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Eccentric pie charts and an unusual
pie cutting

Sándor Bozóki

Abstract
The eccentric pie chart, a generalization of the traditional pie chart is introduced. An arbitrary point is fixed
within the circle, and rays are drawn from it. A sector is bounded by a pair of neighboring rays and the arc
between them. Eccentric pie charts have the potential of visualizing multiple sets of data, especially for small
numbers of items/features. The calculations of the area-proportional diagram are based on well-known
equations in coordinate geometry. The resulting system of polynomial and trigonometric equations can be
approximated by a fully polynomial system, once the non-polynomial functions are approximated by their
Taylor series written up to the first few terms. The roots of the polynomial system have been found by the
homotopy continuation method, then used as starting points of a Newton iteration for the original (non-poly-
nomial) system. The method is illustrated on a special pie-cutting problem.

Keywords
Eccentric pie chart, area-proportional diagram, pie cutting, multivariate polynomial system, homotopy conti-
nuation method

Introduction

Pie chart is more than 200 years old. According to

Spence1 and Tufte2 [p. 44], Playfair3 [Chart 2 on p.

49] invented it. The popularity of the traditional pie

chart is rooted in its simplicity and efficiency in visua-

lization. For an arbitrary set of n ø 2 positive numbers

li , i = 1, . . . , n such that l1 + l2 + � � � + ln = 1, the

corresponding circle sectors in the pie chart visualize

the relative magnitude of numbers li in three equiva-

lent ways: (a) areas, (b) central angles, (c) arc lengths

are proportional to the numbers li. Kosara4 surveys

the perceptual studies and provides experimental

results on projected pie charts.

Area proportionality can be important in data visua-

lization, for example, in case of Venn diagrams, where

the sizes of the sets (represented by circles) as well as

the overlaps correspond to the cardinalities in the data

sets from biological lists.5

The pizza theorem6–8 states that the 2n-blade (n ø 2

is even) equiangular cutter, wherever it is located,

halves the circle’s area by summing the areas of the

alternate eccentric sectors, see Figure 1.

If the traditional pie chart is modified such that the

center, the common point of the sectors is moved from

the circle’s center, an eccentric pie chart is resulted.

Consider a point inside the unit circle and draw rays

from it. A sector is bounded by a pair of neighboring rays

and the arc between them (Figure 2). We focus on the

area of the sectors. Unlike in case of the traditional pie

chart, the angle of the neighboring rays and the arc

length are not proportional to the sector’s area any more.

The goals of the article are to apply the idea of

eccentric pie chart, a special type of area proportional

diagrams, such as the left parts of Figures 3 and 4

(explained and detailed by the middle and right parts)

and Figure 5, to visualize single or multiple sets of

data; and to present some mathematical details of the

calculations.
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Figure 3 presents a simple situation, where, for

example, 70% of the effects (large circle) come from

25% of the causes (small circle), similar to the Pareto

80/20 principle but with different numbers. Here, the

size of the small circle is irrelevant, it does not have a

specific meaning, therefore its boundary is not drawn.

Figure 4 presents the ratio of Internet users in the

world, Europe and Russia based on the data in

Table 1. The diagram is completely area proportional:

the areas of the circles are proportional to the popula-

tions and the areas of the sectors are proportional to

the numbers of people using or not using Internet,

worldwide, in Europe and in Russia.

Figure 5 compares the age structures of world’s

population in 1968 (small circle) and 2018 (large

circle), based on the World Bank’s data10 in Table 2.

The circles’ areas are proportional to the total popula-

tions, so are the sectors to the age groups.

The sketch of the calculations is as follows. The

eccentric sector’s area is derived from the areas of a

circular sector and two triangles. The geometrical

problem is transformed to an algebraic one by formu-

las of coordinate geometry, resulting in a system of

nonlinear, namely polynomial and trigonometric,

equations. Systems of nonlinear equations are usually

hard to solve [Chapter 1111]. If all equations are poly-

nomial, homotopy continuation methods12,13 can be

applied. HOM4PS-313 is used in this article. Several

geometric problems, such as Littlewood’s problem on

seven mutually touching infinite cylinders,14 or

Steiner’s conic problem15 lead to polynomial

Figure 1. The total area of gray sectors is equal to the
total area of white sectors (pizza theorem for n = 4).

