Yang et al. Cybersecurity (2021) 4:16
https://doi.org/10.1186/542400-021-00079-5

Cybersecurity

RESEARCH Open Access

DeepMal: maliciousness-Preserving

Check for
updates

adversarial instruction learning against static =~

malware detection

Chun Yang'?, Jinghui Xu'?, Shuangshuang Liang'?, Yanna Wu'?, Yu Wen'", Boyang Zhang' and

Dan Meng'

Abstract

specific constraints.

Outside the explosive successful applications of deep learning (DL) in natural language processing, computer vision,
and information retrieval, there have been numerous Deep Neural Networks (DNNs) based alternatives for common
security-related scenarios with malware detection among more popular. Recently, adversarial learning has gained
much focus. However, unlike computer vision applications, malware adversarial attack is expected to guarantee
malwares’ original maliciousness semantics. This paper proposes a novel adversarial instruction learning technique,
DeepMal, based on an adversarial instruction learning approach for static malware detection. So far as we know,
DeepMal is the first practical and systematical adversarial learning method, which could directly produce adversarial
samples and effectively bypass static malware detectors powered by DL and machine learning (ML) models while
preserving attack functionality in the real world. Moreover, our method conducts small-scale attacks, which could
evade typical malware variants analysis (e.g., duplication check). We evaluate DeepMal on two real-world datasets, six
typical DL models, and three typical ML models. Experimental results demonstrate that, on both datasets, DeepMal
can attack typical malware detectors with the mean F1-score and F1-score decreasing maximal 93.94% and 82.86%
respectively. Besides, three typical types of malware samples (Trojan horses, Backdoors, Ransomware) prove to
preserve original attack functionality, and the mean duplication check ratio of malware adversarial samples is below
2.0%. Besides, DeepMal can evade dynamic detectors and be easily enhanced by learning more dynamic features with

Keywords: Adversarial instruction learning, Malware, Static malware detection, Small-scale

Introduction

Malware is a significant concern of cybersecurity because
of its severe damage and threats to network and comput-
ing device security. Static malware detection (Anderson
and McGrew 2017; Banescu et al. 2017; Burnaev and
Smolyakov 2016; Dahl et al. 2013; Gardiner and Nagaraja
2016; Saxe and Berlin 2015; Ye et al. 2017), as one of
promising defense techniques in the security commu-
nity, is to accurately identify the binary files of malware

*Correspondence: wenyu@iie.ac.cn

!Institute of Information Engineering (IIE), Chinese Academy of Sciences (CAS),
North of Yiyuan, Xingshikou Road, Haidian District, Beijing, China

Full list of author information is available at the end of the article

@ Springer Open

and their variants (Banescu et al. 2016; Burnaev and
Smolyakov 2016; Ye et al. 2017; You and Yim 2010). As
artificial intelligence (AI) techniques have gained substan-
tial achievement on security-critical applications, some
work has shown the effectiveness of machine learn-
ing (ML) and deep neural networks (DNNs) (Anderson
and McGrew 2017; Banescu et al. 2017; Burnaev and
Smolyakov 2016; Dahl et al. 2013; Gardiner and Nagaraja
2016; Saxe and Berlin 2015) for static malware detection.
However, recent studies (Brown et al. 2017; Evtimov et
al. 2017; Kurakin et al. 2016; Papernot et al. 2016) have
also demonstrated that AI models, especially DNNs, are

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00079-5&domain=pdf
mailto: wenyu@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Yang et al. Cybersecurity (2021) 4:16

vulnerable to well-tuned perturbations generated by
adversarial learning techniques on the original data
samples, called adversarial attacks. Therefore, study-
ing such an attack on static malware detection bene-
fits in improving the robustness of Al-driven detection
models.

Though such adversarial attacks have been widely
explored in computer vision, little has been applied for
malware detection scenarios. It is potential because of
the new challenge in this security-related domain: differ-
ent from the adversarial images, ordinary manipulations
to the malware samples (e.g., binary files) tend to either
introduce invalid instructions that are non-executable or
most likely break their original maliciousness semantics
(which we refer to attack functionalities of malware bina-
ries). Even though successfully fooling detection models,
those adversarial samples are infeasible in the real world
and do not make sense for developing robust detection
techniques.

A kind of indirect approach (Anderson et al. 2016;
Grosse et al. 2016; Wang et al. 2017) is to manipulate
the features of malware binaries instead of directly learn-
ing its adversarial samples to exploit the vulnerabilities of
DNNs. Recently a formalization method (Pierazzi et al.
2019) was proposed for further reversing the adversarial
features to the malware binaries. Although these methods
can effectively evade detection models and even generate
real variants, producing adversarial samples for malware
remains a significant challenge. There are two reasons for
this requirement. First, in the real world, getting prior
knowledge of the features used for detection is difficult.
Second, this type of feature-based approach may be easily
defended by the feature extraction protection technique
(Wang et al. 2017).

Our work is inspired by our and other researchers’
observation (Han et al. 2013; Yue 2017; Yang et al. 2018;
Nataraj et al. 2011): 1) the features of malware binaries
can be automatically learned as the binaries are trans-
lated to a sort of particular gray images and input into
DNN model, in which the pixels are the bytes of the
binaries; and 2) the automatically learned features show
higher detection performance than the state-of-the-art
methods.

Problem Statement. The main problem addressed in
this paper is to automatically generate feasible adver-
sarial samples for malware binaries that preserve origi-
nal maliciousness semantics of the malware binaries and
can evade various state-of-the-art detection techniques,
including MLL/DL model and signature-based approaches
through adversarial learning on the gray images of the mal-
ware binaries rather than relying on any prior knowledge
of theirs manual features for detection.

There are three main aspects to this problem, and they
are as follows:

Page 2 of 14

e Binary-to-image translation: Starting from malware
binaries, we must first translate them into unique
gray images that help generate adversarial samples.
First, our approach should retain all of the necessary
information to restore the binaries. Additionally, any
extra information that will benefit following
adversarial learning needs to build into the images.

e Adversarial learning: The challenge here is to
generate adversarial bytes/pixels and find appropriate
insertion positions in the gray images provided by the
previous phase. Moreover, the perturbations, such as
the number of the inserted bytes, should be stealthy,
unnoticeable. Otherwise, they might be detected by
conventional reverse techniques, such as instruction
deduplication.

e Image-to-binary conversion: The generated
adversarial images needs to be finally converted to
executables. Specially, we need to transform the
inserted bytes to valid and semantics-harmless
instructions and guarantee the attack effectiveness.

Approach and Contributions. In this paper, we pro-
pose DeepMal that addresses all the above aspects.
DeepMal begins with the malware binaries’ unique gray
images and produces adversarial instruction bytes that
are executable and harmless to the original malicious-
ness semantics. At a high level, DeepMal integrates
binary processing techniques with the adversarial learn-
ing approach on computer vision to address the tech-
nical challenges involved in the above three aspects of
adversarial attacks against static malware detection. We
present our key ideas below and the technical details in
“Proposed method” section.

First, DeepMal aims to translate the malware binaries
into the gray images that pave the way for implementing
practical adversarial attacks on static malware detection.
Specially, DeepMal remains several important segments
for final binaries recovery, which contain code instruc-
tions, global and static variables, and other assist infor-
mation. As mentioned above, conventional adversarial
learning approaches randomly modify the image pixels
and cannot guarantee the malware binaries’ attack seman-
tics. Instead, Deepmal generates and inserts appropriate
instructions into the malware binaries, which are valid
and harmless to the original malicious semantics. There-
fore, DeepMal embeds some indicators into the images
in advance to point out the positions where the inserted
instructions will not interfere with others.

A second important idea in DeepMal is the restrained
adversarial instruction learning method. It applies a more
fine-grained instruction representation rather than a tra-
ditional feature representation technique. And then, we
intend to study the adversarial instructions through deep
learning. As (Han et al. 2013; Yang et al. 2018; Nataraj et

Yang et al. Cybersecurity (2021) 4:16

al. 2011) have proved that the image of binary code could
be used for malware detection, we innovatively gener-
ate adversarial examples based on binary images to evade
malware detectors. First, the binary malware is processed
as an image by a convolution neural network (CNN)
to detect whether there exists adversarial instruction;
Second, the above image will be reverse mapped to mal-
ware to ascertain the semantics of the adversarial instruc-
tion. In essence, DeepMal is an extended version of CNN
augmented with a carefully designed layer, between its
input layer and first hidden layer, for restrained gradient
descent for “valid and dispensable” pixel insert rather than
manipulations in the gray images. Next, we further opti-
mize this layer to minimize the total number of inserted
pixels by automatically finding the optimal embedding
positions in the gray images.

