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Abstract 

Side-channel resistance is nowadays widely accepted as a crucial factor in deciding the security assurance level of 
cryptographic implementations. In most cases, non-linear components (e.g. S-Boxes) of cryptographic algorithms will 
be chosen as primary targets of side-channel attacks (SCAs). In order to measure side-channel resistance of S-Boxes, 
three theoretical metrics are proposed and they are reVisited transparency order (VTO), confusion coefficients vari-
ance (CCV), and minimum confusion coefficient (MCC), respectively. However, the practical effectiveness of these 
metrics remains still unclear. Taking the 4-bit and 8-bit S-Boxes used in NIST Lightweight Cryptography candidates 
as concrete examples, this paper takes a comprehensive study of the applicability of these metrics. First of all, we 
empirically investigate the relations among three metrics for targeted S-boxes, and find that CCV is almost linearly cor-
related with VTO, while MCC is inconsistent with the other two. Furthermore, in order to verify which metric is more 
effective in which scenarios, we perform simulated and practical experiments on nine 4-bit S-Boxes under the non-
profiled attacks and profiled attacks, respectively. The experiments show that for quantifying side-channel resistance 
of S-Boxes under non-profiled attacks, VTO and CCV are more reliable while MCC fails. We also obtain an interesting 
observation that none of these three metrics is suitable for measuring the resistance of S-Boxes against profiled SCAs. 
Finally, we try to verify whether these metrics can be applied to compare the resistance of S-Boxes with different sizes. 
Unfortunately, all of them are invalid in this scenario.
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Introduction
With the emergence and explosive development of the 
Internet of Things, a large number of highly constrained 
devices are interconnected and working in concert 
to accomplish certain tasks (Zhu and Reddi 2017). In 
order to protect the security of most applications, light-
weight cryptographic algorithms tailored for constrained 
devices have been researched for more than a decade 
(Heuser et  al. 2020). Specifically, NIST has initiated a 
process to solicit, evaluate, and standardize lightweight 

cryptographic algorithms (NIST 2021). Subsequently, 
many ingenious ciphers have been proposed   (Bao et al. 
2019; Zhang et al. 2019; Dobraunig and Mennink 2019).

The security evaluation of lightweight cryptographic 
algorithms is a topic of interest due to their wide appli-
cation prospects. In particular, the resistance of crypto-
graphic implementations against side-channel attacks 
(SCAs) has been recognized as a crucial factor (Heuser 
et  al. 2020). Essentially, SCAs exploit physical leakages 
(e.g., power consumption (Kocher et  al. 1999), electro-
magnetic emanations (Brier et al. 2004)) from cryptosys-
tems to recover their underlying sensitive data. Generally 
speaking, SCAs can be divided into two classes: non-
profiled attacks, such as differential power analysis (DPA) 
(Kocher et al. 1999) and correlation power analysis (CPA) 
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(Brier et al. 2004), and profiled attacks, such as template 
attacks (TA) (Chari et  al. 2002) and deep learning (DL) 
based profiled attacks (Maghrebi et al. 2016; Cagli et al. 
2017; Wouters et al. 2020).

When performing an efficient SCA, it is evident that 
non-linear components (e.g. S-Boxes) of cryptographic 
algorithms will be chosen as the primary targets (Carlet 
2005). Therefore, for evaluating the side-channel resist-
ance of a lightweight cipher, it is an important perspec-
tive to study how to measure the intrinsic resistance of 
S-Boxes against SCAs. Consequently, various metrics 
have been proposed, such as DPA signal-to-noise ratio 
(Guilley et  al. 2004), transparency orders (Prouff 2005; 
Chakraborty et al. 2017; Li et al. 2020), confusion coeffi-
cients (Fei et al. 2012) and non-absolute indicator (Carlet 
et al. 2021).

Among those metrics, transparency orders and confu-
sion coefficients are the most commonly used to compare 
and select optimal S-Boxes with high SCA resistance. As 
for the first ones, the original transparency order (TO) 
(Prouff 2005) and modified transparency order (MTO) 
(Chakraborty et al. 2017) has been widely used to select 
4 × 4 S-Boxes, 6× 6 S-Boxes, and 8× 8 S-Boxes (Picek 
et  al. 2014, 2016; Kavut and Baloğlu 2016; Patranabis 
et al. 2019). However, it has been pointed out that both 
TO and MTO are flawed (Li et al. 2020). And the notion 
of reVisited transparency order (VTO) was further pro-
posed in Li et  al. (2020). As far as we know, VTO has 
been used to select 4 × 4 S-Boxes in Runlian et al. (2020) 
and 8× 8 S-Boxes in Martínez-Díaz and Freyre-Echevar-
ria (2020). As for confusion coefficients, confusion coeffi-
cient variance (CCV) and minimum confusion coefficient 
(MCC) were proposed by Picek et al. (2014) and Guilley 
et al. (2015), respectively. CCV has been used to heuris-
tically select optimal 4 × 4 and 8× 8 S-Boxes for cryp-
tographic algorithms (Ege et  al. 2015; Freyre-Echevarría 
et  al. 2020). While MCC has not received much atten-
tion. Furthermore, there are some studies consider both 
transparency orders and confusion coefficients to select 
optimal S-Boxes against SCAs (de la Cruz Jiménez 2018; 
Martínez-Díaz and Freyre-Echevarria 2020).

