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Force-directed algorithms have been developed over the last 50 years and used in many application fields, 
including information visualisation, biological network visualisation, sensor networks, routing algorithms, 
scheduling, graph drawing, etc. Our survey provides a comprehensive summary of developments and a full 
roadmap for state-of-the-art force-directed algorithms in schematic drawings and placement. We classified the 
model of force-directed algorithms into classical and hybrid. The classical force-directed algorithms are further 
classified as follows: (a) accumulated force models, (b) energy function minimisation models, and (c) 
combinatorial optimisation models. The hybrid force-directed algorithms are classified as follows: (a) parallel 
and hardware accelerated models, (b) multilevel force-directed models, and (c) multidimensional scaling force- 
directed algorithms. Five categories of application domains in which force-directed algorithms have been 
adopted for schematic drawings and placement are also summarised: (a) aesthetic drawings for general networks, 
(b) component placement and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits 
design, (c) information visualisation, (d) biological network visualisation, and (e) node placement and 
localisation for sensor networks. 
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1 INTRODUCTION 
Force-directed algorithms have been developed over the last 50 years and adopted in numerous 

application fields. For example, these include: visualising genetic structures automatically in biology, optimising 
networks for parallel computer architectures, detecting clusters and hidden patterns in the social sciences, 
placing and scheduling components for very-large-scale integration circuits (VLSI), and computing 
undirected/directed networks (graphs) for information visualisation, etc. A schematic drawing is a representation 
of the elements of a network using simple graphic symbols. Such drawing shows crucial components of the 
network and the details that are not relevant to the information are omitted [1]. For example, a dot may be used 
to represent a station in a subway map. In this case, the dot is used to provide key location information to the 
users without causing any unnecessary visual cluttering. In some application domains, the size of the canvas and 
the detailed arrangement of the elements in the drawing are constrained by certain technical limits. Force- 
directed placement [2] is one of the approaches for the node placement in the schematic drawing. The placement 
of nodes along the edges or in a specific region of the canvas are useful in VLSI applications. According to 
statistics on annual paper submissions related to force-directed algorithms depicted in Figure 1 (a), force-directed 
algorithms are very popular and have often been preferred over other algorithms since the 1980s. Figure 1 (a) and 
Figure 1 (b) show a classification of force-directed algorithms by trends in paper submission and application 
fields. According to our review, 38% of force-directed algorithm studies relate to schematics and the aesthetics 
of network visualisation; 30% relate to VLSI applications, with 21% accounted for by placement and 9% by 
scheduling; in approximately 20% of force-directed algorithm studies, they are applied for social information 
visualisation; and biological network visualisation and sensor placement and localisation account for 10% and 
3%, respectively. These statistics suggest that most applications of force-directed algorithms can be formulated 
as a problem of network visualisation, which, in turn, can be understood as problem of combinatorial 
optimisation — to find a visual drawing of an input network topology in a way that optimises functions of 
interest. 

We have adopted a simple approach to classify the papers which are related to force-directed 
algorithms. The data sources of the papers reviewed in this survey are from ACM Digital Library [3] and Scopus 
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[4]. The paper submission count of force-directed algorithms classified by application fields is illustrated in 
Figure 8. First, the papers reviewed in this survey were sorted by publication year. Next, they were categorised 
into corresponding application domains. The results of the classification are illustrated in Figure 1(c). According 
to our classification results, studies of force-directed algorithm applications in VLSI have the longest history. 
The first VLSI study of force-directed algorithms was published in 1965 and this research domain remains 
popular in 2017. Aesthetics drawing became popular around 1995 and its popularity is ongoing. By contrast, 
force-directed algorithms for sensor placement and localisation are relatively new research domains. The first 
publication in this area dates to 2004 and the publication count has increased since 2008. We also found 
evidence of force-directed algorithmic applications for biological network visualisation dating back to 1995, 
with publication counts increasing dramatically from 2003 (8 papers per year on average). Finally, studies of 
force-directed algorithms for social information visualisation have been popular since 2005 and, to date, offer 
the highest publication counts among all of the research fields. 

Each of these applications relates to information visualisation broadly. Information visualisation allows 
users to make better sense of network relationships than by simply looking at data in tabular form. However, 
unsupervised visualisation cannot meet these objectives. How network topologies are drawn can significantly 
affect how viewers understand the network. The layout and position-assignment of visualised network nodes 
influence how a user perceives network relationships. Identifying visualisations that convey the appropriate 
information to the user is thus crucial. Filtering and pattern analysis have also been applied for force-directed 
algorithms to discover insightful relationships and reduce clutter. These methods are especially useful in the 
visualisation of social data, in which metrics associated with each node are used to understand and identify 
unexpected network patterns more effectively. 

Force-directed algorithms face a number of challenges. Most visualisation problems are NP-hard; as 
such, approximation methods and heuristics are often proposed, because an almost-global optimum is sufficient 
for most applications. In addition, force-directed algorithms currently suffer from a number of technical 
drawbacks. First, they are easy to converge to a localised optima. Second, even the hardware performance has 
been improved; the running time of force-directed algorithms is still high when producing visualisations for 
large networks. Third, it is time-consuming to fine-tune the parameters of a large class of networks because the 
suitable parameters for a particular network class are often disadvantageous for other classes. 

Several literature reviews on force-directed algorithms have been published in recent years [5-10]. In 
[10], Battista et al. presented an annotated bibliography of algorithms for visualisation of graphs. The algorithms 
reported in their review can be used to visualise various types of graphs such as trees, general graphs, planar 
graphs, directed graphs, etc. Force-directed algorithms for visualisation of straight-line drawings were also 
reported in the bibliography. In [5], Gibson et al. reviewed algorithms for force-directed layouts, dimension 
reduction in graph layout, and multilevel techniques for computational improvements. Gibson et al. also 
evaluated force-directed algorithms based on aesthetic properties of the drawings such as minimising edge 
crossings, achieving symmetry, and uniformity on edge nodes, etc. In [7], Tamassia et al. reviewed the 
algorithms for symmetric graph drawing, tree drawing, spine and radial drawings, circular drawing, rectangular 
drawing and force-directed drawing, etc. Tamassia et al. also summarised the algorithms and tools used in 
different application areas such as computer security, education, computer networks, data analytics, graph 
drawing and cartography, social networks and biological networks. In [11], Battista et al. reviewed the 
algorithms for force-directed drawing, planer orthogonal –or- straight-line drawings, non-planar drawings, etc. 
In their review, force-directed algorithms were categorised based on spring and electrical forces, barycenter 
method, forces simulating graphs theoretic distance, energy functions and magnetic fields. In addition, aesthetic 
properties such as edge crossings, minimisation of the area of the drawing, minimisation of the length of edges, 
uniform edge length, uniform bends, symmetric property were also summarised. 



 
In [6], Kobourov summarised spring systems and electrical forces in graph drawings such as graph 

theoretic distances approach, stress majorisation, non-Euclidean approaches, and Lombardi spring embedders. 
They also considered several classical algorithms in spring embedders layouts such as force-directed algorithms, 
barycentric method, and multiscale methods for dynamic graphs. In [9], Brandenburg et al. compared five force- 
directed algorithms for drawing graphs in which the positions of the nodes are randomised. Their experiments 
aimed to evaluate the performance of force-directed algorithms in terms of uniformity in edge length and node 
distribution. In contrast to previous surveys, in this paper, we provide a comprehensive summary and full 
roadmap for the state of the art in force-directed algorithms in terms of latest research domains and models 
including social information visualisation, biological network visualisation, sensor networks, routing algorithms, 
scheduling, and graph drawing. An overview of the classification of existing force-directed algorithms is also 
provided in this survey. 

In our survey, 230 papers related to force-directed algorithms have been reviewed. To find these papers, 
we implemented a web mining tool using Java programming language to parse search results from the ACM 
Digital Library [3] and Scopus [4]. We used four keywords (―force directed algorithms‖, ―force-directed 
algorithms‖, ―force-directed‖ and ―force directed‖) to filter relevant papers. The search results from the ACM 
Digital Library [3] contain the attributes such as authors, title, keywords, abstract and result highlight of papers. 
The search results from Scopus [4] contain similar attributes except the highlights. Moreover, we applied 
following filters to remove irrelevant and redundant results in order to improve the accuracy: 

1. The abstract, highlights, the keywords, or the title of the paper must contain at least one of the four 
keywords used in the searching. 

2. Papers returned from partial match were omitted. For example, They force are applied … directed … 
algorithm, … directed …, force …, …algorithm. 

We also checked the first author and the title of the paper to remove duplicate publications. Figure 2 illustrates 
state-of-the-art studies and milestones in various force-directed models, including the accumulated force model, 
the energy function minimisation model, the combinatorial optimisation model, the multilevel model, the 
multidimensional scaling model and the clustered model. Our findings suggest that many papers are application 
studies, in which force-directed algorithms are used but without detailed formulation. Application studies 
usually adopt and/or revise existing force-directed algorithms to achieve the objectives of specified tasks. 
Because of this, our survey is divided into two parts. For those studies adopting force-directed algorithms to 
resolve schematic drawings and placement tasks, we first summarise them in our survey in terms of application 
domains and methods. We then conclude the formulation (model) of notable force-directed algorithms which 
have been used in application discussed in the first part. 

The structure of the survey is as follows: Section 2 presents an overview about the notable force- 
directed algorithms that have been used most often across the different application domains. Section 3 
introduces force-directed algorithms for applications in schematic drawings and placement. Section 4 concludes 
the survey by summarising patterns across the literature. 
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Figure 1 (a) Annual paper submission count related to force-directed algorithms; (b) Catalogues of the papers 

reviewed in this survey; (c) Paper submission trend on force-directed algorithms. 



 
 

 
Figure 2 Studies of force-directed models. 