A third main contribution in DeepMal is automat-
ically converting generated adversarial malware image
to maliciousness-preserving assembly codes or malware
binary files. As we have stated above, the generated adver-
sarial perturbations are continuous pixel values located
in specific positions. We map these pixels to the limited
points, which are the nearest to them through L1 and
L2 norm constraints. Specifically, these mapped points
are limited to several essential assembler instructions,
which could not affect assembly instructions’ execution.
Moreover, we use several popular debugging tools (e.g.,
IDA Disassembler) to reconfirm the generated malware
samples executable because sometimes such instruction
additions may lead to the execution disruption or disorder.

Evaluation. We conduct a series of experiments on two
real datasets to evaluate the effectiveness of DeepMal
comprehensively. Experimental results demonstrate that
DeepMal can effectively attack typical malware detectors
with the mean Fi-score and FI-score decreasing maximal
by 93.94% and 82.86% respectively. Besides, the adver-
sarial samples of three typical kinds of malware samples
(Trojan horses, Backdoors, Ransomware) are proved to
preserve the original attack functionality, and their mean
failure ratio due to deobfuscation is below 2.0%. More-
over, we also make a discussion on the attack evasive-
ness with respect to dynamic malware detection. It is
proved by experimental results that DeepMal also works
when detected by dynamic detectors and could be easily
enhanced by learning more dynamic features with specific
constraints.

The rest of the paper is organized as follows. Section 2
provides background on adversarial samples and a survey
of relevant work. Section 3 presents our technique and
its properties. Experimental results are shown in Section
4, where our method is compared to other approaches.
Moreover, the DeepMal attack evasiveness for dynamic
malware detection is also discussed in Section 4. Finally,
Section 5 summarizes our work.

Page 3 of 14

Background and related work

In this section, we review static malware detection and
conventional evasion approaches. And then, we describe
the significant concepts used in this paper. Static Mal-
ware Detection. Malware detection methods can be cate-
gorized into static or dynamic approaches. Static malware
detection techniques are based on statistical static fea-
tures, while dynamic methods depend on dynamically
executing and analyzing. Though dynamic techniques are
more against syntax changes, static methods are more
scalable and provide better coverage. At present, advanced
artificial intelligence(Al) based static malware detection
techniques achieve far better performance than dynamic
methods. Under integrated feature extraction technique
proposed by Islam et al. (2013), static features such as
k-gram (Myles and Collberg 2005), n-gram (Khoo et
al. 2013), BinClone (Farhadi et al. 2014) and ILine(Jang
et al. 2013) could be utilized for statistical analysis. In
recent years, malware samples are proved to be eas-
ily detected using machine learning (ML) solutions (i.e.,
SVM, Random Forests, Decision trees). Yuan et al. (2014)
demonstrated that deep learning (DL) solutions could suc-
cessfully abstract complex patterns of malware as well
as malware variants, and eventually, malware would be
detected. Moreover, (Han et al. 2013; Nataraj et al. 2011)
observes that malware belonging to the same family
have similar contours and textures on their images, but
different malware families have different visual effects.
Therefore, it is difficult for malware samples to bypass
CNNs-based detectors.

Conventional Evasion Approaches. The issues of con-
ventional evasion approaches have evolved significantly
over the past. The most popular techniques include
obfuscation-based approaches and feature-level adversar-
ial attacks. Obfuscation techniques (Vinod et al. 2009;
Banescu et al. 2016; Banescu et al. 2017; You and Yim
2010) include dead-code instruction, code transportation,
registers renaming, and instruction substitution to gener-
ate realistic variants for the existing malware. Obfuscator-
LLVM (O-LLVM) (Junod et al. 2015) is built based on the
LLVM framework and the CLANG compiler toolchain.
It operates at the intermediate language level and modi-
fies a program’s logic before the binary file is generated.
Luo et al. (2014) proposes a binary-oriented, obfuscation-
resilient method CoP for software plagiarism or code
reuse detection, with strong obfuscation resiliency. There
are some other obfuscation tools stated as follows: CXX-
obfuscator!, proposed by Stunnix, is a source code obfus-
cation tool; Loco (Madou et al. 2006) is a binary code
obfuscation tool, as well as an open-source product; CIL
(Necula et al. 2002) is also a source code obfuscation tool,
which possesses many useful source code transformation

http://stunnix.com/

http://stunnix.com/

Yang et al. Cybersecurity (2021) 4:16

techniques, such as converting multiple returns to one
return, changing switch-case to if-else.

Adversarial malware attack techniques have been pro-
posed in recent years (Grosse et al. 2016; Anderson et
al. 2016; Wang et al. 2017), as we have introduced in
“Introduction” section, through various carefully selected
restrained-feature manipulations, malware authors could
create adversarial malware samples processing almost
similar functional behavior with the original ones. It is
undeniable that these malware attack solutions based on
feature manipulations could trick ML and DL detectors
into incorrect classification. However, this kind of adver-
sarial attack technique has several shortcomings in real-
word. The first deficiency is that the generated adversarial
malware based on feature manipulations may lead to orig-
inal maliciousness loss and unrealistic malware samples.
The second shortcoming is that this kind of adversarial
attack technique relies strongly on prior knowledge of fea-
ture selection and extraction. The last flaw is that those
adversarial malware samples’ attack efficiency against ML
and DL detectors may be degraded due to the adversary
resistant technique proposed by (Wang et al. 2017), which
uses random feature nullification to obstruct attackers
from constructing impactful adversarial samples. For-
tunately, though adversarial malware samples generated
based on feature manipulations have been proved to be
easily detected by this kind of adversary resistant tech-
niques so far, whether this technique could resist adversar-
ial malware samples generated through other promising
alternatives is still to be studied.

Adversarial Learning. The security problem of DNN
has gained much attention recently. Szegedy et al.
(2013)first revealed that the deep neural networks learned
by backpropagation have non-intuitive characteristics
and intrinsic blind spots. These DNNs are vulnerable
to well-tuned artificial perturbation crafted by several
gradient-based algorithms. Specifically, (Goodfellow et al.
2014) argued that the linear nature and high-dimensions
are the primary causes of the neural network’s vulner-
ability to adversarial perturbation, and they proposed
a “fast gradient sign method” to generate adversarial
examples through backpropagation based gradient com-
putation. Moreover, (Papernot et al. 2017; Narodytska
and Kasiviswanathan 2017) suggested several black-box
attacks that require no internal knowledge about the tar-
get systems. All these related work that we have stated
above has been widely explored in computer vision, and
little has been done in malware detection. In particular, to
the best of our knowledge, the only work before ours that
ever mentioned applying adversarial learning to malware
detection is carried out by (Anderson et al. 2016). How-
ever, unlike our work, their adversarial learning methods
used for malware detection is not practical in a real-world
scenario. They did not provide an end-to-end solution,

Page 4 of 14

where the generation starts with the malware executable
but ends with generated features.

Proposed method

This section introduces the detailed approaches of how
to design a semantics-aware adversarial instruction learn-
ing model. Furthermore, we will explain why our method
offers some theoretical guarantees of the effectiveness
of fooling malware detection models, availability of exe-
cutable binaries, and integrity of attack functionalities.
Adversarial instruction learning of DeepMal is exactly
powered by the strong feature extraction capability of
CNN. Therefore, the learned adversarial malware sam-
ples can also effectively impact other DNNs and machine
learning models.

System Architecture. The proposed DeepMal gener-
ates malware adversarial samples, which are effective in a
real-world scenario. Also, DeepMal could provide an end-
to-end solution, which starts with a binary and ends with
an adversarial binary. Based on the above peculiarities,
the architecture of our adversarial malware attack sys-
tem DeepMal is shown in Fig. 1. DeepMal consists of the
following components: binary-to-image translator, mali-
ciousness semantics guaranteed adversarial instruction
learning model, and image-to-binary translator.

