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Abstract

Background: It has been shown previously that glucocorticoids exert a dual mechanism of action, entailing
cytotoxic, mitogenic as well as cell proliferative and anti-apoptotic responses, in a dose-dependent manner on
CCRF-CEM cells at 72 h. Early gene expression response implies a dose-dependent dual mechanism of action of
prednisolone too, something reflected on cell state upon 72 h of treatment.

Methods: In this work, a generic, computational microarray data analysis framework is proposed, in order to
examine the hypothesis, whether CCRF-CEM cells exhibit an intrinsic or acquired mechanism of resistance and
investigate the molecular imprint of this, upon prednisolone treatment. The experimental design enables the
examination of both the dose (0 nM, 10 nM, 22 uM, 700 uM) effect of glucocorticoid exposure and the dynamics
(early and late, namely 4 h, 72 h) of the molecular response of the cells at the transcriptomic layer.

Results: In this work, we demonstrated that CCRF-CEM cells may attain a mixed mechanism of response to
glucocorticoids, however, with a clear preference towards an intrinsic mechanism of resistance. Specifically, at 4 h,
prednisolone appeared to down-regulate apoptotic genes. Also, low and high prednisolone concentrations up-
regulates genes related to metabolism and signal-transduction in both time points, thus favoring cell proliferative
actions. In addition, regulation of NF-xB-related genes implies an inherent mechanism of resistance through the
established link of NF-xB inflammatory role and GC-induced resistance. The analysis framework applied here
highlights prednisolone-activated regulatory mechanisms through identification of early responding sets of genes.
On the other hand, study of the prolonged exposure to glucocorticoids (72 h exposure) highlights the effect of
homeostatic feedback mechanisms of the treated cells.

Conclusions: Overall, it appears that CCRF-CEM cells in this study exhibit a diversified, combined pattern of
intrinsic and acquired resistance to prednisolone, with a tendency towards inherent resistant characteristics,
through activation of different molecular courses of action.
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Background

Resistance to glucocorticoids (GC) is considered to be
one of the most important factors in the prognosis of
leukemia [1,2]. In a previous study, it has been shown
that when a resistant T-cell leukemia cell line (CCRF-
CEM) is treated with prednisolone, the drug exerts a
dual (biphasic) effect on these cells [3]. At low doses,
prednisolone has a mitogenic/anti-apoptotic effect,
whereas at higher doses it manifests a cytotoxic/mito-
genic effect. Also, it has been shown that the actual
underlying effect of prednisolone, either mitogenic or
cytotoxic, becomes apparent at 72 h of prednisolone
exposure, providing evidence for activation of a cellular,
homeostatic, feedback mechanism at the transcriptional
or translational layer (protein synthesis) [3].

In addition, it remains elusive whether cells possess
inherent mechanisms inducing GC tolerance on them,
or their responce upon GC treatment is one of gradual
adjustment, meaning that originally sensitive cells
become resistant. Thus, as glucocorticoid receptor regu-
lates directly or indirectly several thousands of genes,
this partly refers to activation of genes related to anti-
apoptosis and mitogenesis. In this sense, those mechan-
isms may possibly, through intricate, regulatory actions
and cross-talks, confer to the induction of resistance in
leukemic cells. Apoptosis evasion, or proliferation stimu-
lation are two alternative mechanisms through which
cells exhibit resistance. In the present work we refer to
acute lymphoblastic leukemia (ALL), though glucocorti-
coid treatment belongs to the first-line of medications
against lymphoid malignancies in general [4,5]. There is
adequate evidence supporting a far more intricate
mechanism of resistance to glucocorticoids than mere
down-regulation of steroid receptors.

In this sense, several, possible resistance mechanisms
of leukemic cells to glucocorticoid administration have
been proposed, like the presence of somatic mutations
on the GR gene that may lead to aberrant regulation of
the receptor through intracellular signaling. Besides, sev-
eral polymorphisms, but not somatic mutations, have
been found in normal and ALL populations, not linked
to resistance or sensitivity induction though, either in
vivo or in vitro[6,7]. Other GC resistance scenarios are
emphasizing in defects in intracellular signaling path-
ways that involve interactions of GR with other
sequence-specific transcription factors, such as AP-1
and Nuclear Factor kappa-light-chain-enhancer of acti-
vated B cells (NF-xB) [8]. In a normal cell, ligand-acti-
vated GR may potentially interfere with transcription
factor c-Jun or p65 NF-xB and thereby repress genes
promoting cell proliferation and cell survival [6,9,10].
GR-dependent inhibition of the transcription factor p65
NE-xB, plays a significant role in the manifestation of
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apoptotic and anti-apoptotic effects of GR in leukemia
cells and has been identified as a pivotal component of
the mechanism of cancer cell resistance to chemother-
apy [9]. Previous studies of GC effects on leukemia cells
identified c-myc and cyclin D3 as early GR-regulated
targets, in GC-sensitive cells [11]. Further studies
showed that introduction of a conditionally expressed
cyclin-dependent kinase inhibitor p16 (INK4A) gene,
sensitized GC-resistant leukemia cells, through induc-
tion of cell cycle arrest [12].

Thus, p16 inactivation may change GR levels, affecting
GR-mediated gene regulation and resulting in resistance
to GCs. For this purpose, the parental CCRF-CEM cell
line was chosen as the system of study for the effects of
prednisolone treatment, a T-cell leukemia cell line char-
acterized by a mutation (L753F) on one GR gene allele
that impairs ligand binding [13]. It is known that both
the DNA and ligand binding domains of the GR are
required in order to repress NF-xB transactivation [14].
Interestingly, concerning the question whether this muta-
tion would affect GC resistance, it has been reported pre-
viously that both the GC-resistant, as well as the GC-
sensitive CCRF-CEM subclones, express heterogeneous
populations of the GR (GR"'/GRL753F) [15,16]. The
CCRF-CEM cell line has been reported to be resistant to
GCs, presumably due to the accumulation of more resis-
tant variants after long periods of prolonged culture [17].
In addition, utilization of an in vitro system provides
reproducibility, an expedient system to systematically
examine the impact of intracellular signals and at the
same time minimize the effect of undesired crosstalks
introduced by other in vivo-participating systems.

A detailed molecular explanation of the intricate
mechanisms, underlying the resistance phenotype to GC-
induced apoptosis, remains elusive. The present work
proposes a rational computational framework in order to
aid the elucidation of the question whether the system
under study, has intrinsic or acquired mechanisms of
resistance. Our presumption is that the system in study
possesses an intrinsic mechanism of resistance to gluco-
corticoids i.e. prednisolone. Using the proposed compu-
tational analysis workflow, we have analyzed microarray
data from two time points (4 and 72 h treatment) and
three different concentrations (10 nM, 22 uM and 700
uM). For the 4 h time point, we used a 1.2 k platform,
comprising of cancer specific genes, which has been
reported and analyzed previously [3,18]. In order to
expand our view of prednisolone effects on the cell line,
we used a 4.8 k platform. Genes included in the 1.2 k
platform are also represented in the 4.8 k platform. Data
analysis was performed in order to find groups of genes
associated with characteristics related to anti-apoptosis
and apoptosis, cell cycle arrest, drug resistance etc.
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Methods

Data collection

The CCRF-CEM cell line was obtained from the Eur-
opean Collection of Cell Cultures (ECACC). Concentra-
tions of prednisolone (Pharmacia) were: 0 uM (control),
10 nM, 22 uM, and 700 uM. In general, all three predni-
solone concentrations correspond to in vivo dosages
administrated intravenously to children at ages between
1 month and 12 years old [3]. Specifically, the 10 nM
and 700 uM prednisolone concentrations were chosen
as indicative of manifestation of specific phenotypic
effects, i.e. anti-apoptosis accompanied with mitogenic
effect and cytotoxicity accompanied with resistance, as
observed by flow cytometry [3]. Moreover, the high con-
centration (700 uM) used, is similar to concentrations
used in different studies in CCRF-CEM cells [19] as well
as primary cell cultures derived from childhood ALL
patients [20]. The 22 uM prednisolone concentration
was chosen as an intermediate concentration between
the aforementioned two.

