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Abstract
Visual quality measures (VQMs) are designed to support analysts by automatically
detecting and quantifying patterns in visualizations. We propose a new VQM for
visual grouping patterns in scatterplots, called ClustML, which is trained on previously
collected human subject judgments. Our model encodes scatterplots in the parametric
space of a Gaussian Mixture Model and uses a classifier trained on human judgment
data to estimate the perceptual complexity of grouping patterns. The numbers of initial
mixture components and final combined groups. It improves on existing VQMs, first,
by better estimating human judgments on two-Gaussian cluster patterns and, second, by
giving higher accuracy when ranking general cluster patterns in scatterplots. We use it
to analyze kinship data for genome-wide association studies, in which experts rely on
the visual analysis of large sets of scatterplots. We make the benchmark datasets and
the new VQM available for practical use and further improvements.

1 Introduction
Cluster discovery is a typical task in visual data analysis [1, 2]. Clusters can have
various shapes, densities, and other characteristics [3], and may exist in different data
subspaces. Fully automated clustering techniques are not always satisfying and might
not match the end-user expectations [4]. Hence, end-users often use data visualization,
usually in scatterplots, to find or validate clusters of interest [5].

To support these users, several pipelines for visual cluster analysis have been pro-
posed in Visual Analytics [6]. One way to visually discover clusters in multidimensional
(HD) spaces is to use multidimensional projection techniques [7], RadViz [8], or star
coordinate plots [9]. Examining the resulting scatterplots allows for detecting grouping
patterns that could support the existence of their multidimensional counterpart. But these
two-dimensional projections generate artifacts [7, 9], and often one view is not enough to
reliably discover all the multidimensional cluster structures [10, 11]. Moreover, clusters
may exist only in subspaces of the data. Hence, visual cluster analysis requires gener-
ating projections from possibly many (weighted) combinations of the initial features
and different tuning of the parameters of projection techniques [1, 12, 13, 14, 15, 16].
Eventually, these techniques allow the analyst to spot the most interesting visual cluster
patterns for further investigation.

With increasing data dimensionality, however, this process often becomes tedious
and cumbersome due to the large number of projections to explore visually. Visual
Quality Measures [17] (VQM) can support users in such situations by automatically
detecting and quantifying visual patterns [18, 19, 20]. Ranking and arranging visualiza-
tions by order of interest concerning a specific type of pattern [10, 21] lets analysts focus
their limited-time budget on the most promising views. We are primarily interested
in VQMs for cluster and grouping patterns in our work. Several VQMs have been
proposed for that purpose [22, 23, 24]. Of these, the ClustMe method [24] is based on
merging and counting components of a Gaussian Mixture Model (GMM) [25] of the
points in the scatterplot. It was the first GMM-based VQM for quantifying visual cluster
patterns in scatterplots. ClustMe has shown the most accurate performance in ranking
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human perceptual judgment benchmark data among all competitors. Still, its agreement
with these human perceptual rankings is in the [60%− 80%] range, a relatively low
scorewhich we expect to improve by replacing the merging component of ClustMe with
a new data-driven model, forming ClustML.

Figure 1: A visual quality measure (VQM) based on a Gaussian Mixture Model
(GMM) for cluster patterns in scatterplots is made of three stages: (1) a data-
driven process estimates the parameters of a GMM of the data points density in
the scatterplot; (2) the degree of overlapping of each pair of GMM components
is computed to provide additional characteristics of interest to quantify cluster
patterns; (3) The data points, the GMM parameters, and the pairwise quantities
are aggregated to compute the visual quality measure. ClustMe and ClustML are
both GMM-based VQMS, differing in the way they quantify pairwise overlap of
GMM components (Stage 2).

GMM-based VQMs like ClustMe and the proposed ClustML are made of three main
stages illustrated in figure 1:

3



• Stage 1: Gaussian Mixture Modeling of the data points density in the scatterplot.
Each Gaussian component of the mixture represents a local subset of the data.
The model assumes the data are independently sampled from isolated Gaussian
distributions or clusters. A data-driven process estimates the mean, the covariance
matrix, and the relative contribution of each component to the global density
distribution of the data points.

• Stage 2: GMM components pairwise characterization of overlap. When two
Gaussian components overlap too much, it is assumed that they likely belong to
the same local cluster. Hence, evaluating these pairwise overlaps from the data
and the parameters of the GMM provides additional characteristics of interest to
quantify cluster patterns.

• Stage 3: Visual quality measure computation. All previous quantities are
aggregated to form the final VQM score that quantifies visual cluster patterns in
the scatterplot.

In ClustMe, the overlapping evaluation (Stage 2) is based on a computational
heuristic called Demp that decides when two GMM components overlap too much; they
are merged or linked together to represent a single cluster instead of two symbolically.
The ClustMe VQM score is a linear combination of the number of GMM components
and the number of connected components of the graph formed by the Demp links, with
more weight given to the latter.

In this work, in contrast to ClustMe, we set out to develop ClustML, a new GMM-
based VQM whose overlapping evaluation and merging decision (Stage 2) is learned
from human judgments of cluster patterns in scatterplots rather than using the Demp
heuristic.

We demonstrate the superiority of ClustML against ClustMe, its main competitor,
in terms of agreement with human judgments on two perceptual studies datasets, S1 and
S2, previously collected for the development and evaluation of ClustMe [24]:

• Dataset S1 is a set of binary judgments from 34 subjects tasked to decide if
they can see one or more-than-one clusters within each of 1000 scatterplots data
generated by sampling two-component GMMs with various parameters.

• Dataset S2 is independent of S1. It is a set of ternary judgments from 31 subjects
tasked to decide for each of 435 pairs of scatterplots if one or the other shows the
most complex cluster pattern or if both are equally complex.

In the ClustMe paper, S1 is used to select the best merging decision model among
a finite set of 7 heuristics. In contrast, in this work, S1 is used to train an automatic
classifier to mimic human merging decisions. In both the ClustMe paper and this work,
S2 is used to evaluate the resulting GMM-based VQM for a pairwise ranking task.
Using the same datasets, S1 and S2 allows a fair and objective comparison between
ClustMe and ClustML.

We also propose qualitative comparisons between ClustMe and ClustML and a
usage scenario in the domain of genome-wide association studies (GWAS). In this
domain, interesting cluster patterns can be missed because the analysts explore only
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the scatterplots spanning the leading principal components of the data [11]. We show
that ClustML can help detect cluster patterns hidden in subspaces spanned by low-
variance principal components without requiring an exhaustive search among all pairs
of components.