However, the practical effectiveness of these metrics 
remains still unclear. Specifically, for transparency orders, 
the existing research work is limited to the analysis of TO 
or MTO, and there is a lack of research on the recently 
proposed VTO. And for confusion coefficients, the effec-
tiveness of CCV and MCC needs to be further verified. 
Therefore, we mainly focus on investigating the applica-
bility and relations of VTO, CCV, and MCC in this work.

Our Contributions. In this paper, we give a comprehen-
sive study of the applicability of three typical theoretical 
metrics for side-channel analysis, namely VTO, CCV and 

MCC. We take the 4-bit and 8-bit S-Boxes used in NIST 
Lightweight Cryptography candidates as concrete exam-
ples for our analysis. Firstly, we empirically investigate the 
relations among three metrics for targeted S-boxes. The 
metric values of these S-Boxes show that CCV is almost 
linearly correlated with VTO, while MCC is inconsistent 
with the other two metrics.

Next, to verify the effectiveness of these metrics, we 
perform simulated and practical experiments on nine 
4-bit S-Boxes in the non-profiled and profiled scenarios, 
respectively. For the non-profiled scenario, when VTO 
(resp. CCV) difference value of two S-Boxes is rela-
tively large, the S-Box with a lower VTO (resp. higher 
CCV) value is generally more resistant to attacks. How-
ever, when VTO and CCV values of S-Boxes turn rela-
tively close to each other, these two metrics become 
inaccurate to some extent. Interestingly, the MCC fails 
to work in quantifying the resistance of S-Boxes against 
CPA attacks. For the profiled scenario, template attacks 
and deep learning based profiled attacks are performed, 
respectively. Unfortunately, none of these three metrics 
(VTO, CCV and MCC) is suitable for measuring the 
resistance of S-Boxes against profiled SCAs.

Finally, we try to verify whether these metrics can be 
applied to compare the resistance of S-Boxes with dif-
ferent sizes. Interestingly, all of them cannot be used to 
compare the resistance of S-Boxes with different sizes.

The rest of the paper is organized as follows. “Notations 
and preliminaries” section gives preliminary notions on 
S-Boxes and theoretical metrics evaluating the resiliency 
of S-Boxes against SCAs. “Evaluation of S-Boxes” section 
provides basic information on the S-Boxes we evaluated 
and the results based on the theoretical metrics. Then in 
Non-profiled side-channel attacks against 4 × 4 S-Boxes 
section, we demonstrate the simulated and practical 
results of non-profiled attacks on nine 4-bit S-Boxes. And 
the results of profiled attacks are shown in Profiled side-
channel attacks section. Furthermore, we verify whether 
these metrics can be applied to compare the resistance of 
S-Boxes with different sizes in “p04 × 4 S-Boxes versus 
8 × 8 S-Boxes” section. Finally, we conclude our work in 
“Conclusions and future work” section.

Notations and preliminaries
In this section, we first give basic notions about the cryp-
tographic properties of S-Boxes. Then, we introduce the 
notions of reVisited transparency order (VTO), confu-
sion coefficient variance (CCV), and minimum confusion 
coefficient (MCC).

Boolean functions and S‑Boxes
Let Fn

2 be the vector space that contains all the n-bit 
binary vectors, where n is a positive integer. For every 
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vector u ∈ F
n
2 , we denote by H(u) the Hamming weight 

(HW) of u. A Boolean function on n variables can be 
viewed as a mapping from Fn

2 to F2 , and the mappings 
from the vector space Fn

2 to the vector space Fm
2  are called 

(n, m)-vectorial Boolean functions where m � n . An (n, 
m)-function F that performs substitution in the cryp-
tosystem is commonly referred to as the n×m S-Box. 
Generally, S-Boxes have to be chosen carefully to satisfy 
cryptographic properties like resisting linear and differ-
ential cryptanalysis.