RNA was isolated with Trizol (Invitrogen Inc.) accord-
ing to the manufacturer’s instructions. At least 40 ug of
RNA from each sample was used. cDNA microarray
chips from two platforms (1.2 k and 4.8 k) were
obtained from TAKARA (IntelliGene® Human Cancer
CHIP Version 4.0 and IntelliGene® II CHIP, respec-
tively). Hybridization was performed with the CyScribe
Post-Labeling kit (RPN5660, Amersham) as described by
the manufacturer [3]. The experimental setups consisted
of the five following pairs: control vs. 10 nM predniso-
lone at 4 h (designated as ‘1’), 10 nM vs. 700 uM pre-
dnisolone at 4 h (designated as ‘2’), control vs. 700 uM
prednisolone at 4 h (designated as ‘3’), 22 uM vs. 700
uM prednisolone at 72 h (designated as ‘4’), and control
vs. 700 uM prednisolone at 72 h (designated as ‘5’). In
this study, triplicate hybridizations are utilized for the 4
h experiments. Experimental pairs were co-hybridized
on the same slide, each stained with a different fluoro-
phore. Fluorophores used were Cy3 and Cy5. Slides
were scanned with the ScanArray 4000XL microarray
scanner. Images were generated with ScanArray micro-
array acquisition software (GSI Lumonics, USA). Image
analysis was performed with the ImaGene® 6.0 software
(Biodiscovery Inc., USA). The raw datasets have been
deposited in NCBI's Gene Expression Omnibus (GEO),
and are accessible through GEO Series accession num-
ber [GEO: GSE28154].

Data preprocessing

A common for both platforms data preprocessing stage,
namely the median intensity value in each channel, was
applied to the raw data. Specifically, the well performing
robust version of the robust loess-based background
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correction (rLsBC) approach, as proposed by [21], was
applied. rLsBC assumes that the background noise
affects the spot intensities in a multiplicative manner
[22]. Instead of using the measurements of the local
(feature-related) background for the correction, rLsBC
utilizes the regression estimate of the logarithmic back-
ground distribution B® € according to the logarithmic
foreground intensity F* © for each channel (R: Red and
G: Green). Thus, rLsBC provides a robust estimation of
the channel-specific background noise, utilized to back-
ground-correct the logarithmic foreground intensities:

FRG - pRG _ gRG

where FR¢ is the logarithmic background-corrected
foreground intensity, and Bf'c the robust estimate of
background noise, for each channel. The absolute back-
ground-corrected foreground intensity fCR'G for each
channel is then calculated as:

fR,G _ 2Ff'c
c

In order to reduce the complexity of the data set, we
followed the replicate averaging approach proposed by
[23]. In this approach, instead of estimating a constant c
and utilizing it to adjust each of the individual replicate
measurements, equivalently the replicates were averaged
by taking their geometric mean, that is:

where fr}f'c is the (background-corrected) foreground

intensity of the replicate r;, i = 1, 2, 3, and fRC is the
averaged foreground intensity across all replicates (hen-
ceforth referred simply as signal intensity), for each
channel (Red and Green).

Since outliers can significantly influence one or more of
the subsequent processing steps, extreme outlier values,
that is signal intensities deviating more than 3 interquar-
tile distances from the first or the third quartile [24],
were identified and excluded in an iterative process.

The signal intensities of each dataset were further nor-
malized in order to mitigate the effect of extraneous, non-
biological variation in the measured gene expression levels.
The robust version of the intensity-dependent scatter-plot
smoother loess [25,26] with a quadratic polynomial model
was applied to the M-A scatter-plot [27], where M and A
are the log-ratio and log-mean, respectively:

M =FR — FC

FR 4+ FG
2

A=
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where FX and F€ are the corresponding logarithmic
signal intensities for each channel. The smoothing para-
meter of the loess procedure used equals to 10%, which
was considered appropriate for the relatively small num-
ber of probes attached in the microarrays.

In order to identify and remove dubious features, a fil-
tering approach was followed based on (i) the loop-
design [28-31] used for the experimental setups at 4 h
(experiments ‘1, ‘2, and ‘3’), and (ii) the philosophy of
the replicate filtering approach proposed by [32]. In par-
ticular, the fold changes of experiment ‘1’ (control vs. 10
nM prednisolone) and experiment 2’ (10 nM vs. 700
uM prednisolone) should roughly equal the fold change
in experiment ‘3’ (control vs. 700 uM prednisolone),
that is:

frofE

G G~ (G

LR h
where fiR’G are the signal intensity of the experiment

i, i=1,2,3, for each channel, or equivalently, the fol-
lowing quantity should ideally be equal to zero:

A
LdF =log, i sz =
5
I
=M1+M2—M3

where M; is the log-ratio of the experiment i, i = 1, 2, 3.
Thus, we sought to filter out features whose LdF deviates
greatly from this expected value of zero. We calculated
the mean and standard deviation (SD) of LdF, and elimi-
nated features whose LdF is greater than 2 SD from the
mean. The selected number of standard deviations of the
mean ensures that on the one hand the features used for
the subsequent analysis roughly comply with this loop-
design rule with relatively high confidence, while on the
other hand selection thresholds are not too stringent,
and thus reject potentially interesting genes.

Data integration

Before proceeding to the cross-platform analysis, since
two different microarray platforms (IntelliGene®™ Human
Cancer CHIP Version 4.0 and IntelliGene® II CHIP)
were utilized in the present study, we chose to perform
data integration at a lower level [33], instead of conduct-
ing a meta-analysis. That is, the preprocessed datasets of
each array were combined to a single, unified dataset, in
which standard statistical procedures were applied.
Nonetheless, whenever applicable to the nature of the
present study, some of the key issues that need to be
addressed, i.e. preprocessing, preparation and annotation
of the individual datasets, complied to the guidelines
suggested by [34].
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In order to perform data integration, two main issues
had to be resolved: (i) matching reporters on the two
microarray platforms, and (ii) normalizing data to
address platform related differences [35].

The first task was rather straightforward, since both
platforms were obtained from the same manufacturer
and many reporters were common between the 1.2 k and
the 4.8 k platforms. Specifically, each reporter-level iden-
tifier (GenBank accession numbers) was mapped to a
UniGene identifier (UniGene Cluster ID) [36-40]. The
mapping was performed through the web-based tool
SOURCE [41] in the 19th of November 2010, simulta-
neously for both platforms, in order to avoid inconsisten-
cies [42]. All mapped reporter-level identifiers had one-
to-one relationship with the gene-level identifiers that is,
each reporter was associated with a single UniGene iden-
tifier and no more than one reporter was mapped to the
same UniGene identifier. Reporters having insufficient
information to be mapped to any gene-level identifier
were omitted. Thus, a fully updated set of unique gene-
level identifiers was generated for each platform. The
intersection of these two sets formed a common gene set
(CGS) consisting of 490 UniGene identifiers common in
all setups, which was utilized for the subsequent analysis.

Then, a cross-platform normalization procedure was
applied in order to address batch effect issues, namely the
median rank score (MRS) normalization method [4:3,44].
After choosing a microarray set as reference, this simple
approach replaces the expression values for all the others
(non-reference) microarray sets by median expression
values of genes from the reference set. The reference set
of choice was the 4.8 k platform set, since it outperforms
in data quality when compared to the 1.2 k one [43]. The
improved comparability of the data from the two different
platforms after cross-platform normalization is shown in
Additional File 1, where it can be seen that the distribu-
tions of gene expression values derived from the 1.2 k and
4.8 k platforms are more similar after application of MRS
in comparison to non-integrated data.

The following analysis steps were performed on the
integrated gene expression values of the CGS.

