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Abstract

Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models,

has been used for different natural language processing tasks, e.g., translation between two languages. Recently, there

has been an increasing trend of transforming the HD embeddings into a latent space (e.g., via autoencoders) for further

tasks, exploiting various merits the latent representations could bring. To preserve the embeddings’ quality, these works

often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings

even less interpretable and consuming more storage space. In this work, we borrow the idea of βVAE to regularize

the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-

dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent

space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-

proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization

process, explore the HD latent space, and interpret latent dimensions’ semantics. We validate the effectiveness of our

embedding regularization and interpretation approach through both quantitative and qualitative evaluations.
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Introduction

Embedding, a numerical representation of different data
entities generated by machine learning (ML) models,
has been widely used in many applications, including
natural language processing (NLP), anomaly detection, and
recommendation systems. For most cases, the embedding of
an entity (e.g., a word in NLP) is a set of numerical values,
i.e., a high-dimensional (HD) vector. The embeddings of
different entities constitute a HD space, i.e., the embedding
space. Extensive efforts have been devoted to interpreting
this space in the past few years1–3. This paper focuses on
the analysis of word embeddings.

Researchers have proposed to transfer the embeddings into
a latent space and use their latent representations to conduct
further tasks, utilizing various metrics associated with the
transformation. Mohiuddin et al.4 proposed Latent space
Non-linear Mapping (LNMap) to transfer word embeddings
of two different languages into a common latent space
through two autoencoders (AEs) applied on individual

languages’ embeddings, and align them in that space for
word translations via nearest neighbor search (explained
later in Figure 2). The non-linearity of the transformation
helps to align the embeddings better and improves word
translation performance. However, as these works focus
entirely on alignment accuracy, they often blindly map the
embeddings to an even higher dimensional latent space,
without caring much about how semantics are really encoded
in that space. As a consequence, the high dimensionality

and irregularity of the latent space bring insurmountable
challenges to their interpretation and understanding, going
against the paramount need for model transparency5, and
limiting their deployment to resource-limited equipment
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(e.g., mobile devices). Given these problems, our main
objectives in this work are to (1) regularize and condense the
latent representations of word embeddings and (2) visually
interpret the above process to help domain experts better
understand and validate the regularization.

The embedding transformation process is our focus,
which is handled by an AE traditionally, minimizing the
reconstruction loss only. To regularize the latent space,
we borrow the architecture of variational auto-encoder
(VAE)6 to substitute the AE, which adds a regularization
term to the loss. To control the regularization strength,
βVAE7 is a straightforward extension, which introduces
a hyperparameter β into the loss of VAE to balance
the trade-off between reconstruction accuracy and latent
space regularity (see AE and βVAE under the Background
section). In our experiments of using βVAE for embedding
transformation, we observed an intriguing phenomenon of
dimension deprecation, i.e., some latent dimensions of
βVAE get deprecated while the model is converging towards
its final state. The deprecated latent dimensions lose the
capability to encode information, and thus, can be safely
removed to compress the embeddings. Meanwhile, using
latent representations of the non-deprecated dimensions only,
we achieve similar performance on different downstream
tasks, indicating almost no information loss over the
regularization process (our first contribution). However,
related to the dimension deprecation phenomenon, many
questions remain unanswered. For example, when does
the dimension deprecation start? How to differentiate the
deprecated dimensions from useful dimensions? Does each
of the remaining non-deprecated dimensions encode more
semantics?

The answers to the above questions constitute our second

contribution on visually interpreting word embeddings
and their regularization. Unlike the well-labeled image
datasets that used to validate the disentanglement effect
of βVAE7–9, the factors that decompose the semantics
of word embeddings are often unknown and hard to
be extracted. As a result, it is hard to quantify the
disentanglement level of latent space. Moreover, ML
practitioners often care more about certain semantics in
the latent representations when working on domain-specific
problems (e.g., gender semantics is of more interest when
studying gender bias in word embeddings). To meet the
customized semantics exploration needs, we propose to
probe the semantics’ encoding-level on a latent dimension by
interactively perturbing the dimension’s value, regressing the
reconstructed embeddings (via the decoder of βVAE), and

measuring the angle between the customized semantics and
the regressed reconstructions.

Both contributions lead to the need for a visual analytics
(VA) system, where users can observe the regularization
process of latent space, discern the deprecated and useful
latent dimensions, and probe the semantics of individual
dimensions. Our VA system consists of three major
components. The first one provides an overview of the
model training dynamics, enabling users to inspect the
latent regularization process and catch the point where
the regularization starts. The second component adopts
“focus+context” to present a large number of latent
dimensions so that the deprecated and useful dimensions
can be easily identified. Also, this component allows users
to interactively propose customized semantics (concretized
by a pair of words) and reflects the encoding-level of
the semantics across latent dimensions through glyphs.
The final component provides necessary details of a user-
selected latent dimension for interpretation, e.g., textualizing
the semantics along the dimension by dimensionality
reductions or reflecting the density of the latent space
along the dimension by word clouds. These tightly coupled
components also help to compare the latent space generated
from different models (e.g. an AE and a βVAE) and different
languages.

In summary, the contributions our work are as follows:

• We initiate the attempt of borrowing βVAE to
compress and regularize the latent representations
of word embeddings, and quantitatively validate its
effectiveness.

• We design a visual analytics system to explore the HD
latent space of word embeddings and probe individual
latent dimensions’ encoding-level of user-proposed
semantics.

• From case studies with domain experts and com-
parisons between models, we provide insights into
the compression, regularization, and interpretation of
latent embeddings.

Related Works

Our work contributes to the visualization of HD data and ML
models. We, therefore, review related works from these two
perspectives.

HD Data Visualization. Two groups of visualization
techniques are widely used to handle the high dimensionality
of HD data. The first group directly visualizes all
dimensions, e.g., parallel coordinates plot (PCP)10 and
scatter-plot matrix11. These techniques are intuitive and
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easily comprehensible but can handle up to ∼ 20 dimensions
due to the large consumption of screen space. For even
higher dimensional data, the second group of techniques,
for example, RadVis12 and star coordinates13, combines
dimensionality reduction algorithms (e.g., PCA, tSNE14 and
UMAP15) and scatterplots to reduce the dimensionality and
visualize the data in 2D only. The drawbacks of this group of
techniques are the less-interpretable reduced dimensions and
the intricate dimensionality reduction process, which may
have distorted the data space. In this work, we introduce
a zoomable PCP adopting the focus+context exploration
strategy to intuitively demonstrate HD embedding data
with reasonable space cost. We also employ dimensionality
reduction algorithms and scatterplots for the detailed
exploration of a locally perturbed region of the HD
space. The projected data points in a scatterplot preserve
their relative distances, helping to interpret the semantics
extensions in the local region and the transformation between
a word-pair representing the studied semantics.