 
1.1 NOTATIONS AND CONVENTIONS 

For the purpose of the survey, the notation 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) represents a network 𝐺𝐺, including a set of nodes 
𝑉𝑉 and edges 𝐸𝐸 between these nodes. The visual drawing of a network is a picture of a network that assigns a 
position to each node and a curve to each edge. A connected network is a network in which for each pair 𝑢𝑢, 𝑣𝑣 of 
nodes, there is always a path between 𝑢𝑢 and 𝑣𝑣. 
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2 FORCE-DIRECTED ALGORITHMS 

Force-directed algorithms can be divided into classical and hybrid algorithms according to their 
characteristics and computational modelling. The overview of force-directed algorithms is illustrated in Figure 3. 
Classical force-directed algorithms are usually based on physical laws, specifically in ways that simulate a 
spring system. Full descriptions of classical force-directed algorithms are described in section 2.1. Hybrid force- 
directed algorithms are designed for large and complex networks. These algorithms use heuristics to improve the 
performance of classical force-directed algorithms. Hardware acceleration and multilevel methods are also 
popular in improving the performance. Full descriptions of notable hybrid force-directed algorithms are 
described in section 2.2. 

 
Figure 3 Overview of force-directed algorithms. 

 
The pioneer of force-directed algorithms, the Tutte algorithm, was first proposed in 1963 [197]. The 

Tutte algorithm is based on the barycentric method [7, 198] and is applicable for tri-connected and planar graphs. 
A tri-connected graph is a connected graph such that deleting any two nodes results in a graph that is still 
connected. The force function of a node 𝑣𝑣 of the Tutte algorithm is defined as follows: 

 

𝐹𝐹(𝑣𝑣) = ∑ (𝑝𝑝𝑢𝑢 − 𝑝𝑝𝑣𝑣) 
𝑢𝑢,𝑣𝑣∈𝐸𝐸 

 
1) 

where 𝑝𝑝𝑢𝑢 and 𝑝𝑝𝑣𝑣 are the positions of node 𝑢𝑢 and 𝑣𝑣 . Solving the linear equations from the result of partial 
derivatives of the force function of Tutte algorithm 𝐹𝐹 can obtain the updated 𝑥𝑥-coordinate and 𝑦𝑦-coordinate of 
nodes. These linear equations are defined as follows: 

 
 
 

𝑥𝑥  = 
1 

∑ 𝑥𝑥 
𝑣𝑣 𝑑𝑑𝑒𝑒𝑔𝑔(𝑣𝑣) 𝑢𝑢 

𝑢𝑢,𝑣𝑣∈𝐸𝐸 

 
2) 

𝑦𝑦  = 
1 

∑ 𝑦𝑦 
𝑣𝑣 𝑑𝑑𝑒𝑒𝑔𝑔(𝑣𝑣) 𝑢𝑢 

𝑢𝑢,v∈𝐸𝐸 

 
3) 

 



 
where deg(v) is the number of edges attached to node v. xv, yv are the x-coordinate and y-coordinate of node v. 
An example of the Tutte algorithm is illustrated in Figure 4. Nodes 1, 2, 3, 4 and 5 in Figure 4 form a strictly 
convex polygon. The Tutte algorithm first selects a strictly convex polygon from the graph, in which all nodes 
on the convex polygon should have a fixed initial position. Therefore, nodes 1, 2, 3, 4 and 5 are assigned a fixed 
initial position. The position of remaining nodes (i.e. 6, 7, 8) then can be computed by the Tutte algorithm. 

 
Figure 4 An example of Tutte algorithm. 

 
2.1 CLASSICAL FORCE-DIRECTED ALGORITHMS 

 
2.1.1 Accumulated force models 

Accumulated force models follow the simulation of a spring system, in which the length of the spring is 
proportional to the force exerted by an extended spring. Repulsive and attractive forces are basic forces defined 
in the accumulated force models. Repulsive force is computed for every node pair and attractive force is 
computed for every adjacent node [199]. The sum of the values of repulsive and attractive forces for each node 
are stored in the temporary variables, which can be used for updating the nodes‘positions. Most accumulated 
force models follow Hooke‘s law [200] and the footsteps of Eades‘ algorithm [26]. Because of this, we first 
introduce the principle of Eades algorithm in the section 2.1.1.1. We then introduce the successors of Eades 
algorithm, Fruchterman-Reingold algorithm and ForceAtlas2 algorithm, in sections 2.1.1.2 and 2.1.1.3, 
respectively. 

 
2.1.1.1 Eades algorithm 

The idea of Eades‘ spring-embedded algorithm is to model a network as a magnetised system with rings 
representing nodes and the length of edges represented by the spring. Eades [26] was the first algorithm to 
consider attractive and repulsive forces. The attractive force 𝑓𝑓𝑎𝑎 is applied to nodes that have a direct connection 
by an edge (i.e. (𝑖𝑖, 𝑗𝑗) = 1), and the repulsive force 𝑓𝑓𝑟𝑟 is applied to nodes that have an indirect connection (i.e. 
(𝑖𝑖, 𝑗𝑗) > 1). The attractive and repulsive forces of Eades algorithm are defined as follows: 

𝑓𝑓 (𝑖𝑖, 𝑗𝑗) = 𝐶𝐶 log 
𝑑𝑑(𝑖𝑖, 𝑗𝑗)

 
𝑎𝑎 𝑎𝑎 𝑑𝑑0

 
 

4) 
𝑓𝑓 (𝑖𝑖, 𝑗𝑗) = 𝐶𝐶 

1
 

𝑟𝑟 𝑟𝑟 𝑑𝑑(𝑖𝑖, 𝑗𝑗)2 

 
5) 

where 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the distance between node 𝑖𝑖 and 𝑗𝑗, 𝑑𝑑0 is the ideal edge length, and 𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑟𝑟 are the constants. 
The aim of the algorithm is to find zero-force locations for all nodes to reach a state of equilibrium for the spring 
system. 

 
2.1.1.2 Fruchterman-Reingold algorithm 

The Fruchterman-Reingold (FR) algorithm  [2] is based on Eades algorithm [26]. Like the Eades 
algorithm, the FR algorithm uses two forces, with the attractive force (𝑓𝑓𝑎𝑎) and repulsive force (𝑓𝑓𝑟𝑟) defined as 
follows: 

𝑑𝑑2 

𝑓𝑓𝑎𝑎(𝑑𝑑) = 𝑘𝑘 (6) 
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where 𝑑𝑑 is the distance between two nodes and 𝑘𝑘 is the constant of ideal pairwise distance. For the attraction 

force, 𝑓𝑓 , 𝑘𝑘 can be written as 𝑎𝑎 × √𝑊𝑊×𝐻𝐻, and can be written as 𝑟𝑟 × √𝑊𝑊×𝐻𝐻 for the repulsion force, 𝑓𝑓𝑟𝑟; where 𝑊𝑊 is 
𝑛𝑛 𝑛𝑛 

the width of the canvas, 𝐻𝐻 is the height of the canvas, 𝑛𝑛 is the total number of nodes in the network topology, 𝑎𝑎 
is a constant for the attraction multiplier, and 𝑟𝑟 is a constant for the repulsion multiplier. 

The FR algorithm is executed iteratively. In each iteration, all of the nodes are moved simultaneously 
after the forces have been calculated. When updating the position of the nodes, the algorithm adds a 
‗displacement‘ attribute to store the position offset of the nodes. At the start of each iteration, the initial values 
of the displacement for all of the nodes are calculated using the repulsion force (𝑓𝑓𝑟𝑟). The algorithm uses the 
attraction force (𝑓𝑓𝑎𝑎) to iteratively update the position of the nodes on every edge. Finally, it updates the position 
offset of the nodes using the displacement value. 

The displacement scale,  , is used as the termination condition of the FR algorithm. When the 
displacement scale, 𝑠𝑠, is lower than the threshold value, 𝜀𝜀, the algorithm is terminated. When the algorithm is 
initialised, the value of the displacement scale, 𝑠𝑠, is set to 𝑊𝑊. This value is updated in each iteration according to 

10 
the iteration count and the maximum number of iterations set by the user. 

 
2.1.1.3 ForceAtlas2 algorithm 

ForceAtlas2 (FA2) was proposed by Jacomy et al. [22] to satisfy speed and precision for network 
visualisation. The algorithm extends the LinLog [32] and FR algorithm [2]. Its authors proposed a revised 
attractive force based on the LinLog model [32] and defined as follows: 

𝐹𝐹𝑎𝑎(𝑛𝑛1, 𝑛𝑛2) = 𝑙𝑙𝑜𝑜𝑔𝑔(1 + 𝑑𝑑(𝑛𝑛1, 𝑛𝑛2)) (8) 
where 𝑑𝑑 is the distance between nodes 𝑛𝑛1 and 𝑛𝑛2. Moreover, a degree-dependent repulsion model was proposed 
in the FA2 algorithm to reduce the repulsive forces. This repulsion model increases the chances of lower-than- 
average-degree nodes connecting to higher-than-average-degree nodes. 