As shown in Fig. 1, binary-to-image translator contains
mapping strategy and visualization. Correspondingly, the
image-to-binary translator includes a reverse mapping
strategy and debugger. In this paper, the mapping strategy
is a position-aware strategy that could guarantee adversar-
ial perturbations generated by adversarial learning models
that are added to specific positions without breaking the
malware’s original instructions. Furthermore, the reverse
mapping strategy and debugger are designed to translate
pixels to assembly codes in specific positions, guarantee-
ing the generated malware adversarial samples executable
in the real world. The adversarial instruction learning
model consists of a constrained generator and optimizer.
The discrimination model of this generator is based on
CNN, because the attacks are generated based on image
information. The optimizer is designed to limit the scale
of learned instructions non-obvious enough to typical
deobfuscation tools based on code deduplication.

Binary-to-Image translator

Binary-to-Image translator is expected to map malware
binaries to images, as well as pixel preprocessing in spe-
cific positions. Given input malware binary file is donated
by x, we then divide x into separate instructions, which
is denoted by ey, ey, e3...e;...e;. As described in (Nataraj
et al. 2011), malware binary files mainly contain: the
“.text” segment, which contains code instructions; the
“.idata” segment, which contains information about
the used imports in the file; the “. rdata” segment, which

Yang et al. Cybersecurity (2021) 4:16

Page 5 of 14

Binary-to-Image

Map
Strategy

Original

Visualization

Adversary Learning
Model

Malware

Image-to-Binary

E—]ﬂ B Reverse
= [;jﬂ Stratage Optimizer
Debug
Adversarial
Malware DeepMal
Fig. 1 System architecture of DeepMal
contains the initialized global and static variables; the image x; € RN*M, where N and M respectively indicate

“.rsrc” segment, which contains resource information.

To guarantee the original maliciousness semantic
uncontaminated, DeepMal generates adversarial pertur-
bations in specific positions without disrupting the con-
text instructions. In this stage, we mark these specific
positions through a series of zeros between separate
instructions, because zeros will not affect the adversar-
ial examples when adding the adversarial perturbations to
original pixels. To be more specific, we embed a series of
zeros to original binary files to mark specific positions.
The rules about how we integrate zeros to binary files are
described as the following map strategy:

e Rule 1: In the “. text” segment, we embed
hexadecimal “00” between adjacent instructions. In
this way, adversarial perturbations added to the
“. text” segment should be represented by single
hexadecimal numbers and located between adjacent
instructions.

e Rule 2: In the “. rdata” segment, we circularly
embed hexadecimal “00” between adjacent
instructions 16 times. As a result, adversarial
perturbations added to the “. rdata” segment
should be represented by 16 hexadecimal numbers
and located between adjacent instructions.

e Rule 3: At the bottom of binary files, we fill in blanks
on the last row with a small amount of hexadecimal
“00”. That means hexadecimal numbers added to the
bottom of binary files are not limited.

These three rules are designed depending on the image-
to-binary translator, which is described specifically in
“Proposed method” section. We then translate the binary
files of malware into gray-scale images due to the unique
visual contours and textures of every malware family
observed by other researchers (Han et al. 2013; Yue 2017)
and us. The output of this module is denoted by a malware

the width and length of the malware image. Depending
on the binary file size, we set N to be 512, and pixels of a
gray-scale image is ranging from 0 to 255.

Adversarial instruction learning model

The maliciousness semantics guaranteed adversarial
instruction learning model is revised from standard CNN.
As we have stated in “Introduction” section, this revised
model extends a special constraint layer between standard
CNN’s input layer and first hidden layer. The architecture
of the adversarial instruction learning model is shown in
Fig. 2.

The input of revised CNN is denoted by x; € RN*M and
the first function is simply performing element-wise mul-
tiplication of x; with 11‘;. Here, II’; € RN*M js a mask matrix
with the same dimensions as x;. For each input malware
image x;, a corresponding I;’, is generated. To be more spe-

cific, I;; is a binary vector, with each element being either
0 or 1. Essentially, the mask matrix is a positional marker.
The position, in which we have embedded zeros, is set as
1, and the original position is set as 0. It regularly can-
cels out the specialized pixels within the image and then
feeds the partially corrupted image to the first hidden
layer when passing a malware image sample through the
layer to CNN. Figure 3 shows the process of specialized
pixel constraint in more specific.

dx; represents the adversarial perturbations generated
by standard CNN. The adversarial perturbations gener-
ated by revised CNN for malware image x is denoted
by éx; © 11",. The adversarial perturbations are generated
by calculating the derivative of the model’s cost function
with respect to the input samples. The original pixels
of malware images are guaranteed to remain unchanged
through restrained gradient descent, and the output of the
revised CNN model is represented as x4, € RN*M, which
denotes the input of a hybrid constrained optimizer.

Yang et al. Cybersecurity (2021) 4:16

Page 6 of 14

Input

Constrained Hidden

layer layer
, l

layer

Fig. 2 Adversarial instruction learning model

In many of those adversary generation methods, we
use the fast gradient sign method (FGSM) (Goodfellow et
al. 2014) to generate adversarial attacks. It is robust and
efficient enough for us to generate persuasive adversarial
malware samples in this paper. To preserve the mali-
cious semantics, we limit the adversarial perturbations to
specific positions embedded with zeros. As a result, the
perturbation space is significantly reduced by this con-
straint. As we know, the solution space of FGSM is infinite,
and we could finally find the solution points in unlimited
space towards the fastest gradient descent direction.

Hybrid Optimization. As we have discussed in
“Introduction” section, manipulations based on binary
files is expected to be as small as possible, thus preserving

maliciousness and guaranteeing unnoticeable. The first
restraint function utilizes the constrained fast gradient
sign method to generate malware adversarial perturba-
tions in specific positions constrained by mask matrix,
whereas these specific-positions constrained adversarial
perturbations are obvious due to their considerable quan-
tity. As we know, differential evolution (DE) (Su et al.
2019) is a method that optimizes a problem by iteratively
trying to improve a candidate solution. However, can-
didate solutions’ space is tremendous without gradient
descent, since the DE-only optimization algorithm may
lead to high computational cost with constrained itera-
tion of positions. To address this problem, we propose a
novel global optimal solution, named hybrid constrained

éx,- 1 o 'x,-
12 90 | 250 1 0 1 0 0 0 90 0 0
151 | 108 | 39 3 0 0 1 0 0 0 39 0
.@ —
172 9 51 | 199 0 0 0 0 0 0 0 0
100 | 132 | 78 | 254 0 1 0 1 0 132 0 | 254
T generate
0 90 0 0 23 00 99 | 200 23 90 99 | 200
0 0 39 0 197 | 111 00 | 125 197 | 111 | 39 | 125
+ Ly
0 0 0 0 56 37 2 245 56 37 2 | 245
0 132 0 254 149 00 168 | 00 149 | 132 | 168 | 254
' . 3
0'x; Xi Xadvy
Fig. 3 The process of specialized position constraint

Yang et al. Cybersecurity (2021) 4:16

optimizer, to restrain the number, values as well as specific
positions of the perturbations. Specifically, we utilize the
DE operator’s mutations to iteratively optimize the posi-
tions where embedded adversarial perturbations through
restrained gradient descent. If the new position of an
agent is an improvement, then it is accepted and forms
part of the population. The hybrid constrained algorithm
is shown in Algorithm 1.

Algorithm 1 The Hybrid Constrained Algorithm

Input: x;, ngsm, Fepns y%, k, T1, To, F, CR
1: compute I;ﬂ’ idx;, len(idx;)
2. while ¢t in 77 do:
3 dx; = ngsm(xi); xaqy = dx; * 1;7 + X
4 X < OXgqy
5. end while
6: return éx,;,
7. global intialization: bound < k x len(idx;)
8: population intialization: X (go) = rand (idx;)
9: while ¢ in T5 do:
10: if Feyn (X(gO)) = Jy*

11: break;

12 else:

13: Vilg + 1) = X51(2) + F(X2(g) — Xi3(2))
14: if rand(0,1) < CR:

15: U(g+1)=Vig+1)

16: else:

17: U(g+1) =Xi(g

18: if Fonn(Ui(g + 1)) < Foun(Xi(g))
19: Xig+1) =U(g+1)

20: else:

21: Xi(g+1) =Xi(9)

22: end while

23: return best_idx;

24: update idx; by best_idx; in 5x,4,
Output: §x,4,

Here, notations are defined as follows:

Figsm and Feyy are FGSM model and CNN model; yx*
and k refer to target class and selection ratio; 77 and
Ty represent iterations; F and CR refer to zoom factor
and crossover probability; the set of positions and the
number of positions are denoted by idx; and len(idx;)
respectively; the maximal number of best_idx; is limited
to bound.