Visualization for Machine Learning. There are a
plethora of works focusing on using visualization techniques
to interpret, diagnose, and/or improve machine learning
models16. According to a very recent survey17, we
can roughly categorize them into three groups focusing
on (1) improving data quality before model building18,
(2) interpreting/diagnosing model dynamics during model
building19, and (3) analyzing models’ outcome after

model building to evaluate the models or interpret what
they have learned1,20. Our work fits well into the third
category of this taxonomy and our focused model outcomes
are the HD word embeddings and regularized latent
spaces. The main objective is to interpret how semantics
are encoded in the embeddings or latent spaces. For
word embeddings interpretations, different visualization
solutions have been proposed, solving problems including
analogy interpretation1, embedding debiasing21, embedding
comparison2, etc. Moreover, there are visualization works
focusing on the concepts defined in the embedding space.
They either used human knowledge and user interactions
to understand and refine the semantic concepts22 or
interactively built concepts to avoid problems by building
concepts from seed term set of limited sizes23.

For the interpretation of latent spaces, the majority
of visualization works focus on latent spaces from deep
learning models with an encoder-decoder architecture, e.g.,
AE or VAE. For example, SCANViz9 visualized and
compared latent space encoded symbolic instructions and
another latent space encoded visual concepts to interpret
how symbols and concepts are associated in the joint
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Figure 1. (a) AE encodes each instance into a latent vector,
i.e., 3 scalars here, since the latent space is in 3D. (b) VAE
encodes each instance into a set of Gaussian distributions
(each is parameterized by a mean and a variance value). A
latent vector is then sampled from them.

space over training. Latent space cartography24 defined
attribute vectors to denote the semantics offset between a
pair of data instances and visually interpreted and verified
the pair-wise analogy in latent spaces. There are also
visualization works that perturb the latent space for model
diagnosis and improvements. For example, Wang et al.25

perturbed the latent vector of an instance to be diagnosed to
generate its neighbors, and used those neighbors to train an
interpretable surrogate model to mimic the original model’s
local behavior for interpretation. Gou et al.26 perturbed
the latent representations to generate data instances with
fewer representative features and used them to improve
their model’s performance. In this work, we also adopt
perturbation-based methods, but to investigate the semantics’
encoding-level of different latent dimensions. Also, using our
measure of the semantics’ encoding-levels, we can compare
the latent spaces from different models, and thus, assess the
regularization quality of latent space.

Background

This section provides ML background for βVAE and
the quantitative metrics for evaluating word embeddings’
quality.

AE and βVAE

AE (Figure 1a) is an unsupervised deep neural network
constituted of two sub-networks: an encoder and a decoder.
The encoder takes each training instance as input and
transfers it to an HD latent vector. The decoder takes the
vector as input and reconstructs the input instance back.
The two sub-networks are trained jointly to minimize the
difference between the input and the output of the decoder.

Similar to AE, VAE7 (Figure 1b) also transfers each input
instance into a latent space (the encoder part). However, the
latent representation here is no longer a set of scalars (i.e.,
a vector), but a set of Gaussian distributions, parameterized
by a mean and a variance vector. The decoder draws a
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random sample from each Gaussian to compose the latent
vector and uses it to reconstruct the input back. Apart from
the reconstruction loss inherited from AE, VAE also has
a regularization loss that minimizes the Kullback–Leibler
divergence (DKL) between each latent Gaussian distribution
and a unit Gaussian distribution. Mathematically,

L =

n∑
i=1

(xi − x̂i)
2 + β

m∑
i=1

DKL

(
N (µi, σ

2
i )∥N (0, 1)

)
,

(1)
where x and x̂ are the input and reconstructed output with
n dimensions and their difference is minimized by a L2-
norm loss function (the first term, reconstruction loss). m
is the dimensionality of the latent space and the latent
representation of x on each latent dimension is a Gaussian
parameterized by µi and σ2

i . The second term (regularization
loss) constrains the latent space by pushing each Gaussian to
be a unit Gaussian. There is a theoretical study27 on how
a unit Gaussian constraint can regularize the latent space
of VAE . In short, this constraint term (the second term of
Equation 1) can be considered as an information bottleneck
(from an information theoretic point of view), which filters
out redundant information for the reconstruction, making the
latent space more compact and smoother. β controls this
bottleneck and balances the two loss terms. It equals 1 in
VAE.

A further study on the β value derives βVAE7, where
β is not necessary to be 1 (and usually larger than 1 to
further regularize the latent space). For example, studies7,27

have shown that by carefully choosing the β value, one can
effectively disentangle the latent space to make each latent
dimension encode more orthogonal information. Intuitively,
this is to further regularize individual latent dimensions,
compelling some of them to converge to unit Gaussians. As
a result, the remaining dimensions will have to encode more
information and in a more effective way to keep the overall
loss small.

Word Embedding Quality Measurement

The quality of word embeddings is often evaluated by
applying them to different downstream tasks and measuring
the tasks’ performance. Here we give some examples,
covering both monolingual evaluation and cross-lingual
evaluation metrics.

Semantic Similarity and Analogy Scores Monolingual
evaluation measures how well certain relations between
words are preserved in the embeddings of a single language.
This is a supervised evaluation, i.e., we need to have word-
pairs with known relations beforehand. Semantic similarity

and analogy score are two widely-used metrics. SemEval

2017 28 and Google Analogy Test Set 29 are the example
evaluation sets for the two metrics.

SemEval 2017 provides the ground truth semantic
similarity between 500 word pairs obtained from lexical
resources (e.g., WordNet and BabelNet). The evaluation task
is to calculate the Spearman correlation coefficient between
the ground truth similarity and the similarity from the word
embeddings. Therefore, SemEval score should lie in the
range of [-1,1], the larger the better.

Google Analogy Test Set provides 19,544 sets of coupled
word pairs, between which a proportional analogy holds,
e.g., Tokyo is to Japan as Paris is to France. We use the
corresponding words’ embeddings to answer the analogy
questions and calculate the correct rate (i.e., accuracy)
according to this ground-truth dataset.

Bilingual Lexicon Induction (Word Translation) Cross-
lingual evaluation measures embeddings’ quality through
tasks that involve embeddings from more than one language.
Word translation, or more formally bilingual lexicon

induction (BLI)30, is a good example. The embeddings of
two languages are first generated separately and then aligned
into a common space. Translating a word from one language
to the other can then be conducted by nearest neighbor (NN)
search in the space. A translation is considered correct if the
right counterpart word appears in the 1NN, 5NN, and 10NN
(i.e., measure the accuracy with different levels of tolerance).

Generally, the algorithms for embedding space alignment
can be categorized into supervised/unsupervised methods
based on whether they use a ground truth dictionary,
or linear31/non-linear methods based on if the mapping
function is linear or not. A thorough review of these works
can be found from a recent survey32. For our work, we
picked one supervised non-linear method, called LNMap4

for evaluations, because, (1) the work is published very
recently and reflects the state-of-the-art performance, (2)
the work adopts an AE for the non-linear transformation
and generates a higher dimensional latent space, i.e., from
300 dimensional (300D) embeddings to 350D latent space,
where we can easily substitute it with our compressed and
regularized latent space from a βVAE for comparison.