(𝑑𝑑𝑒𝑒𝑔𝑔(𝑛𝑛1) + 1) × (𝑑𝑑𝑒𝑒𝑔𝑔(𝑛𝑛2) + 1) 
𝐹𝐹𝑟𝑟(𝑛𝑛1, 𝑛𝑛2) = 𝑘𝑘 × 𝑑𝑑(𝑛𝑛 , 𝑛𝑛 ) 

1      2 
(9) 

where 𝑘𝑘 is a constant of ideal pairwise distance, as used in the FR algorithm [2], 𝑑𝑑 is the distance between nodes 
𝑛𝑛1 and 𝑛𝑛2 and 𝑑𝑑𝑒𝑒(𝑛𝑛) is the number of edges associated with the node 𝑛𝑛, including in- and out-degree edges. In 
addition, the FA2 algorithm also uses gravitational force and strong gravitational force. Jacomy et al. [22] 
concluded that strong gravitational force may be useful only for specific types of networks. The definition of 
these gravitational and strong gravitational forces are defined as follows, respectively: 

𝐹𝐹𝑔𝑔(𝑛𝑛) = 𝑘𝑘 × (𝑑𝑑𝑒𝑒𝑔𝑔(𝑛𝑛) + 1) (10) 
𝐹𝐹𝑠𝑠𝑔𝑔(𝑛𝑛) = 𝑘𝑘 × (𝑑𝑑𝑒𝑒𝑔𝑔(𝑛𝑛) + 1) × 𝑑𝑑(𝑛𝑛) (11) 

 
2.1.2 Energy function minimisation model 

In contrast to the accumulated force model, the energy function minimisation model uses the spring 
system to minimise the difference between the visual distance and theoretical graphed distance, and this is 
accomplished by solving (minimising) an energy function. They do not consider attractive and repulsive forces 
separately, but rather in conjunction to minimise an energy function. That is, if the visual distance of a pair of 
nodes is closer than their corresponding theoretical graphed distance, they repel each other; otherwise, they 
attract each other. The Kamada-Kawai algorithm is the pioneering algorithm for energy function minimisation 
models. The description of the Kamada-Kawai algorithm is given in section 2.1.2.1 and a technique to improve 
the energy function minimisation model is summarised in section 2.1.2.2. 

𝑘𝑘2 
𝑓𝑓𝑟𝑟(𝑑𝑑) = − 𝑑𝑑 (7) 

 



i<j 

 
2.1.2.1 Kamada-Kawai algorithm 

In the Kamada-Kawai (KK) algorithm [31], nodes are placed so that their visual distance within the 
drawing is proportional to their theoretical graphed distance. As this goal cannot always be achieved for 
arbitrary network topologies, the key idea behind the algorithm is to use a spring model in such a way that the 
energy function of the network topology is minimised. The energy function E is: 

𝑛𝑛−1      𝑛𝑛 

𝐸𝐸 = ∑  ∑  
1 

𝑘𝑘  (|𝑝𝑝  − 𝑝𝑝 | − 𝑙𝑙   )2
 

2  i,j i j i,j 
i=1 j=i+1 

 
(12) 

where 𝑘𝑘i,j is the stiffness of a spring between nodes 𝑖𝑖 and 𝑗𝑗, 𝑙𝑙i,j is the ideal distance of a spring between nodes 𝑖𝑖 
and 𝑗𝑗, and 𝑝𝑝i and 𝑝𝑝j are the visual positions of nodes 𝑖𝑖 and 𝑗𝑗, respectively. That is, the KK algorithm finds a 

visual position for each pair of nodes 𝑖𝑖 and 𝑗𝑗, and their Euclidean distance is proportional to 𝑙𝑙i,j. Here, the KK 
algorithm defines a diameter matrix that stores theoretical graphed distances (𝑑𝑑i,j) of the nodes. 𝑑𝑑i,j, which 

represents the hop count between nodes 𝑖𝑖 and 𝑗𝑗. 𝑑𝑑i,j is the shortest hop count between nodes 𝑖𝑖 and 𝑗𝑗. The ideal 
distance of a spring (𝑙𝑙i,j) between nodes 𝑖𝑖 and 𝑗𝑗 is defined as follows: 

𝑙𝑙 =
  𝐿𝐿0 × 𝑑𝑑 

i,j 𝑚𝑚𝑎𝑎𝑥𝑥𝑑𝑑i,j 
i,j 

i<j 
(13) 

where 𝐿𝐿0 is the side length of the drawing frame and 𝑚𝑚𝑎𝑎𝑥𝑥𝑑𝑑i,j is the diameter of the network topology. Moreover, 
the stiffness of a spring between nodes 𝑖𝑖 and 𝑗𝑗 is calculated as follows: 

 

 
where 𝐾𝐾 is a scaling and 𝑑𝑑i,j represents the theoretical graphed distances of nodes 𝑖𝑖 and 𝑗𝑗. The KK algorithm 
then seeks a visual position for every node 𝑣𝑣 in the network topology and tries to decrease the energy function in 
the whole network. That is, the KK algorithm calculates the partial derivatives for all of the nodes in the network 
topology in terms of every 𝑥𝑥𝑣𝑣 and 𝑦𝑦𝑣𝑣 that are zero (i.e., 𝜕𝜕𝐸𝐸 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝜕𝜕𝐸𝐸 = 0, 𝑓𝑓𝑜𝑜𝑟𝑟 1 ≤ 𝑣𝑣 < 𝑛𝑛). However, solving 

𝜕𝜕𝑥𝑥𝑣𝑣 𝜕𝜕𝑦𝑦𝑣𝑣 

all of these non-linear equations simultaneously is unfeasible because they are dependent on one another. 
Therefore, an iterative approach can be used to solve the equation based on the Newton-Raphson method. At 
each iteration, the algorithm chooses a node 𝑚𝑚 that has the largest maximum change (∆𝑚𝑚). In other words, the 
node 𝑚𝑚 is moved to the new position, where it can reach a lower level of ∆𝑚𝑚 than prior. Meanwhile, the other 
nodes remain fixed. The maximum change (∆𝑚𝑚) is calculated as follows: 

∂𝐸𝐸   2 ∂𝐸𝐸   2 
∆𝑚𝑚= √(∂𝑥𝑥 )  + (∂𝑦𝑦  ) 

𝑚𝑚 𝑚𝑚 

 
(15) 

 
2.1.2.2 Stress majorisation optimisation 

In force-directed algorithms such as the KK algorithm [31], visual distance is proportional to the 
theoretical graphed distance. Stress majorisation optimisation [201-203] is a technique to minimise energy 
function via majorisation. This technique improves the visual drawing of network topologies iteratively. The 
principle of majorisation optimisation is to construct a sequence of quadratic forms in which each iteration binds 
the stress function. The stress function then monotonically decreases (never increases) with every iteration. Thus, 
a lower value for the energy function is achieved in the same running time [203]. Unlike the KK algorithm, then, 
the stress function optimised via majorisation is guaranteed to converge [7]. Stress majorisation optimisation is 
useful for large and clustered networks, especially for applications to social information visualisation [204, 205]. 

𝑘𝑘 = 
𝐾𝐾

 
i,j 𝑑𝑑2 

i,j 

 
(14) 
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2.1.3 Combinatorial optimisation model 

Combinatorial optimisation models are probabilistic algorithms, often inspired by evolutionary 
mechanisms. Simulated annealing, differential evolution and genetic algorithms use a number of measures to 
improve a candidate solution and to optimise a problem iteratively. Although these algorithms share many 
similar properties, they still have distinctive features, including population determination, strategies to search the 
solution state space, etc. [206]. 

 
2.1.3.1 Davidson-Harel algorithm 

The process of simulated annealing is inspired by the physical cooling process of molten materials. 
Molten steel will crack and form bubbles that make it brittle if cooled too quickly. The steel must therefore be 
cooled evenly for a better result — a process known as annealing in metallurgy [7, 207, 208]. The Davidson- 
Harel (DH) algorithm [29] uses a simulation of the annealing process to prevent nodes from moving too close to 
non-adjacent edges and to minimise edge crossings. An energy value 𝐸𝐸, attraction force 𝑓𝑓𝑎𝑎 and repulsion force 
𝑓𝑓𝑟𝑟 are used in the simulation. The energy value (𝐸𝐸) is the sum of all attraction forces (𝑓𝑓𝑎𝑎) and repulsion forces 
(𝑓𝑓𝑟𝑟) which can be calculated as follows: 

𝑛𝑛−1      𝑛𝑛       

𝐸𝐸 = ∑ ∑ 𝑓𝑓 (√(𝑥𝑥 − 𝑥𝑥 )2 + (𝑦𝑦 − 𝑦𝑦 )2) + 𝑓𝑓 (√(𝑥𝑥 − 𝑥𝑥 )2 + (𝑦𝑦 − 𝑦𝑦 )2) 
𝑎𝑎 i j i j 𝑟𝑟 i j i j 

i=1 j=i+1 

 
(16) 

A node 𝑖𝑖 is randomly selected from the network on initialisation. The DH algorithm then creates a 
temporary node 𝑗𝑗, and assigns a position to the node based on the position of node 𝑖𝑖. Therefore, a new energy 
value 𝐸𝐸′ can be calculated using the position of node 𝑗𝑗 and other nodes within the network. 

 

𝐸𝐸′ = ∑ 𝑓𝑓  (√(𝑥𝑥   − 𝑥𝑥 )2  + (𝑦𝑦   − 𝑦𝑦 )2) + 𝑓𝑓  (√(𝑥𝑥   − 𝑥𝑥 )2  + (𝑦𝑦   − 𝑦𝑦 )2) 
𝑎𝑎 𝑣𝑣 j 𝑣𝑣 j 𝑟𝑟 𝑣𝑣 j 𝑣𝑣 j 

𝑣𝑣,i∈𝑉𝑉,j∉𝑉𝑉,𝑣𝑣≠i 
(17) 

Moreover, the DH algorithm obeys the rules of the Boltzmann distribution when the liquid is cooled 
slowly [209]. If 𝐸𝐸′ − 𝐸𝐸 ≤ 0, then 𝐸𝐸′ is used as the energy of the next iteration, as 𝐸𝐸′ has lower energy value. If 
𝐸𝐸′ − 𝐸𝐸 > 0, a probability equation is used to determine whether to use the new energy 𝐸𝐸′ in the next iteration. 
The probability equation is defined as follows: 

(𝐸𝐸𝘍𝘍−𝐸𝐸) 
𝑝𝑝 = 𝑒𝑒− 𝑘𝑘×𝑇𝑇 (18) 

where 𝑇𝑇 is the temperature variable and 𝑘𝑘 is the Boltzmann constant. If the probability 𝑝𝑝 is less than the 
threshold 𝜑𝜑, then the new energy 𝐸𝐸′ is accepted; otherwise, the old energy 𝐸𝐸 will be used in the next iteration. 