Identification of differentially expressed genes

In order to identify potential, differentially expressed
(DE) genes for each slide, whenever the experimental
design did not include replicates for the same condition,
we adjusted a selection process, exploiting the intensity-
dependent calculation of the standard Z-score [32] of
each feature within each slide. This approach utilizes a
sliding window to calculate smoothed local means and
standard deviations (SDs), which are then used to calcu-
late the Z-score of the logarithmic ratio values for each
data point in the normalized MA-plot. At the present
study, a sliding window of width equal to 20% of the
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total number of data points was utilized. The selected
percentage on one hand represents a plausible tradeoff
between the adequate sample size for statistics calcula-
tion, and neighbourhood sensitivity regarding the inten-
sity-dependent action. The DE genes per experiment
were identified at a confidence level of 95%.

Cluster analysis

In order to partition the gene expression profiles
throughout all five experimental setups and exploit simi-
larities in the expression profiles, for surmising func-
tional relevance, possibly through common regulatory
actions, which orchestrate genomic expression with
respect to the studied phenotypes in this study, an unsu-
pervised cluster analysis was utilized.

The unsupervised clustering was applied to an appro-
priately selected subset of the CGS, since simulations
have indicated that keeping irrelevant genes during clus-
ter analysis, results in reduced accuracy [45]. Specifically,
each gene of the CGS was ranked by SD across experi-
ments. The top 100 genes with the highest SD (SD100)
were selected for downstream analysis. As demonstrated
in the recent thorough evaluation study for two-channel
microarray data [46], this widely used method is one of
the best performing gene selection approaches.

The method utilized for cluster analysis was the k-
means clustering [47-49], considered as one of the best
performing clustering options in particular for microar-
ray class discovery studies [46]. The k-means algorithm
applied [50] uses the squared Euclidean as a distance
measure, which has been frequently found to outper-
form, regargding ratio-based measurements [51]. Also,
in order to evade the problem of possible local minima,
the algorithm is repeated a number of executions with
different initializations. Specifically, the clustering proce-
dure is repeated 100 times, each with a new set of initial
cluster centroid positions (seeds), selected at random,
and the best execution (the one that minimizes the sum,
over all clusters, of the within-cluster sums of object-to-
cluster-centroid distances) is taken as the final result.

In order to predict the optimal number of clusters for
interpretation, which constitutes a fundamental problem
in unsupervised clustering, a cluster validity measure
was applied. The validity measure of choice was the
average silhouette width for the entire dataset S com-
prising N objects [52,53]:

- 1
Si= Z Si
ieS
where S; is the silhouette width of object i, which is
defined as:
_ bi — a4
N max(ai, bi)
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where a; is the average distance between object i and
all the other objects in the cluster, and b; is the mini-
mum of the average distances between i and objects in
other clusters. To determine the optimal number of
clusters [54], the clustering was executed for k varying
between 2 to 30. For each k, the aforementioned k-
means algorithm was repeated 1,000 times. The best
(maximum) values of §, obtained by each k were
plotted as the function of k (Additional File 2). As illu-
strated in this figure, since the plot did not exhibit any
specific increasing or decreasing trend, we sought for its
maximum value [54]. Thus, the optimal cluster number
was the one corresponding to the maximum value of
the plot and was found to be equal to 7.

The implementation of all preprocessing steps, along
with the identification of the DE genes and cluster ana-
lysis, was performed in the Matlab® 7.9 (R2009b) (The
MathWorks Inc. Natick, MA, USA) computing
environment.

Gene Ontology based analysis

In order to compare different groups of genes, highlight-
ing different functionalities among all experimental set-
ups, interesting genes formed study sets that were
further subjected to Gene Ontology (GO) based analysis
to test the nature of the observed resistance mechanism.
Specifically, for each study set formed, statistical analysis
of GO term overrepresentation was performed against
the CGS, which was utilized as a reference set, as pro-
posed by [55]. The chosen approach was the parent-
child-union method [56], since it was found to outper-
form the standard method of overrepresentation analysis
(ORA) in GO. The standard approach treats each GO
term independently and hence does not take dependen-
cies between parent and child terms into account, ignor-
ing the structure of the GO hierarchy. It was shown that
this behavior can result in certain types of false positive
results, with potentially misleading biological interpreta-
tion [56]. In contrast, the parent-child method measures
the overrepresentation of a term with respect to the pre-
sence of its parental terms in the set, and hence resol-
ving the problem of the standard method which tends
to falsely detect an overrepresentation of more specific
terms below terms known to be overrepresented.

ORA was performed with the publicly available Onto-
logizer 2.0 tool [57] using GO terms definitions and
associations between genes and GO downloaded from
the Gene Ontology consortium [58] on the 26th of
November 2010.

TFBMs analysis

In order to identify the transcription factors driving the
observed changes in the gene expression, we investi-
gated the Transcription Factor Binding Motifs (TFBMs)
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in the Transcription Element Listening System Database
(TELIS) [59]. The TRANSFAC transcription factor data-
base was used for the identification of gene transcription
factor binding sites [60].

Chromosome mapping

Chromosome mapping appears to be a promising
method for identifying patterns among genes. The main
idea reported initially by [61] is to map genes in chro-
mosomal regions and in this way, if correlations do
exist, they appear through the location of genes on
chromosomal regions, since consistent expression of
whole functional entities is related with activation of
given chromosomal regions. For chromosome mapping
analyses, we used the Gene Ontology Tree Machine,
WebGestalt web-tool [62].

Pathway analysis

Pathway analysis was performed in order to find genes
that participate in known pathways related to the inves-
tigated mechanisms, such as apoptosis or cell prolifera-
tion. This approach was used in order to gain further
insight into the mechanisms underlying the common
genes identified by our proposed model. The differen-
tially expressed genes were mapped on different path-
ways using the Pathway Explorer software [63]. First of
all, it was investigated the percentage of genes present
in all known pathways using the databases available
through the Pathway Explorer software. The KEGG
Pathways database was used for our analysis [64-66].

Hypothesis examination and computational work flow
Hypothesis statement
In order to answer the question of inherently disposed or
acquired resistance and examine our initial working
hypothesis, significant genes derived from the computa-
tional workflow were grouped in three sets, for each experi-
ment i, with i = 1...5, S;, U, and D;, where: S; includes genes
which expression is considered to be unchanged, U;
includes genes up-regulated, and D; includes genes down-
regulated. Furthermore, in order to facilitate interpretation,
gene functions were categorized in two major categories, F,,
and F,, where F, is related to apoptosis evasion and cell
cycle progression, whereas F, is related to apoptosis induc-
tion and cell cycle arrest. In other words, F, is related to
genes that are not desired targets of prednisolone regulation
and the glucocorticoid receptor (GR) in the system under
study, while F, is related to genes involved in apoptosis,
which are the desired ones of GC regulation.
Modeling approach
Concerning the 4 h treatment, namely the early treat-
ment, the following functional categories were defined:
i) If genes simultaneously remain unaffected at the low
and high prednisolone doses (intersection of sets S; and
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S3 (Figure la), which points out dose-independent
genes), and GO functions are related to F, then those
functions seem not to confer to the manifestation of
resistive behavior by the cells, thus suggesting that these
cells are originally sensitive and gradually develop resis-
tant phenotypic characteristics. On the contrary, if gene
functions are related to F, then cells tend to remain
unresponsive to GC treatment, thus implying an intrin-
sic mechanism of resistance.

ii) If genes are simultaneously up-regulated at both
concentrations (intersection of sets U/; and U; (Figure
1b), which points out probable early time-dependent
genes or a generalized reaction mechanism to GCs which
is dose-independent), and GO functions are related to F,
then cells have an intrinsic mechanism of resistance. On
the contrary, if gene functions are related to F, then cells
are originally sensitive and gradually develop, or homeos-
tatically adjust to resistant phenotypic characteristics.