For two languages’ embeddings to be aligned (e.g.,
English and Spanish in Figure 2), LNMap first trains two
AEs, one for each language’s embeddings, and then uses the
latent representations of the two AEs for alignment (through
two non-linear mapping functions and fine-tunings of the
encoder of the two AEs). We will focus on the first step
to show how we can compress and regularize the latent
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Figure 2. LNMap 4 aligns two languages’ embeddings (200k
English and Spanish words) by (1) transferring each into a
latent space through an AE and (2) aligning the two AEs’ latent
space. The input and latent space have 300 and 350
dimensions respectively.

representations (i.e., replace the AEs with βVAEs), without
significantly sacrificing the alignment accuracy.

Embedding Regularization, Semantics
Probing

This section provides a technical overview of the two main
contributions of our work, i.e., compressing and regularizing
word embeddings through βVAE and probing the semantics
of individual latent dimensions via interactive perturbation.

Dimension Deprecation Phenomenon

LNMap4 uses 300D FastText embedddings33 as the training
input, but the latent space of its AE is 350D (higher than
the input, Figure 2). Although achieving high alignment
accuracy, this setting triggered our thoughts that the latent
space is not compact, and redundant information may
be introduced during the encoding process. Targeted on
regularization, we replaced the AE in LNMap with βVAE.
We experimented with different β values and found a small β
could maintain the quality of the reconstructed embeddings.
Also, through some random explorations of βVAE’s latent
space, we found the encoded representations of some latent
dimensions are very close to unit Gaussians. This is because
the regularization loss compels these dimensions to converge
to unit Gaussians, dampening their capability to encode
any useful information. We therefore call these dimensions
deprecated dimensions, as they are deprecated by the βVAE
model. For example, we use the third latent dimension in
Figure 1b to illustrate a deprecated dimension, where the
representations of all different words (e.g., man and woman)
are close to a unit Gaussian and they show little difference.
In contrast, the other two latent dimensions are useful,
where different words are encoded into Gaussians with
different means and very small variance (i.e., the narrower
shaded region). When decoding the embeddings back using
only the non-deprecated latent dimensions, we still get
good reconstruction quality, validating that the deprecated
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Figure 3. (a) Probing the encoding-level of the gender
semantics (represented by man-woman) in the first latent
dimension. (b) (θ+ϕ)/2 denotes the encoding-level of gender
semantics in the dimension.

dimensions are indeed superfluous. Moreover, we found the
number of deprecated dimensions correlates with the value
of β.

We, as well as our collaborated ML experts, are
enlightened by this dimension deprecation phenomenon.
However, apart from the random explorations of the latent
dimensions, we lack a way to effectively identify all
deprecated ones. The ML experts also expressed their
requirements of visually disclosing when this phenomenon
starts and how it evolves along with the model convergence
process.

Semantics Probing via Perturbation

Based on the information conservation law, we argue that
the remaining useful dimensions (of βVAE) after removing
deprecated dimensions should encode more information
compared to the original latent dimensions (of AE).
However, there is no readily applicable method to rigorously
quantify the amount of information encoded in each latent
dimension. Since most of the embedding-related tasks focus
on investigating the embeddings’ semantics, we propose
a perturbation-based method to interactively probe the
encoding-level of a given semantic in individual latent
dimensions.

Semantics is believed to be expressed along a certain
direction in the HD latent space24, which can be
approximated through a representative word-pair. For
example, the gender direction can be identified by connecting
the point (latent vector) of man and woman in the HD latent
space. In practice, however, as each latent dimension usually
mixes multiple semantics, it is nontrivial to reveal which
latent dimension is more responsible for what semantics.
To address this, our perturbation-based method probes the
encoding-level of a user-specified semantics in the following
steps (Figure 3):

• For a focused latent dimension and a pair of words
(man-woman), we perturb the values of one word’s
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latent vectors on that dimension, while keeping
the other dimensions’ value unchanged. For βVAE,
we perturb the mean vector and just use the
perturbed mean vector for decoding, as it is the most
representative sample. Fig. 3a (top) perturbs the first
dimension of the latent vector of man.

• Feeding the set of perturbed latent vectors (blue points
in Figure 3a (top)) into the decoder of βVAE, we
reconstruct a set of perturbed word embeddings (the
blue points in Figure 3b).

• For the set of reconstructed perturbations (i.e.,
perturbed embeddings), a representative direction is
needed to abstract the semantics encoded along the
perturbed latent dimension. We use the first principle
component (FPC) from PCA (of the reconstructed
perturbations) as a linear approximation for the
semantics’ direction (i.e., a regressed direction), and
the explained variance of the FPC is the semantics’
extension.

• The angle between the semantics’ direction repre-
sented by the word pair and the regressed direction
(from FPC), i.e., θ in Figure 3b, reflects the encoding-
level of the first latent dimension localized at the
word man. This angle should be smaller if the latent
dimension encodes more of the probed semantics.
Conversely, it will be 90° if the dimension encodes
no information of the probed semantics. Repeating the
process to another word, we get another angle, i.e., ϕ
in Figure 3b.

• Finally, we use (θ + ϕ)/2 to denote the encoding-level
of the user-proposed semantics in the focused latent
dimension.

For multiple latent dimensions, we can repeat the above
steps to derive their encoding-levels of user-specified
semantics. However, it is hard to provide an overview of
all dimensions’ behaviors through these numerical values
only. Also, ML practitioners will have different semantics to
probe over their exploration with the latent space. Third, we
also want to illustrate the semantics encoding discrepancy
between useful and deprecated dimensions. These issues
bring the need for an interactive visual analytics system.

Design Requirement Analysis

In the process of designing the visual analytics system, we
worked with 4 NLP experts , an NLP professor, one of his
senior Ph.D. students, and two industrial lab researchers.
All have multiple years of experience in the generation,
disentanglement, compression, regularization, and alignment

of word embeddings, and two of them have co-authored
this paper. Over the collaborations and the explorations of
related experimental results, the need for an integrated VA
system quickly arises (as we have partially mentioned in the
Embedding Regularization, Semantics Probing section).

The design and development of the VA system have
gone through three major stages: (1) collecting the looming
needs for HD embedding interpretations; (2) prototyping
a dimension-wise semantics probing and visualization
system; (3) iterative design, development, and modification
of the system based on experts’ feedback. Over this
iterative process and the interactions with the NLP experts,
we distilled the following requirements form four major
perspectives: R1: Model Evolution, R2: Latent Space
Exploration, R3: Semantics Analysis, and R4: Model
Comparison, detailed as follows:
R1: Provide model evolution analysis over the embedding
regularization process. The training of βVAE involves
two contradictory loss terms, quantifying the reconstruction
quality and regularization scale. Therefore, it is critical to
disclose the dynamic balance between these two parts. In
detail, the VA system needs to:

• R1.1 Comprehensively reflect the reconstructed embed-

dings’ quality through different metrics apart from the
regularization loss.