For each (n, m)-function F, the Boolean func-
tions f1, . . . , fm defined for every x ∈ F

n
2 by 

F(x) = (f1(x), . . . , fm(x)) are called the coordinate func-
tions of F. Let z ∈ F

m
2  be a vector whose binary coordi-

nates are all zero except one which is assumed to be at 
index j. The j-th component function of the function 
F is a single output Boolean function z · F  , and we also 
denote this component function as Fj . The cross-corre-
lation spectrum between two Boolean functions f1 , f2 is 
defined as the value Cf1,f2(u) =

∑
x∈Fn2

(−1)f1(x)⊕f2(x⊕u) for 
every u ∈ F

n
2.

ReVisited transparency order
Following the work of Prouff on transparency order 
(TO) (Prouff 2005), Chakraborty et  al. (2017) presented 
modified transparency order (MTO). Recently, Li et  al. 
amended a definitional flaw in the work of TO and spot-
ted MTO overestimates the side-channel resistance of 
S-Boxes in the HW leakage model. Then they proposed 
reVisited transparency order (VTO) and verified the 
soundness of this notion through simulated and practi-
cal experiments. The work of Martínez-Díaz and Freyre-
Echevarria (2020) also verified that VTO is a more 
accurate metric. Mathematically, the VTO value of an 
S-Box F equals to

where βi denotes the value of the i-th bit of the register 
initial state β , and CFi ,Fj (a) denotes the cross-correlation 
spectrum between the component functions Fi and Fj.

Specifically, the VTO metric assumes that target 
devices leak the HW value of v ⊕ β , where v denotes 
the data being processed, and β denotes the register 
initial state that is assumed to be constant. In Eq.  (1), 
the value of VTO(F) is obtained by traversing all regis-
ter initial state β ∈ F

m
2  , and it represents the worst case 

context when implementing the S-Box. However, in 
practice, the strategy of the adversary depends on the 
target device. As a result, we set the value of β to zero 

(1)VTO(F) = max
β∈Fm2


m −

1

22n − 2n

�

a∈Fn
∗

2

������

m�

j=1

m�

i=1

(−1)βi⊕βjCFi,Fj(a)

������


,

for each S-Box implementation in our experiments. It 
corresponds to our context in which the target micro-
controller leaks the HW value of the manipulated value 
v. And the corresponding value of VTO is denoted as 
VTO0(F).

Confusion coefficient variance
Fei et al. (2012) introduced another metric called con-
fusion coefficient. This metric measurers the prob-
ability of occurrences for which key hypotheses ki and 
ki result in different intermediate values v. For DPA 
attacks, it can be calculated through measuring the dif-
ference between the v values under the two keys by the 
expectation of their squared distance. That is, it can be 
computed as:

where L denotes the leakage function, p denotes the arbi-
trary inputs, and E is the mean operator.

Then, Picek et al. (2014) proposed to calculate the vari-
ance of all confusion coefficients with respect to each 
possible ki and kj under the HW leakage model. And the 
S-Box with higher confusion coefficient variance (CCV) 
value leads to a higher resistance against SCAs. Formally, 
for all the key pairs ki, kj , ki  = kj , the value of CCV of an 
S-Box is calculated as follows:

Minimum confusion coefficient
Guilley et  al. (2015) pointed out that when the signal-
to-noise-ratio (SNR) of the leakage is low, the empirical 

success rate of DPA, CPA and the optimal distinguisher 
mainly depends on minimum confusion coefficient 
(MCC) mink  =k∗ κ

′(k∗, k) . Where k∗ denotes the secret 
key, and k denotes a key hypothesis that is not the secret 
key. The lower the value of MCC, the lower the success 
probability to extract the secret key based on leakages 
associated with the S-Box. Here the κ ′(k∗, k) is calculated 
as follows:

κ
(
ki, kj

)
= E

[(
L(F(ki ⊕ p))− L

(
F
(
kj ⊕ p

)))2]
,

(2)
CCV(F) = Var

(
E

[(
H(F(ki ⊕ p))− H

(
F
(
kj ⊕ p

)))2])
.

(3)

κ ′
(
k∗, k

)
= E

{(
L(F(k∗ ⊕ p))− L(F(k ⊕ p))

2

)2
}
,
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which is slightly different from κ(k∗, k) , but it does not 
affect the order of the different S-Boxes. Note that the 
distribution of κ ′(k∗, k) is independent on the particular 
choice of k∗ and the values are only permuted. Therefore, 
k∗ can be set to 0 during the calculation. In Heuser et al. 
(2016) and Heuser et al. (2020), the effectiveness of using 
MCC to measure the resistance of different S-Boxes 
against CPA and the optimal distinguisher was validated 
through simulated experiments.

Evaluation of S‑Boxes
In this section, we first show basic information on the 
S-Boxes we investigate. Next, the values of VTO0 , CCV, 
and MCC of these S-Boxes are given.

