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Abstract

Background: Mouse is widely used in animal testing of cardiovascular disease. However, a large number of
cardiovascular drugs that have been experimentally proved to work well on mouse were withdrawn because they
caused adverse side effects in human.

Methods: In this study, we investigate whether binding patterns of withdrawn cardiovascular drugs are conserved
between mouse and human through computational dockings and molecular dynamic simulations. In addition, we

partners by analyzing the microarray data.

pocket

also measured the level of conservation of gene expression patterns of the drug targets and their interacting

Results: The results show that target proteins of withdrawn cardiovascular drugs are functionally conserved
between human and mouse. However, all the binding patterns of withdrawn drugs we retrieved show striking
difference due to sequence divergence in drug-binding pocket, mainly through loss or gain of hydrogen bond
donors and distinct drug-binding pockets. The binding affinities of withdrawn drugs to their receptors tend to be
reduced from mouse to human. In contrast, the FDA-approved and best-selling drugs are little affected.

Conclusions: Our analysis suggests that sequence divergence in drug-binding pocket may be a reasonable
explanation for the discrepancy of drug effects between animal models and human.
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Introduction

Mouse is the most commonly used vertebrate species in
animal testing which is a vital part of drug development.
Currently, all new pharmaceuticals undergo rigorous ani-
mal testing before being licensed for human use. It is
commonly accepted that animal testing on mouse can
provide us critical information for assessing hazard and
risk potential [1,2] . However, many withdrawn pharma-
ceuticals worked very well in animal models while led to
adverse side effects or failed to reach the expected effects
in human. Over sixty drugs ever approved by the FDA
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were withdrawn in the past twenty years [3]. A recent
and well-known example is the failure of an Alzheimer’s
drug Dimebon (latrepirdine). The drug improved the
performance of memory-impaired mice and rats [4,5],
but failed to show a significant effect in the phase III
clinical trial. Inevitably, a question arises as to why the
discrepancy of drug effects between animal models and
human. Answering this question will help us avoid drug
withdrawals as much as possible and ‘rescue’ some of the
withdrawn drugs by promoting genotype-based
prescribing.

We presumed that two aspects would be the prime
determinants of the discrepancy of drug response be-
tween animal models and humans. First of all, target
proteins of withdrawn drugs may be functionally diver-
gent between human and mouse. Phenotypic differences
between species might be caused by changes in species-
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specific interactions or gene expression [6-8], which also
lead to the differential responses to the exogenous drugs.
Secondly, three-dimensional structures of drug targets
may have changed due to sequence divergence in the
drug-binding pockets. As a result, although the drug tar-
gets are functionally conserved, the binding patterns of
drugs with these targets may change from animal models
to human.

In this study, both genetic aspects were examined to
elucidate the mechanism of discrepancy of withdrawn
drugs between human and mouse. We focused on with-
drawn cardiovascular drugs, not only because cardiovas-
cular drugs are in a position of importance in all
pharmaceuticals, but also because the relevant informa-
tion is comprehensive, including target, pharmaco-
dynamics and so on. The results show that the drug
targets are not involved in species-specific interactions.
The binding patterns of withdrawn cardiovascular drugs
are indeed affected by sequence divergence in the drug-
binding pockets. The trend of binding affinity of these
withdrawn drugs is to be reduced from mouse to human.
Our study gleans valuable insights into the development
of cardiovascular drugs and may reduce the amount of
laboratory effort required in this process.

Results

Target proteins of withdrawn cardiovascular drugs are
functionally conserved between human and mouse

In order to compare the target protein of withdrawn car-
diovascular drugs between human and mouse, we first
examined the orthologous relationships of these proteins
through Ensembl gene orthology prediction pipeline
(http://www.ensembl.org/). It shows that all of the ortho-
log relationships (25/25) are one to one (Additional file
1: Table S1), which are widely assumed to have similar
functions and cause similar phenotypes [9].