• R1.2 Clearly depict the regularization process, e.g., when
the regularization starts and which dimension becomes
deprecated.

R2: Allow convenient latent space exploration and
identify interesting latent dimension. Being able to flexibly
explore the HD latent space is always a need from the
NLP experts, especially when working with βVAE. During
explorations, dimension-wise statistics are useful to guide
users towards interesting dimensions, and further probe their
semantics. Therefore, our system needs to:

• R2.1 Provide overall dimension-wise statistics. The NLP
experts are interested in dimension-wise statistics, e.g., the
distribution of mean values (of the encoded Gaussians), as
they are informative indicators for useful and deprecated
dimensions.

• R2.2 Support easy dimension exploration/selection. As the
dimensionality of the latent space is often high, a quick
and easy dimension selection, supported with dimension
ordering/filtering, is a must to improve the exploration
efficiency.

• R2.3 Enable interactive semantics probing. The experts
usually have an accumulated set of word-pairs for different
semantics. Interactive probing and switching between
them are needed.
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R3: Semantics analysis for the dimensions of interest.
Focusing on a single dimension of interest, our system
needs to provide details for its encoding-level of the studied
semantics and the semantics density in different value ranges
to help in-depth understandings.

R4: Provide model comparison between AE and βVAE,
and across languages. This is to comparatively study the
advantages of βVAE over AE, as well as βVAE’s regular-
ization power across different languages’ embeddings. The
comparison should cover:

• R4.1 Model evolution comparison. βVAE is trained with
an extra regularization term. It is of interest to understand
how this term influences the training compared to an AE.

• R4.2 Latent space comparison. This comparison focuses
on the latent space statistics and semantics of AE and
βVAE, targeting to highlight the advantage of βVAE.

• R4.3 Comparison across languages. Our regularization
generates different numbers of useful dimensions in
different languages. This comparison targets to provide
insights into the regularization effects on languages with
different richness-levels.

Visual Analytics System

With the requirements, we developed a VA system with four
visualization views, detailed in four sub-sections.

Model Evolution View

The Model Evolution View shows an overview of the training
process (Figure 4a). The model statistics in this view include
the reconstruction loss (a1), number of useful dimensions
(a2), semantic similarity (a3), and analogy scores (a4),
reflecting the latent vectors’ quality (R1.1) The statistics also
include the KL loss and the number of useful dimensions,
reflecting the regularization scale of the latent space (R1.2).
All five statistics are calculated on-the-fly after each epoch
and presented in four synchronized line charts.

Whether a dimension is useful or deprecated is determined
as follows. First, we use the βVAE encoder to encode all n
words into the latent space. For each latent dimension, we
have n Gaussians (i.e., n pairs of mean and variance), one
for each word. We then compute the entropy of the n mean
values. For a useful dimension, the corresponding entropy
is larger as the n words are encoded using the full range
of values on the dimension. For deprecated dimensions,
however, their entropy is small and tends to be 0, restricted
by the regularization loss (i.e., the KL loss of βVAE pushes
all Gaussians to be unit Gaussians). Figure 1b shows typical
useful and deprecated latent dimensions. We will verify the

efficacy of this method later by interactively perturbing the
latent dimensions.

Interactions. Users can switch between different models,
i.e., βVAE or AE via the “Toggle AE” button (Figure 4a),
and the corresponding statistics will be updated accordingly.
They can also choose a model with the desired number
of epochs (the red dashed line marks this selection).
The flexible switch between models/epochs facilitates the
comparison between them (R4.1, R4.2). The selection in this
view will be automatically propagated to other views, where
users can then explore the latent dimensions and encoded
semantics.

Dimension Exploration View

The Dimension Exploration View is designed to explore
the HD latent space and probe the semantics encoded in
different dimensions (R2). It consists of a zoomable PCP and
customized glyphs.

One critical issue to visualize and interact with HD data is
to intuitively present all data dimensions and flexibly explore
different subsets of dimensions. We adopt a PCP34 to solve
this issue as shown in Figure 4b, where each axis represents
one dimension of our HD latent space. To alleviate the visual
clutter for a large number of latent dimensions, we make the
PCP zoomable. Users can focus on several dimensions by
brushing the axes horizontally. Unfocused dimensions will
be zoomed out and shown on the sides with less space,
e.g., Figure 4b focuses on dimensions 1∼53, and the rest
are zoomed out. Our zoomable PCP encodes two types of
information.

The first type presents the value distribution across all
words’ embedding on each dimension of the latent space
(R2.1). For AE, the encoded representation on each latent
dimension is a scalar and we can easily compute its value
distribution. However, for βVAE, the latent representation
is a Gaussian. As the mean of a Gaussian is the most
representative sample, we use it as the latent representation.
For both cases, we compute the value range and confident
interval (CI, 1st∼3rd quantile) for the set of scalars, and use
the gray and blue band in Fig. 4b to connect them across
axes. Since the latent values mostly fall into [-1, 1], we use
an exponential scale, i.e., y = x0.3, instead of a linear scale,
on the vertical direction to enlarge the space between -1 to 1.
Additionally, we add a bar chart below the PCP. Each bar is
aligned with one axis, and its height encodes the entropy of
the corresponding latent dimension’s scalar values, which is
an indicator of if the dimension is deprecated or not.

The second type of information is related to the user-
specified word-pair (R2.2), representing the semantics to be
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Figure 4. Our system consists of four views, (a) the Model Evolution View presents five training dynamics reflecting embeddings’
quality and regularization scale, (b) the Dimension Exploration View employs a zoomable PCP and customized glyphs to present
latent dimensions, allowing users to probe the encoding-level of individual dimensions, (c) the Projection, and (d) Word Cloud View
disclose details of the selected dimension (e.g., semantics extension, latent space density) and relate it to the words’ semantics.

probed with. The two text boxes on the header of Fig. 4b
allow users to provide a pair of words and the zoomable
PCP will show their latent representation as two curves (in
blue and orange). Meanwhile, our system will compute the
encoding-level of the semantics across all latent dimensions,
i.e., compute the angles introduced before, and present them
through semantic angle glyphs above the corresponding axes.

The design of the semantic angle glyphs is illustrated
in Fig. 5a. The horizontal direction is the direction of the
proposed semantics. The half disk with a filled sector above
the horizontal line indicates the encoding-level, i.e., the
average of θ and ϕ in Figure 3. The smaller the angle, the
higher the encoding-level of the probed semantics.

