aware over-

view as major improvements over the state-of-the-art

systems.
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Flächenstück. Math Ann 1891; 38(3): 459–460.

43. Heer J, Kong N and Agrawala M. Sizing the horizon:

the effects of chart size and layering on the graphical

perception of time series visualizations. In: Proceedings of

the SIGCHI conference on human factors in computing

systems (CHI ’09), Boston, MA, 4–9 April 2009, pp.

1303–1312. New York: ACM. DOI: 10.1145/

1518701.1518897.

44. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer,

L., and Wold, B. (2008). Mapping and quantifying

mammalian transcriptomes by RNA-seq. Nat Methods,

5(7): 621–628.

45. Sacha D, Stoffel A, Stoffel F, et al. Knowledge genera-

tion model for visual analytics. IEEE T Vis Comput Gr

2014; 20(12): 1604–1613. DOI: 10.1109/TVCG.2014.

2346481.

46. http://www.techsmith.de/camtasia.html

47. Brooks FP Jr. The computer scientist as toolsmith II.

Commun ACM 1996; 39(3): 61–68.
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