 
2.1.3.2 Kudelka algorithm 

The Kudelka algorithm [210] is a force-directed algorithm that aims to find a low-dimensional 
representation of the high-dimensional network. This allows the high-dimensional network to be visualised in 
low-dimensional (e.g. two- or three-) space. Sammon‘s mapping [211] and the differential evolution method are 
used in the Kudelka algorithm. Differential evolution is a population-based optimiser. It evolves a population of 
real encoded vectors in which the initial values of vectors are randomly chosen from within a predefined range. 
Differential evolution generates new vectors and operations using the real encoding of candidates. As a result, 
new vectors are perturbed and scaled from the existing vectors of the population. The objective of the Kudelka 
algorithm is to minimise the projection error function 𝐸𝐸, which is defined as follows: 

 
𝑚𝑚 1 (𝑑𝑑∗ − 𝑑𝑑 )2 

𝐸𝐸 = ∑ ij ij 

∑𝑚𝑚    𝑑𝑑∗ 𝑑𝑑∗ 
i<j    ij i<j ij 

 

19) 
 

https://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA


ij 

 
where 𝑑𝑑∗ is the distance between 𝑋𝑋i and 𝑌𝑌j . The distance between corresponding vector 𝑌𝑌i and 𝑌𝑌j in lower 
dimensional space is denoted as 𝑑𝑑ij. 

2.2 HYBRID FORCE-DIRECTED ALGORITHMS 
Several studies have used heuristic techniques to improve the performance of force-directed algorithms 

and reduce execution time, enabling the algorithms to visualise large and complex networks in an efficient 
manner. For example, the multilevel technique simplifies networks through network abstraction processes. 
Distributed force-directed algorithms use parallel computing and hardware acceleration to reduce execution time 
for parsing large networks. The multidimensional scaling technique is useful for visualising networks‘ 
meaningful underlying dimensions. State-of-the-art studies of these heuristics are discussed and summarised in 
the following sections. 

 
2.2.1 Parallel and hardware accelerated force-directed algorithms 

The major principle of parallel computing is to solve a computational problem using multiple resources 
simultaneously [212, 213]. Generally, parallel computing involves the following steps: 

 
1. A computational problem is first broken into smaller pieces of executable content that can be solved 

concurrently. 
2. Each piece of executable content will be further broken down into a series of instructions for the 

Central Processing Unit (CPU) or Graphics Processing Unit (GPU). 
3. Instructions from every piece of executable content are executed simultaneously on different CPU or 

GPU. 
4. An overall coordination mechanism is used. When a task has completed the execution of instructions, it 

sends an acknowledgment to the coordinator before sending the result to the receiving task. 
 

Most parallel computing frameworks [214-216] for force-directed algorithms are based on the 
accumulated force model. For example, the GPU parallel computing framework [217] was proposed for 
identifying the k-nearest neighbours, the results of which were then utilised to speed up the FR algorithm [2]. A 
distributed force-directed algorithm in an open source distributed computing framework called Giraph1 [218] 
was implemented in Amazon‘s cloud computing infrastructure PaaS (Platform as a Service) [219]. Arleo et al. 
[218] claimed that the algorithm can process networks with up to million edges. A parallel FR algorithm [2] 
based on Open Computing Language (OpenCL) was proposed by Krijnen [220] and Wang et al. [221]. OpenCL 
programs can be executed across heterogeneous platforms with modern CPUs, GPUs, and microprocessor 
designs [222]. There are also parallel force-directed algorithms [223-225] based on the Message Passing 
Interface (MPI). MPI is defined by a group of parallel computing vendors and applications specialists2 as a 
specification for a standard library for message passing in distributed computing. 

 
2.2.2 Multilevel force-directed algorithms 

The multilevel technique for force-directed algorithms involves concepts from network abstraction and 
can be divided into two main phases. In the first phase, called ‗coarsening‘, the original network is split into a 
sequence of coarse networks with decreasing sizes. This simplifies the combinatorial structure of the network by 
selecting the coalescent pairs of adjacent nodes to construct a new network. The selection process is repeated 
recursively to abstract a sequence of such coarse networks. The process of energy optimisation (minimisation) is 
then performed across these coarse networks such that they are optimised using the global properties from the 
original network. The second phase is called refinement and involves successive drawings of fine networks 

1 http://giraph.apache.org/ 
2 http://mpi-forum.org/ 

http://giraph.apache.org/
http://mpi-forum.org/
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computed from the smallest coarse networks. Finer networks are optimised using the locally determined 
properties from the related coarse network. As a result, it can decrease running time because the energy 
minimisation process considers only a small amount of neighbourhoods at once [226]. Many studies have 
proposed using the multilevel technique for force-directed algorithms [227-230]. There are also studies that 
extend the multilevel technique to the classical force-directed algorithms such as multilevel KK algorithm [30] 
and multilevel FR algorithm [24]. 

 
2.2.3 Force-directed algorithms with multidimensional scaling 

High-dimensional data usually have a large number of variables instead of a large number of duplicated 
records. The multidimensional scaling technique is widely used in force-directed algorithms for high- 
dimensional data reduction. The objective of the multidimensional scaling technique is to find meaningful 
underlying dimensions so that observed similarities and dissimilarities from the investigated networks can be 
discerned easily. The principle behind multidimensional scaling was developed by Torgerson [231] which uses 
the distance of edges as a metric. Nodes are projected into a smaller space that satisfies the constraint of the 
metric (the distance of edges). Many studies have adopted multidimensional scaling for force-directed 
algorithms to visualise high-dimensional data in which the distances between pairs of data are preserved [201, 
232-239]. Multidimensional scaling is also useful for energy function minimisation modelling, as it can improve 
the layout of networks with high-degree nodes. Dwyer et al. [240] and Dzwinel et al. [241] proposed a 
multidimensional scaling KK algorithm [31] with the use of stress majorisation optimisation. The energy 
function proposed by Dzwinel et al. [241] is defined as follows: 

𝑁𝑁 𝑛𝑛𝑛𝑛 𝑟𝑟𝑛𝑛 

𝐸𝐸 = 𝑘𝑘𝑛𝑛𝑛𝑛 ∑ (  ∑   𝑑𝑑𝑛𝑛 2 + 𝑐𝑐 × ∑ (1 − 𝑑𝑑𝑛𝑛 )2) 
ij i𝑘𝑘 

i j∈𝑂𝑂𝑛𝑛𝑛𝑛(i) 𝑘𝑘∈𝑂𝑂𝑟𝑟𝑛𝑛(i) 

 
20) 

where 𝑘𝑘𝑛𝑛𝑛𝑛 and c are constants and configured by users. 𝑑𝑑𝑛𝑛 is the distance of node 𝑖𝑖 and 𝑗𝑗 in the visual drawing. 
𝑂𝑂𝑛𝑛(𝑖𝑖) is the nearest neighbourhood of node 𝑖𝑖 (i.e. hop count equals to 1). 𝑂𝑂𝑟𝑟(𝑖𝑖) is the random neighbourhood of 
node 𝑖𝑖 (i.e. hop count greater than 1). 

 
 

3 APPLICATIONS OF FORCE-DIRECTED ALGORITHMS 
This section reviews five categories of application domains in which force-directed algorithms have 

been adopted: (a) aesthetic drawings for general networks, (b) component placement and scheduling in high- 
level synthesis of very-large scale integration (VLSI) circuits design, (c) information visualisation, (d) biological 
network visualisation, and (e) node placement and localisation in sensor networks. 

 
3.1 FORCE-DIRECTED ALGORITHMS IN AESTHETIC DRAWINGS FOR GENERAL 

NETWORKS 
Force-directed algorithms can be used to produce schematic drawings from network topology alone, 

even without additional information about its nodes and edges. However, many applications of force-directed 
algorithms involve an implicit aesthetic problem in how to schematise topological renderings. The importance of 
such schematics is that its depiction can significantly influence how the topology is understood. For example, 
what are the aesthetic properties of the most coherent schematics? How can the aesthetic quality of schematics 
be measured? To understand these questions, we need to clarify the characteristics and objectives of a schematic. 
The fundamental factor is its layout. For example, in the polyline drawing (see Figure 5 (a)), each edge is a 
polygonal chain. Whereas in the straight-line drawing (see Figure 5 (b)), each edge is a straight-line segment. In 
the orthogonal drawing (see Figure 5 (c)) [8], each edge represents a horizontal and vertical segment. Numerous 
visualisation tools have been implemented for visualising networks in different layouts, most developed for 



 
straight-line drawing, such as GraphED3 [12], COMAIDE [13], LayoutShow [14], Graphael [15] and OpenOrd 
[16]. A visualisation tool based on orthogonal drawing is also proposed in [17]. 

   
Figure 5 (a) Polyline drawing (b) Straight-line drawing (c) Orthogonal drawing 

Creating aesthetically appealing schematics has the practical aim of revealing a structure‘s pattern, 
rather than being merely a quest for the beautiful [18]. Therefore, researchers have defined the properties of a 
schematic based on its fundamental factors. Force-directed algorithms can be used to produce schematics that 
adhere to the properties of aesthetic drawing [9, 19, 20]. The properties of aesthetic drawing include : 1) edge 
lengths should be uniform; 2) the number of edge crossings should be minimised; 3) the size of crossing angles 
should be uniform; 4) the crossing angle should be minimised; 5) the standard deviation of edge length should 
be low; 6) the angle formed by any two neighbouring edges should be minimised; 7) the number of bends in 
polyline edges should be minimised; 8) nodes and edges should be affixed to an orthogonal drawing; and 9) the 
network should be represented as symmetrically as possible. In [21], Tunkelang proposed a force-directed 
approach for drawing undirected graphs. It is based on the accumulated force model that includes repulsive and 
attractive forces. Repulsive forces are computed between any two nodes and attractive forces are calculated 
between two adjacent nodes. Repulsion among nodes are used to avoid situations where nodes are placed too 
close to each other. Attraction forces are used to prevent nodes from being too far away from each other. 
According to the principles of the accumulated force model [22], nodes pull far away from each other if they are 
not adjacent. Besides, the model tries to maintain uniform edge lengths among adjacent nodes to minimise edge 
crossings. The repulsive and attractive forces of the proposed algorithm are defined as follows: 

𝑓𝑓 (𝑑𝑑) = 
𝑤𝑤𝑟𝑟

 
𝑟𝑟 𝑑𝑑2 (21) 

 
𝑓𝑓𝑎𝑎(𝑑𝑑) = 𝑤𝑤𝑎𝑎𝑑𝑑 (22) 

where 𝑑𝑑 is the length of edge and 𝑤𝑤𝑟𝑟 and 𝑤𝑤𝑎𝑎 are constants. The objective of the algorithm is to find an optimal 
value 𝑑𝑑 so that the sum of attractive and repulsive forces (i.e. 𝑓𝑓(𝑑𝑑) + 𝑓𝑓𝑎𝑎(𝑑𝑑) ) is minimal. In addition, a force- 
directed algorithm was also proposed to produce schematics based on the fitness function of a genetic algorithm 
(GA) [23]. A number of studies have adopted similar approaches in the literature. Due to the page limit, we 
summarise them in terms of the models used and the property of the aesthetic drawing in Table 1. 