We further detected whether targets of withdrawn car-
diovascular drugs were involved in species-specific inter-
actions by reconstructing interaction networks for
human and mouse drug targets separately through inte-
grating experimental datasets (Materials and methods).
To our surprise, there is only a narrow overlap between
the reconstructed human and mouse drug target inter-
action networks (Figure 1). Besides the drug targets, only
four proteins (Nomenclature gene names are CCP110,
HDAC3, KCNMA1 and PPARGCI1A) are found in both
networks. We supposed that it was mainly caused by in-
adequacy of information in databases and confirmed
each interaction by computational methods, such as lit-
erature search, gene co-expression and bayesian net-
works (Additional file 1: Table S2) [10]. The results
indicate that most of the interactions related to with-
drawn cardiovascular drug targets are highly preserved
between human and mouse.
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In addition, we reasoned that changes in gene expres-
sion underlie many of the phenotypic differences be-
tween species and lead to differential responses to
withdrawn drugs. As a result, we also measured the level
of conservation of gene expression patterns of the drug
targets and their interacting partners (Materials and
methods). For the expression profiles of these ortholo-
gous genes between mouse and human, are the average
Pearson’s correlation coefficient r is 0.27 and is signifi-
cantly higher than that for the random gene pairs (Stu-
dent’s two sample t-test; p <107°). It shows that the gene
expression evolution of these drug targets between
human and mouse was strongly shaped by purifying se-
lection, suggesting that gene expression variation may
not have an influence on the drug effect.

Sequence divergence near the functional sites

We reasoned that non-conserved substitutions of critical
residues in drug targets could lead to different response
to drugs. As a result, whether these residues had chan-
ged from mouse to human was analyzed. The results
shows that the critical sites of drug targets, such as active
sites and phosphorylated residues, are conserved while
residues nearby have changed a lot from mouse to
human, including losses of hydrogen bond donors and
substitutions of amino acid residues of opposite charge
(Additional file 1: SI Table S1). For example, human
plasminogen activator inhibitor 1, the target of troglita-
zone (Drug Bank ID: DB00197), shares only 78% se-
quence identity with its mouse ortholog. The critical
sites are Arg369 and Met370 [11], which are conserved,
while the residues within 10 A distance in three-dimen-
sional structure have changed a lot, such as Lys311Gly,
His339Ser, and Glu373Thr. Previous work revealed that
drug-binding sites on proteins usually exist out of func-
tional necessity [12], so we can infer that the binding
pockets of withdrawn drugs could be affected by se-
quence divergence.

Structural modeling of mouse drug targets and
refinement by molecular dynamics simulation

Because the structures of mouse drug targets are un-
solved, we generated mutant models of human target
proteins as rational mouse three-dimensional structures
and employed molecular dynamics simulations for struc-
tural refinement. According to previous work that MD
simulations on the nanosecond time scale were sufficient
for refinement of protein models [13], simulations for 2
nanoseconds were first performed. The stability of each
simulation was monitored through examination of struc-
tural properties which occurred during the course of the
2 nanoseconds production trajectories. The plots of
root-mean-square-deviation (RMSD) from the original
starting coordinates indicate that seven models are well-
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between two networks. There are only four nodes to be found.

Figure 1 Protein interaction networks of targets of withdrawn cardiovascular drugs. The interaction networks of human (panel A) and
mouse (panel B) drug targets are displayed respectively. The pink nodes represent the drug targets, and the blue ones are proteins that have
been experimentally proved to interact with drug targets. The edges between nodes represent interactions. The ellipse represents overlap

behaved which means the simulations are reasonably
converged and protein structures are well refined
(Figure 2 A, C-E, G-I). Interestingly, a relatively large
shift in RMSD (Figure 2F) at around 0.5 ns suggests that
this structure is not well refined. It may be caused by the
large loop (residues 1769-1787). The simulations of
other two structures (Figure 2B, J) are also not well con-
verged. As a result, we further performed simulations of
these two structures for 5 nanoseconds until the RMSD
values show only minor variation.