To be more specific, the optimal adversarial samples
are computed by a hybrid constrained algorithm of gra-
dient descent and DE genetic algorithm. Step 9 to Step
22 exactly realize DE genetic algorithm. Step 13 real-
izes “individual mutation” through a difference strategy.
We randomly select two different individuals in the pop-

Page 7 of 14

ulation, and then the vector difference is scaled to be
mutated for vector synthesis. r;, r, and r3 are ran-
dom numbers ranging from 1 to NP, g represents the
g generation, and V refers to the mutants. Step 14 to
Step 17 implements “cross’, U refers to the next gener-
ation after the crossover. Step 18 to Step 21 implement
“select’, which selects the better individual as the new
individual, and the best_idx; is the output of the DE
genetic algorithm. Every time best_idx; is computed by DE
genetic algorithm, idx; is updated correspondingly, and
then the local locally optimal solution 8x,4, is produced.
The process described above is the process of hybrid
optimization.

Image-to-Binary translator

Technically speaking, our proposed DeepMal technique
provides an end-to-end solution, where the generation
starts with the binary file and ends with a malware adver-
sarial binary file xp. The output of a hybrid constrained
optimizer is denoted by «/ , , which represents malware
images with position constraints. However, the image pix-
els may not significantly map to malware codes, which
are essential instructions without breaking down orig-
inal maliciousness semantics. Therefore, the image-to-
binary translator is expected. In this section, we translate
malware adversarial samples (which are images gen-
erated by the adversarial learning model in “Adver-
sarial instruction learning model” section) to malware
binaries.

By learning the original 8086/8088 instructions® and
referring to studies in (Vinod et al. 2009; You and
Yim 2010), we learn that there are several essential
assembler instructions (e.g., NOP, WAIT) often used for
dead-code-insertion without affecting the execution
of assembly instructions. As we have mentioned in
“Binary-to-Image translator” section, the “. text” seg-
ment is mainly composed of code instructions. More-
over, due to the fact that the majority of dead-codes
(Vinod et al. 2009; You and Yim 2010) are denoted by
one hexadecimal number in binary files, we could replace
these adversarial perturbations generated in “.text”
with dead-codes. Furthermore, to make DeepMal more
robust to static analysis, we generate some API calls and
system calls in “. rdata’, which contains constants and
additional directories such as debug. Unlike feature-level
manipulations, we generate raw API calls and system
calls represented by hexadecimal numbers in “. rdata”
instead of feature manipulations. The instructions of API
and system calls embedded to “.rdata” will never be
called such that they will not affect the maliciousness
semantics. Still, they can effectively impact other static
analysis models based on feature extraction. In short,

2https://en.wikipedia.org/wiki/$X86$_instruction_listings

https://en.wikipedia.org/wiki/$X86$_instruction_listings

Yang et al. Cybersecurity (2021) 4:16

we translate images to-binaries through the following
reverse mapping strategy, which is represented by three
rules:

e Rule 1: In the “. text” segment, we calculate the L1
norm of each perturbing pixel to dead-code
instructions, and then replace the adversarial
perturbations with the dead - code instructions
according to the nearest L1 norm distance. In this
way, we could guarantee that the real world’s
solutions are the closest to the solution space’s
computed solutions.

e Rule 2: In the “. rdata” segment, we calculate the L2
norm of every 16 perturbing pixels to API and System
call instructions and then replace the adversarial
perturbations with API or System call instructions
according to the nearest Euclidean distance. Most
API and System call instructions are represented by
hexadecimal numbers, which leads to the multiple
dimensions problem. As a result, Euclidean distance
is computed instead of L1 norm.

e Rule 3: At the end of a binary file, we calculate the L1
norm of each perturbing pixel to dead-code
instructions, and then replace the adversarial
perturbations with the dead-code instructions
according to the nearest L1 norm distance.

Debug. After embedding generated adversarial pertur-
bation codes to binary files in the “.text” and the
“.rdata” segments, such addition is performed on the
binary level, and all the original bytes for code instruc-
tions, variables, and data remain unchanged. Sometimes
such additions may enforce the execution disruption or
disorder. For example, command instructions may not
locate the resources based on the original addresses.
When translating adversarial perturbations into malware
codes, we solve these difficulties through several popu-
lar debugging tools (e.g., IDA Disassembler). This process
is performed through the following three steps: First, we
mark the positions where the perturbation is generated in
binary files. Second, we embed such addition to the corre-
sponding positions in the assembly code, according to the
three rules stated above. Third, we compile the assembler
file through IDA Disassembler to generate the executable
binary files.

Theoretical analysis

We now theoretically analyze our method’s ability to gen-
erate maliciousness-preserving and unnoticeable adver-
sarial malware samples, which are realistic in the real
world. As described in “Adversarial instruction learning
model” section, when training the maliciousness seman-
tics guaranteed adversarial instruction learning model,
a specialized layer simply passes specialized pixel con-
straint input to a standard CNN. As such, the objective

Page 8 of 14

function of a CNN with specialized pixels constraints can
be defined as follows.

N .
miny | LG (e 1;0)), 1) (1)

Here, y; is the label of the input x;, f. reprenents the
constrained optimization function stated in “Adversar-
ial instruction learning model” section, and 6 represents
the set of model parameters. Specialized pixel constraint
process is represented by function as follows:

qxiI) =x O, (2)

el I 0) = £o(q(xi, 1)); 0) 3)
© denotes the Hadamard-Product. During training,
Eq. (1) can be solved using stochastic gradient descent like
that of an ordinary CNN. The only difference is that for
each training sample, the specifically-generated II’; is fixed
during forward and backward propagation until the next
training sample arrives.
The FGSM is proposed for computing adversarial per-
turbations as follows:

dx; = ¢ = sign(L(x;)) (4)

During forward and backward propagation in this
revised CNN, constrained malware adversarial perturba-
tions can be computed as follows:

§'x; = 8x; © 1;; (5)

When generating adversarial malware samples, con-
strained malware adversarial perturbations are added to
original ones, as Eq. (6) shows:

Xady = 8'%; + x; (6)

We now theoretically analyze how our revised CNN
guarantees maliciousness-preserving and unnoticeable
adversarial malware samples. According to Eq. (1), the
adversarial perturbation is generated by computing the
derivative of CNN’s cost function for the input sam-
ples. According to Egs. (2), (3), and (5), the revised CNN
embeds additional constraints on the original standard
CNN. Every step the derivative of the CNN’s cost func-
tion with respect to the input samples is computed. The
pixel value of the input x; is invariable, and the adver-
sarial perturbations are limited to the positions where
embedded zeros between the original adjacent instruc-
tions. After calculating adversarial perturbations as Eq. (4)
shows, the generated adversarial malware could bypass
adversarial learning detection. Moreover, the generated
adversarial perturbations are limited to specific positions,
without original malicious code changed at all. It provides
a guarantee for the availability of executable binaries and
integrity of maliciousness semantics.

Next, we will analyze why we can utilize image-to-
binary translators to generate malware samples that can

Yang et al. Cybersecurity (2021) 4:16

be executed in the real world. Assume that the number
of instructions (a separate instruction contains series of
hexadecimal elements) we have embedded to the original
binary file is denoted by p, and the number of hexadec-
imal elements in the binary file is denoted by g. More-
over, p and g are accords with the following constraint:
p<Lq.

According to Eq. (6), assume that the instructions posi-
tions stay unchanged when embedding malware adversar-
ial perturbations to original hexadecimal instructions, the
maximal value range of §'x; is 255xp. However, in a limited
scenario, we have introduced position changes to original
binary files. The coordinate positions where embedded
adversarial perturbations are represented by /1, [, l3....L,.
The maximal value range of §'x; can be calculated by
Eq. (7).

min Z;(q — i 41) %255 (7)

Since Eq. (7) is far below 255x%p, we can demonstrate that
the position (in which added adversarial perturbations)
impacts more than adversarial perturbations’ values. As
a result, it is reasonable to introduce the DE operator
to restrained gradient descent when calculating the opti-
mal positions. Also, it is reasonable to translate malware
images to binaries according to Euclidean distance.