 

Table 1 Forced-directed algorithms for aesthetic visual drawings. C
atalogue 

 
 

Property of aesthetic drawing 

Adopted by 
proposed force- 

directed 
algorithms 

 
Models used in force-directed 

algorithms 

N
od 

e 

Distribute nodes evenly [2], [22], [24], Accumulated force model 
 

3 http://www3.cs.stonybrook.edu/~algorith/implement/graphed/implement.shtml 

http://www3.cs.stonybrook.edu/%7Ealgorith/implement/graphed/implement.shtml
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  [25], [26], [27], 
[28] 

 

[29] Combinatorial optimisation model 

 
[30] Energy function minimisation model 

with a multiscale approach 

[31] Energy function minimisation model 
 

[23] Energy function minimisation model 
with a fitness function in GA 

Cluster similar nodes [32] Energy function minimisation model 

Nodes should not overlap [33] Accumulated force model 
 

Nodes that are not adjacent should be far 
away from each other 

[21] Accumulated force model 

[29] Combinatorial optimisation model Edge 

 
 
 
 

Minimise edge crossings 

[2], [21], [22], 
[24], [26], [27], 
[28], [34] 

Accumulated force model 

[29] Combinatorial optimisation model 

[35] Multilevel force-directed algorithm 

[36], [37] Energy function minimisation model 

Minimise edge bends [35] Multilevel force-directed algorithm 

 
 
 
 

Keep edge lengths uniform 

[2], [21], [22], [24] Accumulated force model 

[31] Energy function minimisation model 

 
[23] 

Energy function minimisation model 
with an additional fitness function of 
genetic algorithm 

 
[30], Energy function minimisation model 

with a multiscale approach 

 
 

Minimise edge length 

[28] Accumulated force model 

 
[23] 

Energy function minimisation model 
with an additional fitness function of 
genetic algorithm 

all 
layo Display of symmetries [25], [26] Accumulated force model 

https://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA


 
 

  
[31], [37] Energy function minimisation model 

 
[30] Energy function minimisation model 

with a multiscale approach 

 
[23] 

Energy function minimisation model 
with an additional fitness function of 
genetic algorithm 

 
 
 
 
 

Maximise the angles among incident edges 

[28], [38] Accumulated force model 

[35] Multilevel force-directed algorithm 

[36] Energy function minimisation model 

 
[23] 

Energy function minimisation model 
with an additional fitness function of 
genetic algorithm 

[39] 
 

 
 

The angles between edges incident on the 
same node should be as uniform as possible 

[28], [39] Accumulated force model 

[36] Energy function minimisation model 

 
[23] 

Energy function minimisation model 
with an additional fitness function of 
genetic algorithm 

 
Orthogonality 

 
[17], [40] 

Accumulated force model with an 
additional octilinear magnetic force 
[41] for orthogonal drawing 

Minimise the size of visual drawing [37] Energy function minimisation model 
 

3.2 FORCE-DIRECTED ALGORITHM IN COMPONENT PLACEMENT AND SCHEDULING IN 
VLSI CIRCUITS DESIGN 

Technical Terms such as ‗module‘, ‗cell‘, ‗pin‘ and ‗component‘ are widely used in the studies of very- 
large-scale integration (VLSI) circuits. They are similar to the concept of nodes in graph theory. To make the 
terms consistent in this survey, we use the term ‗node‘. Force-directed placement algorithms and force-directed 
scheduling are widely used in the design and manufacturing for VLSI circuits. An example of components from 
a VLSI circuit board is illustrated in Figure 6 (a) (generated by the visual5602 simulator [42]). The roadmap and 
approaches for these techniques are discussed in the following subsections. 
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(a) (b) 
Figure 6 Visualisations of (a) components of a VLSI circuit (b) a clustered network. 

 
3.2.1 Force-directed placement algorithms 

The nodes in VLSI circuits can be integrated circuits, transistors, resistors and capacitors. The 
interconnection topology of the VLSI circuits is known. The objective of force-directed placement algorithms in 
this context is to determine the optimal location of every node with respect to every other node such that the 
length of edges in the interconnection topology is minimised [43]. Force-directed placement algorithms can 
obtain fairly non-overlapping placements on circuit boards without the use of additional means of optimisation 
[44] and, as such, have proven popular in applications to VLSI circuit boards since the 1960s [45-51]. 

 
3.2.1.1 Pioneer approaches 

Fisk and Isett [45] pioneered a system called ACCEL using two forces (i.e. attractive and repulsive 
forces) for the placement of nodes. Urban et al. [47] proposed a system called SHARPCLAW using similar 
forces [45]. Quinn and Breuer [46] and Quinn Jr [43] proposed similar systems based on Hooke‘s Law, with 
repulsive and attractive defined as follows: 

 
𝐹𝐹 (𝑢𝑢, 𝑣𝑣) = −

 𝐾𝐾𝑟𝑟 
 

𝑟𝑟 

√ (𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣)2 
+ (𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑣𝑣)2 

(𝑤𝑤𝑢𝑢 − 𝑤𝑤𝑣𝑣)2 (�𝑢𝑢 − �𝑣𝑣)2 

 

(23) 

 
 

𝐹𝐹 (𝑢𝑢, 𝑣𝑣) = −𝐾𝐾 √ 
(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣)2 

+ 
(𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑣𝑣)2

 
𝑎𝑎 𝑎𝑎   (𝑤𝑤𝑢𝑢 − 𝑤𝑤𝑣𝑣)2 (�𝑢𝑢 − �𝑣𝑣)2 

(24) 

where 𝐾𝐾𝑟𝑟 and 𝐾𝐾𝑎𝑎 are the constants for repulsive and attraction forces, 𝑥𝑥𝑢𝑢 , 𝑦𝑦𝑢𝑢 are the 𝑥𝑥 -coordinate and 𝑦𝑦 - 
coordinate of the node 𝑢𝑢. 𝑤𝑤𝑢𝑢 and �𝑢𝑢 are the width and height of the node 𝑢𝑢. 

3.2.1.2 Modern approaches 
Numerous notable force-directed placement algorithms and open-source systems have been developed 

since the 1990s. Most are based on solving a quadratic cost function to optimise node placement and achieve 
minimal edge lengths on the circuit board [52]. Force-directed relaxation methods are often used to solve the 
quadratic cost function. Force-directed relaxation is an iterative method in which nodes are either assigned 
random or fixed locations on initiation. One node is then selected at each iteration and moved to a target point 
determined by the forces or cost functions defined in the force-directed placement algorithms [53]. Popular 



 
algorithms include Kraftwerk [54], Kraftwerk2 [55], FAR [56], mFAR [57], FDP [58, 59], FastPlace [60], 
FastPlace 3.0 [61], RQL [62], SimPL [63], etc., the objective of which is to evenly distribute electromechanical 
components (nodes) on the circuit board, minimise the wire (edge) length and produce an overlap-free layout 
[64]. For example, the Kraftwerk [54] algorithm formulates the quadratic cost function 𝐹𝐹 defined as follows: 

𝐹𝐹 =  ∑ 
1 

(𝑤𝑤 × (𝑥𝑥  − 𝑥𝑥 )2 + 𝑤𝑤 × (𝑦𝑦 − 𝑦𝑦 )2) 
2 𝑢𝑢𝑣𝑣,𝑥𝑥 𝑢𝑢 𝑣𝑣 𝑢𝑢𝑣𝑣,𝑦𝑦 𝑢𝑢 𝑣𝑣 

𝑢𝑢,𝑣𝑣∈𝑉𝑉 
(25) 

where 𝑥𝑥𝑢𝑢 and 𝑦𝑦𝑢𝑢 are 𝑥𝑥 -coordinate and 𝑦𝑦 -coordinate of node 𝑢𝑢 . 𝑤𝑤𝑢𝑢𝑣𝑣, is the weight of edge 𝑢𝑢𝑣𝑣 on 𝑥𝑥 -axis 
(horizontal), 𝑤𝑤𝑢𝑢𝑣𝑣,𝑥𝑥 is the weight of edge uv on 𝑦𝑦-axis (vertical). The weight used in the 𝑥𝑥-axis and 𝑦𝑦-axis from 
equation (25) is different because the node (electromechanical component) placed on the VLSI circuit board is 
quadrilateral. We also found several extensions of the Kraftwerk algorithm [54] proposed for application in 
VLSI circuits [65-68]. A similar algorithm called FastPlace was proposed by Viswanathan and Chu [60]. 
FastPlace is also based on a force-directed relaxation precept that aims to evenly distribute nodes on the circuit 
board. This can be done by minimising the cost function, which is similar to equation (25). In contrast to others, 
Viswanathan and Chu [60] applied a post-processing technique called ‗cell shifting‘ to reallocate the positions of 
nodes that overlap as a result of force-directed placement. Pan et al. [61] also proposed an improved extension 
of the FastPlace algorithm, called FastPlace 3.0, which adopts a multilevel technique and uses congestion 
constraints [69] to place nodes evenly. 