Figure 2. An eccentric pie chart.

Figure 3. An area proportional eccentric pie chart
visualizing the situation 70% of the effects (large circle)
come from 25% of the causes (small circle).

Table 1. Internet use and population statistics in 2019,
population numbers rounded to millions, percentages
rounded to integers (source: Internet World Stats9).

Population
(million)

Internet users
(million)

Internet users/
population (%)

World 7716 4536 59
Europe 829 727 88
Russia 144 116 81

Table 2. The age structures of the world’s population in
1968 and 2018 (source: World Bank10).

Age group Population in
1968 (million)

Population in
2018 (million)

0–14 years 1337 (37.8%) 1959 (25.8%)
15–64 years 2012 (57%) 4961 (65.3%)
65 + years 184 (5.2%) 674 (8.9%)
Total 3533 7594
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equations. The equations of the eccentric pie chart

include non-polynomial ones; however, an approxima-

tion by the Taylor series, written up to the first few

terms, is polynomial. This idea of polynomial approxi-

mation has also been applied by Ji et al.16 [Example

4.4], Lim,17 and Yalcxinbasx.18 The roots of the approxi-

mating polynomial system can be found by the homo-

topy method,13 then they are used as starting points of

a Newton iteration for the approximated system of

non-polynomial equations.

The calculation of area-proportional eccentric pie

chart is illustrated through a geometrical problem.

Assume that a circular pie is to be distributed among

three children such that their shares are proportional

to the children’s time spent with assisting, 40, 35, and

25 min. There is a three-blade pie (or pizza) cutter in

the kitchen, but it is designed for equal slices: the angle

of every pair of blades is 1208. Where to locate the cut-

ter in order to get slices of area 40%, 35%, and 25%

of the whole pie? The answer is shown in Figure 6.

The rest of the article is structured as follows. The

eccentric pie chart is introduced in section ‘‘Eccentric

pie charts,’’ where the general steps of the calculations

are presented, too. These steps are specified in section

‘‘Pie cutting with a multi-blade cutter,’’ where the

complete and detailed solution of the 40%-35%-25%

pie-cutting problem above is presented. The nonlinear

system has nine equations of nine variables, its polyno-

mial approximation leads to a system of 11 polynomial

equations of 11 variables. Section ‘‘Conclusion’’ con-

cludes the article, and limitations and future research

directions are also discussed.

Figure 4. An area proportional eccentric pie chart visualizing the Internet penetration in the world, Europe and Russia,
based on the data in Table 1.

Figure 5. An area-proportional eccentric pie chart for the
comparison of the age structures of world’s population in
1968 and 2018, based on the data in Table 2.

Figure 6. 40%-35%-25% pie cutting with a regular three-
blade cutter.
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Eccentric pie charts

Once the center is moved from the circle’s center, as it

was shown in Figure 2, there are infinitely many

eccentric pie charts representing the same set of pro-

portions (percentages). In fact, the degree of freedom

of eccentric pie charts is 2, if rotations of the circle are

not distinguished. Once the starting point, for exam-

ple, (0,1), on the boundary of the circle is fixed, the

point (x0, y0) can be located anywhere inside the unit

circle, there exists exactly one eccentric pie chart rep-

resenting the given set of proportions counterclock-

wise, and another one clockwise. Figure 7 shows nine

eccentric pie charts (x0, y0 2 f�1=2, 0, 1=2g), all of

them visualize the 20%-30%-15%-25%-10% counter-

clockwise. The first ray is between points (x0, y0) and

(0,1). The pie chart in the middle is the traditional pie

chart.

Figure 7 suggests that if there is a single level of

data, the eccentric pie charts are not necessarily more

convenient to ‘‘read,’’ compared to the traditional pie

chart in the middle. However, if multiple levels of data

are displayed, as shown in Figures 3–5, the eccentric

pie charts seem applicable.

The areas of eccentric sectors can be calculated as

follows. Figures 8 and 9 show the possible arrange-

ments, a circular sector and two triangles are necessary

and sufficient to express the eccentric sector’s area.

Let (x1, y1) and (x2, y2) be two points on the boundary

of the unit circle centered at the origin. The area of a

circular sector is equal to b=2, where b is the central

angle. It is also well known that x1x2 + y1y2 = cos b.