Experiments

In this section, we first introduce the experimental set-
tings. Then we measure the effectiveness of the attack
of DeepMal compared with other maliciousness aware-
ness attack methods on target antimalware models. In
particular, we show some cases in terms of various adver-
sarial samples, aiming to verify that the proposed Deep-
Mal attack could preserve functionality and avoid security
checks in a real-world scenario. Here, we introduce the
datasets extracted from several web platforms applied in
our experiments, the basic classifiers as targets of adver-
saries, and the baseline methods for dealing with adver-
saries. Our experiments are performed on Nvidia Tesla
V100 16GB GPU.

Datasets: We have two public datasets for evaluation,
including the Kaggle dataset® and a phd-dataset?, which
is a collection of malware data from 2011 to 2016. (1)
The Kaggle dataset provides a dataset of with nine classes
(21741 samples). To avoid the imbalance of the dataset,
we randomly select two classes from the Kaggle database:
“Obfuscator., ACY” and “Gatak” These two classes possess
similar sample sizes, which are 2980 and 2870, respec-
tively. Moreover, each sample is labeled with 0 or 1. Here, 0
indicates “Obfuscator. ACY’, while 1 indicates “Gatak” We
divided two-thirds of each class samples for training and

Shttps://www.kaggle.com/c/malware-classification/data
*https://github.com/tgrzinic/phd-dataset

Page 9 of 14

the remaining one-third for testing. (2) The second phd-
dataset has a smaller sample collection containing 2069
benign and 2250 malware samples, 3717 samples of this
dataset are for training, and the rest 702 samples are for
the test. Each sample comes with alabel 0 or 1, 0 indicating
benign software, and 1 indicating malware. Specially, for
the Kaggle data, both classes are malware, but for the phd-
data, only one of the two classes is malware. It is due to the
different experimental purposes. Specifically, the Kaggle
data is used to validate that DeepMal attack could deceive
malware classifier to misclassification, whereas the phd-
data is used to demonstrate that DeepMal attack could
bypass malware detector.

Target Models: Traditional detection models have been
extensively studied [4, 15, 31, 32]. Following previous
work, we apply three ML models and six DL models
to detect malware samples in our datasets. Specifically,
ML modes are: Logistic Regression (LR), Support Vector
Machines (SVM), Random Forest (RF), and DL mod-
els are: Lenet-5, All-Convolutional (AllConv), Network
in Network (NiN), VGG16, ResNet, and standard DNN
model. Specially, we extract the following features in
datasets for malware detectors powered by ML mod-
els and DL models: OpCode n-gram, ByteCode n-gram
features, API calls, malware images, file-size, and MISC
instructions. Moreover, we translate binary files of mal-
ware into gray images without feature engineering for
CNNs models. Since the baseline attacks may not be
generated based on image information, our target deep
learning models contain CNN-based models and standard
DNN models.

Comparisons with traditional methods
In this set of experiments, based on datasets described in
“Comparisons with traditional methods” section, we com-
pare DeepMal, which integrates our proposed method
described in “Proposed method” section with other tra-
ditional maliciousness aware attack methods. These two
traditional maliciousness aware attack methods compared
to DeepMal are obfuscation-based attack method and
feature-level attack method. The attack performances of
those two attack methods are evaluated in this section.
We construct four types of obfuscation-based attack
methods: dead-code-instruction, code transportation,
register renaming, and instruction substitution. As we
have stated in “Introduction” and “Adversarial instruc-
tion learning model” sections, to avoid semantics
confusion and noticeable of this generated malware,
DeepMal utilizes a hybrid constrained optimization algo-
rithm to restrict the total number of manipulations that
can occur per malware sample to be as small as possible. In
obfuscation-based attack methods, the number of obfus-
cated operations on malicious code is set to be the same as
the number of adversarial perturbations. The difference is

https://www.kaggle.com/c/malware-classification/data
https://github.com/tgrzinic/phd-dataset

Yang et al. Cybersecurity (2021) 4:16

that the positions of code obfuscated actions are randomly
selected. To make the implementation of obfuscation
more complicated for traditional maliciousness awareness
attacks based on obfuscation, we randomly select these
four types of obfuscation techniques to combination. Note
that we set the amounts of manipulations less than 2% of
the instructions contained in input malware files.

Results. Since ground truth labels are available on
datasets, we can compute Precision, Accuracy, Recall and
F1-score for the malware detection results for each single
category. In our application, for Kaggle data, classification
accuracy refers to the predicted class that are correctly
categorized, mean FI is the mean FI-score of both two
malware classes; while for phd-data, Precision is the pre-
dicted malware samples that are truly malware samples,
while Recall is the malware samples that are caught by
models. FI-score is the harmonic mean of Precision and
Recall.

For Kaggle data, the results are shown in Table 1 by
Accuracy (ACC) and mean F1-score (mF1); for phd-data,
the results are shown in Table 2 by Precision (Pre), Recall
(Rec) and Fl-score (F1). In Tables 1 and 2, the best exper-
imental results are shown in boldface. Here, we com-
pare our proposed DeepMal with obfuscation-based mali-
ciousness aware attack method and feature-level mali-
ciousness aware adversarial attack technique, when the
baseline malware detectors are the same. The “baseline”
in Tables 1 and 2 refers to baseline attacks without adding
code obfuscation or adversarial perturbations. For each
attack method, the best result is shown in boldface.

Through these results in both Tables 1 and 2, we can
see that our entire target models show high Accuracy,
high Precision, high Recall, resulting in high FI-score.
It means that all of our malware detectors powered
by ML models and DL models possess excellent mal-
ware detection performance. On both two data sets, the
obfuscation-based attack method does not perform well
on all target models with a low decrease of accuracy and

Page 10 of 14

Fl-score. These obfuscation-based techniques are spe-
cially designed based on the previously known signatures
of the original malware, and thus seem to quickly fall
behind the rapid development of AI behind detection
techniques. From Table 1, we can see that, on Kaggle
data, feature-level adversarial attack achieves rather out-
standing results, and the maximum decrease of ACC and
mF1 are 71.56% and 72.29% respectively, whereas our pro-
posed DeepMal achieves the highest decrease of ACC and
mF1 by 93.96% and 93.94% respectively, improving around
22.40% and 21.66% than the second best. On phd-data,
DeepMal still accomplishes the highest decline of Recall
and FI by 90.15% and 82.86%, improving around 16.27%
and 9.2% than the second best.

We also observe that DeepMal performs significantly
worse on machine learning detectors than deep learn-
ing detectors. It may because DeepMal is built upon
deep learning models. The results show that Deep-
Mal could effectively bypass malware detectors powered
by DL and machine learning (ML). The experimental
results are also consistent with the theoretical analysis in
“Theoretical analysis” section. Although the adversarial
perturbations generated by DeepMal are some malicious
obfuscation instructions, the constrained positions of per-
turbations are learned by a revised adversarial learning
CNN and hybrid constrained optimizer instead of ran-
dom choices, which matter most when trying to deceive
detectors.

Case study

This section shows some cases in terms of three typi-
cal malware types, aiming at validating that our DeepMal
is maliciousness-preserving and non-obvious. Because
some kinds of malware samples would directly attack
our server, leading to irreversible loss, we have to avoid
self-processing scripts in practice. As a result, we ran-
domly choose three typical types (Trojan horse, Back-
door, Ransomware) of malware samples from executable

Table 1 Experimental results on Kaggle data. In Tables 1 and 2, the best experimental results are shown in boldface

Classifier Baseline Obfuscation-based Feature-level DeepMal

ACC mF1 ACC mF1 AmF1 ACC mF1 AmF1 ACC mF1 AmF1
LR 0.9813 0.9812 0.9771 0.9769 0.0043 05103 0.5059 04753 0.8538 0.8461 0.1351
SsVMm 0.9903 0.9903 0.9825 0.9823 0.0080 0.6135 0.6124 03779 0.4589 03155 0.6748
RF 0.9855 0.9853 0.9783 0.8100 0.1753 0.5978 0.5912 0.3941 0.8126 0.7980 0.1873
Lenet-5 0.9728 0.9726 0.9529 0.9524 0.0202 0.2572 0.2497 0.7229 0.0332 0.0332 0.9394
All-Cov 0.9746 0.9745 0.9299 0.9244 0.0501 0.3900 0.3839 0.5906 0.0577 0.0575 0.9170
NiN 0.9487 0.9484 0.9281 0.928 0.0204 0.3804 03738 0.5746 0.1285 0.1285 0.8199
VGG16 0.9487 0.9484 0.9281 0.9280 0.0204 0.3804 0.3738 0.5746 0.1285 0.1285 0.8199
ResNet 0.9215 0.9213 0.8991 0.8983 0.0230 04215 04025 05188 0.2022 0.2018 0.7195
Standard DNN 09134 0.9098 0.8999 0.8901 0.0197 0.6032 0.5832 03266 0.3023 0.3525 05573