While exploring the latent dimensions using these glyphs
(e.g. sorting dimensions by their angle using the widget at
Figure 4-b2), we found some deprecated dimensions have
an even smaller angle than useful dimensions, contradicting
our belief in those dimensions’ behaviors. With a thorough
analysis, we realize that we should measure not only the
semantics angles but also the regression quality. As shown
in Fig. 5b, the corresponding latent dimension has a smaller
angle (compared to that in Fig. 5a). However, most of the
reconstructed points are cluttered in a small extent and the
regressed direction is not as certain as that in Fig. 5a. This
is a common phenomenon for deprecated dimensions, and
the regressed direction is very susceptible to noisy samples.
To reflect this, we use the radius of the half disk to encode

𝑎

(𝜃 +
𝜙)/

2

𝑒𝑥𝑡𝑒𝑛𝑡

𝑒𝑥𝑡𝑒𝑛𝑡(𝜃 + 𝜙)/2

(𝜃′ + 𝜙′)/2

𝑏

(𝜃′ + 𝜙′)/2

𝑠𝑚𝑎𝑙𝑙𝑒𝑥𝑡𝑒𝑛𝑡

Figure 5. A glyph reflects the angle between the directions of
the semantics (black) and regressed direction (red). The glyph’s
radius encodes the extent of the samples along the regressed
direction. (a) and (b) represent useful and deprecated
dimensions, respectively.

the extent of the reconstructions along the regressed direction
(i.e., the explained variance of the first principle component
in PCA). Latent dimensions with a small extent are usually
deprecated, and of less interest.

Our system can also present the angle distribution
over dimensions through a histogram. We normalize this
histogram to make the angle distribution a probability
density function (PDF) so that the PDFs for different
latent spaces (with different numbers of dimensions) can be
compared as two overlaid area-plots. An example is shown
in Figure 9, and the view is shown on-demand when users
click the button of “Angle Distribution” in Figure 4-b4.

Interactions. To easily identify interesting latent dimen-
sions (R2.2), through the widget at Figure 4-b2, our system
allows users to sort the dimensions by (1) their values’
entropy, (2) semantics angle, or (3) the latent values’ differ-
ence between the specified pair of words on each dimension.
The dimensions can also be filtered or hidden (e.g., the
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deprecated ones) from the PCP. The zooming capability of
the PCP helps users to focus on a few interesting latent
dimensions only, from which they can select a dimension or
brush a value range on that dimension for further analysis in
other views.

Embedding Projection View

This component (Figure 4c) provides a local view of the
word embedding space around the specified semantics,
helping users to understand the semantics probing process.
It uses a scatterplot to present (1) the user-specified pair of
words, (2) the two words’ neighbors, and (3) the semantic
extension of the two words along a latent dimension (selected
from the Dimension Exploration View).

First, for the user-specified pair of words, we transfer them
into the latent space (via the encoder), and generate samples
by linearly interpolating the two encoded latent vectors.
Lastly, we reconstruct the two words and the interpolated
samples back into the embedding space (via the decoder)
and use PCA to project them into 2D for visualization. In
Figure 4c, the reconstructions of the two words lady and
gentleman are denoted by the two asterisks. The samples
between them are colored with interpolated colors, from
which, users can perceive the semantic direction specified by
the word-pair.

Second, for each of the two reconstructed words, we
find its k nearest neighbors in the embedding space (based
on cosine-distance), use PCA to project them onto the
scatterplot, and label them with the corresponding texts.
Showing these neighbors is to textualize the context of the
semantics. These neighbors are colored in blue or orange,
indicating which word they are the neighbors for. It can be
seen that there is an offset between the right asterisk and
the original embedding for gentleman, which denotes the
reconstruction error.

Third, we also perturb the user-selected latent dimension
around the two words, decode the perturbations back to
the embedding space, and use PCA to project them to the
scatterplot to get the semantics extensions around each word
(Figure 4 c1, c2). This visualization intuitively reflects the
probing process explained in Figure 3.

While the users of our system are well aware of
the dimension distortions introduced by dimensionality
reductions, they still appreciate the intuition this view could
bring to the understanding of individual latent dimensions.
In most cases, we can see linear trajectories formed by
the interpolated samples between the two words and the
perturbed samples around each of the two words. To
accurately reflect the two angles (θ and ϕ in Figure 3b) in

𝑎
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑡
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

… 𝑏𝑟𝑢𝑠ℎ𝑒𝑑
𝑟𝑎𝑛𝑔𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑏

1𝑠𝑡

2𝑠𝑡
3𝑟𝑑

4𝑡ℎ

...

Figure 6. (a) Perturb a word-pair on in a specified range of the
selected dimension. (b) Decode the perturbations into the
embedding space, find their kNNs, and visualize them through
a world cloud.

the scatterplot, we visualize two angular glyphs on the top-
left corner of Figure 4c and label the two angles. The color
of the glyph matches the color of the perturbed word. We
choose PCA for the projection, as we are more interested
in the global structure of the three types of data instead of
their local structures. However, we have also explored other
dimensionality reduction algorithms (see our Appendix).

Word Cloud View

This component allows users to brush a value range on the
selected latent dimension (Figure 4-b1), and textualize the
semantics in that range through a word cloud (Figure 4d), to
better understand the HD manifold of the latent space along
the selected dimension (R3).

The generation of the word cloud is explained in Figure 6.
From Figure 6a (the PCP of the Dimension Exploration

View), n random samples (n=4) are drawn within the
specified range by perturbing the two words, and the samples
are decoded into the embedding space, where we find k

nearest neighbors for each sample (k=3 in Figure 6b).
Many neighbors (the rectangles) are shared by the samples
(the points), so the total number of neighbors is less than
nk. For each unique neighbor (word), we find its distances
to all n samples and use the minimum one to color it.
The smaller the distance, the darker the color. This is to
reveal how representative the neighbors can denote the
samples’ semantics. Meanwhile, we use size to encode the
frequency of each word, which is computed as the sum of
its inversed rank if it appears in the k nearest neighbors
of a sample. For example, for the highlighted square node
in Figure 6b, it is the second nearest neighbor to the 1st

sample and k=3 in this example, so its inversed rank is
3−2=1. The highlighted node is also the first neighbor to
the 2nd samples. So, its inversed rank is 3−1=2. This square
is not the top 3 neighbors of the 3rd and 4th samples. So,
the total frequency for the highlighted square is 1+2=3.
More frequent neighbors are presented with larger font size
in Figure 4d, which helps to denote the dominant semantics
in the brushed range.
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The number of unique words (i.e., the diversity of the word
cloud) reflects the richness of the brushed range, i.e., the
gradient of the HD space along the selected latent dimension.
The bulk of words also reflect the encoded semantics in
the brushed range of the dimension. Using this view, users
can easily compare the semantics encoded in different value
ranges of the same or different latent dimensions from the
same or different models.

Case Study

We run case studies with the four domain experts using our
system to interpret the embedding regularization process.
After the studies, we conduct open-ended interviews with
them and summarize their feedback at the end of this section.