The area of the triangle (x1, y1), (x2, y2), (0, 0) is

sin b=2, if b \ p (Figure 8), and sin (2p � b)=2, if

b . p (Figure 9).

The area of a triangle can be directly calculated

from the coordinates of its vertices.

Lemma 2.1. (See, e.g. (Problem 52 on p. 34 of Fine and
Thompson19) or (formula (4.7.2) on p. 212 of
Zwillinger20)). The area of triangle (x1, y1), (x2, y2),
(x0, y0) is equal to

1

2
det

x1 y1 1

x2 y2 1

x0 y0 1

0
B@

1
CA

�������

�������
=

1

2
x1y2 + x2y0 + x0y1 � x2y1 � x0y2 � x1y0j j

ð1Þ

Figure 7. Eccentric pie charts with areas 20%-30%-15%-
25%-10%, where x0, y0 2 f�1=2, 0, 1=2g.

(a) (b)

Figure 8. The calculation of the eccentric sector’s area
(b \ p).

(a) (b)

Figure 9. The calculation of the eccentric sector’s area
(b . p).
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Now, let us prescribe that the area of the eccentric

sector (x1, y1), (x2, y2), (x0, y0) with central angle

b \ p must be lp, where l \ 1 is given. The follow-

ing equations can be written

x1x2 + y1y2 = cos b ð2Þ

2 lp � b

2
+

sin b

2

� �

= x0(y1 � y2)+ x1(y2 � y0)+ x2(y0 � y1)j j
ð3Þ

x2
1 + y2

1 = 1 ð4Þ

x2
2 + y2

2 = 1 ð5Þ

The system of equations above includes both polyno-

mials and trigonometric expressions, which is hard to

solve. Since there exist powerful algorithms12,13 for

solving polynomial systems, our aim is to build a poly-

nomial system, which is close to the non-polynomial

system (2)–(5). Replace sin b by the new variable sb

and consider the non-polynomial equation

b= arccos (x1x2 + y1y2) from equation (2).

Lemma 2.2. (See, e.g. (Section 1.9.4.2 on p. 50 and

Section 1.9.6.5 on p. 61 of Zwillinger20))

The Taylor series of function arccos around a is

arccos (x)=
X‘

n= 0

arccos(n)(a)

n!
(x� a)n ð6Þ

especially with a= 0

arccos(x)=
p

2
�
X‘

n= 0

(2n)!

4n(n!)2(2n+ 1)
x2n+ 1

=
p

2
� x� 1

6
x3 � 3

40
x5 +O(x7), (jxj\ 1)

ð7Þ

Figure 10 shows that the Taylor series around a=0

up to six terms approximates the arccos function well

if jxj\ 0:8. If jxj is close to 1, the Taylor series around

a= 0:9 up to six terms provides a good approximation

(Figure 11). Then one of the equations (6) and (7)

with x= x1x2 + y1y2 results in a multivariate polyno-

mial. The absolute values in equation (3) can be elimi-

nated by taking the squares of both sides of the

equation (false roots are possible and they have to be

filtered out).

A detailed specification of the calculations is given

in the next section, where the pie-cutting problem is

solved.

Pie cutting with a multi-blade cutter

Let us solve the 40%-35%-25% pie-cutting problem

from the end of section ‘‘Introduction’’ (Figure 6), by

using the methods presented in section ‘‘Eccentric pie

charts.’’ Let us have a unit circle with its center in the

origin. Denote by (x0, y0) the coordinates of the three-

blade cutter’s center. We can assume that y0 = 0 due

to rotational symmetry. �1 \ x0 \ 1 is assumed in an

implicit way: no equation is generated, but after the

system of equations is solved, roots not satisfying this

double inequality are filtered out.

Denote by (x1, y1), (x2, y2), and (x3, y3) the coordi-

nates of the three points, where the boundary of the

circle and the blades meet, as in Figure 12. Let b

denote the central angle of the first eccentric sector (of

area l1p = 0:4p) bounded by line sections

½(x0, 0), (x1, y1)� and ½(x0, 0), (x2, y2)� and the arc

between them. Similarly, let u denote the central angle

of the second eccentric sector (of area l2p= 0:35p)

bounded by line sections ½(x0, 0), (x2, y2)� and

Figure 10. arccos (x) and its Taylor series around a = 0 up
to six terms.