Yang et al. Cybersecurity (2021) 4:16

Page 11 of 14

Table 2 Experimental results on phd-data. In Tables 1 and 2, the best experimental results are shown in boldface

Detector Baseline Obfuscation-based Feature-level DeepMal
Prec Rec F1 Prec Rec F1 AF1 Prec Rec F1 AF1 Prec Rec F1 AF1

LR 09941 09927 0.9934 0.9940 09710 09824 00110 09915 06811 0.8075 0.1859 09259 0.2083 0.3401 0.6533
SVM 09970 09710 0.9838 0.9970 0.9652 09808 0.0030 0.9943 0.5072 06717 03121 09958 0.6956 0.8191 0.1647
RF 0.9606 0.9550 0.9578 0.9595 09275 09432 00146 09354 0.5666 0.7057 0.2521 09467 0.6956 0.8020 0.1558
Lenet-5 09841 09884 0.9862 09819 0.7894 0.8752 0.1110 0.9009 0.1449 0.2496 0.7366 0.8450 0.0869 0.1576 0.8286
All-Cov 0.9849 0.9492 09667 0.9848 0.9470 09629 00038 0.9333 0.2028 03333 06334 09167 0.1594 02716 0.6951
NiN 0.9642 0.9768 09704 09626 09347 09485 0.0219 0.8883 0.2884 04354 05350 0.8275 0.1739 0.2874 0.6830
VGG16 0.9524 0.9421 09473 09211 0.8994 09103 00370 09244 0.2328 05786 03687 08312 0.1018 0.4665 0.4808
ResNet 0.8999 0.8732 0.8865 0.8534 0.8213 0.8373 00492 0.7984 0.2085 0.5035 03830 0.8243 0.0876 04559 0.4306
Standard DNN 0.8867 0.8813 0.8840 0.8673 08575 08623 00217 05000 06375 05604 03236 0.8839 0.1000 0.1798 0.7066

files contained in datasets. These real cases include
286 Trojan horse samples, 250 Backdoor samples, and
120 Ransomware samples. As we have described in
“Proposed method” section, we utilize DeepMal tech-
nique to generate malware adversarial samples from orig-
inal malware binary files. Also, we conduct malware
variants analysis by an ideal duplication check tool: Ultra-
Compare. By comparing these generated malware binary
files with the original record, this duplication check tool
could report the duplication check ratio. According to our
preliminary statistics, the mean duplication check ratio
of malware adversarial samples is less than 2%. More-
over, Fig. 4 shows the instruction embedding ratio of each
adversarial malware type.

Figure 4 shows that only a relatively small amount of
essential instructions (or API sequences) are embedded in
the corresponding section. For these three types of mal-
ware, the embedding rates are below 1%. As mentioned
above, the mean duplication check ratio of malware adver-
sarial samples is less than 2%. We can see that the scale of
the generated adversarial perturbations is relatively small.
As a result, these generated adversarial malware samples
could easily evade duplication checks and be non-obvious
in the real world.

To verify whether these cases could still retain mali-
cious attack functions in a real-world scenario, we actively
implement target executable files for implanting them into
target systems (Centos7 system and Windows?7 system).
We then analyze these real cases in Table 3 and show the
results of our DeepMal attack.

In case 1, all malware samples could: successfully con-
trol the computer system remotely to achieve a remote
keyboard logger and record all keyboard operations. As
a result, the keyboard is no longer safe; it could easily
filch user’s accounts, passwords, login mailbox remotely,
and send spam to designated users; it could illegally
gain access to most files, browse the contents and tam-
per with them. In case 2, our analysis revealed that: all
backdoor malware samples have maliciously leaked data
from compromised systems and networks; all samples
have maliciously reconnected with the compromised sys-
tem; all samples could stay in the system for at least
one month potentially. In case3: all these malware sam-
ples could load into the memory and encrypt the target
files. Finally, prompt the user to pay for the decryption
operation. Cases in this section could have validated that
all of the adversarial samples we generate by DeepMal
could preserve attack functionality in the real world.

-
o
-
o

N
o

Fig. 4 Number of instructions get embedded per sample

% Instraction Embedding Ratio % — Instraction Embedding Ratio % Instraction Embedding Ratio

2 84 Average ® 84 Average 2 84 Average

o o [hd

jo)) (o] D

£ 6 £ 6 £ 61

g g 2

g 41 g 41 5 41

S] ” ‘ s S

© 24 © 24 B 24

£ n.w” M,n,“mln m n nuu i e m A.MMU\W b \Mf\. nﬂl g ‘AM) AMI\J\ NAA o

<9 W i W 10 WLl V“W" W = o VN UOTWT VWL = o LW WY W WA 7 VA

S143 S286 S125 S250 860 S120

Trojan horse Backdoor Ransomware

Yang et al. Cybersecurity (2021) 4:16

Table 3 Case analysis of DeepMal

Malware Dynamic event

casel: Trojan horses
FILE:GetAdaptersAddresses
FILE:CreateToolhelp32Snapshot
Load system.dll into the memory
FILE:Writing file to temporary directory
PROCESS:CopyFileW
FILE:Deleting spawned process

FILE:Execute:[system]\taskkill.exe

case2: Backdoors
FILE:Get the meterpreter session
FILE:Automatically Configure the Registry
Start Netcat

Establish TCP connections

case3: Ransomware
FILE:Writing file to temporary directory
FILE:Write:[windows error reporting queue]
FILE:Execute:[system]\mssecsvc.exe
REGISTRY: Win32API function CryptGenKey

Call ReadFile reads the binary into memory
FILE:SeDebugPrivilege...
REGISTRY:HKEY_LOCAL_MACHINE

Discussion on the attack evasiveness against dynamic
malware detection

In this paper, DeepMal is designed mainly against static
malware detection and cannot be directly applied to
attack dynamic techniques. However, thanks to its adver-
sarial instruction learning, DeepMal can most likely be
improved by learning those specific instructions involv-
ing the malware’s behavior, such as system calls and API
calls, which are used by the dynamic detection tech-
niques. In this section, we will discuss its evasiveness
with respect to dynamic analysis(e.g., detecting malware
based on its dynamic behavior). Technically speaking, as
we have stated in “Background and related work” section,
malware behavior is analyzed in a dynamic controlled
environment, and the combinations of different features
are used for dynamic malware analysis. Specifically, the
different combinations are generated from some types of
basic dynamic features (e.g., APIs, DLLs, Registry Keys,
System calls, File Actions, Summary Information, and
IP Address). As described in (Cabau et al. 2017; Ijaz et

Page 12 of 14

al. 2019; Wu et al. 2012), most malware dynamic detec-
tion experiments are conducted on the sandbox environ-
ment. This paper uses two popular Cuckoo Sandbox®
and VirusTotal Sandbox® for dynamic analysis of mal-
ware and extracts their behaviors at run time during
execution. The features which are extracted from Cuckoo
Sandbox and VirusTotal Sandbox reports are described in
Table 4. The features which are extracted from Cuckoo
Sandbox and VirusTotal Sandbox reports are described in
Table 4. From Table 4, we can see that Cuckoo Sandbox
extracts the following dynamic features: API call, Registry
Keys, IP address and DNS queries, Access URLs, Sum-
mary information, and File operations. VirusTotal Sand-
box extracts the following dynamic features: File System
Action, Process and Service Action, and Synchroniza-
tion Mechanisms and Signals. We should note that some
other dynamic features are not listed in Table 4 due to
the page limit, but these dynamic features presented in
Table 4 are relatively typical. Moreover, the dynamic fea-
tures extracted by different sandboxes may be crossed or
combined, but they are not the same exactly.

Results. In this paper, we use Evasion Rate to evalu-
ate the attack evasiveness of DeepMal against dynamic
malware detection. The results are shown in Table 5. Eva-
sion Rate refers to the proportion of malware samples
that could bypass the dynamic detector. In this section,
we figure out the original malware samples’ Evasion
Rate(which is shown in brackets in Table 5), and we also
calculate the generated adversarial samples’ Evasion Rate
to make a comparison. Specifically, we choose Cuckoo
Sandbox and VirusTotal Sandbox as dynamic detectors to
conduct experiments on Kaggle dataset and phd dataset.