We focus on English embeddings and organize the
cases into three topics, model evaluation (R1), latent
exploration (R2), and semantics interpretation (R3). For each
topic, we first explain the findings from βVAE and then
compare them with the AE counterpart (R4). Both AE and
βVAE are trained using the specifications from the LNMap
study4 (i.e., transferring 300D embeddings into a 350D
latent space). We set β=10−5 in βVAE and explain this
choice in the evaluation.

Model Evolution Analysis

The first and foremost step when analyzing the latent space
of βVAE is to overview the training process and identify
when the model converges and if dimension deprecation
happens (R1). These answers can be found from the
Evolution Statistics View (Figure 4a).

For model convergence of the βVAE (Figure 4-a1),
we found the reconstruction loss curve (in green) drops
and converges after 33 epochs, whereas the regularization
loss curve (in blue) increases in the first few epochs and
starts to drop after that. Our discussions with the domain
experts on this observation lead to the proposition that the
reconstruction and regularization happened sequentially. We
also speculate the small β value, i.e., a larger weight on the
reconstruction term, contributed to the optimization order.
Specifically, guided by the ratio between the two loss terms,
the model first converges to an “optima” similar to the
AE (in the first 33 epochs) to achieve on-par performance.
After that, it gradually reorganizes/transfers information
from some dimensions to the rest to regularize the latent
space (reflected by the drop of the blue curve), while not
moving the model out of the “optima” (reflected by the
flatten green curve).

a b c

Figure 7. Reconstruction loss, semantic similarity (SemEval),
and analogy scores for the AE, which converges in 12 epochs.

The statistics shown in other plots echo our observation
of the loss curves. The semantic similarity and analogy
score (Figure 4-a3, 4-a4) increase along with the decrease
of the reconstruction loss, and converge around 33 epochs,
reflecting the good reconstruction quality of the embeddings.
The number of useful dimensions (Figure 4-a2) stays at 350
and starts to drop after around 33 epochs, reflecting the
occurrence of the dimension deprecation phenomena.

Switching to the AE for comparison (R4.1), we found it
converges even faster (around 12 epochs, Figure 7), probably
due to the free of restraint from the regularization loss. The
final reconstruction loss, semantics similarity (SemEval),
and analogy scores are similar to those of the βVAE,
verifying our hypotheses that the βVAE and AE converge
to similar optima that yields good reconstruction quality.
However, the number of deprecated dimensions never drops
for the AE model (not shown here as the figure is a flattened
curve and trivial).

Latent Dimension Exploration

After an overview of the regularization process, we then
select a converged model state to explore the HD latent space
(i.e., epoch 1000 for βVAE and epoch 25 for AE).

Dimension Deprecation. The first thing we wanted to
find was the deprecated dimensions (R2.1), which can be
identified by simply sorting the latent dimensions using
the entropy of all encoded latent mean values (Figure 4-
b2). Figure 8a shows the zoomable PCP after dimension
sorting. The dark blue bars (Figure 8b) beneath the PCP
reflect the entropy of each dimension (in decreasing order).
A clear separation of the latent dimensions is observed. The
first 110 dimensions have a large entropy and their latent
value (i.e., the mean of the encoded Gaussian for different
words) ranges from -4 to 4. The rest 240 dimensions have
a small entropy (nearly zero) and their value ranges from
-0.4 to 0.4. The entropy reflects the information volume.
So, we can easily identify the first 110 dimensions as
useful dimensions and the rest as deprecated ones. Detailed
explanation of deprecated dimensions can be found in the
section Dimension Deprecation Phenomenon.

Through the widget at Figure 4-b3, we can also use the
bar chart to reflect the average of all standard deviation
values (of the encoded Gaussins on each latent dimension).
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Figure 8. Sorting the latent dimensions in the zoomable PCP
by the entropy of mean values. (a) Value range and CI of each
dimension; (b, c) Bar charts encoding the entropy of mean, and
the average of the standard deviation of all Gaussians from the
latent space of the βVAE model. (d) shows the value range, CI,
and entropy of the AE.

Figure 8c shows this. It can be seen that useful dimensions
(the first 110) encode words into Gaussians of different mean
values and small standard deviations, i.e., different words
are encoded into narrower Gaussians, such that there is no
overlap between them (check our schematic illustration in
Figure 1b). In contrast, the deprecated dimensions encode
words into Gaussians of similar mean values (around 0) and
large standard deviations (around 1), i.e., overlapped unit
Gaussians (see Figure 1b).

Moreover, the differentiation of useful and deprecated
dimensions is nearly binary and there are no dimensions
in between (with a moderate entropy). Since deprecated
dimensions encode little information (a unit Gaussian for all
words), we hide them in later explorations.

Switching to the AE for comparison (R4.2), we could not
find any deprecated dimensions. As shown in Figure 8d, all
dimensions have a wide value range and large entropy (of the
latent values).

Angle

βVAE

AE

Figure 9. Normalized
angle distribution: βVAE
(blue) and AE (red).

Semantics’ Encoding-

Level. Next, the exploration
focuses on the encoding-level
of a user-proposed semantics
(R2.2, R2.3). As gender is a very
common testbed for semantics
explorations, we probe its
encoding-level across the latent
dimensions. We use the word
pair lady-gentleman to
represent this semantics. Note that, woman-man is a more
commonly used pair for gender. We did not choose it
because our later interpretation on that pair (i.e., the Word

Cloud View) involves words with gender discrimination.

After entering the two words in the Dimension Exploration

view (the two text boxes, Figure 4b), their latent vectors
are shown as two curves in the zoomable PCP. The
semantics perturbation on each latent dimension is computed
automatically and the angular glyph above each PCP axis
is updated. To obtain an overview of the angles, we click
the “Angle Distribution” button in Figure 4-b4, and the
normalized angle distributions for βVAE (110 angles for the
110 useful dimensions) and AE (350 angles) are shown in
Figure 9. It is obvious that the latent dimensions of βVAE
either have a smaller or a larger angle (blue area) than
that of the AE (red area). The smaller angle dimensions
(the lower-left corner) are dimensions encoding more
gender semantics, and the larger angle ones (the top-right
corner) are dimensions encoding less gender semantics. This
indicates that βVAE regularizes the semantics’ encoding in
latent dimensions by condensing the semantics into fewer
dimensions (the lower-left ones), and freeing some of the rest
dimensions, such that they become more orthogonal to the
semantics (the top-right ones).

Generalizability. Using our system, we also explored the
latent space of AE and βVAE for other languages (R4.3),
e.g., Spanish, Italian, and German. In all languages, our
compressed embeddings from βVAE achieve similar quality
(i.e., similar semantic similarity and analogy score) with the
350D embeddings from AE, but use much fewer dimensions,
validating that our βVAE effectively removes redundant
information encoded in AE.