Investigated S‑Boxes
Of the 25 NIST Lightweight Cryptography second-round 
candidates that use S-Boxes as the nonlinear component, 
18 schemes use 4-bit or 8-bit S-Boxes. Therefore, we 
mainly evaluate the 4-bit and 8-bit S-Boxes in this work. 
More precisely, we focus on the following 11 S-Boxes.
4 × 4 S-Boxes of PHOTON-Beetle (Bao et  al. 2019), 

KNOT (Zhang et  al. 2019), Pyjamask (Goudarzi et  al. 
2019), GIFT-COFB (Banik et  al. 2019), Elephant 
(Dobraunig and Mennink 2019), SATURNIN (Canteaut 
et  al. 2019), ForkAE (Andreeva et  al. 2019) and Spook 
(Bellizia et al. 2020). More specifically, the nine S-Boxes 
are listed in Table 1. Note that a cipher may use several 
different S-Boxes (e.g., SATURNIN). In addition, the 
above nine S-Boxes are also used in other NIST candi-
date ciphers. For instance, the GIFT S-Box is also used 
in ESTATE (ESTATE TweGIFT-128) (Chakraborti 
et  al. 2020), HYENA (Chakraborti et  al. 2019), SUN-
DAE-GIFT (Banik et  al. 2019), LOTUS-AEAD and 
LOCUS-AEAD (Chakraborti et al. 2019). And ORANGE 
(Chakraborty and Nandi 2019) uses the same S-Box with 
PHOTON-Beetle.

8× 8 S-Boxes of AES (FIPS PUB 2001) (used in SAE-
AES Naito et al. 2019, mixFeed Chakraborty and Nandi 
2019, COMET Gueron et  al. 2019, SKINNY-AEAD 
and SKINNY-Hash Beierle et  al. 2020 and ESTATE 
Chakraborti et al. 2020) and SKINNY-128 (Beierle et al. 
2020) (used in SKINNY-AEAD and SKINNY-Hash Bei-
erle et  al. 2020, Romulus Iwata et  al. 2019 and ForkAE 
Andreeva et al. 2019).

Results based on theoretical metrics
The theoretical measurement results of the VTO0 , CCV, 
and MCC for the S-Boxes are listed in Table  2. We can 
observe that when sorting the S-Boxes of the same size, 
the order of S-Boxes sorted by VTO0 and sorted by CCV 
is basically the same. However, the ordering of S-Boxes 
sorted according to MCC is inconsistent with both VTO0 
and CCV. As for the 4 × 4 S-Boxes, the absolute Kendall 
rank correlation coefficients between the values of VTO0 
and CCV, VTO0 and MCC, and CCV and MCC are 0.985, 
0.039 and 0.040, respectively. That is to say, MCC conflicts 
with VTO0 and CCV. The second observation is that larger 
S-Boxes lead to significantly higher values of VTO0 and 

Table 1  Nine 4× 4 S-Boxes for the second round candidates of NIST lightweight cryptography project

Algorithm Notation S-Box

PHOTON-Beetle (Bao et al. 2019) PHOTON 12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2

KNOT (Zhang et al. 2019) KNOT 4, 0, 10, 7, 11, 14, 1, 13, 9, 15, 6, 8, 5, 2, 12, 3

Pyjamask (Goudarzi et al. 2019) Pyjamask-128 2, 13, 3, 9, 7, 11, 10, 6, 14, 0, 15, 4, 8, 5, 1, 12

GIFT-COFB (Banik et al. 2019) GIFT 1, 10, 4, 12, 6, 15, 3, 9, 2, 13, 11, 7, 5, 0, 8, 14

Elephant (Dobraunig and Mennink 2019) Elephant 14, 13, 11, 0, 2, 1, 4, 15, 7, 10, 8, 5, 9, 12, 3, 6

SATURNIN (Canteaut et al. 2019) SATURNINS0 0, 6, 14, 1, 15, 4, 7, 13, 9, 8, 12, 5, 2, 10, 3, 11

SATURNINS1 0, 9, 13, 2, 15, 1, 11, 7, 6, 4, 5, 3, 8, 12, 10, 14

ForkAE (Andreeva et al. 2019) SKINNY-64 12, 6, 9, 0, 1, 10, 2, 11, 3, 8, 5, 13, 4, 14, 7, 15

Spook (Bellizia et al. 2020) Spook 0, 8, 1, 15, 2, 10, 7, 9, 4, 13, 5, 6, 14, 3, 11, 12