The root mean-square fluctuations (RMSF) of the
mutated residues in ten drug targets were also computed
to examine the impact of mutating these residues on
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Figure 2 RMSD values of mutant human protein structures
during the dynamics simulations. The figures A-J respectively
correspond to mutants of crystal structures (PDB code 1C5G, 1DQA,
THWL, 1Y9C, 2BVR, 2KBI, 2QT9, 3D24, 3DZY and 3G43).

conformational changes. The average RMSF of the
mutated residues is significant higher than that of the
conserved residues in 2 ns (Student’s two-sample ¢-test,
p=3.52x 10’7), indicating that mutated residues have a
great influence on conformational changes of drug
targets.

Differences in the binding patterns of withdrawn
cardiovascular drugs to their targets between human and
mouse

We next analyzed whether the drugs might bind human
and mouse drug targets with different patterns and affin-
ities. These drugs belong to different categories (Add-
itional file 1: Table S1) and so are demonstrated
separately.

Troglitazone works as vasodilator agents and platelet
aggregation inhibitors [14]. It selectively target six pro-
teins, of which four have crystal structures (Nomencla-
ture gene names: ESRRA, ESRRG, SERPINEI and
PPARG). The interaction between troglitazone and
Estrogen-related receptor gamma (ERR gamma-2) shows
no interspecies difference because the protein sequences
in human and mouse are identical. However, the other
three targets that are not paralogs and perform different
functions show variance in the drug-binding pockets. A
few important amino acids within the binding pocket in
human Peroxisome proliferator-activated receptor
gamma (PPAR-gamma) have changed from mouse to
human (Asn302Ser, Asn355Ser and His454Gln). It indi-
cates that the troglitazone-binding pocket in mouse
PPAR-gamma is distinct from that in human ortholog
(Figure 3, A-B). The binding free energies demonstrate
that the binding affinity of PPAR-gamma for troglitazone
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Figure 3 Binding patterns of troglitazone with its targets. Panel (A) illustrates interactions between troglitazone and human PPAR-gamma,
while (B) represents interactions between drug and corresponding mouse target. Panel (C) illustrates interactions between troglitazone and
human PAI, while (D) represents interactions between drug and corresponding mouse target. The residue substitutions in the binding pocket are

from mouse to human is reduced (Additional file 1:
Table S3 and Materials and methods; Student’s two-sam-
ple t-test, p=8.3x107°). As to plasminogen activator in-
hibitor 1 (PAI), it shows that the residues in the binding
pocket have changed greatly including, inter alia,
Arg27Pro, His30Tyr, Thr31Val, Ser63Ala and so on
(Figure 3, C-D). The binding energies also show that the
specificity of interaction between troglitazone and recep-
tor PAI is significantly different (Student’s two-sample ¢-
test, p=1.14x 107'%). Unlike interacting with other tar-
gets, troglitazone binds to Steroid hormone receptor
ERRI as an inverse agonist. [15] There are only three
amino acid substitutions of similar properties near the
pocket (Additional file 1: Figure S1, A-B), and the recep-
tor binding affinity is little affected (Student’s two-sample
t-test, p = 0.078).

Cerivastatin acts as antagonist on HMG-CoA reduc-
tase, which functions as a homodimer and is the rate-
limiting enzyme of sterol biosynthesis [16,17]. The com-
putational docking results indicate that cerivastatin binds
to the homodimer interface to keep it from dimerizing.

The analysis shows that several critical residue substitu-
tions (A: Tyr551Phe, A: Glu548Gly and A: Ser574Gly),
which lead to the loss of hydrogen bond donors, account
for the difference in the binding pattern of cerivastatin
between human and mouse (Figure 4, A-B). The analysis
of binding free energy also indicates that the binding af-
finity is reduced from mouse to human (Student’s two-
sample t-test, p =0.033).