We have also explored the angle distributions using
different semantics of the same language, e.g., yes-no
and beautiful-ugly, or the same semantics in different
languages, e.g., señora-caballero and signora-
signore (the Spanish and Italian counterparts for lady-
gentleman). A common trend across the explorations is
that the latent dimensions with smaller angles usually come
from βVAE (similar to the lower-left corner of Figure 9),
indicating those dimensions are more semantically salient. In
some cases, the AE may have more dimensions with around
90 degrees (different from the top-right corner of Figure 9).
This is also reasonable, as some latent dimensions of AE
indeed encode little information of the probed semantics due
to their chaotic encoding.

Semantic Analysis

While exploring the latent space, several dimensions
of interest were identified. This section further investi-
gates/compares them (R3).
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Deprecated Dimension. The first thing that we were
eager to verify is whether a deprecated dimension is
really deprecated. By perturbing the latent vector from a
deprecated dimension, we visualize the reconstructions in
the Embedding Projection View. As shown in Figure 10a, the
asterisk shows the projection of the reconstructed embedding
for lady. We perturbed the deprecated dimension to
generate 700 samples, but all the reconstructions for these
perturbations are overlaid on the dark blue point. This means
no matter how we perturb the latent value on the deprecated
dimension, the reconstruction will remain the same, i.e.,
the deprecated dimension is indeed useless. In comparison,
Figure 4-c2 shows the reconstructions from the perturbation
of a useful dimension. The reconstructions are distributed
linearly, and we use the color from dark blue to black to
indicate the reconstructions’ distance to the asterisk. Similar
observations are also found for gentleman (Figure 4-c1,
10a).

a b

Figure 10. The Embedding Projection View (a) and Word
Cloud View (b) of the perturbed samples for a deprecated
dimension.

Figure 4d and Figure 10b show the Word Cloud View

when brushing the full range of the useful and deprecated
dimension. They have 70 and 40 unique words respectively,
indicating the useful dimension encodes more variance of
semantics. Note that the word cloud is generated by finding
nearest neighbors of the perturbed samples (explained in
Figure 6), so this view for the deprecated dimension still
has multiple words. However, it is obvious that the words
in Figure 10b are smaller and in a lighter color (compared
to Figure 4d), indicating the space is sparser and the word
frequency is lower. For both cases, especially Figure 4d, we
found meaningful words with larger size and darker color,
helping to textualize the surrounding space of the studied
semantics, e.g., gentlewoman and englishman.

Small and Large Angle Dimensions. Next, focusing
on useful dimensions, we compare dimensions with a small
and large angle to identify their difference regarding the
studied semantics. Figure 4c and 4d show the visualization
of a latent dimension with a small angle, whereas Figure 11

a b

Figure 11. (a) The Embedding Projection View (a) and Word
Cloud View (b) of a large angle dimension. The four words
highlighted in (b) are levett, pepys, elizabeth, and
lancelot.

shows the same visualization but for the dimension with
a large angle. Despite the distortion in the Embedding

Projection View, the angles in the 2D projection (Figure 4c,
Figure 11a) correspond well with the angles in the original
HD space (as our perturbation is localized around a word
along a single dimension). The top-left angular glyphs also
precisely show the angles. The experts appreciated the
intuition this view brought.

The two corresponding Word Cloud Views reveal
more semantics. For example, compared to the small
angle dimension (Figure 4d), the large angle dimension
(Figure 11b) encodes a little more unique words, and
we highlight some of them with the blue dotted squares,
e.g., levett, pepys, elizabeth, and lancelot.
These words are common noble last names. Since lady-
gentleman are usually used to refer to people of nobility,
we speculate the chosen large angle dimension may encode
semantics to some extent related to well-known names,
which is orthogonal to the gender semantics (explaining the
dimension’s nearly 90° angle with lady-gentleman).

a b

Figure 12. Brushing different ranges of a latent dimension to
explore the semantics transition with the Word Cloud View.

Semantics Transitions along One Dimension. The
transition analysis of lady-gentleman is rather subtle,
making it less appropriate to demonstrate the use of
our system. Instead, we use another word pair apple-
microsoft to show a clear semantics transition along
a latent dimension and include the analysis of lady-
gentleman in our Appendix. The semantic ambiguity of
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apple, which can refer to a kind of fruit or a technology
company, makes it interesting to explore. We demonstrate
a possible dimension involving this semantics transition
through word clouds generated by probing different value
ranges of the dimension: min-median (Figure 12a), and
median-max (Figure 12b). The gray and blue bands on
the zoomable PCP help to brush these ranges. Comparing
the two word clouds, raspberry, applesauce, and
marshmallow, which are related to the fruit meaning
of apple, are of higher-frequency in Figure 12b, while
Figure 12a mostly shows words related to technology.

a

Figure 13. Latent dimension
(with a small angle) from AE.

Comparison with

AE. To compare with
AE, we select AE’s
latent dimension with
the smallest angle
as well. From the
Embeddding Projection

View (Figure 13), the
perturbation of this
AE dimension usually
has smaller extension
(compared to Figure 4-c1, c2). The corresponding word
cloud also has fewer unique words (47 compared to 70
in Figure 4d). Similar findings have also been observed
when exploring other AE dimensions. They indicate the AE
encodes embeddings into a higher dimensional but much
sparser/diluted space.

Domain Experts’ Feedback

Following the guided exploration + think-aloud discussion

protocol, we went through the above cases with the 4 experts
introduced in the Design Requirement Analysis (E1∼E4).
The case studies were carried out in two separate sessions
(one hour each), one focuses on explaining our solutions, the
other focuses on exploring the cases and open-discussions.

In general, all experts provide positive feedback on our
system in presenting the regularization process, exploring
the HD latent space, and interpreting individual dimensions’
semantics. E1 felt the interpolation between words’
latent representations is interesting and he agreed the
Embedding Projection View is intuitive for the understanding
of our semantics probing process. He also commented
that dimensions with a ‘<75’ degree angle are usually
meaningful and glad to see that the dimension with the
smallest angle from βVAE is smaller than that from
AE. E1∼E3 were surprised to see the clear distinction
between useful and deprecated latent dimensions from

the Dimension Exploration View and appreciated our
quantitative evaluations to validate the on-par quality
of the regularized embeddings. We also discussed the
linear distribution of the perturbed samples with them
(e.g., Figure 4-c1). As our perturbations are around
a given word along a single dimension, the locality
contributes significantly to the linear layout of the projected
reconstructions. Inspired by the insights from our work, E4

proposed the idea of alternatively training and regularizing
word embeddings, in which, humans can steer/optimize the
embeddings for specific downstream tasks.

Our discussions also include some limitations and desired
features of the system. First, when comparing two Word

Cloud Views, the unique words from them could be small
and hard to identify. Hiding the common words flexibly
between two word clouds may help here. Second, two
experts brought up the capability to explore multiple latent
dimensions concurrently, e.g., perturbing all dimensions with
‘<75’ degree angles as they all have high encoding-level
of the studied semantics. This capability would require
more sophisticated perturbation mechanisms and interaction
solutions, which we plan to explore more to extend our
system.