iii) If genes are simultaneously down-regulated at the low
and high prednisolone doses (intersection of sets D; and D3
(Figure 1c), which points out dose-independent genes, that
manifest the same expression profile under these two
extreme GC concentrations, viz, down-regulated in the cell
system in its natural condition), and GO functions are
related to F), then cells are originally sensitive and gradually
develop resistant phenotypic characteristics. On the con-
trary, if gene functions are related to F, this predicates
upon an intrinsic mechanism of resistance by the cells.

iv) If genes are simultaneously up-regulated at the low
prednisolone concentration and down-regulated at the
high prednisolone dose (intersection of sets U; and D3
(Figure 1d), which points out the dose-dependent genes)
and GO functions are related to F,, then cells tend to
present a dose dependent sensitization to GC exposure,
thus postponing resistance manifestation at a later point,
something which implies acquired resistance mechan-
isms. On the contrary, if gene functions are related to F,
then cells have an intrinsic mechanism of resistance.

v) Finally, if genes are simultaneously down-regulated
at the low prednisolone concentration and up-regulated
at the high prednisolone dose (intersection of sets D; and
U; (Figure 1e), which points out the dose-dependent
genes) and GO functions are related to F,, then cells
show a dose-dependent intrinsic mechanism of resis-
tance. On the contrary, if gene functions are related to F,
then cells present dose-dependent sensitization, postpon-
ing resistance manifestation at a later point something
which implies acquired resistance mechanisms.

Further on, extrapolating the aforementioned
approach in the analysis of the 72 h experiments,
namely the late treatment, the following functional cate-
gories were defined:

i) If genes remain unchanged (intersection of sets Sy
and S5 (Figure 1f) or are up-regulated (intersection of
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Unknown dependency Dose-dependent genes Dose-dependent genes

Dose-independent genes Probable early time-dependent genes or - Dose-independent genes
a generalized, dose-independent reaction

mechanism to GCs

Unknown dependency Unknown dependency Unknown dependency
Dose-dependent genes Dose-dependent genes Time-dependent genes
Unknown dependency Unknown dependency Unknown dependency

Time-dependent genes Time-dependent genes Dose-dependent genes

Unknown dependency

() /¢

Dose-dependent genes

Figure 1 Venn diagrams illustrating the intersections of the formulations posed for resistance. Schematic representation of the set
intersections (a) - (j) formed based on the definitions described in Methods, in order to answer the question of inherently disposed or acquired
resistance. Sets S;, U; and D; include genes constantly expressed, up-regulated, and down-regulated in experiment j, respectively.

sets U, and Us (Figure 1g) at both treatments at 72 h, ii) If genes are down-regulated (intersection of sets D,
and GO functions are related to F,, then cells manifest and D; (Figure 1h) and GO functions are related to F,,
a time-dependent acquired mechanism of resistance. If  then the mechanism of resistance is probably inherent.
the opposite is true, then the nature of the resistance  Again, if the opposite is true, then the nature of the
mechanism cannot be defined. resistance mechanism cannot be defined.
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iii) If genes are up-regulated at the 22 uM vs. 700 uM
experiment and down-regulated at the control vs. 700
uM experiment (intersection of sets U, and D5 (Figure
1i) or are down-regulated at the 22 uM vs. 700 uM
experiment and up-regulated at the control vs. 700 uM
experiment (intersection of sets D, and Us (Figure 1j),
and GO functions are related to F,, then cells manifest
an acquired resistance mechanism which is partially
remitting to a dose-dependent re-sensitization by large
GC doses. On the other hand, if gene functions are
related to F,, then the mechanism of resistance cannot
be defined.

All aforementioned combinations are summarized in
the simplified flowcharts of Figure 2.

Results

Gene expression profiling concerning two distinct time
points (4 h and 72 h) followed mRNA isolation from
the CCRF-CEM cell line, cultured in three different pre-
dnisolone concentrations (10 nM, 22 uM, and 700 uM).
The mRNA collected was used for hybridization on two
c¢DNA microarray platforms (1.2 k and 4.8 k). Specifi-
cally, the experimental design consisted of the five fol-
lowing pairs: control vs. 10 nM prednisolone at 4 h
(designated as ‘1’), 10 nM vs. 700 uM prednisolone at 4
h (designated as ‘2’), control vs. 700 uM prednisolone at
4 h (designated as ‘3’), 22 uM vs. 700 uM prednisolone
at 72 h (designated as ‘4’), and control vs. 700 uM pre-
dnisolone at 72 h (designated as ‘5’).

A common for both platforms data preprocessing
stage was applied to the raw expression datasets, includ-
ing proper background correction for each replicate
slide, within-slide normalization and filtering. Concern-
ing data integration, a two-step procedure was applied,
firstly by matching reporters on the two, microarray
platforms and then applying a cross-platform, normali-
zation approach. In this way the preprocessed expres-
sion values of the common gene-level identifiers,
existing in both platforms, were selected to form a uni-
fied dataset on which standard statistical procedures
could be applied. Each subsequent analysis step was per-
formed on the integrated gene expression values of this
unified dataset (Additional file 3), which includes a total
number of 490 genes, common in all experimental set-
ups (see Methods for details).

Gene Ontology analysis based on statistically significant
genes

In order to identify differentially expressed (DE) genes
for each experiment, we utilized the intensity-dependent
calculation of the standard Z-score [32] of each com-
mon feature within each slide, at a confidence level of
95%. Then, for each experiment i, with i = 1...5, all
genes were further classified into the three sets: S;, U,
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and D;, where S; includes genes which expression is
considered to be unchanged, U; includes genes up-regu-
lated, and D; includes genes down-regulated (Additional
file 4).

Set intersections

In order to address the question of the prevalence of
either inherently disposed or acquired mechanisms of
resistance, the following intersections were defined, in
line with the formulations described in the Methods sec-
tion (Figure 1): S; n S3, Uy n Uz, Dy n D3, Uy N D3, Dy
nius S,nSs, UynU;s DyN Ds, Uy N Us, and Dy N Us
(Additional file 4). Then, these intersections were sub-
jected to statistical analysis of Gene Ontology (GO) term
overrepresentation, in order to test the nature of the
observed resistance mechanism (Additional file 5). The
generated from the GO-based analysis gene functions
were also further categorized in two major categories: F,
and F,, where F, is related to apoptosis evasion and cell
cycle progression, whereas F, is related to apoptosis
induction and cell cycle arrest (Figure 2).

The results of this examination demonstrated specifi-
cally that:

i) Genes belonging to intersection S; N Sz (Figure 1a)
do not incorporate any functions related to apoptosis
induction (F,) or cell proliferation (F,), thus the nature
of the resistance mechanism cannot be defined.

ii) No common genes were observed for sets {/; and
Us (Figure 1b), implying that no genes from the present
dataset are dose-independent upon prednisolone
treatment.

iii) Intersection D; N D3 (Figure 1c) showed only one
common gene, the DAPKI. However, DAPKI1 is known
to be a positive mediator of gamma interferon induced
cell death [67], thus down-regulation of DAPK1 implies a
possible linkage with inherent resistance mechanisms.
Moreover, it appears that DAPK1’s down-regulation is
dose-independent and the glucocorticoid receptor (GR),
when stimulated in the system under study, deactivates it.

iv) Intersections U; N D3 (Figure 1d) and D; n U;
(Figure 1e) do not yield common genes. Since there are
no genes that are regulated dose-dependently and in
opposing manners, it may be concluded that, at least as
far as the present dataset is concerned, prednisolone
regulates different sets of genes in a dose-dependent
manner.