Encainide can mediate the voltage-dependent sodium
ion permeability of excitable membrane by blocking so-
dium channel protein type 5 subunit alpha (HH1) [18].
Two residue substitutions (Leul812Ser and Alal813Val)
occurred in the Encainide binding pocket (Additional file
1: Figure S2, A-B). The amino acid residue Ser 1812 acts
as a hydrogen donor according to the identification re-
sult of drug-binding sites. However, the mouse and
human HH1 show similar encainide binding affinity.
(Student’s two-sample ¢-test, p =0.64).

Mibefradil belongs to calcium channel blockers. Its tar-
gets include T-type and L-type calcium channels, both of
which mediate the entry of calcium ions into excitable
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Figure 4 Binding patterns of cerivastatin with its targets. Panel (A) illustrates interactions between cerivastatin and human HMG-CoA
reductase, while (B) represents interactions between drug and corresponding mouse target. The residue substitutions in the binding pocket and
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cells and are also involved in a variety of calcium-
dependent processes, such as muscle contraction, hor-
mone or neurotransmitter release and so on [19,20]. Of
the 11 mibefradil targets, only four proteins have peptide
fragments resolved and one meets our standards (PDB
ID code 3 G43). The computational docking results show
that the binding pocket is composed of two helixes sep-
arately from two chains, in which two different amino
acids (Asn1607Gly, Alal1608Ser) between species change
the helix-helix interaction and so change the mibefradil
binding pattern (Figure 5, A-B). The binding energy cal-
culation also reveals that the binding affinity is reduced
from mouse to human (Students two-sample t-test,
p=153x10"%.

Ximelagatran was investigated as an anticoagulant,
which inhibited prothrombin from converting fibrino-
gen to fibrin and activates factors [21]. The sequence
identity of prothrombin between mouse and human
was just 0.81, hinting that the drug-receptor interaction

F Chain

$1608

Mibefradil  ©
E Chain

E Chain

Figure 5 Binding patterns of mibefradil with its targets. Panel
(A) illustrates interactions between mibefradil and human calcium
channel, while (B) represents interactions between drug and
corresponding mouse target. The residue substitutions in the
binding pocket and chains are labeled.

might also have interspecies specificity. Our results
demonstrated that the residue substitutions (Glul49lys,
Alal70Asp, Phel84Tyr, Lys222Asp and so on) in the
binding pocket (Figure 6, A-B) changed the drug bind-
ing pattern. The binding affinity of ximelagatran was
also affected between species (Student’s two-sample
t-test, p=3.8x107%).

The binding pattern and binding affinity is similar for
FDA-approved drugs

We next inspected that whether sequence divergence
affects the binding pattern and binding affinity of FDA-
approved drugs. In comparison, the FDA-approved and
best-selling drugs, atorvastatin and clopidogrel (brand
names are lipitor and plavix separately) were estimated.
The results show that the binding patterns and binding
affinities of both drugs are little affected by sequence di-
vergence between human and mouse (SI Text Results).

Discussion

In this study, we demonstrate a reasonable possibility of
the discrepancy of withdrawn cardiovascular drugs be-
tween mouse model and human. The drug targets are
proved to be not involved in species-specific interactions.
Then, reasonable models for mouse protein structures
are generated through molecular dynamics simulations.
After that, we determine the differences of binding pat-
terns and affinities of the withdrawn cardiovascular
drugs between human and mouse and two FDA-
approved and best-selling drugs are selected as controls.
Our results show that the binding patterns of withdrawn
cardiovascular drugs in our study are indeed affected by
sequence divergence, especially the non-conserved resi-
due substitutions, such as Lys into Glu, Ser into Ala and
so on. The trend of binding affinity of these withdrawn
drugs is to be reduced from mouse to human, which
may explain the low specificity of human targets. Finally,
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Ximelagatran

Figure 6 Binding patterns of ximelagatran with its targets. Panel (A) illustrates interactions between ximelagatran and human prothrombin,
while (B) represents interactions between drug and corresponding mouse target. The residue substitutions in the binding pocket are labeled.

we explore whether off-target effects could be caused. It
shows that more off-target effects can occur in human
than in mouse due to the local structural similarities of
drug-binding sites.