Finally, we discuss the challenges in developing hybrid computational-perceptual
VQMs for cluster patterns and argue for creating perceptual-study-based benchmark
datasets for evaluating and designing new VQMs.

R codes and datasets S1 and S2 are publicly available [26].

2 Related work
We review related work on visual quality measures (VQMs) designed to detect and
quantify cluster patterns, VQMs built from data rather than heuristics, and merging
decision techniques used in Gaussian Mixture Models specific to our GMM-based VQM
approach.

2.1 Visual quality measure for clustering
Visual cluster patterns have been taxonomized [27] and empirically studied [2]. These
works show various characteristics, demonstrating how challenging it is to develop
VQMs for such loosely defined pattern types. Several approaches have been proposed
to design VQMs for grouping patterns, each focusing on some specific definition. The
Clumpiness measure [22] detects clumps in a scatterplot. It is part of the Scagnostics
scatterplot descriptors [18]. Other VQM approaches are based on CLIQUE cluster-
ing [23]. Existing VQMs are mostly heuristics loosely related to human perceptual data.
For instance, Pandey et al. [2] showed that Scagnostics are not well-related to their
participants’ judgments (they were never explicitly designed for that, though).

In contrast, ClustML is a data-driven VQM directly optimized to mimic human
judgments.

2.2 Data-driven VQMs
Beyond heuristics-based approaches, data-driven approaches like ScatterNet [28] or
perception-based VQMs [29] get trained on human judgment data. Recent work on
data-driven approaches has shown that fine-tuning a VQM on a specific pattern to mimic
perceptual judgments outperforms heuristic techniques, for instance, in the case of
class separation measures for class color-coded scatterplots [30, 31]. These data-driven
VQMs led to new applications in supervised dimensionality reduction of labeled data
[32] and color optimization for scatterplots [33].

Regarding cluster patterns (i.e., no color for class labels in the scatterplot), the
X-means [34], DBSCAN [35], and CLIQUE [36] clustering techniques, and the Clumpi-
ness [18] VQM have been compared to the ClustMe data-driven VQM [24] on two
human judgment benchmark datasets. ClustMe outperformed all others in terms of
Vanbelle kappa [37] agreement index.
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Among all these approaches, only ScatterNet [28] relies on a data-driven para-
metric model (auto-encoder) of human judgments rather than a predefined heuristic.
Parameters of the model are optimized to predict pairwise similarity judgments between
monochrome scatterplots. However, no such model exists for quantifying grouping
patterns.

2.3 GMM-based VQM approach
Closest to our work is ClustMe [24], a VQM for grouping patterns based on Gaussian
Mixture Models (GMMs). ClustMe builds a GMM whose components are merged to
detect more complex, non-Gaussian, grouping patterns (See [38, 25] for an overview).
Human-subject data S1 has been used to evaluate and select the best merging criterion
(Demp) among seven heuristics [39], resulting in 60% to 80% agreement between
ClustMe and human perceptual judgments. However, these heuristics are designed by
data analysts grounded on mathematical principles rather than directly from perceptual
judgments. A more recent work [40] uses an approach similar to ClustMe but considers
cluster ambiguity measured with Shannon entropy of human judgments S1 instead
of cluster separation. It also uses feature engineering to generate various aggregate
heuristics of the GMM parameters and analyze factors at play in visual perception
of cluster ambiguity. Due to the success of machine learning approaches in many
domains, we hypothesized that applying such an approach instead of heuristics or
feature engineering could benefit GMM-based VQM.

ClustML uses the same GMM-based VQM architecture as ClustMe (Figure 2(a));
however, human perceptual judgment in dataset S1 are directly used to model the
merging decision function by training an automatic classifier (Figure 2(b)). As a
result, the merging model in ClustML reaches more than 96% agreement (almost
perfect agreement) with human-judgment evaluation data. This study presents the
detailed architecture and training process of the merging function that makes ClustML
outperform ClustMe on a second human-judgment benchmark dataset [24] S2 designed
to evaluate VQMs by ranking scatterplots based on their grouping patterns.

3 ClustML: principle and design
We give a more technical view of the ClustMe pipeline (Figure 2(a)), then we present
the main principle of ClustML’s merging function and its pre-processing and training
protocols on data S1 (Figure 2(b)).

3.1 ClustMe VQM for grouping patterns
In the following, we consider a set of N data points X = {x1, . . . ,xN} ∈ (R2)N in a
2-dimensional real space, represented graphically as a scatterplot SP(X).

The previously proposed ClustMe [24] follows the three GMM-based VQM stages
illustrated in Figure 2(a):

• Stage 1: Gaussian Mixture Modeling. The probability density of the data points
is modeled with a Gaussian Mixture Model M (X ,φ ,K) [25, 38] with K bivariate
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Figure 2: ClustMe and ClustML are GMM-based VQMs for cluster patterns. (a)
The VQM pipeline of ClustMe uses a heuristic (Demp) as a merging decision function
for each pair of GMM components. (b) ClustML follows the same pipeline as ClustMe
but uses an automatic classifier as a merging decision function (green) trained on 1000
monochrome scatterplots from a previous study [24]. These scatterplots were generated
in study S1 from varying the parameters φuv of a GMM with 2 components and labeled
by 34 subjects (H1, ...,H34) seeing one (Hn = 0) or more-than-one (Hn = 1) clusters.
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Gaussian distribution components g. The probability density at any point x ∈ R2

is estimated given model parameter φ = (π1, . . . ,πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) by:

p(x|φ ,K) =
K

∑
k=1

πkg(x,µk,Σk) (1)

with g(x,µ,Σ)=det(2πΣ)−
1
2 e−

1
2 (x−µ)⊤Σ−1(x−µ) and ∑k πk = 1.

The parameter vector φK controls the location µk, shape Σk and weight πk of each
component of M . The Bayesian Information Criterion defined by Schwarz [41]
is maximized to determine the best model M ∗, with the number of components
K∗ and parameter φ ∗.

• Stage 2: GMM components pairwise characterization.
Each pair of components (u,v) ∈ {1, . . . ,K∗}2,u ̸= v of M ∗ is independently
screened by the Demp merging heuristic GDemp to decide if it forms a single
cluster locally. GDemp(X ,φ ∗,u,v) ∈ {0,1} takes the binary decision to merge (1)
or not (0) the two components u and v based on the optimal parameter φ ∗ and
data X .