Table 2  VTO0 , CCV and MCC metrics applied on the S-Boxes

Size S-Box VTO0 CCV MCC

4× 4 PHOTON 2.5333 0.6627 0.2500

KNOT 2.6000 0.6123 0.2500

Pyjamask-128 2.6000 0.6123 0.1875

GIFT 2.8667 0.4611 0.3125

Elephant 2.9333 0.4611 0.3125

SATURNINS0 3.0000 0.3602 0.2500

SATURNINS1 3.0000 0.3602 0.2500

SKINNY-64 3.0667 0.3098 0.2500

Spook 3.0667 0.3098 0.2500

8× 8 SKINNY-128 7.1088 0.3401 0.5000

AES 7.4583 0.1113 0.8125
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MCC, which implies S-Boxes with larger sizes are more 
vulnerable against SCAs. But CCV doesn’t show such a 
result. Overall, there exist contradictions between the three 
metrics.

Specifically, for the 4 × 4 S-Boxes, we have the following 
order (from the most resistive S-Boxes to the least resistive) 
according to (1) VTO0 , (2) CCV, and (3) MCC: 

VTO0:	� PHOTON, KNOT and Pyjamask-128, GIFT, 
Elephant, SATURNINS0 and SATURNINS1 , 
SKINNY-64 and Spook.

CCV:	� PHOTON, KNOT and Pyjamask-128, GIFT 
and Elephant, SATURNINS0 and SAT-
URNINS1 , SKINNY-64 and Spook.

MCC:	� Pyjamask-128, PHOTON and KNOT and SAT-
URNINS0 and SATURNINS1 and SKINNY-64 
and Spook, GIFT and Elephant.

 For the 8× 8 S-Boxes, the results of all three metrics show 
that the S-Box of SKINNY-128 is more resistant against 
SCAs than that of AES.

Non‑profiled side‑channel attacks against 4× 4 
S‑Boxes
Among various non-profiled attacks, we focus on CPA due 
to its simplicity and efficiency. Actually, CPA is equivalent 
to multi-bit DPA up to a change of the attacker leakage 
modeling (Doget et al. 2011). Therefore, VTO0 , CCV and 
MCC can all be used to measure the resistance of S-Boxes 
against CPA under the HW leakage model in theory. Con-
cretely, CPA recovers the secret key by selecting the key 
that maximizes the Pearson correlation coefficient between 
the actual leakage and the estimated leakage based on the 
assumed secret key. That is,

where ρ(X ,Y ) denotes the Pearson correlation coefficient 
between X and Y. Lk∗ represents the measured traces, 
and L̂k denotes the estimated leakages.

Experiments of the unprotected S‑Boxes
We first perform simulated and practical attacks against 
the nine unprotected 4 × 4 S-Boxes and compare their 
CPA resistance.

Simulated experiments
Experimental setup We implement S-Boxes in the same 
way by using look-up tables, and leakages are simulated as

k̂∗ = argmax
k∈K

∣∣∣ρ
(
Lk∗ , L̂k

)∣∣∣ ,

L
(
p⊕ k∗

)
= zscore

(
H
(
F
(
p⊕ k∗

)))
+ ω ,

where F(p⊕ k∗) denotes the sensitive variable, and ω 
denotes a Gaussian random variable centered in zero 
with a standard deviation σ . In the experimental setup, 
the value of σ varies in the set 

{
2−1, 2−

1
2 , 1, 2

1
2 , 2, 

2
3
2 , 4, 2

5
2

}
.

Experimental results In the field of side-channel anal-
ysis, success rate (Standaert et  al. 2005) is a common 
metric to evaluate an attack. Here, for each attack, we 
evaluate the minimum number of traces N required to 
achieve an attack success rate of 90% as it is a sound 
way to evaluate the efficiency of a side-channel attack 
(Mangard 2004). The attack results are shown in Fig. 1a.

It can be observed that when the noise is low, the 
number of traces required for successful attacks of 
different S-Boxes is very close. And with the noise 
increases, the difference between different S-Boxes 
becomes more significant. However, the order of 
S-Boxes resistance against CPA attacks is basically the 
same under different noise levels. So we mainly take the 
result with noise variance of 25 as an example to illus-
trate for easy observation.

According to our experimental results, S-Boxes with 
lower VTO0 and higher CCV values are more resist-
ant against CPA. Such as the S-Boxes of PHOTON and 
GIFT are more resilient than S-Boxes of SKINNY-64 
and Spook. However, the difficulty of attacking an 
S-Box is quite different from the outcome of the MCC 
metric. For example, the MCC value of Elephant’s 
S-Box is higher than that of Spook’s S-Box, while the 
number of required traces of the former is approxi-
mately 1.5 times that for the latter.