From the results in Table 5, we can see that Deep-
Mal could bypass dynamic malware detectors on both
two datasets. For the Kaggle dataset, the Evasion Rate is
increased from 8.320% to 56.32%(48.00% increased) when
the dynamic detector is Cuckoo Sandbox, and the Eva-
sion Rate is increased from 5.640% to 32.56% (26.92%
increased) when the dynamic detector is VirusTotal Sand-
box. For phd-dataset, the Evasion Rate is increased from
10.18% to 48.61% (38.43% increased) when the dynamic
detector is Cuckoo Sandbox, and the Evasion Rate is
increased from 7.526% to 38.83% (31.30% increased) when
the dynamic detector is VirusTotal Sandbox. For Cuckoo
Sandbox and VirusTotal Sandbox, the Evasion Rates are
increased by more than 25.00%. That means, though
DeepMal is designed for static malware detection in this
paper, it still works even when detected by dynamic
malware detectors. It is due to the specific instructions
added to our original malware samples, which contain
APIs and System call features. In addition, DeepMal

®https://cuckoosandbox.org/
Ohttps://www.virustotal.com/

https://cuckoosandbox.org/
https://www.virustotal.com/

Yang et al. Cybersecurity (2021) 4:16

Table 4 The features extracted from Sandbox
Sandbox

Features

Cuckoo API call during Execution
Registry Keys

IP address and DNS queries
Access URLs

Summary information

File operations

VirusTotal File System Action (Files Open, Files Written,

Files deleted, Files Copied)

Process and Service Action (Process Created,
Shell Commands, Process Injected)

Synchronization Mechanisms and Signals
(Mutexes Created, ShimCacheMutex)

performs better when the dynamic detector is Cuckoo
Sandbox, probably because of the different dynamic fea-
tures extracted by detectors. Specifically, the dynamic fea-
tures extracted by VirusTotal Sandbox contain more APIs
and system calls in our generated adversarial malware
samples. This section’s experimental results demonstrate
that the Evasion Rate of DeepMal could be improved sig-
nificantly by learning more dynamic features with specific
constraints.

Conclusion

In this paper, we have proposed a novel technique Deep-
Mal, which is based on a maliciousness semantics guaran-
teed fine-grained adversarial instruction learning model.
We implement some theoretical guarantees for semantics
aware and non-obvious adversarial perturbations through
the revised CNN and hybrid optimization. Moreover, we
use binary-to-image and image-to-binary translators to
guarantee the adversarial malware samples maliciousness-
preserving and executable in the real world. So far as we
know, this is the first practical and systemic work that
provides end to end malware adversarial solution as well
as theoretical guarantees. We apply our method to two
public malware datasets and empirically demonstrate that
DeepMal could effectively bypass static malware detec-
tors powered by DL and ML while preserving function-
ality in the real world. Complementary, we also conduct
experiments to discuss the attack evasiveness for dynamic
malware detection. The experimental results demonstrate

Table 5 The Attack Evasiveness against Dynamic Detection

Detectors Evasion Rate

Kaggle data Phd-data
Cuckoo Sandbox 56.32%(8.320%) 48.61%(10.18%)
VirusTotal Sandbox 32.56%(5.640%) 38.83%(7.526%)

Page 13 of 14

that DeepMal still works when detected by dynamic
detectors and could be easily enhanced by learning more
dynamic features with specific constraints.

Acknowledgments
Eternal gratitude to the Strategic Priority Research Program.

Authors’ contributions

CY contributed to the conception of this work, designed and performed the
experiment, and wrote the manuscript. JX, SL and YW performed the
experiments and helped perform the analysis with constructive discussions.
YW contributed to the conception of this work, participated in problem
discussions and improvements of the manuscript. BZ and DM participated in
problem discussions, read and approved the final manuscript.

Funding
This work was supported by Grant No.XDC02010300.

Availability of data and materials

Kaggle dataset can be found at: https://www.kaggle.com/c/malware-
classification/data phd-dataset can be found at: https://github.com/tgrzinic/
phd-dataset

Competing interests
The authors declare that they have no competing interests.

Author details

Tinstitute of Information Engineering (IlIE), Chinese Academy of Sciences (CAS),
North of Yiyuan, Xingshikou Road, Haidian District, Beijing, China. 2University
of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing,
China.

Received: 13 November 2020 Accepted: 7 February 2021
Published online: 14 May 2021

References

Anderson B, McGrew D (2017) Machine learning for encrypted malware traffic
classification: Accounting for noisy labels and non-stationarity. In:
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD "17. ACM, New York.
pp 1723-1732. https://doi.org/10.1145/3097983.3098163. http://doi.acm.
0rg/10.1145/3097983.3098163

Anderson HS, Woodbridge J, Filar B (2016) Deepdga: Adversarially-tuned
domain generation and detection. In: Proceedings of the 2016 ACM
Workshop on Atrtificial Intelligence and Security. ACM. pp 13-21. https.//
arxiv.org/abs/1610.01969

Banescu S, Collberg C, Ganesh V, Newsham Z, Pretschner A (2016) Code
obfuscation against symbolic execution attacks. In: Proceedings of the
32Nd Annual Conference on Computer Security Applications. ACSAC '16.
ACM, New York. pp 189-200. https://doi.org/10.1145/2991079.2991114.
http://doi.acm.org/10.1145/2991079.2991114

Banescu S, Collberg C, Pretschner A (2017) Predicting the resilience of
obfuscated code against symbolic execution attacks via machine learning.
In: Proceedings of the 26th USENIX Security Symposium. https://dlacm.
org/doi/abs/10.5555/3241189.3241241

Brown TB, Mané D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. arXiv
preprint arXiv:1712.09665

Burnaev E, Smolyakov D (2016) One-class svm with privileged information and
its application to malware detection. arXiv preprint arXiv:1609.08039

Cabau G, Buhu M, Oprisa CP (2017) Malware classification based on dynamic
behavior. In: International Symposium on Symbolic & Numeric Algorithms
for Scientific Computing. IEEE. https://doi.org/10.1109/SYNASC.2016.057,
https:/ieeexplore.ieee.org/document/7829629

Dahl GE, Stokes JW, Deng L, Yu D (2013) Large-scale malware classification
using random projections and neural networks. In: Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference On. IEEE.
pp 3422-3426. https://ieeexplore.jeee.org/document/6638293

Evtimov |, Eykholt K, Fernandes E, Kohno T, Li B, Prakash A, Rahmati A, Song D
(2017) Robust physical-world attacks on deep learning models. arXiv
preprint arXiv:1707.08945 1

https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
https://github.com/tgrzinic/phd-dataset
https://github.com/tgrzinic/phd-dataset
https://doi.org/10.1145/3097983.3098163
http://doi.acm.org/10.1145/3097983.3098163
http://doi.acm.org/10.1145/3097983.3098163
https://arxiv.org/abs/1610.01969
https://arxiv.org/abs/1610.01969
https://doi.org/10.1145/2991079.2991114
http://doi.acm.org/10.1145/2991079.2991114
https://dl.acm.org/doi/abs/10.5555/3241189.3241241
https://dl.acm.org/doi/abs/10.5555/3241189.3241241
https://doi.org/10.1109/SYNASC.2016.057
https://ieeexplore.ieee.org/document/7829629
https://ieeexplore.ieee.org/document/6638293

Yang et al. Cybersecurity (2021) 4:16

Farhadi MR, Fung BC, Charland P, Debbabi M (2014) Binclone: Detecting code
clones in malware. In: 2014 Eighth International Conference on Software
Security and Reliability (SERE). IEEE, San Francisco. pp 78-87. https://
ieeexplore.ieee.org/document/6895418, https://doi.org/10.1109/SERE.
2014.21

Gardiner J, Nagaraja S (2016) On the security of machine learning in malware
c&c detection: A survey. ACM Comput Surv (CSUR) 49(3):59

Goodfellow I, Shlens J, Szegedy C (2014) Explaining and harnessing
adversarial examples. CoRR abs/1412.6572. https://arxiv.org/abs/1412.6572

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P (2016) Adversarial
perturbations against deep neural networks for malware classification.
arXiv preprint arXiv:1606.04435