Figure 11. arccos (x) and its Taylor series around a = 0:9
up to six terms.
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½(x0, 0), (x3, y3)� and the arc between them. The third

eccentric sector’s area is l3p = 0:25p, and its central

angle is 2p � b� u:
Following section ‘‘Eccentric pie charts’’ and

including the regularity of three-blade cutter (pairwise

angles are 2p=3) we have the following equations

(x1x2 + y1y2)
2 + sin2 b= 1 ð8Þ

(x2x3 + y2y3)
2 + sin2 u= 1 ð9Þ

2l1p � b+ sin b

= x0(y1 � y2)+ x1(y2 � y0)+ x2(y0 � y1)j j
ð10Þ

2l2p � u+ sin u

= x0(y2 � y3)+ x2(y3 � y0)+ x3(y0 � y2)j j
ð11Þ

x2
1 + y2

1 = 1 ð12Þ
x2

2 + y2
2 = 1 ð13Þ

x2
3 + y2

3 = 1 ð14Þ

(x1 � x0)(x2 � x0)+ (y1 � y0)(y2 � y0)= cos
2p

3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 � x0)

2 +(y1 � y0)
2

� �
(x2 � x0)

2 +(y2 � y0)
2

� �q
ð15Þ

(x2 � x0)(x3 � x0)+ (y2 � y0)(y3 � y0)= cos
2p

3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x0)

2 +(y2 � y0)
2

� �
(x3 � x0)

2 +(y4 � y0)
2

� �q
ð16Þ

where l1 = 0:4, l2 = 0:35, y0 = 0 and cos (2p=3)
=� 1=2.

Introduce variables sb, su to replace sin b and sin u,

respectively. In order to avoid absolute values in equa-

tions (10)–(11), take the squares of both sides. This

step may bring false solutions, and we will see that it

does so indeed. The square root in equations (15) and

(16) can be eliminated likewise, with another possibil-

ity to have false solutions. Equations (8)–(11), (15),

and (16) are replaced by polynomial equations

(x1x2 + y1y2)
2 + s2

b = 1 ð17Þ
(x2x3 + y2y3)

2 + s2
u = 1 ð18Þ

2l1p � b+ sb

� 	2

= x0(y1 � y2)+ x1(y2 � y0)+ x2(y0 � y1)½ �2
ð19Þ

2l2p � u+ su
� 	2

= x0(y2 � y3)+ x2(y3 � y0)+ x3(y0 � y2)½ �2
ð20Þ

(x1 � x0)(x2 � x0)+ (y1 � y0)(y2 � y0)½ �2

=
1

4
(x1 � x0)

2 +(y1 � y0)
2

� �
(x2 � x0)

2 +(y2 � y0)2
� �

ð21Þ

(x2 � x0)(x3 � x0)+ (y2 � y0)(y3 � y0)½ �2

=
1

4
(x2 � x0)

2 +(y2 � y0)
2

� �
(x3 � x0)

2 +(y4 � y0)2
� �

ð22Þ

Finally approximate the equations

cos b= x1x2 + y1y2 ð23Þ
cos u= x2x3 + y2y3 ð24Þ

or, equivalently, b= arccos (x1x2 + y1y2) and

u= arccos (x2x3 + y2y3) by the Taylor series of func-

tion arccos around zero up to the fifth power as in

equation (7). Here, we expect that angles b and u are

between arccos (0:8)’0:6435’378 and p � arccos

(0:8)’2:498’1438. If this assumption fails, we can try

the other Taylor series around 0.9 as in equation (6)

and Figure 11

b=
p

2
� (x1x2 + y1y2)�

1

6
(x1x2 + y1y2)

3

� 3

40
(x1x2 + y1y2)

5

ð25Þ

u=
p

2
� (x2x3 + y2y3)

� 1

6
(x2x3 + y2y3)

3 � 3

40
(x2x3 + y2y3)

5
ð26Þ

The system of polynomial equations (12)-(14),

(17)-(22), and (25)-(26) has 11 equations and 11 vari-

ables: x0, x1, y1, x2, y2, x3, y3,b,u, sb, and su. Homotopy

algorithm HOM4PS-313 found 28,224 roots, 720 of

them are real. However, most of them are false solutions

to the geometric problem, due to several reasons. Many

roots do not fulfill jx0j, jsbj, jsuj41. Some roots satisfy

(19)/(20) but not (10)/(11), or, similarly, satisfy (21)/(22)

but not (15)/(16). Furthermore, sb 6’ sin b, but instead

of that sb’� sin b.