Usually, adverse side effects occur when the drug inter-
acts with unintended targets [22]. Since the binding sites
and affinity of withdrawn cardiovascular drugs were esti-
mated to have changed from mouse to human, these drugs
might interact with more off-targets in human than in
mouse, due to similar local structures of drug-binding
sites. So, we determined the cardiovascular drug-binding
sites of human and mouse targets separately and then
searched the similar local structures in structure database.
It demonstrates that human targets of withdrawn drugs
get 7 off-targets in all while mouse targets get no off-tar-
gets due to the differences of drug-binding sites (Materials
and methods; Additional file 1: Table S4). Adverse side-
effects may arise due to significant sequence divergence
between mouse and human (Figure 7). Before drug testing,
the animal model should be selected in a careful and me-
ticulous manner, not only in CAD systems but also in
other complex disease systems.

A key issue in translational medicine is the need to de-
vote more attention to the characteristics of the drug—
target interaction [23], yet most of target proteins in ani-
mal models have not or fragmentally solved. Besides,
according to previous works, one missense mutation is
sufficient to lead to altered binding pattern of drug tar-
gets [24,25]. Studies on structural divergence of drug tar-
gets between disease models and human provide
valuable information for the development of human dis-
ease models. In this study, we employed MD simulations
to construct models of good quality as target structures
and then applied them to comparison of drug-target
interactions. It will be very useful to identify a suitable
model for animal testing, in case of false positive results
supported by inappropriate experiments.

Although we highlight the contributions of sequence
divergence, we also illustrate specific interactions that
were experimentally confirmed in just one species. Re-
cent studies have shown that species-specific interactions
and regulations exist in human and mouse [26,27]. These
species-specific properties may lead to different
responses to the same pharmaceutical. Besides, false
positive results in mouse may also lead to the success of
animal testing while failure of clinical treatments. For ex-
ample, prenylamine is a calcium channel blocker of the
amphetamine chemical class which is used as a vasodila-
tor in the treatment of angina pectoris. It has been
shown to partially metabolize to amphetamine and can
cause false positives for it in drug tests [28-30].

In summary, our results provide a reasonable explan-
ation for the discrepancy of cardiovascular drugs. We
will further testify for other pharmaceuticals.

e N

Mouse Human

q Off-target

Sequence
. divergence .

Drug \‘\

Target

Off-target

Figure 7 lllustration of side-effects caused by sequence
divergence. Adverse side-effects may arise due to significant
sequence divergence in the drug-binding pockets between mouse
and human.
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Materials and methods

Collection of withdrawn and FDA-approved cardiovascular
drugs

The information of withdrawn drug for CADs were
retrieved from DrugBank database [31] and previous works
[3]. Seven withdrawn cardiovascular drugs (Drug Bank ID:
DB00197, DB00439, DB01228, DB01388, DB04825,
DB04831 and DB04898) were included. In this dataset, pre-
nylamine (Drug Bank ID: DB04825) was withdrawn for it
partially metabolized to amphetamine and could cause false
positives for it in drug tests [29]. It was just a prodrug, so it
was excluded out of our study. Ticrynafen (Drug Bank ID:
DB04831) was also excluded because it had no target infor-
mation. We also chose two FDA-approved and the most
sales-potential drugs, Lipitor (Drug Bank ID: DB01076) and
Plavix (Drug Bank ID: DB00758) as positive control because
the higher sales-potential might indicate the more satisfac-
tory efficacy and less side-effect.

Reconstruction of interaction networks of withdrawn drug
targets and literature search

The interaction data was retrieved from several common
databases, including DIP [32], BIND [33], HPRD [34],
BioGRID [35], MINT [36] and IntAct [37]. A Cytoscape
[38] plugin, BisoGenet, was applied to reconstruct inter-
action networks of human and mouse drug targets separ-
ately. Only the interactions that were verified by
experiments were displayed. Another cytoscape plugin,
Agilent Literature Search 2.71, was used to do literature
search. Gene aliases and context were set to restrain the
search results.