One may also note that sometimes there exists dis-
cordance between the VTO0 (CCV) and the simulation 
results. Such as the VTO0 (CCV) value of Elephant’s 
S-Box is higher (lower) than that of PHOTON’s S-Box, 
while the Elephant’s S-Box is more resilient than PHO-
TON’s S-Box. As for VTO, the reason for this phenom-
enon is explained in Li et al. (2020), which is due to the 
different perspectives of VTO and the success rate met-
ric when quantifying the SCA resistance of S-Boxes. In 
detail, the basic idea of VTO is quantifying the difference 
between the score for the correct key and the average 
score for the other hypotheses; however, the success rate 
metric quantifies the number of successful attacks (i.e. 
the number of attacks in which the correct key is ranked 
first) in all attacks performed. As for CCV, we argue that 
it takes into account the distinctiveness level of the S-Box 
outputs for all key hypothesis pairs, which is also differ-
ent from the basic idea of the success rate. Besides, the 
number of traces used for attacks is limited, but in the 
notions of VTO and CCV, it is assumed that the number 
of traces is sufficient so that the noise can be omitted.
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Overall, when the difference of the VTO0 (CCV) val-
ues of the two S-Boxes is relatively large, the S-Box with a 
lower VTO0 (higher CCV) value is generally more resist-
ant to CPA attacks. However, when the difference of 
the VTO0 (CCV) values of the two S-Boxes is relatively 
small, these two metrics lack the accuracy to evaluate the 
resiliency of S-Boxes. Besides, MCC fails to work in our 
experiments.

Practical experiments
Experimental setup In practical experiments, all the nine 
S-Boxes are implemented on a CW308-STM32F Target 
Board (for ChipWhisperer CW308 UFO Board) with the 

STM32F405RGT6 Arm 32-bit Cortex-M4 device, and the 
power traces are captured through the ChipWhisperer-
Lite Capture Board (O’Flynn and Chen 2014). The sam-
pling rate is set to 29.5 MHz, and the 500 points around 
the sensitive operations are taken to attack. Same as the 
simulated experiments, the S-Boxes are implemented by 
using look-up tables, and the register initial state β is set 
to 0. In order to study the performance of the three met-
rics with different noise levels, the attacks are performed 
based on the raw traces and traces with added Gauss-
ian noise. Before adding noise, we standardize the traces 
(zero mean and unit variance). And the value of σ is set to 
the same as in simulated experiments.

Fig. 1  CPA attacks on unprotected 4× 4 S-Boxes
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Experimental results The attack results are shown in 
Fig. 1b. The −∞ on the x axis represents the attack is per-
formed on the raw traces with no additional noise. It can 
be observed that for most S-Box examples, the results 
obtained are consistent with simulated results. However, 
one may also note that for certain cases, the results are 
slightly inconsistent with the simulation results. We infer 
the reasons for the inconsistent results are the leakages in 
the real environment do not fully satisfy the HW leakage 
model and the noise does not fulfill the Gaussian noise 
assumption.

Experiments of the masked S‑Boxes
Masking, due to its provable security and good device 
independence, has been one of the widely adopted coun-
termeasures against SCAs (Duc et  al. 2019). Naturally, 
the effectiveness of the three metrics is an important 
question when masking is adopted. Based on the work 
in Rivain et al. (2009), the CPA results toward dth-order 
masked S-Boxes of the same size is only related to the 
masking order d under the HW model for Boolean mask-
ing schemes. And the function of S-Box does not affect 
the security gain from unprotected S-Boxes to dth-order 
masked S-Boxes. Thus, the three metrics ( VTO0 , CCV, 
and MCC) should be independent of the masking order 
for Boolean making when higher-order CPA attacks 
are utilized. We also try to verify it first by simulated 
experiments.

Simulated experiments
Experimental setup As for simulation of masking, we sep-
arately simulate first- and second-order masked S-Boxes. 
So two and three points corresponding to their shares yi 
are simulated, and we have

where y denotes the output of the S-Box while p⊕ k∗ is 
the input. yi(i > 0) is generated randomly, and y0 is pro-
cessed such that Eq. (4) is satisfied. Each share of y is 
under the HW model, and the value of initial state β is set 
to zero. So each leakage point corresponding to yi can be 
simulated as: L

(
yi
)
= zscore

(
H
(
yi
))

+ ωi , where ωi 
denotes the Gaussian noise centered in zero with a stand-
ard deviation σ at this moment. In the first-order mask-
ing experiments, the value of σ varies in the set {
2−

3
4 , 2−

1
2 , 2−

1
4 , 1, 2

1
4 , 2

1
2 , 2

3
4 , 2

}
 . And in the second-

order masking experiments, the value of σ varies in the 
set 

{
2−

7
4 , 2−

3
2 , 2−

5
4 , 2−1, 2−

3
4 , 2−

1
2 , 2−

1
4 , 1

}
.