• Stage 3: Score computation The adjacency matrix (G )u,v forms a graph whose
vertices are the K∗ components of M ∗ and M (≤ K∗) its number of connected
components. Finally, the pair V QMClustMe(X) = (M,K∗) quantifies the complex-
ity of the visual cluster pattern in SP(X): scatterplots SP(Xi) are ranked first
by Mi then by K∗

i for equal Mi. In other words, ClustMe tells that a scatterplot
SP(Xh) displays a more complex cluster pattern than SP(Xl) if

Ml < Mh or (Ml = Mh and K∗
l < K∗

h )

V QMClustMe(Xi) = Mi +
K∗

i
1+K∗

max
can be used instead, with K∗

max the maximum

number of GMM components obtained across all SP(Xi) to be compared.

In contrast to ClustMe [24], the main idea of ClustML is to use an automatic binary
classifier trained on human judgment data to realize the merging function GClustML
instead of GDemp in Stage 2. All other processes in the above stages are identical for
ClustMe and ClustML. However, for the same data X and GMM M ∗ (Stage 1), the
different GClustML merging function (Stage 2) can lead to a different value of M and
finally, a different V QMClustML score (Stage 3). We detail the design of GClustML and its
training protocol in the next sections.

3.2 ClustML merging from human judgment data
The scatterplot stimuli used in study S1 of ClustMe [24] were generated from a bivari-
ate GMM made of two (K = 2) Gaussian components u and v (Figure 2b), varying
parameters φuv. The parameter space S spanned by the vectors φuv contains all possible
mixtures of two bivariate Gaussian distributions. A point φ

[i]
uv in that space determines a
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64.7%

58.8%

17.6%

2.9%

Figure 3: ClustML measures the amount of grouping in scatterplots based on a
classifier trained on human judgments: A bivariate Gaussian Mixture Model (Stage
1) models the distribution of the points in the scatterplot to evaluate. Each possible
pair of its K∗ Gaussian components is assessed for merging (Stage 2). For that purpose
and as the main novelty of that work, a binary classifier G has been trained in the
parameter space Φuv of component pairs (u,v) (red and blue dots on the right; actually,
this space has 8 dimensions). Scatterplots (Solid red and blue frames) generated by 1000
pairs have been labeled in a previous experiment [24] by 34 subjects tasked to decide
whether each scatterplot shows one (Red) or more-than-one (Blue) clusters. Five such
“Training” scatterplots with plain-line blue or red frames are displayed, and four others
in the right column with the percentage of subjects seeing more-than-one cluster. After
training, the classifier GClustML automatically predicts the merging decision (Green solid
line separating blue and red areas) that humans would take for yet unseen 2-Gaussian
scatterplots (Dashed green frames). This GMM component pairwise merging decision
generates a set of M connected components (purple frame). Finally, the ClustML VQM
(Stage 3) of the evaluated scatterplot is given by the pair (M,K∗); the higher the score,
the more complex the grouping pattern.
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unique mixture distribution M
φ
[i]
uv

from which one can randomly sample N points X [i] to

generate a 2D scatterplot SP(X [i]) with a unique cluster pattern up to sampling variation.
As illustrated in Figure 3, in some regions of this multidimensional parameter space S ,
the generated scatterplots will show two clearly separated Gaussian clusters (top left
blue area), while in other regions the scatterplots will show a single blob of two strongly
overlapping Gaussian distributions (bottom right red area). How can we decide about
merging two components u and v depending on the position in that space, i.e. depending
on the values of the parameter φuv?

Based on S1 data, we can assign label 1 or 0 to a vector φ
[i]
uv for which most

participants judged the scatterplot SP(X [i]) was showing one or more-than-one clusters
respectively. Then 1 codes for the merge decision, while 0 codes for the do-not-merge
decision. ClustML uses such data φ

[i]
uv to train a binary classifier GClustML in the space

S to model this human judgment. Finally, the classifier computes a merging decision
GClustML(X ,φ ,u,v) for any possible pair (u,v) of components in M projected in S .

We follow the below protocol to train this classifier:

1. Summarize human judgments from the study S1 to form the labeled dataset
Xuv;

2. Align space S of the dataset Xuv with the parameter space of the density model
obtained at Stage 1;

3. Augment the dataset Xuv to ensure better generalization of the classifier GClustML;

4. Train the classifier GClustML with the augmented data to get the optimal merging
decision at Stage 2.

Now, we justify and detail each step of this protocol.

3.3 Summarizing human judgments
Study S1 gives several human judgments for each scatterplot. Still, we need a single
judgment (class label) per scatterplot to train a binary classifier, so we summarize these
judgments using a majority vote in the following way.

We form the labeled dataset Xuv = {(input, label)}i = {(φ [i]
uv,H [i])}i by pairing

the summary H [i] of 34 perceptual judgments (H [i]
1 , . . . ,H [i]

34) of cluster patterns in

scatterplots stimuli SP(X [i]) collected from study S1 together with the parameters φ
[i]
uv

of the 2-dimension 2-component GMM from which were sampled the points X [i]. We
summarize the 34 human judgments into a binary class H [i] ∈ {0,1} by applying a
majority vote. Label H [i] = 0 (do not merge) is assigned to input φ

[i]
uv if most of the

judgments on SP(X [i]) are more-than-one cluster. Label H [i] = 1 (merge) is assigned
otherwise. A training data χi is a pair (φ [i]

uv,H [i]) ∈ Xuv. We note Φuv = {φ
[i]
uv}i the

unlabeled part of these data.
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3.4 Parameter space alignment
The space S spanned by vectors Φuv of the GMM used to generate scatterplots in S1
(3) does not match with the space spanned by the parameters φ of the GMM (Stage 1)
of X . We need to transform φ into φuv to get the labeled data Xuv.

Consider a single pair (u,v) of components of M ∗. The space spanned by the
parameters related to u and v only, φuv =(πu,πv,µu,µv,Σu,Σv)⊆ φ has a fixed dimension
(|φuv| = 14) independent of K∗, which makes it suitable for standard vector-based
machine learning. φuv can be further reduced to a set of 8 independent parameters
(Figure 4) due to cross-dependencies:

φuv = (τ,µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v ,θu,θv) ∈ [0,1]× (R+)5 × [0,π/2]2 (2)

where τ = πu/(πu +πv), and µ = ||µv −µu||. In the sequel, S is the space spanned
by these 8-dimension vectors φuv.

Figure 4: Parameters φuv = (τ,µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v ,θu,θv) of a pair of Gaussian compo-

nents (u,v) of M ∗ control the direction (θ ), the probability (τ), the extent (σ ), and the
distance (µ) of the two component distributions, hence the (perceptual) overlap of their
sampled data. These parameter vectors span the feature space S (Figure 3) input of the
classifier GClustML taking decision of merging u and v.