Quantitative Evaluations

This section presents quantitative evaluations to rigorously
validate the efficacy of our approach in embedding
regularization.

Monolingual Evaluation For monolingual evaluation,
we train an AE and a βVAE on a language’s embeddings
(300D from FastText33) and use the corresponding latent
representations as new embeddings to compare the encoding
quality of the AE and βVAE. Since the focus of this
evaluation is to compare the embedding quality after
transformation, we only show the raw embedding quality
(FastText) as a quality upper bound. We use five languages
in this experiment, English, German, Italian, Spanish, and
Persian. Both AE and βVAE are trained with 350 latent
dimensions.

In Table 1, the semantic similarities of the original
FastText embeddings, the latent representations from AE
and βVAE are shown as “FastText”, “AE350” and “βVAE”
respectively. The subscript in “βVAE” is the number of
useful dimensions of the corresponding βVAE, which is
about 1/3 of the original 350 dimensions (around 120).
The similarity computation in βVAE uses these useful
dimensions only. Based on this, we further train another
AE with 120 latent dimensions, the result is shown in
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Table 1. Semantics evaluation using the SemEval 2017 28.

English German Italian Spanish Persian

FastText 0.729 0.735 0.737 0.749 0.678

AE350 0.698 0.722 0.726 0.749 0.668
βVAE 0.708110 0.713123 0.737110 0.745110 0.693103
AE120 0.691 0.711 0.711 0.743 0.660

Table 2. (Left) The effect of different β values. (Right) Average
BLI accuracy (%).

1e-5 3e-5 5e-5 7e-5

Dim. 110 76 60 52
SemEval 0.708 0.685 0.669 0.658
Analogy 0.636 0.434 0.446 0.423

1NN 5NN 10NN

AE350 55.9 70.6 75.0
βVAE 54.8 69.0 73.6
AE120 49.9 64.2 69.3

the row of “AE120”. Comparing “AE350” and “βVAE”,
“βVAE” achieves comparable performance, but significantly
reduces the number of latent dimensions (i.e., the deprecated
dimensions are indeed useless). Comparing “βVAE” and
“AE120”, which share a similar number of latent dimensions,
“βVAE” better preserves the embeddings’ quality.

Focusing on English, we further profile the effect of β

in βVAE. Specifically, we trained multiple βVAE with 350
latent dimensions but different β values. After the models
convergence, we found a clear separation of the useful
and deprecated dimensions in all models. Table 2 (left)
reports the number of useful dimensions, the similarity and
analogy scores (computed using the useful dimensions only).
The general trend is that a larger β enforces a stronger
constraint on the latent space, forcing more dimensions to
become deprecated and concentrating information into fewer
dimensions. However, this also comes with a cost of the
embedding quality. In our studies, we apply the random
search algorithm to determine the hyperparameter β for
neural network training, which is widely used in neural
network designs. β=10−5 is found to be the sweet point for
all our tested languages.

Cross-lingual Evaluation We further evaluate the
quality of the latent word embeddings on a downstream task
of word translation (BLI). Specifically, we translate between
English and either other languages. For each language pair,
i.e., English and * (* for one of the eight languages), we
follow the same settings with LNMap4 to (1) encode them
into a latent space and (2) align them through two mapper
functions and fine-tuning of the encoder networks. For step
(1), we use “AE350”, “βVAE”, and “AE120” to encode the
two languages’ embeddings (note that AE350 is the original
LNMap).

After the alignment, we calculate translation accuracy
when considering 1, 5, and 10 nearest neighbors (NN) for
both sources to target and target to source mapping. The

details of these accuracy numbers can be found in our
Appendix. Table 2 (right) shows the average accuracy across
all 8 language pairs. In short, “βVAE” is slightly worse than
“AE350”, but significantly better than “AE120”.

Discussion, Limitations, and Future Work

Although the quantitative results show the word embeddings
generated with βVAE are slightly worse than the baseline
method “AE350”, a smaller number of dimensions and
less entangled semantics make it easier to analyze the
resulting word embeddings. Meanwhile, with a similar
number of embedding dimensions, our method consistently
outperforms “AE120” in embedding quality. In short,
our method has a better embedding compression and
regularization quality than the traditional AE methods.

Our approach stems from the phenomenon of dimension
deprecation in the training of βVAE and we have observed
this phenomenon across all tested language embeddings.
Although we cannot guarantee a clear separation between
useful and deprecated dimensions in all types of embeddings,
an entropy threshold can always be used to filter out the
dimensions with more information, and other parts of our
approach would remain applicable.

There are several limitations in our current work. First,
similar to existing latent space interpretation works24, our
work also relies on the linear assumption of semantics in the
HD latent space and thus uses the first principle component’s
direction from PCA to regress the perturbed samples. For our
studied problem, as our perturbation is conducted locally,
this assumption works well and we generate meaningful
interpretations. However, it is still worth more theoretical
studies on this topic, which our collaborated domain
experts are actively working on. Second, our system lacks
informative hints to guide users in exploring a large number
of latent dimensions. Although we can easily distinguish the
useful dimensions from the deprecated ones, the number of
useful dimensions could still be large and most of them may
have similar angles to the studied semantics. Consequently,
which useful dimension deserves more attention from
the experts is still an open question. We believe some
metrics should be proposed here to profile individual latent
dimensions and provide more guidance during explorations,
and plan to work in this direction to improve our system.
Third, for the qualitative evaluation part, we rely on the case
studies with experienced domain experts. How users with
different backgrounds and expertise would like our system
has not been rigorously evaluated. Therefore, one part of our
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future work is to conduct statistical user studies with users of
different levels of NLP knowledge.

Our future works also include the exploration and
comparison of more VAE architectures and other ways to
regularize the latent space. As discussed with the domain
experts, humans can introduce certain supervisions to guide
the training of VAE or βVAE to regularize the encoding
of certain semantics of interest, where interactive visual
exploration will play an important role. Also, as mentioned
in Domain Experts’ Feedback, we plan to study how to
perturb multiple latent dimensions concurrently to probe and
interpret their collective behaviors and develop a friendly
visual interface for user interactions.

Conclusion

In this paper, we propose using βVAE to compress and
regularize HD word embeddings, and probing the encoding-
level of different semantics encoded in each latent dimension
through interactive perturbations. With our visual analytics
system, we can easily disclose how βVAE regularizes the
HD latent space of word embeddings by concentrating
information into fewer latent dimensions and deprecating
superfluous ones. Also, our system supports users to
explore and compare user-proposed semantics encoded
in each latent dimension, and investigate the semantics
transition along a dimension. Through both quantitative and
qualitative evaluations, we rigorously verified the superior
performance of our βVAE-based embedding compression
and regularization solution and proved that the individual
βVAE latent dimensions are more semantically salient.
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