3.2.1.3 Partitioning and clustering based approaches 
Goto [70] used a force-directed placement algorithm to divide nodes on the circuit board into two parts: 

an initial placement and an iterative improvement [71]. Nodes have pre-assigned (fixed) positions in the initial 
placement, and the force-directed algorithm calculates node locations during the improvement phase only. An 
algorithm based on [70] was proposed by Chang [72]. The objective of the algorithm is to find optimal regions 
on the circuit board to place nodes. The algorithm extends the median formulation proposed by [70] which 
identifies optimal regions and then applies a force-directed algorithm to calculate nodal positions within each 
optimal region. A force-directed placement algorithm based on clustering was also proposed by Odawara et al. 
[73] in which ‗seed elements‘, such as CPU and ROM from the circuit board, are first identified. Nodes close to 
seed elements are then grouped together to construct clusters. Finally, the relative position of each cluster is 
calculated by the force-directed algorithm. A similar system adopted a clustering technique was suggested by 
Alupoaei and Katkoori [74]. In Alupoaei‘s algorithm, clique partitioning heuristics [75] were used to cluster 
nodes and a force-directed algorithm based on Hooke‘s Law [46] was used to determine node placement and to 
minimise edge lengths on the circuit board. In [76], Vorwerk and Kennings [76] introduced a multilevel 
clustering algorithm to extend the algorithm proposed by [59]. The Hybird First Choice [77] clustering method 
was used in the Vorwerk and Kennings‘s algorithm in order to improve node placement. 

 

3.2.1.4 Fixed-points and pseudo edges additional approaches 
The placement of standard cells is another major application in VLSI circuits. Standard cells function as 

nodes with standard heights but varying widths. Numerous studies focus on the placement of standard cells. For 
example, some have used the cost function from the Kraftwerk algorithm [54] to determine the placement of 
standard cells [65]. Chou and Lin [78] located standard cells by adding additional pseudo-edges on the circuit 
board. In this algorithm, critical paths on the circuit board are first identified. Pseudo-edges will then attach to 
nodes that are close to critical paths to pull the position of nodes closer to the critical paths. All pseudo-edges are 
removed when the placement is completed. In addition, Hu and Marek-Sadowska [56] introduced an algorithm 
called FAR to add additional fixed-points (nodes). A fixed-point is a pseudo-node connected to a real node on a 
circuit board. Three types of fixed points are defined by [56]: controlling fixed points are used to keep the 
placement of a node unchanged, perturbing fixed points are used to disturb the current placement, and 
constraining fixed points are used to restrict the movement of a node. In another example, a flat force-directed 
placement algorithm called SimPL was proposed by Kim et al. [63] that does not rely on clustering. SimPL has a 



𝑉𝑉 

𝑉𝑉 
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range of variants [79-82], all of which adopt a top-down geometric partitioning method called a look-ahead 
legaliser [83] to remove nodal overlap. SimPL‘s variants add fixed-points and pseudo-edges to produce even 
nodal distributions, for which the concept of fixed-points and pseudo-edges are adopted from the FAR algorithm 
[56]. In addition, a multilevel force-directed placement algorithm based on the energy function minimisation 
model [65] and fixed-point addition [56] was proposed by Hu and Marek-Sadowska [57]. 

 
3.2.1.5 Heuristic and application domain dependent approaches 

Forbes [84] proposed a heuristic approach to accelerate the force-directed placement algorithm 
proposed by Fisk and Isett [45]. The objective of the heuristics is to reduce the total number of iterations of the 
force-directed placement algorithms. The movements of nodes during previous iterations are used to predict the 
position of a node in one or more future iterations. Spindler et al. [55] proposed an extension called Kraftwerk2, 
which is based on previous work [85]. The objective of the Kraftwerk2 algorithm is to balance the density of 
nodes and reduce and/or prevent any unused area (free space) of circuit board (i.e. save the space of circuit 
board). Two types of nodes are defined in the Kraftwerk2 algorithm. One has a fixed initial position (i.e. FN) 
and the other does not (i.e. MN). Only positions of the MN need to be determined in the Kraftwerk2 algorithm. 
Moreover, three forces are defined in the algorithm: Net Force 𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡, Move Force 𝐹𝐹𝑚𝑚𝑜𝑜𝑣𝑣𝑒𝑒 and Hold Force 𝐹𝐹ℎ𝑜𝑜𝑙𝑙𝑑𝑑. 

𝑉𝑉 𝑉𝑉,𝑢𝑢 𝑉𝑉 
The force equation of the Kraftwerk2 algorithm is the sum of the three forces and defined as follows: 

𝐹𝐹 = 𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡 + 𝐹𝐹𝑚𝑚𝑜𝑜𝑣𝑣𝑒𝑒 + 𝐹𝐹ℎ𝑜𝑜𝑙𝑙𝑑𝑑 
𝑉𝑉 𝑉𝑉,𝑢𝑢 𝑉𝑉 (26) 

The forces of the Kraftwerk2 algorithm use concepts from a generic supply and demand system [86]. Spindler et 
al. [55] stated that the Net Force 𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡 is used to minimise edge length. However, nodes will overlap when the 
edge length is too short. Therefore, Move Force 𝐹𝐹𝑚𝑚𝑜𝑜𝑣𝑣𝑒𝑒 and Hold Force 𝐹𝐹ℎ𝑜𝑜𝑙𝑙𝑑𝑑 are added to the Kraftwerk2 

𝑉𝑉,𝑢𝑢 𝑉𝑉 

algorithm to compensate the Net Force 𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡 as a way to reduce nodal overlap. Interested readers can refer to 
Nam and Cong [86] for detailed definitions and explanations about the generic supply and demand system. 

Heuristic approaches were also used for the placement of standard cells. A heuristic force-directed 
algorithm for the placement of standard cells was proposed by Hur et al. [87]. Congestion removal heuristics 
[69] are applied in Hur et al.‘s algorithm to remove nodal overlaps. Additionally, a force-directed placement 
algorithm for determining the location of standard cells in 3D ICs (integrated circuits) away from high- 
temperature areas was also introduced [88]. 

Floor-planning is an application in VLSI closely related to placement. The goal of floor-planning 
algorithms [89, 90] is to develop a placement plan to decide topological proximity and the appropriate shapes 
and orientations of each block. A placement algorithm using the maze searching technique [91] was proposed by 
Mo et al. [92]. The algorithm was designed to minimise edge lengths on a circuit board. The maze searching 
technique is able to find the shortest path from a given node to another given node. The approach proposed by 
Mo et al. applies force-directed algorithms to the placement of nodes first and then uses the maze searching 
technique to re-route paths (edges) on the circuit board and minimise edge lengths. 

Minimising the timing delay of circuits is another important task for VLSI. Force-directed placement 
algorithms based on Kraftwerk [54] proposed by Rajagopal et al. [93] aim to optimise the edge lengths and 
minimise the timing delay on the circuit board. A similar approach was proposed by Saxena and Halpin [94] to 
optimise the timing delay of circuits, which improves the repeater insertion technique [95] by using a force- 
directed approach based on Kraftwerk [54]. Repeater insertion techniques can reduce the time delay associated 
with long wire lines in circuit. In addition, Goplen et al. [96] proposed an algorithm to reduce repetitions during 
placement in which weightings [59] are used to reduce the repeater count. In [96], the cost function is adopted 
from Goplen‘s algorithm [65]. 

Besides timing delay minimisations, density information can also be used to improve force-directed 
placement algorithms [62, 97]. For example, improved versions of cell-shifting techniques were proposed by 
Viswanathan et al. [62]. These techniques adopted a Density-Aware Module Spreading algorithm [98] and 



𝑢𝑢 𝑢𝑢 

 
extended the cost function of quadratic optimisation from [65] to improve the placement of nodes on circuit 
boards. Viswanathan et al. [62] used the density information to prevent nodes from being placed on areas that 
already contain high densities of edges and nodes. 

Mixed-size integrated circuit (IC) design, in which the network contains a large number of nodes and 
macros, is also widely used in VLSI. In most cases, the magnitude (size) of macro force is larger than the size of 
nodes [99]. For this reason, placement algorithms should use smoothing approaches to place both nodes and 
macros on the chip areas simultaneously. A force-directed placement algorithm called FDP was proposed for the 
placement of mixed-size integrated circuits [58, 59]. The algorithm uses a dynamic weighting [100] of spreading 
forces. The cost function of FDP is defined as follows: 

 
 

where 𝑎𝑎𝑢𝑢𝑣𝑣 represents the weight of the edges connecting node 𝑢𝑢 and 𝑣𝑣. 𝑝𝑝i and 𝑝𝑝i−1 are the position of node 𝑢𝑢 at 
iteration 𝑖𝑖 and 𝑖𝑖 − 1, respectively. The objective of FDP algorithms is to minimise the cost function in equation 
(27). 

Placement algorithms for 3D Field Programming Gate Array (FPGA) [101] consisting of multiple two- 
dimensional layers have become popular in recent studies. A low temperature simulated annealing method [102] 
can be used to determinate the final 3D layer from the two-dimensional layers. The latest 3D FPGA applications 
can be found in force-directed algorithms, such as those using the force-directed placement algorithm to 
minimise the edge lengths on each two-dimensional layer [103]. Integrating optical devices into the electronic 
communication system NoC (Networks-on-Chip) [104] is one example. The PLATON algorithm is proposed by 
[105] to place overlap-free Photonic Switching Elements (PSEs) on the circuit board. PSEs are components used 
in optical networking. 