Following [38], the parameters σ and θ in φuv come from the Singular Value
Decomposition of the covariance Σi (i ∈ {u,v}) into the diagonal ”scaling” matrix
of eigenvalues Si and the ”rotation” matrix of eigenvectors Ri: Σi = RiS2

i RT
i . Si is a

diagonal scaling matrix with independent scales σ x
i and σ

y
i along x and y orthogonal

axes respectively. This gives an elliptic shape to the mixture components with width and
length driven by x and y, whenever σ x

i ̸= σ
y
i . Ri is a rotation matrix of angle θi which

orients the elliptic shape with respect to the x-axis:

Si =

(
σ x

i 0
0 σ

y
i

)
Ri =

(
cosθi −sinθi
sinθi cosθi

)
(3)

The data X of any scatterplot in study S1 were generated with a GMM by specifying
rotation (θi ∈ [0,π/2]) and scaling (σ x,y

i ) parameters to get the covariance matrix Σi =
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RiS2
i RT

i = f (θi,σ
x
i ,σ

y
i ) (see Equation 3, Table 1, Figure 4). Let’s consider a scatterplot

SP(Y ) to be scored with ClustML, and M ∗(Y ) the best GMM modeling the density of
its points Y . The estimated covariance matrix Σ̂i of each component i of M ∗(Y ) must
be decomposed using SVD into Ŝi and R̂i (3) from which we get angle θ̂i and scaling
parameters σ̂

x,y
i . Unfortunately, the estimated angle θ̂i lies in the range [−π/2,π/2]. In

order to align angles θi of training data with estimated angles θ̂i, we passed each triplet
(θi,σ

x
i ,σ

y
i ) of all training data φuv into the SVD composition-decomposition process:

(θ ′
i,σ

′x
i ,σ

′y
i ) = SV D( f (θi,σ

x
i ,σ

y
i )).

Moreover, given the points Y of a new scatterplot, the optimal parameters φ ∗
uv =

{τ,µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v ,θu,θu}, obtained from a pair (u,v) of components of the best

model M ∗(Y ), need to be scaled. Indeed, it is likely that the scale of the points Y is
orders of magnitude bigger or smaller than the one of the points X in S1’s scatterplots.
This scaling factor impacts parameters µ and σ . We must also correct the angles θu
and θv defined relatively to the axis orthogonal to (µu − µv). At the same time, the
rotation matrix Ri of the SVD decomposition of inferred Σi is relative to the vector
space of the points Y . Therefore, for any parameter vector φ ∗

uv inferred from a new
scatterplot SP(Y ), we first compute the correcting angle β = ∠(−−→µuµv,

−→y ) between the
two components’ centers and the y-axis of points Y . We add β to all θ angles. Then we
rescale the parameters σ x

u ,σ
y
u ,σ

x
v ,σ

y
v and µ by dividing them by the maximum of these

values s = max({µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v }).

Finally, we obtain the input data φ
∗align
uv to the merging function (classifier) GClustML:

φ
∗align
uv = align(φ ∗

uv) = (τ,
µ

s
,

σ x
u

s
,

σ
y
u

s
,

σ x
v

s
,

σ
y
v

s
,θu +β ,θv +β ) (4)

Regarding training data Φuv from study S1, we first apply the composition-decomposition
process SV D◦ f to get θ ′

i , then we rescale µ and σ . However, correcting the rotation by
β is useless as the y-axis is, by definition, directed by the components’ centers (β = 0)
(See Figure 4):

X align
uv =

{
(τ,

µ

s
,

σ ′x
u

s
,

σ ′y
u

s
,

σ ′x
v

s
,

σ ′y
v

s
,θ ′

u,θ
′
v,Hi)

| (τ,µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v ,θu,θv,Hi) ∈ Xuv,

(θ ′
j,σ

′x
j,σ

′y
j) = SV D( f (θ j,σ

x
j ,σ

y
j )), ∀ j ∈ {u,v},

s = max({µ,σ ′x
u,σ

′y
u,σ

′x
v,σ

′y
v})

}
(5)

The data set X align
uv forms the aligned data to be augmented before training the

classifier GClustML.

3.5 Data augmentation
The way we parameterize the pairs of Gaussian components and the way the data S1
were generated lead to a possible lack of data to cover S sufficiently and get a more
generalizable classifier GClustML.
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Data augmentation [42] is a process to enrich the data space with new data in areas
where they are lacking to ensure a better prediction by the model, but without requiring
additional human labeling. It relies on symmetries to justify that existing labeled data
can be replicated in other places of the data space.

We consider the symmetries arising in the parametric representation of a pair of
Gaussian components (u,v) in S (see Figure 5). Indeed, the parameters used to generate
the data sample in study S1 were intended to fall into a restricted part of S to avoid
the same stimuli being shown to the participant while different random parameters
are generated. For instance, the scatterplot SP(φuv) generated by φuv = (τ, . . . ,θu,θv)
is identical up to sampling variation, to the one generated by φ ′

uv = (τ, . . . ,θu,θv +π)
despite φuv ̸= φ ′

uv.
In contrast, we need to cover extensively the parameter space S with labeled

data to get the best possible generalization from the classifier GClustML, i.e., predicting
accurately human judgments for yet unseen scatterplots. Indeed, two scatterplots with
perceptually very similar point distributions XA and XB will likely get the same human
judgment HA = HB. However, φA can end up very close in S to a training data φT ∈ Φuv,
while φB can end up far from it due to the inference process to get M ∗. Thus, a classifier
trained on (φT ,HT ) will be able to predict HA ≈ HT but will not be good at predicting
HB. Therefore, we propose to augment the data Xuv by replicating some of the training
data χi = (φi,Hi) in different locations φ ′

i of S to better cover it, getting new data
χ ′

i = (φ ′
i ,Hi) with same label.