Regarding the 72h time point:

i) Genes belonging to intersection Sy N S5 (Figure 1f)
comprised functions related to induction of apoptosis
and cell cycle arrest (F,), thus they do not confer any
knowledge about the nature of the resistance
mechanism.

ii) Intersections U, N Us (Figure 1g) and Dy N Ds
(Figure 1h) did not yield common genes, whereas inter-
section U, N Ds (Figure 1i) captured one gene, namely
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Figure 2 Flowcharts of the hypotheses posed for resistance. Simplified flowcharts (a) - (d) of the hypotheses posed for inherent or acquired
resistance in ALL cells. Subsets Sy n S5, Dy N D3 and U; n D5 follow flowchart (a), subsets U; n Us and D, n Us follow flowchart (b), subsets S, N
Ss, Uy 0 Us, Uy N Ds and D, N Us follow flowchart (c), and subset D, N D5 follows flowchart (d). Sets S, U, and D; include genes constantly
expressed, up-regulated, and down-regulated in case i/, respectively, where subscript i is varying from 1 to 5, and refers to each experimental
setup. Each subset is tested for its GO enrichments, while gene functions are categorized as f,, F,, where F, is related to apoptosis induction
and cell cycle arrest and F,, is related to apoptosis evasion and cell cycle proliferation.
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the gene KIT. This gene is reported to play a role in a
variety of human tumors, including acute myelogenous
leukemia, in its mutated forms [68]. From the present
study it appears that it is also active in the regulation of
GC action.

iii) Finally, one gene is derived from the intersection
of D, n Us (Figure 1j), namely MADD (also known as
1G20), which represents a very interesting gene since it
has an established role in the mediation of the death
signal from TNF-alpha downwards to the apoptosis acti-
vators [69]. In general, it is also known to be expressed
at higher levels in neoplastic cells than in normal cells
[70], which is also the case for our system. However, it
is unclear if MADD over-expression in tumor cells
incurs increased apoptosis or not. The case of this speci-
fic gene becomes more interesting as it is known that at
least six different splice variants with equally different
functions are expressed, each one performing different
functions, both apoptotic and anti-apoptotic [70].
Individual sets
From the aforementioned it seems that dose-dependent
prednisolone administration induces varying expression
of different sets of genes. In this sense, a plausible pre-
sumption is that genes differentially expressed by pre-
dnisolone should to a large extent be implicated in the
resistance mechanisms, responding to prednisolone
treatment. Thus, apart from the aforementioned inter-
sections, the sets U;, Uz, D; and D, for the 4 h time
point, and the sets Uy, Us, Dy and Ds for the 72 h time
point were also examined (Additional file 5). More
specifically:

i) Gene set U;, concerning response to low dose GC
administration was related to apoptotic and cell cycle
regulation mechanisms. It is worth noting that this set
(upregulated by 10 nM prednisolone) includes gene
BCL2L2, which has been reported to be an anti-apopto-
tic gene [71].

ii) Gene set U3, concerning genes overexpressing as a
result of high GC presence, did not highlighted func-
tions relevant to apoptosis induction or positive regula-
tion of cell death (F,). In this sense, it provides evidence
for an inherent mechanism of resistance, since it seems
that the high dose does not comply with the expected
apoptotic actions. Interestingly, the same concentration
(700 uM) seemed to stir metabolic as well developmen-
tal mechanisms.

iii) Both sets D; and D3 did not incorporate functions
related to apoptosis induction and positive cell death
regulation (F,). In other words, the genes down-regu-
lated both in low or high doses of prednisolone adminis-
tration are not related to apoptosis induction.
Nevertheless in set D;, gene DAP, which encodes for a
protein that is positive regulator of programmed cell
death [72], is related in addition to the process of
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autophagy. Moreover, this gene is a member of the
mTOR pathway, which is at the same time, a negative
regulator of autophagy [73]. Again, it appears that 10
nM prednisolone stimulates cell proliferation in addition
to an anti-apoptotic effect. It cannot be precluded that
prednisolone could potentially enhance alternative nutri-
tion mechanisms as an alternative way to attain survival.
It appears that GC presence is impacting the way the
cell will metabolize.

Regarding the 72h time point:

i) It appears that prednisolone exerts a diversified
intricate mechanism as it up-regulates (U,) genes, such
as BCL2, which is an anti-apoptotic gene. Moreover,
functions were revealed that had to do with positive reg-
ulation of locomotion, indicating the activation of a pos-
sible mechanism of evasion from a hostile environment.

ii) Also, prednisolone up-regulated genes related to
apoptosis evasion (F,) at the 700 uM dose as compared
to untreated cells (Us), among these, gene BIRCS. The
BIRC family of genes belongs to the larger JAP family of
genes (inhibitors of apoptosis genes). BIRCS5 especially is
considered to be an apoptosis evasion factor with signif-
icant presence in a variety of tumors [74]. The fact that
prednisolone up-regulates such a gene, supports the
case of an acquired mechanism of action.

iii) In addition, prednisolone down-regulated genes
(D4 and Ds) are related to stimulation of cell cycle pro-
gression (F,), such as BCL2L2 and KIT, respectively.
Also, genes related to positive induction of cell death,
such as IKBKE and PPP3CC [40] are down-regulated.
However, it is worth mentioning that there is also a
shift of molecular function towards NF-xB-related
effects. Especially, gene IKBKE, which is a non-canonical
Ix-B kinase, a known controller of NF-xB [75], appears
to be down regulated by prednisolone at 72 h. This is
the same gene that is involved in induction of cell
death, i.e. IKBKE, which is a non-canonical Ix-B kinase,
a known controller of NF-«B [75].

A very interesting case is presented in these clusters
with the MCL1 gene. As mentioned before, this gene is
instrumentally linked to cell survival and the fact that
the low dose activates it, is a strong indication for inher-
ent resistance in the present system. This indication
becomes stronger by the finding that this gene is simi-
larly expressed in untreated cells and cells treated with
various concentrations of prednisolone. As a matter of
fact it seems that even variations in concentrations such
as the 22uM and 700uM do not affect its expression, at
least at late time points, or its expression has been stabi-
lized. In cluster 7, gene functions appeared to be related
to cell cycle regulation. This group of clusters seem to
outline the effects of the high prednisolone dose, as this
dose activates genes related to cell cycle progression.
For example, in these clusters appear genes such as
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BMP5, FGF7 and MCLI1. Those genes, are promoters of
anti-apoptosis and proliferation. Over-expression of
such genes, at later time intervals, points out the exis-
tence of an inherent mechanism of reaction to the glu-
cocorticoid. Yet, the fact that their expression at 4h
remains stable, implies that for this gene set the decision
for gene activation or not is taken later on during GC
treatment. The fact however, is that cells react with
anti-apoptotic signals already at 4h and our hypothesis
is that the 72h activation of anti-apoptotic genes has to
do with a re-enforcement of the resistant phenotype
that the cells already possess.

Taken together the results of all the studied subsets,
summarized in Table 1, showed that the cell system
under study exerts an intricate response pattern of
inherent and acquired mechanisms of GC resistance,
which seems however to favor inherent resistance
mechanisms.

We have seen that at early time points, there are no
genes, which are regulated dose-dependently or in
opposing manners. Therefore, we concluded that pre-
dnisolone regulates different sets of genes in a dose-
dependent manner, at least as far as the present data set
is concerned. This helped us to conclude that genes dif-
ferentially expressed by prednisolone should play a role
in the resistance mechanism to prednisolone.