Experimental results The attack results are shown in 
Figs.  2a and  3a, respectively. With these experiments, 

(4)y =

d⊕

i=0

yi = SBox(p⊕ k∗),

one can note that the results of masked S-Boxes are basi-
cally consistent with those of unprotected S-Boxes, espe-
cially in the case of low noise. The S-Box of Elephant is 
the most resistant against CPA attacks, and the S-Boxes 
of Spook and SKINNY-64 are the weakest. In addition, 
with the noise increase, the order of S-Boxes resistance 
against CPA attacks fluctuates slightly in the experimen-
tal results. We argue that this is due to the increase of 
noise, which makes the evaluation results unstable.

Practical experiments
Experimental setup For the first- and second-order mask-
ing cases, the masking scheme proposed in Benadjila 
et  al. (2020) and Valiveti and Vivek (2020) are adopted 
and implemented as our attack targets, respectively.

Experimental results The attack results are shown in 
Figs. 2b and 3b. It can be observed that for most S-Box 
examples, we obtain similar results. Namely, those 
S-Boxes with lower VTO0 (higher CCV) values still have 
higher CPA resistance in real environments.

Profiled side‑channel attacks
In this section, we further investigate the resistance of 
different S-Boxes against profiled side-channel attacks 
and check whether the three metrics are applicable to 
profiled attacks scenario.

Profiled side-channel attacks consist of two phases: the 
offline profiling phase and the online attack phase. The 
attacker is assumed to have an open copy of the target 
device to learn the leakage distribution and to perform 
attacks with the learned models. In profiling phase, the 
attacker has a device with knowledge about the secret key 
implemented and acquires a set of N side-channel traces 
Lprofiling =

{
l̃j | j = 1, 2, . . . ,N

}
 . Each trace l̃j is corre-

sponding to sensitive variable yj = f
(
pj , k

)
 in one encryp-

tion (or decryption) with known key k ∈ K and plaintext 
(or ciphertext) pj . Once the acquisition is done, the 
attacker builds suitable models and computes the estima-
tion of probability:

from a profiling set 
{
(̃lj , yj)

}N

j=1
 . Then in attack phase, the 

attacker attempts to recover the unknown key in the tar-
get device with the help of profiled leakage details.

Specifically, we launch template attacks and deep learn-
ing based profiled attacks by simulated and practical 
experiments.

Template attacks on the nine 4× 4 S‑Boxes
Among profiled attacks, template attack (TA) (Chari et al. 
2002) and its modified version efficient template attack 
(ETA) (Choudary and Kuhn 2013) are the most popular 

(5)Pr[L | Y = y] ,



Page 8 of 20Li et al. Cybersecur            (2021) 4:35 

and widely used approaches. In TA, the attacker assumes 
that L | Y  has a multivariate Gaussian distribution, and 
estimates the mean vector µy and �y for each y ∈ Y (i.e. 
the so-called templates). In this way, Eq. (5) is approxi-
mated by the Gaussian probability distribution function 
with parameters µy and �y . And in ETA, the attacker 
replaces the covariance matrixes with one pooled covari-
ance matrix to cope with some statistical difficulties 
(Choudary and Kuhn 2013). In this paper, ETA is adopted 
to evaluate the resistance of the S-Boxes. In the attack 
phase, the attacker acquires a small new set of traces 
L attack =

{
lj | j = 1, 2, . . . ,Q

}
 with a fixed unknown key 

k∗ . With the knowledge of the established models, the 
estimated posterior probabilities can be calculated via 
the Bayes’ Theorem. Then the attacker can select the key 
that maximizes the probability following the Maximum 
Likelihood strategy:

 Equation  (6) stands only when acquisitions are inde-
pendent, which is a practical condition in reality. Notice 
that the attacker can launch a high-order template attack 

(6)

k∗ = argmax
k∈K

Q∏

j=1

Pr
[
L= lj |Y =f

(
pj , k

)]
·Pr

[
Y =f

(
pj , k

)]

Pr
[
L = lj

] .

Fig. 2  CPA attacks on first-order masked 4× 4 S-Boxes
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if the leakages exist in high-order moments of sample 
points, such as defeating mask countermeasures.

Similar to the previous section, we also study the resist-
ance of S-Boxes in unprotected, first- and second-order 
masking cases, respectively.