For any aligned data χi = (φi,Hi) ∈ X align
uv :

χi = (τ,µ,σ x
u ,σ

y
u ,σ

x
v ,σ

y
v ,θu,θv,Hi) (6)

We generate the following replica to account for y-axis symmetry:

(6)⇒ χ
−
i = (τ,µ,σ x

u ,σ
y
u ,σ

x
v ,σ

y
v ,−θu,−θv,Hi) (7)

We account for the non-identifiability of the Gaussian components by swapping
components u and v for the cases (7) and (6) above:

(6)⇒ χ
swap
i = (1− τ,µ,σ x

v ,σ
y
v ,σ

x
u ,σ

y
u ,θv,θu,Hi)

(7)⇒ χ
−swap
i = (1− τ,µ,σ x

v ,σ
y
v ,σ

x
u ,σ

y
u ,−θ v,−θ u,Hi)

(8)

We also generate replicas to account for the cases of isotropic covariance, where
σu = σ x

u = σ
y
u or σv = σ x

v = σ
y
v . So, for any data

χi = (τ,µ,σu,σu,σ
x
v ,σ

y
v ,θu,θv,Hi) (9)

or χi = (τ,µ,σ x
u ,σ

y
u ,σv,σv,θu,θv,Hi) (10)

We generate replicas
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Figure 5: Data augmentation process: (a) We expect that each set of parameters of
a pair of GMM components corresponds to a unique scatterplot up to the sampling
variability and vice-versa. But there are symmetries for some settings of these parameters
or some scatterplots. (b) Parameters of a pair of components (A, B, C, D) can be different
while they represent the exact same cluster pattern in the scatterplot respectively (A’, B’,
C’, D’) due to symmetry or rotation of the group of points in the scatterplot. (c) Data
augmentation involves exploiting these known symmetries to generate additional data
(A’, B’, C’, D’) with labels corresponding to their symmetrical version (A, B, C, D),
enriching the dataset and improving classifier generalizability. (d) GMMs can model the
same scatterplot with different parameters, leading to different locations in the feature
space. (e) We generate new data in the feature space leading to the same scatterplot,
hence the same label. In all cases (c, e), we need to cover the feature space with labeled
examples better to support the training of the classifier; otherwise, the classifier will
generalize poorly in these areas (Left side, b, d). The human judgment dataset S1 does
not contain such symmetries because it has been designed to avoid showing twice the
same scatterplot to human subjects. Therefore, we need to augment these data in the
feature space by duplicating labeled scatterplots considering these symmetries (Right
side, c, e).
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(9)⇒ χ
σu
i = {(τ,µ,σu,σu,σ

x
v ,σ

y
v ,θu,θv,Hi)

| θu ∈ {−π

2
,−3π

8
,−π

4
,−π

8
,0,

π

8
,

π

4
,

3π

8
,

π

2
}
}

(10)⇒ χ
σv
i = {(τ,µ,σ x

u ,σ
y
u ,σv,σv,θu,θv,Hi)

|θv ∈ {−π

2
,−3π

8
,−π

4
,−π

8
,0,

π

8
,

π

4
,

3π

8
,

π

2
}}

(11)

The initial data and all its replicas form the extended dataset X all
uv :

X all
uv = {χi,χ

−
i ,χswap

i ,χ−swap
i ,χσu

i ,χσv
i |χi ∈ X align

uv } (12)

Then we filter out any duplicate data from that set to avoid over-sampling of some
data and get the final set used to train the classifier:

X uni
uv =Unique(X all

uv ) (13)

3.6 Training merging models
Finally, training on X uni

uv , we can obtain the ClustML merger G ∗
ClustML optimal at

predicting the labels Hi from the input φi ∈ Φuni
uv , and use it to predict the label Ĥ of the

current input φ
∗align
uv (4):

Ĥ = G ∗
ClustML(φ

∗align
uv ) ∈ {0,1} (14)

Ĥ estimates the unobserved aggregated judgments humans would make for the
scatterplot SP(X ∼ M (φ ∗

uv)).
The training process uses a standard approach in data-driven estimation of parame-

ters of supervised classifiers (see details in Experiment 1).

4 Experiments
ClustML and ClustMe are both GMM-based VQMs. We first demonstrate our claim
that the merging decision of ClustML, being trained on perceptual data, is better than
the one from ClustMe based on heuristics. ClustMe merging decision Demp was the
best over six other merging heuristics assessed on the benchmark dataset S1 [24]. We
use the same dataset S1 to get the optimal merging decision G ∗

ClustML for ClustML, and
we show that this merging decision is better than Demp on S1, hence, also better than
the six other merging heuristics.

Second, ClustMe VQM has already been proven more accurate than competitors at
ranking scatterplots based on cluster patterns on the benchmark dataset S2 [24]. We use
the same benchmark S2 to show that ClustML VQM improves accuracy over ClustMe
VQM and, hence, over previous competitors.

Finally, we propose a usage scenario of ClustML with real genomic data.
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Table 1: Initial data S1 from [24] φuv are 1000 unique parameter sets φ
[i]
uv picked

randomly among the following values. In this work, we ignore α and N. It remains 996
unique sets of parameters forming X align

uv .
Param. Description Values
τ Prior proba. of u {0.1, 0.2, 0.3, 0.4, 0.5}
µ u to v Euclid. dist. {0, 1, 2, 3, 5, 8, 13, 21}
σ

x,y
u,v Scaling factors {0.5, 1, 1.5, 2, 2.5, 3}

θu, θv Rotation angles {0, π/8, π/4, 3π/8, π/2
}

α Rot. angle of SP(X) {0, π/2, 5π/4}
N Num. of points X {100, 1000}

4.1 Experiment 1: training the ClustML merger on perceptual data
To get the ClustML classifier for merging, we first align and augment the data and human
judgments from the available dataset, then, we present the classification techniques and
protocols, and finally, select the best among the trained classifiers.

4.1.1 Human judgments data

The initial human judgment data from study S1 [24] is summarized in table 1. We ignore
the α parameter, which gave an additional random rotation to the whole scatterplot
for each trial, and we ignore the number N ∈ {100,1000} of points generated in the
scatterplot, as none of these parameters appears in the GMM modeling the density of
the scatterplot. The dataset Φuv is a sample of 1000 of these scatterplots. We discovered
four of them are duplicates, which means four scatterplots were generated twice with
the same set of parameters but differing by the number of sampled points (N = 100
and N = 1000), or they turned out having the same parameters after data alignment.
These four duplicates were removed. We ended up with 996 unique scatterplots with
34 human judgments that we summarized by majority vote. The final alignment and
augmentation processes (equation (13)) led to 16181 scatterplots in the set X uni

uv forming
the Benchmark dataset 1.

4.1.2 Classifiers and training protocol

The 996 initial scatterplots, although chosen to cover the space of parameters uniformly,
were assigned unequally to the two classes by the 34 S1’s subjects. Therefore, 81.5% of
the data ended up with a merging decision of H [i] = 1. This class imbalance requires a
specific process for training classifiers to avoid bias favoring the majority class. Another
issue is the relative scale of the parameters; for instance, the parameter µ scales up to
two orders of magnitude larger than τ . Correlated features must also be dealt with. This
requires pre-processing steps.
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The 16181 scatterplots X uni
uv were stratified by class, each subset being randomly

split into 80% training and 20% testing to finally get 12945 training and 3236 test
points preserving the (imbalanced) class distribution. Notice that the 3236 test data
points correspond to 709 of the 996 unique scatterplots while the 12945 training data
points correspond to 991 of them. Still, none is duplicated in the parameter space S
after augmentation, forming valid independent training and test sets for learning the
automatic classifiers in that space.