Gene Ontology analysis based on clustering

K-means clustering is an effective way of classifying
gene expression profiles, based on their similarities as
well as on probable common regulatory mechanisms. In
this way, it can be considered as an effective way to sug-
gest candidate targets of putative, common regulatory
mechanisms. Thus, as described in Methods, the top
100 genes with the highest SD (SD100) from the CGS
was subjected to k-means clustering using squared
Euclidean as a distance measure, in order to identify
groups of genes presenting similar expression profiles
during prednisolone treatment early and late response
and possibly co-regulated. In Figure 3, the k-means clus-
tering is presented, illustrating the seven clusters derived
(Additional file 6). GO-based enrichment analysis, that
followed, linked co-expressed genes in each cluster to
several functional categories (Additional file 5). In parti-
cular, we noted that:

i) Cluster 1 (C;) contains time-dependent genes, which
expression decreases at 700 uM prednisolone and the 72
h time point (resembling the behaviour of the Ds set),
while remaining unchanged at all other conditions
(including genes from the S; N S, set). However, genes
under this cluster did not yield any significant GO terms.

ii) Cluster 2 (C,) mainly comprises genes showing
early down-regulation at 700 uM prednisolone (includ-
ing genes from the D3 set), while remaining unchanged
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Table 1 Summary of the GO functions revealed for each
gene set

Gene Group® No. Gene® Gene Function® Resistance? p-value®

F, Fo Fn F;
4h S;n 423 no no no yes n/d < 0.05
53
un 0 n/ n/ n/ n/ n/a n/a
Us a a a a
D;n 1 DAPKI no yes no no inherent <005
Ds
Un 0 n/ n/ n/ n/ n/a n/a
Ds a a a a
Din 0 n/ n/ n/ n/ n/a n/a
Us a a a a
U; 12 BCL2L2 yes no no no  inherent < 0.05
Us 1 yes no yes no inherent < 005
D, 23 DAP  no vyes yes no inherent < 005
CASPT  no yes no no inherent < 005
CDC25 yes no no no acquired <005
b3 22 IL24 no yes no no inherent < 005
72h  S;n 433 no yes yes no n/d < 005
Ss
U,n 0 n/ n/ n/ n/ n/a n/a
Us a a a a
D,n 0 n/ n/ n/ n/ n/a n/a
Ds a a a a
Usn 1 KIT yes no no no acquired < 005
Ds
bD,n 1 MADD n/ n/ n/ n/ n/d < 005
Us d d d d
Us 9 BCL2 yes no no no acquired <005
Us 12 BIRC5 yes no no no acquired <005
Dy 19 BCL2L2 yes no no no acquired < 0.05
Ds 18 IKBKE no yes no vyes ~inherent < 0.05
PPP3CC no yes no no ~inherent < 0.05
clusters ©7 4 n/ n/ n/ n/ n/a n/a
a a a a
© 1 n/ n/ n/ n/ n/a n/a
d d d d
3 14 no yes no no inherent < 005
4 25 n/ n/ n/ oo/ n/a n/a
a a a a
s 17 yes yes no no n/d <005
6 10 no yes no no inherent < 005
7 19 yes no yes no acquired < 005

? S, U, and D; correspond to groups which include genes constantly
expressed, up-regulated, and down-regulated in experiment i, respectively,
and C; to a cluster of genes showing similar expression profile. Subscript i is
varying from 1 to 5 and refers to each experimental setup, ® Selected genes
from each gene set, © F, = is related to apoptosis evasion and cell cycle
progression, F, = is related to apoptosis induction and cell cycle arrest, F,,, = is
related to metabolic processes, F; = is related to the regulation of 1xB/NFxB,
n/a = not available, and n/d = not defined, ¢ ~ inherent = probably inherent,
€ Each p-value corresponds either to the one-sided Fisher exact test of the
GO-based analysis of the respective gene set, or, in case of a single gene, to
the intensity-dependent Z-score.
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1 2 3 4 5

Figure 3 Expression profile clustering. K-means clustering of the gene expression profiles illustrating the seven clusters as described in
Methods. Each subplot corresponds to one cluster of genes showing similar expression profile. The horizontal axes correspond to the five
prednisolone experiments of interest, where ‘1" = control vs. 10 nM prednisolone at 4 h, 2" = 10 nM vs. 700 uM prednisolone at 4 h, 3’ =
control vs. 700 uM prednisolone at 4 h, ‘4" = 22 uM vs. 700 uM prednisolone at 72 h, and ‘5" = control vs. 700 uM prednisolone at 72 h. The
vertical axes depict the corresponding logarithmic ratios, as derived from microarray data analysis.

at all other conditions (probably outlining genes of the
Sy N S5 set). GO-based analysis revealed genes involved
in developmental processes, implying a possible exis-
tence of stem cell related functions in the cell system
under study.

iii) Cluster 3 (C3) depicts genes showing early down-
regulation at 10 nM prednisolone (including genes from
the D; set), while remaining unaffected by the 700 uM
prednisolone treatment. This cluster comprised genes
related to positive regulation of cell death. The fact that
these genes are suppressed under low prednisolone con-
centration at the early time point is in agreement with
the anti-apoptotic and survival effect reported previously
by [76], which implies an intrinsic mechanism of
resistance.

iv) Cluster 4 (C,4), similarly to (C;), presents genes
which expression at 700 uM prednisolone decreases at
the 72 h time point (resembling the behaviour of the D5
subset), while remaining unchanged at all other condi-
tions (including genes from the S; N S3 subset). How-
ever, genes under this cluster did not present any
interesting GO terms.

v) Cluster 5 (Cs) contains genes remaining unchanged
at all conditions (including genes from the S; N S3 inter-
section) except for experimental setup ‘4’, where they
are down-regulated (resembling the behaviour of the D,
set). GO-based analysis of cluster 5 revealed genes that
are involved in the opposing processes of cell cycle pro-
gression, as well as cell cycle arrest, and cell death
functions.

vi) Cluster 6 (Cg) depicts genes that are also
unchanged at all conditions (including genes from the
S, N S5 intersection) except for experimental setup ‘27,
where they seem to be down-regulated (resembling the
behaviour of the D, set). Functions represented by genes
in cluster 6 include cell death functions so their down
regulation at the specific setup supports the case of
inherent resistance mechanisms.

vii) Finally, cluster 7 (C;) groups together time-depen-
dent genes that remain unaffected at all experimental
setups (including genes from the S; N S intersection),
but at 700 uM after 72 h of treatment (resembling the
behaviour of the U5 set), where they are positively regu-
lated. It appears that those genes participate in cell cycle
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regulation. This cluster seems to outline the effects of
the high prednisolone dose, as this dose activates genes
related to cell cycle progression. Special attention was
drawn to the MCL1 gene. This gene is a member of the
BCL2 family and it produces an anti-apoptotic protein
responsible for cell survival.

The cluster analysis results, summarized in Table 1,
also confirm that, although the gene expression profiles
of the cell system under study present a mixed response
of inherent and acquired mechanisms of GC resistance,
however there is a tendency towards inherent resistance
mechanisms.

TFBM analysis

A next step on our analysis was the identification of
common transcription factors that would regulate genes
in a similar way. Cluster 1 (C;) manifested a common
transcription factor namely OCT1 (p = 5 - 10”). Cluster
2 (C,) similarly manifested a common transcription fac-
tor, MZF1 (p = 8 - 10™). Cluster 5 (Cs) were predicted
to be commonly regulated by the CCAAT (NFYA) tran-
scription factor (p = 5 - 107). Cluster 6 (Cg) presented
an interesting case, as the common most prevalent tran-
scription factor was JUN. Finally, Cluster 7 (C;) also
manifested different transcription factors. In particular,
the most prevalent transcription factor was OCT1 (p =
1-10710).

Chromosome mapping

In order to find further patterns of expression in the
system under study, we have performed a chromosome
mapping analysis, where the mean expression of genes
with respect to chromosomes has been studied. A gen-
eral remark from this analysis is that expression seemed
to be equivalently distributed; at least as far as positive
regulation is concerned, while chromosomes 14 and 22
appeared to have genes with most deactivation as com-
pared to untreated genes (Figure 4a).

Further on, we have separated gene expression based
on the time points i.e. we have calculated the mean
expressions for the 4 h and 72 h treatments (Figure 4b
and 4c, respectively). We have tried to identify whether
the mean expression values, either positive or negative,
correlate to the number of genes represented on each
chromosome. In Figure 4d, the number of genes per
chromosome is presented. Table 2 presents the calcu-
lated correlation values of mean expression values for
experimental time points, while Figure 5 graphically
illustrates the Pearson’s correlation values comparing
gene numbers to mean gene expression. Interestingly,
gene number is negatively correlated to negative mean
expression, which means that the more genes are repre-
sented on chromosomes the more these genes are
down-regulated as compared to untreated cells or, in
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order to be more concise, the more these genes are
inactivated as compared to control.