 
3.2.2 Force-directed scheduling algorithms 

Force-directed scheduling algorithms are useful in High Level VLSI Synthesis systems [106-109]. An 
algorithm‘s description of a design behaviour can be interpreted by high-level synthesis [108]. For example, the 
context of encoding algorithms can be interpreted by high-level synthesis such that the hardware 
encoder/decoder algorithm can be implemented on integrated chips. Force-directed scheduling algorithms 
schedule instructions and operations for high-level synthesis to optimise the distribution of operations and 
reduce resource expenditure. 

The initial force-directed scheduling algorithm was first proposed by Paulin and Knight [110] and, like 
other force-directed algorithms, it obeys Hooke‘s Law in physics. Paulin et al.‘s algorithm attempts to balance 
the distribution of operations by decreasing concurrency of operations that make use of the same hardware 
resources. In the initial version of force-directed scheduling for the behavioural synthesis, proposed in Paulin 
and Knight [111], operations are divided into a number of steps, all of which aim at reducing the number of data 
buses, storage units and functional units while maintaining the concurrent operations assigned to them without 
lengthening the total execution time. Paulin and Knight [112] presented a force-directed scheduling algorithm to 
minimise interconnected costs of register allocation in high-level synthesis. Variants and extensions based on 
this pioneering work have been developed and reported in [113-122]. Classical scheduling has been used to 
minimise resources by finding a feasible schedule 𝑟𝑟 that minimises the resource costs. The schedule of classical 
scheduling is defined as follows: 

𝑓𝑓(𝑟𝑟) = ∑ 𝑤𝑤𝑟𝑟 𝑚𝑚𝑎𝑎𝑥𝑥𝑁𝑁𝑟𝑟(𝑟𝑟, 𝑡𝑡) 
𝑡𝑡∈𝑇𝑇 

𝑟𝑟∈𝑅𝑅 

(28 
) 

where 𝑅𝑅 is a set of resource types in which 𝑟𝑟 ∈ 𝑅𝑅. 𝑤𝑤𝑟𝑟 is the cost of a resource type 𝑟𝑟 and 𝑡𝑡 is the span of time 
required of a schedule 𝑟𝑟. However, solving equation (28) is a NP-complete problem. Therefore, Verhaegh et al. 

𝐹𝐹 =  ∑
 𝑎𝑎𝑢𝑢𝑣𝑣 (𝑝𝑝i − 𝑝𝑝i )2 

|𝑝𝑝i−1 − 𝑝𝑝i−1| 𝑢𝑢 𝑣𝑣 
𝑢𝑢,𝑣𝑣∈𝑉𝑉 𝑢𝑢 𝑣𝑣 

 
(27) 
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[123] presented an iterative approach for the forced-directed scheduling algorithm used in PHIDEO [124] 
silicon compilers. The cost function of their iterative approach is defined as follows: 

 

𝑓𝑓(𝑟𝑟) = ∑ 𝑤𝑤𝑟𝑟𝑢𝑢𝑟𝑟 + ∑ 𝑤𝑤𝑟𝑟 𝑚𝑚𝑎𝑎𝑥𝑥(𝑁𝑁𝑟𝑟(𝑟𝑟, 𝑡𝑡) − 𝑢𝑢𝑟𝑟) 
𝑡𝑡∈𝑇𝑇 

𝑟𝑟∈𝑅𝑅 𝑟𝑟∈𝑅𝑅 
(29) 

𝑢𝑢 = 
1 

|*𝑖𝑖 ∈ 𝑂𝑂|𝑟𝑟 ∈ 𝑟𝑟+| 
𝑟𝑟 𝑚𝑚 i (30) 

where 𝑢𝑢𝑟𝑟 is a constant based on the average number of operations for resource type 𝑟𝑟 over a schedule in which 
𝑚𝑚 is the time span on a given schedule. 𝑤𝑤𝑟𝑟 is the cost for a resource type 𝑟𝑟. 𝑁𝑁(𝑟𝑟, 𝑡𝑡) is the number of operations of 
resource type r scheduled at time t in schedule 𝑟𝑟 . The objective is to minimise the cost function (𝑟𝑟) . Verhaegh 
et al. [125] also presented an iterative force-directed scheduling algorithm which reduces the time span of an 
entire operation schedule, as used in the silicon compiler PHIDEO [124]. 

Behavioural synthesis systems are generally designed for single tasks. Lee et al. [114] proposed a 
heuristic force-directed scheduling algorithm for multi-thread, real-time and multi-tasking synthesis systems. 
Lee et al.‘s algorithm is based on the 𝐴𝐴∗ search technique and the force-directed scheduling algorithm proposed 
by Paulin et al. [111]. Multi-tasking synthesis systems contain a set of 𝑘𝑘 processors and a set of 𝑛𝑛 periodic real- 
time operations. The principle is to assign each operation to one of the processors in such a way that all 
operations can be scheduled within their time constraints. Lee et al.‘s algorithm used the 𝐴𝐴∗ search technique to 
select processors that minimise the cost and satisfy timing constraints. Moreover, Abdel-Kader [115] used a 
force-directed scheduling algorithm derived from [111] to optimise loop scheduling in high-level synthesis. 
Loop scheduling is designed for repetitively performing a set of operations that functions similar to a loop in 
programming. Some extensions of [111] work were also proposed for reconfigurable architectures. For example, 
a force-directed scheduling for schedule operations in NATURE [126] was proposed by Zhang et al. [116]. 
NATURE is a hybrid nano/CMOS reconfigurable architecture. Force-directed scheduling algorithms are also 
useful for Dynamic Reconfigurable FPGAs (DRFPGAs) [117], owing to overlaps in the logic of DRFPGAs as 
time-multiplexed. Because of this, DRFPGAs need to be partitioned into multiple sub-circuit boards, thus 
possibly resulting in different execution times because sub-circuit boards are executed in parallel. Force-directed 
scheduling algorithms can be used to partition sequential circuits to optimise feasible partitions that reduce the 
logic and communication component costs while maintaining maximal throughput. 

Force-directed scheduling algorithms for power optimisation problems in VLSI high-level synthesis 
systems have been popular since 2000. These algorithms are based, again, on the work of [111]. For example, 
some have used a force-directed scheduling algorithm to optimise power consumption while adhering to the 
resource and latency constraints in a behavioural synthesis system [119]. Gupta and Katkoori [120] also used a 
force-directed scheduling algorithm to optimise power consumption at the behavioural synthesis system. They 
reduced the overall dynamic power by reducing switched capacitance component usage during VLSI circuit 
design. Moreover, Allam and Ramanujam [121] proposed a force-directed scheduling algorithm for power 
optimisation that minimises the peak and average consumption. This can be done by assigning the smallest 
possible input voltage to every operation in a way that minimises power consumption. 

Advanced driver assistance functions for intelligent automotive systems, such as predictive break 
assistants, adaptive cruise control and adaptive lane assistance are designed for processing sensor data. 
Schönwald et al. [122] proposed a force-directed scheduling algorithm for advanced drivers to map processes to 
processor cores with time and resource constraints. The objective of this work is to reduce the communication 
latency and increase the throughput to process sensor data. Similarly, Schönwald et al. [127] proposed a force- 
directed scheduling algorithm to consider shared memory architectures during the mapping of software 
processes on multiprocessor system-on-chip (MPSoC) cores. Schönwald et al. [127] suggested the use of 
smFDM (shared memory aware force-directed mapping) to determine the placement of processor cores. 



 
Therefore, communication conflicts and memory access conflicts are reduced or even avoided. Force-directed 
scheduling algorithms were also proposed by Omnés et al. [118] to schedule real-time tasks to be executed on 
embedded multimedia systems. The work in Sethuraman and Vemuri [128] used a force-directed scheduling 
algorithm to optimise bandwidth in NoC (Networks-on-Chip) architecture by scheduling an optimal size 
(dimension mesh) of the network circuit. 

 
3.3 FORCE-DIRECTED ALGORITHMS IN INFORMATION VISUALISATION 

The primary objective of network information visualisation is to explore hidden patterns in networks 
and to visualise them in a simple manner. Information networks can be social networks, human relation 
networks, networks of business workflow, transportation maps, etc. An example visualisation of a clustered 
network is illustrated in Figure 6 (b) which is generated by using the vis.js visualisation tool [129]. The 
application of information visualisation is wide and complex. It is therefore impossible to visualise networks in 
orthogonal form or in a planar visual drawing in all cases. Moreover, certain information networks‘ nodes and 
edges may contain additional properties (attributes). These properties do not exist in general networks. Because 
of this, applications of information visualisation may use variant layouts to present the data. For example, metro 
map diagramming is useful for visualising the transportation map as a schematic [40]. With fisheye views [130, 
131], the network representation can enlarge regions located near specified nodes while contracting distant 
regions by varying edge length. However, while enlarging a special region may be useful in two-dimensional 
planes, it may not be applicable for high-dimensional data. Parallel coordinate diagramming can be used to 
project high-dimensional data onto two dimensions [132]. Parallel coordinate diagrams draw 𝑛𝑛 vertical lines 
equally spaced to represent the n-dimensional space. Corresponding nodes are drawn on the dimensional space 
(vertical line) and the line represents the relation between a pair of nodes [133]. Lombardi-Style diagrams [134] 
are useful for information visualisation in which the edges of the visual drawing are curvilinear [135]. 