We used the R-package CARET [43] for training 12 classification techniques, trying
4 methods to deal with class imbalance, and 4 pre-processing methods for scaling and
remove correlated features, all summarized in Table 2. This process resulted in 320
different classification models. We used 10-fold cross-validation on the training set,
with 10 repetitions of the training with random initialization,

To evaluate and select the best classifier on the test data, we computed the Matthews
Correlation Coefficient (MCC), which is regarded as immune to large class imbal-
ance [47, 48].
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(a) Experiment 1 (b) Experiment 1 (c) Experiment 2

Figure 6: ClustML merger (GClustML) is noticeably better than ClustMe merger (Demp)
based on Vanbelle Kappa score on the 3236 augmented data of the test set in Experiment
1 (a) and on the 709 test scatterplots with class computed by majority vote of GClustML
predictions on augmented data (b). ClustML VQM is noticeably better than ClustMe
VQM at ranking the 435 pairs of scatterplots in Experiment 2 (c). However, as expected,
scores are lower than in Experiment 1 as these scatterplots display more complex
patterns and involve the full VQM pipeline.

4.1.3 ClustML merger is better than Demp.

Table 3 lists the best setting for each classification technique. The overall best com-
bination to realize the ClustML merging function GClustML is a bagged Classification
and Regression Tree (CART) model (treebag) with up-sampling of the minority
class (upSample) and running all pre-processing methods (Center + Scale +
BoxCox + PCA + spatialSign). In study S1 [24], Demp is the best among
seven merging heuristics and is used to form ClustMe. Following that study, we use the
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Table 2: Methods used from the R-package CARET [43, 44]. Note xgbTree and gbm
only used None and C pre-processing.

Method Description

Pr
e-

pr
oc

es
si

ng

None No pre-processing
Center+Scale (C) Zero mean and unit variance
C+BoxCox (CB) Box-Cox transformation
C+PCA (CP) Principal Component Analysis
C+B+P (CBP)
CBP+spatialSign
(CBPS)

Dividing by norm (unit sphere)

B
al

an
ci

ng

None No balancing
upSample Rand. replica of minor. class
downSample Rand. sampling of major. class
ROSE Rand. over-sampling [45]
Smote Synth. minor. class NN [46]

C
la

ss
ifi

ca
tio

n
te

ch
ni

qu
e

nb Naive Bayes
knn k-Nearest Neighbors
rf Random Forest
treebag Bagged Classif. Adap. Reg.

Tree
blackBoost Boosted Reg. Tree
gbm Gene. Boosted Reg. Model
xgbTree Extreme Gradient Boosting Tree
earth Multivar. Adap. Reg. Spline
svmRadial Radial Kernel Sup. Vec. Mach.
mlpWeightDecay Multi-Layer Perceptron
glm Generalized Linear Model
glmnet GLM penal. max. lik.
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Vanbelle’s Kappa κv agreement index [37] to compare both merging techniques with
the 34 human judgments.

Table 3: The best of each classification technique based on Matthew’s correlation
coefficient (MCC) is given together with its specific class balancing and pre-processing
compounds (See Table 2). Treebag with upsampling and all pre-processing options is
the most accurate on the 3236 test data of Experiment 1.

Classification tech. Balancing Pre-Processing MCC
treebag upSample CBPS 0.970

rf None None 0.959
gbm upSample None 0.953
mlp None CBPS 0.893
knn None CB 0.888
earth None CBPS 0.876

blackBoost Smote C 0.875
xgbTree None None 0.868

svmRadial None CBPS 0.866
glmnet None CBPS 0.832

glm None None 0.831
nb None CB 0.828

Vanbelle’s kappa κv considers both the agreement between the group of human
raters and the VQM and the within-group inter-rater agreements. The κv values are
interpreted using a standard scale [49]: < 0 poor, ]0,0.2] slight, ]0.2,0.4 fair, ]0.4,0.6]
moderate, ]0.6,0.8] substantial, and ]0.8,1] almost perfect agreements. We run 10000
evaluations on the bootstrap samples [50] of the test data to estimate the average score
the two mergers would have obtained varying the distributions of scatterplot parameters
and to better quantify their difference.

There are two ways to compare GClustML and Demp mergers. In case 1, we compute
κv on the 3236 augmented test data, which are unique for GClustML but duplicates of
some of the 709 Demp merging decisions, biasing the comparison towards the duplicate
cases (Figure 6 left). In case 2, we compute κv on the 709 scatterplots from the test
set, which is fair for Demp, but forces us to summarize the GClustML predictions by a
majority vote over the duplicated data. (Figure 6 center).

In case 1 favoring GClustML, it gets κv = 0.986, 16% greater than Demp’s κv = 0.848,
both being in Almost perfect agreement with human judgments. In case 2, favoring
Demp, GClustML gets κv = 0.962 (Almost perfect agreement), a 22% improvement over
Demp’s κv = 0.786 (Substantial agreement; consistent with the state-of-the-art score
κv = 0.788 computed over the full 1000 dataset [24]). The ClustML merger (GClustML)
is better than the ClustMe merger (Demp) by a large margin, with more than 15%
accuracy improvement in both cases.
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4.2 Experiment 2: ClustML is better at ranking scatterplots
In this experiment, we compare ClustML and ClustMe. Both are GMM-based VQMs, as
illustrated in Figure 2a. We use them to rank pairs of scatterplot projections of real and
synthetic multidimensional data from the dataset S2 [24]. None of these scatterplots has
been used in the training process of ClustML, nor in determining parameters of ClustMe.
S2 is made of all 435 possible pairs of 30 monochrome scatterplots selected among
the dataset composed of 257 scatterplots from an earlier study [27]. 31 subjects have
judged each pair to rank the scatterplots by the perceived group structure complexity of
the displayed point patterns on a 3-category scale: “<”, “=”, “>”.

We use the mclust R-package with BIC model selection to train the GMM. We
run ClustML and ClustMe merging functions on each pair of components identified by
the GMM and finally get the respective VQM for each of the 30 scatterplots. Finally,
following [24], we use this VQM score to rank the scatterplots, and we compare the
ranking with that of human judgments on all 435 pairs using the Vanbelle’s kappa index.