Pathway analysis

In order to gain further insight into the possible
mechanisms that probe for the preponderance of inher-
ence or acquired resistance mechanisms, we have
attempted to perform a pathway analysis with the
defined genes from our dataset. We have mapped the
common dataset on known pathways and in particular
on the KEGG Pathways database. In particular, we have
outlined two pathways: the MAPK pathway, as it incor-
porated the larger number of involved genes to be
mapped on it (Figure 6), and the apoptosis pathway,
since we were interested in examining the possible role
of genes related to apoptotic mechanisms (Figure 7).

It is known that the MAPK signaling pathway is
involved in cell cycle progression and apoptosis. We
have outlined several cross-talking molecules in this
pathway that were revealed also by our dataset, such as
the NF-xB, JNK, p38 and ERK5. NF-xB remains stable
across the experimental setups indicating a steady role
in apoptosis. Yet, as it is regulated by the GR then its
levels should be lowering as concentration increases.
This hints towards a more specific, more pronounced
involvement of the NF-«<B factor in the observed resis-
tance. At the same time, the JNK kinase, which is a
mediator of apoptosis, appears to remain unaffected by
the prednisolone concentrations indicating that the
MAPK pathway involved in apoptosis does not function
in the way it should have, hence supporting an inherent
mechanism of resistance. Finally, an interesting molecule
is the ERK5, which appears to be down-regulated at the
low doses and unaffected thereafter. This molecule is
involved in cell proliferation and its down-regulation is
one of the very few implications that prednisolone
behaves as expected, hence indicating an acquired
mechanism of resistance.

Moving to the apoptosis pathway, several interesting
genes that play a role in the observed apoptosis were
identified. In particular, based on the signaling on Figure
7, we can discriminate between the TNF/FADD/CASP/
BIRC system (top of the figure), where it appears that
molecules responsible for degradation are down-regu-
lated under prednisolone treatment. In particular, BIRC5
was found to be activated in the 72 h treatment, while
remained unchanged in the previous time point. In
addition, CASPI was found to be down-regulated at 10
nM treatment and 4 h, indicating an inherent mechan-
ism. This part of the pathway seems to function in such
a way as cells already possess glucocorticoid resistance.
The second part of the pathway consisting from NGBEF/
NTRK1/AKT1/NFxB/BIRC/BCL2 (family) shows the
following. AKT1 appeared to remain unchanged at all
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Figure 4 Chromosome-related gene expression. The mean values of all genes at all time points (a) is presented separated in positive and
negative fold expression. Chromosomes 14 and 22 showed to have the most deactivated genes as compared to untreated cells. Similarly, mean
gene expression has been separated to the 4 h (b) and 72 h treatments (c). Further on we have searched whether mean gene expression is
associated with the represented genes on each chromosome as the number of genes is presented on (d).

concentrations and time points. NF-xB1 is down-regu-
lated at the late time points, indicating a late response
to the glucocorticoid, while it is unchanged at the early
time points. The BCL family is a super-family of pro-
teins that when expressed promotes survival. In the

present dataset, the BCL2 gene was found to remain
unchanged, while a member of the super-family,
BCL2L2, was up-regulated. BCL2L2 is one of the genes
that participate in survival in the pathway, confirming
the fact that we have an early anti-apoptosis response.
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Table 2 Pearson’s correlation analysis of the mean expression values of genes with respect to their chromosome

allocation
Pearson’s correlation value®
All 4 h 72 h
Genes no. my >0 my <0 my >0 my <0 my >0 my <0
Genes no. 1.0000 02813 -0.0368 0.0719 0.2309 0.3883 -04294
All my >0 0.2813 1.0000 0.0383 04537 0.1325 0.7978 -0.2066
my <0 -0.0368 0.0383 1.0000 0.2503 0.7349 -0.0249 0.5293
4 h my >0 00719 04537 0.2503 1.0000 0.2789 0.0053 -0.0059
my <0 0.2309 0.1325 0.7349 0.2789 1.0000 0.0385 -0.0599
72 h my >0 0.3883 0.7978 -0.0249 0.0053 0.0385 1.0000 -0.2422
my <0 -04294 -0.2066 05293 -0.0059 -0.0599 -0.2422 1.0000
p-value®
All 4 h 72 h
Genes no. my >0 my <0 my >0 my <0 my >0 my <0
Genes no. 0.0000 0.1936 0.8677 0.7444 0.2891 0.0671 0.0409
All my >0 0.1936 0.0000 0.8624 0.0297 0.5467 0.0000 0.3441
my <0 0.8677 0.8624 0.0000 0.2493 0.0001 09101 0.0094
4 h my >0 0.7444 0.0297 0.2493 0.0000 0.1975 0.9808 0.9786
my <0 0.2891 0.5467 0.0001 0.1975 0.0000 0.8616 0.7859
72 h my >0 0.0671 0.0000 09101 0.9808 0.8616 0.0000 0.2655
my <0 0.0409 0.3441 0.0094 0.9786 0.7859 0.2655 0.0000

@ my = mean gene expression.

The role of late NFKB1 inactivation and early BCL2L2
activation probably favors an acquired mechanism of
resistance. Finally, an apoptotic signaling avenue is via
the regulation of Ca*? where the caspases participating
in this pathway are inactivated in the present system.
The PPP3CC protein that regulates phosphorylation of
down-stream targets has a relation to apoptosis over the
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Figure 5 Pearson’s correlation values comparing gene
numbers to mean gene expression. Graphical illustration of
Pearson’s correlation values between gene numbers represented on
each chromosome and the mean expression values for
experimental setups. This analysis showed no significant results
except for the case where negative gene expression is correlated to
gene number. That means that the more genes are represented on
a chromosome the less these are expressed.

activation of CASP proteins. Both are inactivated in the
present system with PPP3CC being inactivated at 72 h
and CASP1 at 4 h. This presents a mixed mechanism of
apoptosis evasion.

Discussion
In the present work, we have set up and propose a
rational computational analysis framework, in order to
aid the elucidation of the molecular mechanisms of glu-
cocorticoid resistance and specifically whether these are
to a larger extent inherent or acquired. To the best of
our knowledge, there are no reports trying to analyze
systematically the underlying, inherent or acquired
molecular mechanisms of GC resistance. The issue
whether leukemic cells possess the inherent genetically
imprinted resistance mechanisms or it is rather a post
effect of evolutionary adoption of originally sensitive
cells upon GC treatment is still a controversial one,
with potentially significant interest for design of novel
therapeutic approaches in cancer treatment. A similar
work [77] reported recently that in ex vivo samples, leu-
kemic cells exhibit an at least in part, intrinsic mechan-
ism of reaction. In another work [78], it has also been
mentioned that glucocorticoids can induce intrinsic
mechanisms of GC-resistance such as the BCL2 relais.
The initial working hypothesis was that the in vitro
system of the present study presents an inherent
mechanism of reaction to glucocorticoids, resulting in
resistance to apoptosis. Our results showed that cells
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differentiation

may attain a mixed mechanism of response to glucocor-
ticoids, however, there is clear evidence predicating
towards an intrinsic mechanism of resistance.
Specifically, several interesting genes, whose expres-
sion is regulated by the GR, were identified. One of
these genes was MCLI1. This gene belongs to the BCL
super-family, which is responsible for cell survival. It has
been reported that down-regulation of MCLI sensitizes
T-cell leukemia cells to treatment with glucocorticoids
[79]. In our system this gene appeared to be stable
across all concentrations while, interestingly, it was up-
regulated by the low prednisolone dose, confirming the
anti-apoptotic effect observed previously by the low
dose. At the same time another member of the BCL
family, BCL2L2, also responsible for cell survival was
up-regulated by the low dose of prednisolone. There are
no reports connecting BCL2L2 with leukemia, yet some
reports refer to its pro-survival role in leukemogenesis
[80,81]. An interesting gene also revealed by the present
analysis was DAPKI, a tumor suppressor gene,

simultaneously down-reglulated at both prednisolone
concentrations. Methylations of this gene have been
linked to hereditary character of chronic leukemias
[82,83] as well as its expression has been linked to child-
hood leukemia [84,85]. Additionally, when moving to 72
h of treatment a gene down-regulated by prednisolone
was KIT, a proto-oncogene homolog to ¢-KIT. Its inhibi-
tion has been reported to be involved in leukemia treat-
ment and glucocorticoid activity [86-88]. Further on, a
gene that is up-regulated by the high prednisolone dose
was MADD. This gene is a propagating agent of the
death signal induced by TNF. It mediates the signal
from TNF to MAPK pathway thus inducing apoptosis.
It is reported to be overexpressed in several neoplasms
[89] and also it is reported that its over-expression is
linked to tumor survival [69].