Even with these techniques, the amount of complexity makes visual interpretability for humans difficult. 
Chae [136] suggested visualising large networks on a tiled monitor wall, in which monitors are placed next to 
each other and data distribution related to their corresponding display nodes are only displayed. Edge crossing 
deduction is also crucial for visualising information about large networks, as this makes the representation 
appear cluttered and ugly. One example is the 1/4-SHPED (i.e. Symmetric Homogeneous Partial Edge Drawing), 
as proposed by Bruckdorfer et al. [137]. Nodes of 1/4-SHPED are represented as points and edges as two pieces 
(also called stubs) of a straight-line segment, each adjacent to a node, without any edge crossings, and with stub 
size 1/4 of the total edge length. Edge bundling is another technique which group edges into bundles to decrease 
the density of lines for reducing clutter [131-133]. Moreover, Debiasi et al. [33] proposed an accumulated force 
model to visualise the network by geographical flow map [33] as a way to prevent edge crossings. Each flow 
consists of start, intermediate and target nodes and three forces are defined in the proposed algorithm: 
electrostatic (attractive) force, stress force and rejected (repulsive) force. The force equation of node 𝑣𝑣 is the 
sum of the three forces and can be defined as follows: 

 

𝐹𝐹(𝑣𝑣) = ∑ 𝐹𝐹𝑒𝑒(𝑣𝑣, 𝑠𝑠) + ∑ 𝐹𝐹𝑟𝑟(𝑣𝑣, 𝑡𝑡) + 𝐹𝐹𝑠𝑠(𝑣𝑣) 
𝑠𝑠∈𝑆𝑆 𝑡𝑡∈𝑇𝑇 

(31) 

where 𝑆𝑆 is the intermediate nodes interacting with node 𝑣𝑣. 𝑇𝑇 is the nodes near to the node 𝑣𝑣. The purpose of 
electrostatic force (𝐹𝐹𝑒𝑒) is similar to attractive force, which is defined as follows: 

𝐹𝐹 (𝑣𝑣, 𝑠𝑠) = 
1 

× �̂�𝑣− 𝑠𝑠 
𝑒𝑒 ‖𝑣𝑣 − 𝑠𝑠‖ 

(32) 

where �̂�𝑣− 𝑠𝑠 is the unit vector of node 𝑣𝑣 and 𝑠𝑠. ‖𝑣𝑣 − 𝑠𝑠‖ is the norm of node 𝑣𝑣 and 𝑠𝑠. Stress force enables the 
node to move towards the flow with higher magnitude. The definition of stress force is as follows: 

 
where 𝑣𝑣i+1 is the ancestor node of 𝑣𝑣 and 𝑣𝑣i+1 is the child node of 𝑣𝑣. Rejected forces are used to avoid any 
overlapping between intermediate and target nodes, and are defined as follows: 

𝐹𝐹𝑠𝑠(𝑣𝑣) = (𝑣𝑣i−1 − 𝑣𝑣) + (𝑣𝑣 − 𝑣𝑣i+1) (33) 
 



Force-directed algorithms for schematic drawings and placement: a Survey • 39:23 
 
 

𝐹𝐹𝑟𝑟(𝑣𝑣, 𝑡𝑡) = −1 × 𝐹𝐹𝑒𝑒(𝑣𝑣, 𝑠𝑠) (34) 
There are approaches which utilize forces and reduce clutter for graph visualisation in which the size of 

nodes in the graph is the variant. Cui et al. [134] used a force-directed model to visualise word clouds in which 
the size of a word (i.e. each word represents a node) is determined by the word frequency in the time slot. 
Moreover, Gu et al. [135] adopted the FR algorithm to visual large texts and image datasets on a large video 
wall. We summarise the relevant studies on information visualisation, their objectives, and corresponding force- 
directed algorithms used to visualise the networks in Table 2. 

Table 2 Information visualisation studies that adopted force-directed algorithms. 
Force-directed 

algorithm adopted 
by the study 

 
Study 

 
Objective of the study 

 
 
 
 
 

Eades‘s algorithm 

[1] - To visualise networks using tree-structured hierarchies 
- Increase the readability of a network 

[2] - To make edges conform to particular orientations 
 

[3] 
- To transform the Extensible Stylesheet Language Transformations 

(XSLT) document to network layout. XSLT is a language for 
transforming vector images and documents in the XML encoding 

[4] - To visualise networks with non-uniform nodes (i.e. the size and shape 
of nodes are variant) 

[5] - To visualise the relation of people in online social networks 
[6] - To visualise networks using grid layouts 
[7] - To visualise web traffic 

 
 
 
 
 
 
 

FR algorithm 

[8] - To visualise networks in which nodes have nontrivial sizes 
 

[9] 
- To produce visual drawings of hypergraphs 
- Hypergraphs can be viewed as an extension of classical networks in 

which an edge can join any number of vertices 

[10] - To visualise networks with non-uniform nodes (i.e. the size and shape 
of nodes are variant) 

[11] - To visualise exploration of network traffic over time 
[12] - To visualise email networks 
[13] - To visualise transportation networks 
[14] - To visualise networks in which edges are curvilinear (Bézier curve) 

[15] - To visualise weighted networks in which each edge is associated with a 
real number representing its importance 

[16] - To assess homophily [17] in networks 
[18] - To visualise the actors holding neutral opinion polarities 
[19] - To visualise the volume of movement in flow maps 

 
 
 

KK algorithm 

 
[20] 

- To show proximity between nodes such that their distances in the 
visualisation reflect distances in the network 

- topology 
[21] - To visualise networks in which edges are curvilinear 
[22] - To visualise the structure of ER diagram 

[23] - To visualise the count of paper submissions for journal articles of 
natural and social sciences 

[24] - To animate networks over time 



 
 

Noack algorithm 
[25] 

[26] - To visualise the land and water networks of port transportation 

FA2 algorithm 
[27] [28] - To visualise the transaction patterns of Bitcoin networks 

Hachul algorithm 
[29] [30] - To use 𝑘𝑘-dimensional trese (a data structure of space partitioning for 

arranging nodes in a 𝑘𝑘-dimensional space) to visualise networks. 
 

3.4 FORCE-DIRECTED ALGORITHMS IN BIOLOGICAL NETWORK VISUALISATION 
Visualisation is an important way to capture the dependencies and interactions between different 

biological entities, and their sequential processes. The force-directed algorithm is one of the most popular 
approaches for the visualisation of biological networks. An example visualisation of a biological network is 
illustrated in Figure 7 (a) (which is generated by using the NGL molecular visualisation viewer [167]). 
Kerpedjiev et al. [168] developed a tool called 𝑓𝑓𝑜𝑜𝑟𝑟𝑛𝑛𝑎𝑎 to display the secondary structure of ribonucleic acid 
(RNA). In addition, Bang et al. [169] and Tuikkala et al. [170] proposed multilevel force-directed algorithms to 
visualise large protein networks and genetic interactions. 

  
(a) (b) 

Figure 7 An example visualisation of (a) a biological network, (b) sensor localisation. 
Biological networks have more special attributes than average directed and undirected networks. 

Because of this, various researchers have proposed special layouts for the visualisation of genetic sequencing or 
other biological networks. Clustered layouts are commonly used to visualise protein interactions [171]. Gamma- 
Clustering layouts were suggested for visualising large and complex biological networks [172]. Haplotype 
layouts [173] were also used to distinguish relationships among different sequences observed in biological 
networks [174]. There are also several studies that adopt force-directed algorithms to visualise the structure of 
molecules, biological pathways, protein networks, etc. Due to the page limitation, we summarise these studies in 
Table 3. 

Table 3 Visualisation studies that adopted force-directed algorithms for biological networks. 
Force-directed 

algorithm adopted by 
the study 

 
Study 

 
Objective of the study 

 
KK algorithm 

[175] - To visualise protein–protein interaction network 
[178] - To visualise protein–protein interaction network 

[185] - To visualise the structure of Alpha-helical transmembrane 
proteins 
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FR algorithm 

[176] - To use Schlegel diagrams [177] to visualise the structure 
of molecules 

[179], [180], [181] - To visualise biological pathways 

[182] - To visualise the structure of genes 
- Minimise edge-edge crossings 

[183] - To visualise the structure of genes 
[184] - To visualise microarrays 
[186] - To visualise biological pathways 
[187] - To analyse the connectivity patterns of brain parcellation 
[172] - To visualise large biological networks 

3.5 FORCE-DIRECTED ALGORITHMS IN NODE PLACEMENT AND LOCALISATION FOR 
SENSOR NETWORKS 

Sensor networks are useful for monitoring animals, earthquakes and tsunamis [188], emergency 
message forwarding during disasters [189], etc. An example visualisation of sensor localization is illustrated in 
Figure 5 (b) (which is generated by using the OOMap service [190]). Because the exact location of the 
networked sensors (nodes) is often unavailable, force-directed algorithms are used to determine node placement 
or to locate boundaries to improve the network‘s coverage [191]. The strength of force is subject to the distance 
between two nodes and each node behaves as a source of force. Therefore, if the distance between two nodes is 
shorter/larger than a threshold, a repulsive/attractive force will be exerted on each other. If the distance is equal 
to the threshold, no force will act upon the nodes. Extensions of the FR algorithm were proposed for node 
placement in [192, 193]. There are also extensions based on a modified FR algorithm that estimate the 
approximate location of each node based on signal information [194, 195]. In [196], Cheong and Si proposed a 
heuristic KK algorithm for boundary detection. The proposed algorithm was optimised for sending emergency 
messages via Mobile Ad Hoc network if cellular networks are corrupted. Nodes on the boundary are responsible 
for forwarding emergency messages to nearly emergency stations. 

 
 

4 CONCLUSIONS 
In this paper, we present the survey of force-directed algorithms for schematic drawings and placement. 

This class of algorithms has been studied and implemented in biological network visualisation, information 
visualisation, sensor localisation and VLSI design. This survey covers classical force-directed algorithms and 
hybrid force-directed algorithms, in which parallel, multilevel and multidimensional scaling techniques are used. 
We also discussed the merits and deficiencies of force-directed algorithms and visualisation applications. For 
example, how network topologies are drawn can significantly affect viewers‘ understanding of the network. We 
also discussed the influences caused by the layout and position-assignment of visualised network nodes on how 
a user perceives the relationships in the network. To this end, we review and categorise force-directed 
algorithms from research areas such as: (a) aesthetic drawings for general networks, (b) component placement 
and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits design, (c) information 
visualisation, (d) biological network visualisation, and (e) node placement and localisation for sensor networks. 
Our hope is that this survey not only provides an overview of existing force-directed algorithms, but also 
introduces them as effective tools for solving visualisation problems in different application areas. 
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Figure 8 paper submission count of force-directed algorithms classified by application fields. 
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