ClustML gets κv = 0.727, improving over ClustMe’s κv = 0.671 top score to date.
Figure 6 shows the 10000 bootstrap samples distribution of the 435 pairs of scatterplots
for the two VQMs. ClustML is still noticeably better than ClustMe on this data.
However, the score difference is lower than in the previous experiment with only 8%
improvement, and both scores are within the Substantial agreement range.

4.3 Qualitative comparison of ClustML and ClustMe
ClustMe and ClustML are used to rank the 257 scatterplots from [27]. Their scores
are compared in Figure 7. Scatterplots (SPs) at the bottom show details of the dots in
the top view. Numbers indicate identifiers of the SPs in the dataset. The caption of the
figure gives detailed observations. ClustML seems more sensitive to cluster sharpness,
while ClustMe seems more sensitive to cluster numerosity.

4.4 Interpretation of Vanbelle kappa with a worst-case analysis
To better understand the meaning of these ranking scores, we compute the Vanbelle index
when altering 10000 times, k ClustML decisions for each k ∈ {1, . . . ,435} randomly.
By alteration, we mean changing any of <, =, or > order relations to a different order
relation from the same set. The resulting distribution of the Vanbelle Kappa for each
value of k is displayed in Figure 8. The ClustML score decreases in proportion to
the number of alterations. It requires between rmin = 9 (2%) and rmax = 49 (11%)
alterations, with r = 20 (4.6%) on average, to get down to the ClustMe score.

Altering a decision occurs whenever the order of two of the scatterplots is changed.
For instance, on average, the difference between ClustML and ClustMe is equivalent to
moving a single scatterplot down or up by 20 positions in the total ordering or changing
the rank of more scatterplots by a total of 20 rank alterations.

Let us consider a realistic usage scenario where the user has a time budget so they can
afford to explore only the top-K scatterplots in depth in search of new insights. Moving
n elements out of the top-K set (K ≥ n) requires at least r = n2 rank permutations if we
pick up the bottom n of that set. For instance, if aaabbbcccdddeee fff |ghi jkl...z is an ordered set of 26
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Figure 7: Top: Comparison of ClustML and ClustMe scores of 257 scatterplots
from [27]. Bottom: 16 selected scatterplots (SPs) from the top view with corresponding
colors, numbers, and approximate locations. Both ClustMe and ClustML give equally
low scores to SPs 238,244,169 with no strong cluster patterns and similarly high scores
to SPs 221,229,56 with sharp and numerous cluster patterns. ClustML gives high scores
to SPs 28, 36, 102, medium scores to SPs 72, 114, 130, and low scores to SPs 108, 216,
while ClustMe gives them all a medium score. ClustML seems better than ClustMe at
distinguishing sharp cluster patterns from slightly noisy and very noisy ones. On the
other hand, ClustMe seems more sensitive to the cluster numerosity, distinguishing low
numerosity clusters in SPs 30 and 240 from medium numerosity in SPs 72, 114, 130,
and high numerosity in SPs 229, 56 while ClustML gives to all of them a medium-high
score.
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scatterplots and the user as a time budget to explore only the top K = 6 (aaa to fff delimited
by |), then moving n= 2 scatterplots out of the top-6, say eee and fff to get aaabbbcccdddgh|eee fff i j...z,
requires altering at least r = 4 pairwise rankings (g ↔ e, g ↔ f , h ↔ e, h ↔ f ). To push
any set of n items out of the top-K, any other group of permutations requires at least
n2 rank permutations. Hence, in the worst case, given a ClustML ordering of the 30
scatterplots, ClustMe, in comparison, may down-rank between nmin =

√
rmin = 3 and

nmax = 7 scatterplots off the top-K most potentially insightful ones. It is also possible
that most or all the alterations created by ClustMe occur outside of the top-K, so they
would not impact the time-budgeted insight gathering, ClustMe and ClustML having
identical top-K sets.

We can extrapolate this observation to any dataset size. For a dataset with N
scatterplots, a simple calculus shows that if p is the percentage of ranking alterations
over the N(N − 1)/2 pairs, with p ≤ 50, then the number of ranking alterations is
r = N(N − 1)p/200. Moreover, in the worst case, the percentage of down-graded
scatterplots q is 100

√
r/N. Hence, q = 10

√
(N −1)p/2N ≈

√
50p for large N.

ClustMe alters in the worst case about 11% of all pairs of N scatterplots (p =
100× rmax/N = 100× 49/435 ≈ 11). Therefore, it could downgrade up to 23.5% of
the scatterplots ordered by ClustML in a worst-case scenario.
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Figure 8: Distribution of Vanbelle kappa when altering 10000 time k values randomly
chosen among the ClustML decisions (k ∈ {1, . . . ,435}) over the 435 pairs of 30 scat-
terplots in Experiment 2. The dark grey area shows one standard deviation above and
below the average value (black line). Light grey extends between the minimum and
maximum values of the 10000 samples. This serves to evaluate how much ClustMe
would worsen ClustML ordering.
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5 Usage scenario with genomic data
To illustrate ClustML’s potential utility to real-world analyses, we provide a usage
scenario with genomic data. In many domains of micro-biology, analysts rely on data
visualization to spot interesting patterns that deserve further detailed analysis. Automatic
clustering of single-cell data is known to be challenging [51]. As such, biologists often
resort to dimensionality reduction and visualizing scatterplots to decide about clusters
of cells and their features [52]. Alternatively, scatterplot matrices (SPLOMs) are used,
for instance, to visually identify interesting groups of cells in scatterplots determined by
pairs of eigengenes (axes), each eigengene coding a group of coexpressed genes [53].
In genome-wide association studies, analysts project the genetic data into principal
components space for visual inspection [54, 55]. In all these situations, the numerous
projection methods and their parameters lead to possibly hundreds of scatterplots
representing different facets of the same multidimensional data, similar to the type of
data used in study S2.

In this usage scenario, we consider the data from the 1000 Genome Project phase
3 dataset [56] composed of genetic data of 26 populations of about 100 individuals
each. We measure kinship between individuals of each population separately, computing
identity-by-descent [55]. We project these data using Multidimensional Scaling into
30 dimensions and compute ClustML on each possible pair of principal components
for each of the 26 populations separately. The top view in Figure 9 shows the 11310
SPs in the space of the ClustML score and the proportion of variance explained. The
bottom view shows several SPs found exploring the highest ClustML scores in search
of complex patterns that could relate to subgroups of individuals in each population.