Han K, Lim JH, Im EG (2013) Malware analysis method using visualization of
binary files. In: Proceedings of the 2013 Research in Adaptive and
Convergent Systems. RACS "13. ACM, New York. pp 317-321. https://doi.
0rg/10.1145/2513228.2513294. http://doi.acm.org/10.1145/2513228.
2513294

ljaz M, Durad MH, Ismail M (2019) Static and dynamic malware analysis using
machine learning. In: International Bhurban Conference on Applied
Sciences & Technology. IEEE. https://ieeexplore.ieee.org/document/
8667136, https://doi.org/10.1109/IBCAST.2019.8667136

Islam R, Tian R, Batten LM, Versteeg S (2013) Classification of malware based on
integrated static and dynamic features. J Netw Comput Appl 36(2):646-656

Jang J, Woo M, Brumley D (2013) Towards automatic software lineage
inference. In: SEC'13: Proceedings of the 22nd USENIX conference on
Security. pp 81-96. https://dl.acm.org/doi/10.5555/2534766.2534774

Junod P, Rinaldini J, Wehrli J, Michielin J (2015) Obfuscator-llvm-software
protection for the masses. In: 2015 I[EEE/ACM 1st International Workshop
on Software Protection. IEEE. pp 3-9. https://doi.org/10.1109/SPR0O.2015.10

Khoo WM, Mycroft A, Anderson R (2013) Rendezvous: A search engine for
binary code. In: 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE. pp 329-338. https://doi.org/10.1109/MSR.2013.
6624046

Kurakin A, Goodfellow |, Bengio S (2016) Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533

Luo L, Ming J, Wu D, Liu P, Zhu S (2014) Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism
detection. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. IEEE. pp 389-400.
https://doi.org/10.1109/TSE.2017.2655046, https://ieeexplore.ieee.org/
document/7823022

Madou M, Put LV, Bosschere KD (2006) Loco: an interactive code
(de)obfuscation tool. https://doi.org/10.1145/1111542.1111566, https.//
www.researchgate.net/publication/220989942

Myles G, Collberg C (2005) K-gram based software birthmarks. In: Proceedings
of the 2005 ACM Symposium on Applied Computing. 2005 ACM
Symposium on Applied Computing. pp 314-318. https://doi.org/10.1145/
1066677.1066753

Narodytska N, Kasiviswanathan S (2017) Simple black-box adversarial attacks
on deep neural networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). IEEE. pp 1310-1318. https://
doi.org/10.1109/CVPRW.2017.172

Nataraj L, Karthikeyan S, Jacob G, Manjunath B (2011) Malware images:
visualization and automatic classification. In: Proceedings of the 8th
International Symposium on Visualization for Cyber Security. ACM. p 4.
https://doi.org/10.1145/2016904.2016908

Necula GC, Mcpeak S, Rahul SP, Weimer W (2002) Cil: Intermediate language
and tools for analysis and transformation of ¢ programs. In: Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings. International
Conference on Compiler Construction. https://doi.org/10.1007/3-540-
45937-5_16, https:/link.springer.com/chapter/10.1007/3-540-45937-5_16

Papernot N, McDaniel P, Goodfellow | (2016) Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277

Papernot N, McDaniel P, Goodfellow 1, Jha S, Celik ZB, Swami A (2017) Practical
black-box attacks against machine learning. In: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security.
ACM. pp 506-519. https://doi.org/10.1145/3052973.3053009

Page 14 of 14

Pierazzi F, Pendlebury F, Cortellazzi J, Cavallaro L (2019) Intriguing properties of
adversarial ml attacks in the problem space. https://arxiv.org/abs/1911.
02142

Saxe J, Berlin K (2015) Deep neural network based malware detection using
two dimensional binary program features. In: Malicious and Unwanted
Software (MALWARE), 2015 10th International Conference On. IEEE.
pp 11-20. https://doi.org/10.1109/MALWARE.2015.7413680

Su J, Vargas DV, Sakurai K (2019) One pixel attack for fooling deep neural
networks. IEEE Trans Evol Comput abs/1710.08864. http://arxiv.org/abs/
1710.08864

Szegedy C, Zaremba W, Sutskever |, Bruna J, Erhan D, Goodfellow |, Fergus R
(2013) Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199

Vinod P, Jaipur R, Laxmi V, Gaur M (2009) Survey on malware detection
methods. In: Proceedings of the 3rd Hackers Workshop on Computer and
Internet Security (ITKHACK'09). pp 74-79. https://dx.doi.org/10.1145/
1327452.1327492

Wang Q, Guo W, Zhang K, Ororbia Il AG, Xing X, Liu X, Giles CL (2017) Adversary
resistant deep neural networks with an application to malware detection.
In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. pp 1145-1153. https://doi.
0rg/10.1145/3097983.3098158

Wu'Y, Zhang B, Lai Z, Su J (2012) Malware network behavior extraction based
on dynamic binary analysis. In: IEEE International Conference on Software
Engineering & Service Science. IEEE. https://doi.org/10.1109/ICSESS.2012.
6269469, https://ieeexplore.ieee.org/document/6269469

Yang C, Wen'Y, Guo J, Song H, Li L, Che H, Meng D (2018) A convolutional
neural network based classifier for uncompressed malware samples. In:
Proceedings of the 1st Workshop on Security-Oriented Designs of
Computer Architectures and Processors. ACM. pp 15-17. https://dl.acm.
org/doi/10.1145/3267494.3267496

Ye Y, Li T, Adjeroh D, lyengar SS (2017) A survey on malware detection using
data mining techniques. ACM Comput Surv 50(3):41-14140. https://doi.
org/10.1145/3073559

You |, Yim K (2010) Malware obfuscation techniques: A brief survey. In:
Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2010 International Conference On. IEEE. pp 297-300. https://doi.
org/10.1109/BWCCA.2010.85

Yuan Z,LuY, Wang Z, Xue Y (2014) Droid-sec: deep learning in android
malware detection. In: ACM SIGCOMM Computer Communication Review.
ACM Vol. 44. pp 371-372. https;//doi.org/10.1145/2619239.2631434

Yue S (2017) Imbalanced malware images classification: a cnn based approach.
arXiv preprint arXiv:1708.08042

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://ieeexplore.ieee.org/document/6895418
https://ieeexplore.ieee.org/document/6895418
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1109/SERE.2014.21
https://arxiv.org/abs/1412.6572
https://doi.org/10.1145/2513228.2513294
https://doi.org/10.1145/2513228.2513294
http://doi.acm.org/10.1145/2513228.2513294
http://doi.acm.org/10.1145/2513228.2513294
https://ieeexplore.ieee.org/document/8667136
https://ieeexplore.ieee.org/document/8667136
https://doi.org/10.1109/IBCAST.2019.8667136
https://dl.acm.org/doi/10.5555/2534766.2534774
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/MSR.2013.6624046
https://doi.org/10.1109/MSR.2013.6624046
https://doi.org/10.1109/TSE.2017.2655046
https://ieeexplore.ieee.org/document/7823022
https://ieeexplore.ieee.org/document/7823022
https://doi.org/10.1145/1111542.1111566
https://www.researchgate.net/publication/220989942
https://www.researchgate.net/publication/220989942
https://doi.org/10.1145/1066677.1066753
https://doi.org/10.1145/1066677.1066753
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://link.springer.com/chapter/10.1007/3-540-45937-5_16
https://doi.org/10.1145/3052973.3053009
https://arxiv.org/abs/1911.02142
https://arxiv.org/abs/1911.02142
https://doi.org/10.1109/MALWARE.2015.7413680
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
https://dx.doi.org/10.1145/1327452.1327492
https://dx.doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3097983.3098158
https://doi.org/10.1145/3097983.3098158
https://doi.org/10.1109/ICSESS.2012.6269469
https://doi.org/10.1109/ICSESS.2012.6269469
https://ieeexplore.ieee.org/document/6269469
https://dl.acm.org/doi/10.1145/3267494.3267496
https://dl.acm.org/doi/10.1145/3267494.3267496
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1145/2619239.2631434

	Abstract
	Keywords

	Introduction
	Background and related work
	Proposed method
	Binary-to-Image translator
	Adversarial instruction learning model
	Image-to-Binary translator
	Theoretical analysis

	Experiments
	Comparisons with traditional methods
	Case study
	Discussion on the attack evasiveness against dynamic malware detection

	Conclusion
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