Figure 12. Pie cutting with a regular three-blade cutter.
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After all four solutions remain to use as starting

points of a Newton iteration for the system of equa-

tions (12)–(14) and (17)–(24). Maple’s fsolve refines

the solution with an arbitrary accuracy. However, we

observed that the roots calculated from the polynomial

system were already within an error of 0.002 for all

variables, which is due to that the Taylor series pro-

vided a good polynomial approximation of the func-

tion .

The four solutions are essentially the same: one

solution, given below up to 10 correct digits

x0 = 0:164641996

x1 = 0:375176778

y1 = 0:926953281

x2 =� 0:939722783

y2 =� 0:341937259

x3 = 0:805164109

y3 =� 0:593052069

b= 2:304361451’1328

u= 2:157770813’123:68

sb = sin b= 0:742792198

su = sin u= 0:832620150

has already been shown in Figures 6 and 12, the others

are its reflections on the vertical and/or horizontal axes.

The relatively small value of x0’0:1646 shows the

high level of sensitivity of the proportions, once the

center of removed from the origin, even by a little.

Note that li (i = 1, 2, 3) cannot be arbitrary in this

problem. Even if the the center (x0, y0) is located at

(1,0), that is, on the circle’s border, the largest sector’s

area is at most p � 2((p=6)� (
ffiffiffi
3
p

=4))’0:9423p:

Conclusion

Motivated by the area-proportional comparisons of

multi-level data in Figures 4–6, eccentric pie charts,

their potential applications in data visualization and

methods for calculations are studied in the article.

Some limitations of eccentric pie charts have

already appeared in this first study and during the cal-

culations behind. Although the geometric derivation is

simple, the calculations of the areas, as witnessed in

sections ‘‘Eccentric pie charts’’ and ‘‘Pie cutting with a

multi-blade cutter,’’ are not elementary. The current

proposal is far from the implementation of an easy-to-

use software. As Figure 7 showed, the traditional pie

chart seems better if single proportions are displayed.

However, Figures 4–6 suggest that the comparisons of

two or three objects with respect to two or three fea-

tures are feasible with eccentric pie charts.

The example in Figure 5 and Table 2 suggests that if

we insist on that only one circle can be eccentric, not

both of them, then three is the tight upper bound for the

number of categories. This observation is supported by

the counting of degrees of freedom: if we depart from

the small circle with its given proportions (second col-

umn in Table 2) and rays, the center of the large circle

can be chosen from a two-dimensional space, exactly

the same number as the degree of freedom of the possi-

ble sets of three proportions (third column in Table 2)

in the large circle. Four or more age categories would

already lead to an overdetermined system of equations.

If both circles can be eccentric, that is, none of their cen-

ters coincides with the center of the radii, then five is the

tight upper bound for the number of categories.

Constraints on proportions that can be displayed by

eccentric pie charts, belong to another type of limita-

tions. For example, the classical 80–20 Pareto principle

cannot be plotted similar to Figure 3. Even if the center

of the small circle is located at large circle’s border, the

small circle’s central angle 2p=5 corresponding to 20%

cuts only ’ 70.27% of the large circle’s area.

The method of solving non-linear, non-polynomial

systems through their polynomial approximation, pre-

sented in section ‘‘Eccentric pie charts’’ and illustrated

on an example in section ‘‘Pie cutting with a multi-

blade cutter,’’ is applicable to larger systems, too. The

replacement of a non-polynomial function by its

Taylor series or other polynomial approximations, has

practical limitations, because a polynomial system can

also be hopelessly hard to solve.

The exact structure and dimensions of multiple

data sets that can be visualized by eccentric pie charts, is

not discovered yet. As the aforementioned constraints

on data restrictions show that counting the degrees of

freedom is only necessary but not always sufficient.

Future studies might include experimental studies

of visual perception, as the ones performed with the

traditional pie charts (see Kosara4 (subsection 2.1))

and, for example, their rotations in the space.4 A pos-

sible outcome of such experiments can be that visual

perception generates stricter constraints compared to

the mathematical bounds mentioned above.
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