Analysis of gene expression data

The microarray datasets (GSE8000 for mouse [39] and
GSE11560 for human [40]) were downloaded from the
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo). The expression profile of the drug targets
were analyzed according to our previous work [41].

Preparation of structures of drug targets

All the protein structure files of withdrawn drug targets
were downloaded from PDB database [42]. Structures,
containing the main functional domains and of which se-
quence coverage is above 80%, were adopted to do the
subsequent analysis. If the sequence coverage was below
the cutoff value and yet the drug-binding regions were
intact and clearly reported in a structure, then the struc-
ture was also included in the dataset (Additional file 1:
Table S1).

Generation of mutant models for mouse targets and
refinement

Mutant models of human protein structures were made
as mouse protein structures using MODELER program.
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[43] High levels of molecular dynamics with simulated
annealing were performed to optimize the local struc-
tures of mutant models. After that, molecular dynamics
simulations were performed using NAMD and
CHARMM31 force filed with CMAP correction [44,45].
The protein models were solvated in a TIP3P water box
[46] and ionized by NaCl (0.152 M) to mimic physio-
logical conditions. The ionized systems were minimized
for 50,000 integration steps and equilibrated for 2 ns
with 2 fs time stepping. Following this, a 2 ns uncon-
strained equilibration was performed for subsequent tra-
jectory analysis, with frames stored each picosecond.
Constant temperature (T =310 K) was enforced using
Langevin dynamics with a damping coefficient of 5 ps.
Constant pressure (p=1 atm) was enforced through the
Nosé-Hoover Langevin piston method with a decay
period of 100 fs and a damping time constant of 5 per
picosecond. Van der Waals interaction cutoff distances
were set at 12 A, (smooth switching function beginning
at 10 A) and long-range electrostatic forces were com-
puted using the particle-mesh Ewald (PME) with a grid
size of less than 1.0 A.

Comparison of binding patterns of cardiovascular drugs
We compared modes of actions of withdrawn cardiovas-
cular drugs following the steps below. Step one; we de-
tect the drug binding pockets through a CHARMm-
based molecular dynamics scheme [47]. We performed
simulated annealing refinement and saved the top ten
poses to prepare for the calculation of binding energy.
Step two: a flexible docking method was applied to find
the optimal binding sites by simulating protein flexibility
and docking drugs with an induced fit receptor
optimization [48]. Step three; we determined the critical
drug-binding sites by using Receptor-Ligand Interactions
tool. We set 2.3 A as cutoff value to exclude the minor
important bonds. All simulations reported above were
carried out using Discovery Studio® v2.5.0.9164, built on
the SciTegic Enterprise Server platform (Accelrys Inc,
2009).

Detection of local structural similarities of drug-binding
sites in structure databases

An accurate algorithm for detecting local protein struc-
tural similarity, CMASA [49] was applied to detect local
structural similarities of drug-binding sites in non-redun-
dant structure database from SCOP database [50]. The
binding sites detected above were used as queries. Sub-
stitution files were applied in the process and the cutoff
was set to the default value.

Binding free energy calculations and statistical analysis
The drug-target binding free energies were calculated in
the protocols of Discovery Studio, according to the
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previous work [51]. The values of the binding free energy
(AG binding) for each drug-target complex were calcu-
lated based on the following equation:

AG binding = AG complex — AG drug — AG target
(1)

We used the top ten poses mentioned above to calcu-
late binding energies. In situ ligand minimization and lig-
and conformational entropy were set to default value.
The distance cutoff value of ligand conformational en-
tropy was set to 14.0 A. If the ten calculated binding en-
ergies (Additional file 1: Table S3) followed a normal
distribution, Student’s two-sample ¢ test was applied to
compare the binding affinity of drugs to their targets be-
tween human and mouse.

Additional file

[ Additional file 1: Supporting Information. ]
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