Analysts typically rely on exploring SPs spanning pairs of the top-most principal
components only (orange dots with a thick edge), possibly missing essential patterns as
pointed out in a recent work [11]. Thanks to ClustML, we can discover SPs spanning
lower order components (e.g. down to the 17th PC for the PJL population) containing
cluster patterns of potential interest to the analyst which cannot be detected in the SPs
directed by the top two principal components (See Figure 9 bottom). ClustML can guide
the analyst, avoiding a very costly exhaustive exploration of the 11310 SPs.

6 Discussion and future work
We proposed a new data-driven, GMM-based VQM for cluster patterns. ClustML’s
main novelty is to use a merging component fully trained on human judgment data.

Options for improving ClustML The ClustML merging component uses a majority
vote to transform the collective judgments of 34 participants into a binary value, losing
the richness of the human judgments more akin to a probability value. The GMM also
restricts the type of cluster patterns that can be quantified to a mixture of Gaussians
while other types of distributions and mixtures could be explored. At last, GMM-based
VQMs act at the geometric encoding stage of the visualization pipeline, ignoring the
aesthetic aspect of the scatterplot like color, opacity, size, and shape of the marks; other
parameters which can also impact the perception of cluster patterns [57, 58]. All these
aspects leave room for further study and improvements.
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Figure 9: Top: Distribution of 11310 scatterplots from all pairs of top 30 principal
components (PCs) of 1000 Genome Project kinship data in the space of ClustML score
and percentage of variance explained. Dots are color-coded by the axis with the most
variance in the scatterplots, showing the ones directed mainly by the first, second, third,
or fourth PC (black otherwise). Solid orange dots with thick edges are SPs directed by
the first and second PCs. Analysts typically limit their exploration to SPs, explaining
most of the variance at the top of the summary scatterplot. Those scatterplots mostly
involve top PCs only. Bottom: we show top-level SPs directed by PC1-PC2 of LWK,
MSL, PJL, and STU populations (left side of each pair), and lower-level SPs directed
by PC5-PC17 for LWK, PC8-PC13 for MSL, PC17-PC18 for PJL, and PC9-PC2 for
STU (right side of each pair). The lower-level SPs have about the same or even a higher
ClustML score than the PC1-PC2 SPs of the same population. ClustML allows the
analyst to detect a cluster pattern in each population (manually lassoed blue dots, right
side), which would have been missed exploring only the PC1-PC2 SP of that same
population (left side) because the same data points do not form a cluster pattern therein.
Notice pairs of SPs are displayed at the same scale, showing that cluster patterns on
their right side are of similar importance to those on their left side in terms of within
and between variance.
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Towards hybrid computational-perceptual models of cluster patterns It is typi-
cally challenging to learn a model for usually unsupervised tasks such as cluster pattern
quantification: there is a lack of available representative and human-annotated scatterplot
data to train supervised models due to an extreme variation of the cluster patterns [27, 2],
and a lack of a relevant representation space common to all these data. A related
approach uses a deep network model [28] trained on scatterplot images to model the
human-perceived similarity between patterns in monochrome scatterplots; working
with the image pixels as common representation space is an ecologically valid option
but still requires collecting enough human-annotated data to cover the vast amount
of possible patterns in visualization images. Other heuristic-based techniques use a
binning process to reduce the dimension of the image space where to look for visual pat-
terns [57, 58]. In contrast, in this work, we transformed a typically unsupervised cluster
pattern quantification problem into a supervised one, observing that the GMM (Stage
1) acts as a representation model, embedding the underlying points X of a scatterplot
SP(X) into the GMM’s parameter space. By considering only pairs of GMM compo-
nents, this representation space additionally got a fixed and reduced dimensionality,
not only enabling the use of standard supervised classifiers but also drastically limiting
the variety of cluster patterns to be learned (two-Gaussian-based distributions only),
so the amount of data to be collected. Finally, it happened that the scatterplot stimuli
of the S1 dataset were also generated by sampling such a space; hence, they could
be used to train such classifiers. This option was not technically straightforward, as
demonstrated by the data pre-processing, cleaning, and augmentation steps required to
train the ClustML’s merging function. Overall, our work opens the door to introducing
human-perceptual judgment data in originally unsupervised models, developing new
hybrid computational-perceptual models for pattern recognition in visualization and
pursuing pioneering work in that area [4, 32, 33].

The development of such hybrid models raises the question of how to collect a
sufficient amount and quality of perceptual data in the first place. Pattern recognition
models have long been studied and trained on natural images annotated by experts or
crowdsourcing [59]. But only a few studies use perceptual-data-driven approaches for
pattern recognition in visualization images [30, 31, 28]. We advocate for driving new
research in that area to develop data-driven perceptual-based VQM for clusters and
other visual patterns in scatterplots, parallel coordinate plots, and other visualization
idioms [60, 20].

Beyond user study evaluations As stated in [61, 62], new algorithms like ClustML
should typically be evaluated for accuracy and computing resources. But VQMs algo-
rithms are designed to support humans by replacing them in repetitive perceptual tasks
[17]. Thus, accuracy is measured by comparing VQM scores to human judgments on
the same visual stimuli. Hence, the design of new VQMs naturally relies on collecting
perceptual judgment data from quantitative user studies. However, when the same
judgment data can be re-used for comparing different VQM algorithms because they
target the same perceptual task, it is unnecessary to run a new user study for each
new VQM variant. Re-using study data was first achieved successfully for the design
and evaluation of data-driven VQMs for class separation in scatterplots [30, 31], with
data from an earlier project [3]. The present paper is a renewed demonstration of that
approach, comparing ClustML with ClustMe on S1 and S2 previously collected study
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data, relieving us of the need to run another user study to evaluate ClustML.
The use of benchmark data for algorithmic assessment is standard in computer

science [61] and benefits the replicability, fairness, and objectivity of the comparison
while scaling up the design process of new techniques [63]. Benchmark data also enables
the data-driven design of new models using machine-learning techniques. Benchmarking
in visualization is not new for comparing algorithmic approaches [64], but it is pretty
novel when considering human judgment data. Once a benchmark of judgment data is
set, it avoids investing unnecessary expert resources to design user studies and collect
similar data, and it prevents the additional risk of failure in doing so. By being able
to re-use previously collected judgment data S1 and S2, our work demonstrates that
it is possible to generate such benchmark data once and use them multiple times for
the evaluation and the design of new VQMs. Hence, we advocate for including in the
design process of quantitative user studies a reflection on the possibility to re-use the
collected data beyond evaluation, to enable generating and training new models. How to
develop such benchmark judgment data to facilitate their re-use in visualization design
is a challenging research topic worthy of investigation.
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