MADD is a propagating agent of TNF induced death
signals, and more specifically, it mediates the signal
from TNF to MAPK pathway, thus inducing apoptosis.
MADD is phosphorylated by AKT which then inhibits
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TRAIL-induced apoptosis [69]. Considering the fact that
MADD’s expression pattern is in line with the resistance
observed in this study, a lingering question is if this
over-expression is the result of an inherent or acquired
mechanism.

In the search for shared transcription factor binding
motifs an interesting finding was that of JUN. This fac-
tor has been reported previously to play a role in the
apoptosis regulation in the same system studied here
[90].

Chromosome mapping and chromosomal-relative
expression did not correlate with the number of genes
represented on each chromosome, thus suggesting a
well-coordinated GR-induced regulation. GCs are
known to lead to chromatin modification about 2 h fol-
lowing treatment. A detectable change in the expression
of genes that are immediately regulated by the GC is
expected to reach the stage of mRNA steady-state levels
at approximately 3-4 h after treatment. Then, genes
regulated by the GC, begin to influence subsequent gene

expression. cDNA microarray analysis upon 4 h of treat-
ment has been chosen, in order to reduce the complex-
ities that arise later due to ensuing feedback
mechanisms, at the same time focusing on the GR/NEF-
kB-linked, direct target genes [76]. Moreover, the delay
in the action of GCs has been reported depending on
the cell type and lasting from 2 h to 24 h [91]. Specifi-
cally, in our model a prednisolone action lag lasts up to
72 h [76], as reported in different studies [92]. Chromo-
somal-related expression, is closely linked to chromatin
remodeling and it could be the object of future investi-
gations, as it appears that the GR affects almost all chro-
mosomes at all time points as could be easily
hypothesized from the abundance of GR response ele-
ments throughout the human genome [10]. This con-
firms the idea of complete genome regulation by the
glucocorticoid receptor in cellular systems.

The final remarks regarding resistance to glucocorti-
coids, comes from pathway analysis. Based on our
observations, probably the apoptosis induced by either
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TNF receptors or NGFB over the AKT pathway and in
concordance to the MAPK pathway is ruled out, since
AKT remains unchanged. That means that in the pre-
sent system, glucocorticoids do not significantly affect
this pathway. It is also reported that protein-kinase net-
works control in a major way the observed resistance to
glucocorticoids [93]. On the other hand, based on the
pathway model, two alternative ways remain; the mito-
chondria-induced apoptotic pathway and Ca** induced
pathway. From those two the mitochondria-directed
pathway appears to entail genes that remain unchanged
from glucocorticoid treatment. If we also take into
account the notion that GR translocation to the mito-
chondria is part of the resistance mechanisms to gluco-
corticoids [93] then this action could be related to the
induction of resistance in our system, as through trans-
location to mitochondria GR ceases to exert its regula-
tory effects. Alternatively, a likely mechanism for
induction of resistance to glucocorticoid-induced apop-
tosis could be the Ca*? signaling pathway. Several key
genes in it appear to be differentially expressed, such as
PPP3CC and CASPI, at the early time points, thus mak-
ing evasion of apoptosis probable.

Attention should be also drawn on two categories of
genes regulated by prednisolone. These are metabolic
genes and signal-transduction related genes. In both
time points, high prednisolone concentration regulates
such genes, thus grounding for cell proliferation
machinery. In addition, the regulation of NF-xB-related
genes implies an inherent mechanism of resistance
through the established link of NF-+B inflammatory role
and GC-induced resistance.

Overall, the results of the present study support our
initial working hypothesis for a rather inherent GC
resistance mechanism. However, further exploitation of
the proposed computational analysis workflow through
the conduct of a larger genome-wide transcriptomic
study could promote the extent and level of detail
regarding our knowledge about the molecular underpin-
nings which orchestrate the manifestation and dynamics
of the mechanisms of GC resistance and desensitization.

Conclusions

The leukemic cells used in this study are known to be
resistant to glucocorticoids and in particular to predniso-
lone. In order to gain more insight to the mechanisms of
resistance we have developed a rational computational
analysis framework along with experimental approaches
in order to answer the question of whether cells exhibit
this resistance due to an inherent or, an over time,
acquired mechanism. We have used the biological infor-
mation derived from our modeling approach to interpret
the findings observed regarding our initial hypothesis.
The analysis of the results supports a complex
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mechanism of action for the cells which tends to favor an
intrinsic mechanism of resistance, although in one case
prednisolone appeared to exert the expected effects i.e.
positive regulation of apoptotic genes, thus supporting an
acquired mechanism. It seems that a crucial determinant
for the manifestation of either phenotype seems to be the
dosage as other haphazard environmental factors, which
partly regulate the cellular circuitry towards either direc-
tion. The ability to discriminate between acquired or
intrinsic mechanisms of resistance is of major importance
both in the mechanics of glucocorticoid signal transduc-
tion as well as to the clinical praxis since GCs are still
front line medications for the treatment of malignant dis-
eases, especially in the case of leukemia.

Additional material

Additional file 1: Cross-platform normalization. One microarray slide
per platform (1.2 k and 4.8 k) was selected and a quantile-quantile plot
(QQ-plot) was produced (a) before and (b) after the application of cross-
platform normalization. In each QQ-plot, the quantiles of all gene
expression values of the first slide were plotted against the quantiles of
all gene expression values of the second slide. In the case where the
gene expression values of the two slides come from the same
distribution, the points in the plot should fall near the straight line.

Additional file 2: Optimal cluster number determination. K-means
clustering was executed for a number of clusters, varying between 2 to
30. For each cluster number, the best (maximum) value of all the
average silhouette widths obtained at 1,000 executions was plotted
against the cluster number. Since the maximum values of the average
silhouette width did not exhibit any specific trend, the optimal cluster
number was determined as the one corresponding to the maximum
value of the plot, indicated by the arrow. For the computation of the
silhouettes the squared Euclidean distance was also used.

Additional file 3: Unified dataset after data integration. The list of
the 490 genes, common in all experimental platforms and replicates
(CGS) and their corresponding fold change ratios per experiment. Data
integration was performed after (i) matching the reporters on the two
microarray platforms through UniGene Cluster IDs, and (i) applying a
cross-platform normalization approach.

Additional file 4: Gene subsets based on the formulations posed for
resistance. The list of genes per subset as derived after intensity-
dependent calculation of the standard Z-score, along with the
intersections based on the formulations described in Methods.

Additional file 5: GO terms predicted for each gene subset. The list
of the most significant (p < 0.05) GO terms per gene subset, as derived
from the GO enrichment analysis.

Additional file 6: Cluster membership of the top 100 genes with
the highest standard deviation. The list of the SD100 gene set, along
with the list of genes per cluster showing similar expression profile
according to cluster analysis.
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CGS: common gene set; DE: differentially expressed; GC: glucocorticoid; GO:
Gene Ontology; GR: glucocorticoid receptor; NF-kB: nuclear factor kappa
beta; SD: standard deviation; SD100: top 100 highest standard deviation
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