Experiments of the Unprotected S‑Boxes
Experimental setup We perform both simulated and 
practical attacks to compare different S-Boxes. As for 
simulated experiments, the leakages are simulated in 
the same way as in the non-profiled scenario. In detail, 
we generate 3 points of interest (PoIs) corresponding 

to the output of S-Boxes. As for practical experiments, 
the experimental setup is exactly the same as that in 
the previous section, and we pre-select 3 PoIs with 
the highest Pearson correlation coefficient. We pro-
file 16 efficient templates using 10,000 traces for each 
S-Box. And attacks are performed at almost no leak-
age noise, low leakage noise and high leakage noise lev-
els ( σ = 0.1 , σ = 1 and σ = 2 ), respectively. For each 
S-Box, we run ETA attacks 100 times with randomly 
selected sub-samples of attack set for evaluation and 
record the minimum number of traces N required to 
achieve an attack success rate of 90%.

Fig. 3  CPA attacks on second-order masked 4× 4 S-Boxes
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Experimental results The experimental results are 
shown in Fig. 14 of the Appendix. We can observe that 
the resistance of different unprotected S-Boxes against 
ETA attacks is very close, even under high noise condi-
tion. We believe the main reason is that the efficient tem-
plates have a good characterization of the leakages in 
both simulated and practical experiments. Therefore, we 
further investigate the resistance of different S-Boxes in 
first- and second-order masking cases.

Experiments of the masked S‑Boxes
In the profiling phase, we first profile 16 efficient tem-
plates using 10,000 traces for each share. Next, in the 
attack phase, we match the leakages to the profiled tem-
plates, which are denoted as Mi and i ∈ {0, 1, . . . , d} . 
Then we get the probability P

(
Y i
j = yij | l

i
j ,M

i

)
 utilizing 

the efficient templates for each trace. Where yij denotes 
the i-th share of the output of the S-Box corresponding 
to the j-th trace, and lij denotes the leakage for the i-th 
share of the j-th trace. The probability of yj can be 
expressed as:

where S is the set 
{(

y0j , . . . , y
d
j

)
| yj = y0j ⊕ · · · ⊕ ydj

}
 , 

and lj denotes the leakages of all shares of the j-th trace. 
With the information of the inverse mapping and the 
plaintext, P(yj) can be mapped to Pj(k) . Add up the Pj(k) 
of all the attack traces, and the key hypothesis corre-
sponding to the maximum value of P(k) is the revealed 
key.

Experimental setup As for simulated experiments, we 
generate 3 PoIs corresponding to each share of the out-
put of S-Boxes. As for practical experiments, we also pre-
select 3 PoIs for each share to construct templates and 
perform attacks. The remaining experimental settings are 
the same as those in the previous experiments.

Experimental results The attack results of first- and sec-
ond-order masking cases with different noise levels are 
shown in Figs.  4 and  5, respectively. As for the second-
order masking case, the increase of noise will seriously 
affect the stability of the attack results and the accuracy 
of the evaluation, so we only show the experimental 
results when σ = 0.1 and σ = 1 . It can be observed that 
in both first- and second-order masking implementa-
tions, when the noise level is very low, the resistance of 
different S-Boxes against ETA attacks is still very close to 
each other. So we think that in very low-noise scenarios, 
it doesn’t seem necessary to consider how to select opti-
mal 4 × 4 S-Boxes against ETA attacks.

P
(
yj | lj ,M

)
=

∑

S

d∏

j=0

P
(
yij | l

i
j ,M

i

)
,

With the noise increase, the difference between differ-
ent S-Boxes becomes slightly more significant. However, 
the practical results are not consistent with the simula-
tion results. We infer the main reasons for the incon-
sistent results are the leakages in the real environment 
do not fully satisfy the HW leakage model and the noise 
does not fulfill the Gaussian noise assumption. And with 
the noise increase, the accuracy of the constructed tem-
plates is seriously affected. In addition, neither the simu-
lated results nor the practical results are consistent with 
the results of all the three metrics. We argue that this is 
because the characterization of the noise, rather than the 
intrinsic properties of S-Boxes, is the dominant factor 
affecting the effectiveness of the attacks. Therefore, these 
metrics may not be suitable for evaluating the resistance 
of S-Boxes against template attacks.

In addition, we find that the difference between 
S-Boxes against ETA is far less than that of S-Boxes 
against CPA attacks. And the experimental results of 
ETA are not consistent with those of CPA attacks. For 
example, the S-Box of Elephant is the most resistant to 
CPA attacks, but obviously not the most resistant to ETA 
attacks. And none of the 4-bit S-Boxes shows signifi-
cantly more resistant than the others. We also perform 
attacks that target the HW of the outputs of the S-Boxes 
(profiling 5 efficient templates), again with no clear pat-
tern that could be observed. The possible reason is that 
the intrinsic properties of the S-Boxes we analyzed are 
relatively close to each other. Whatever, when selecting 
the optimal S-Boxes, it is necessary to comprehensively 
consider the resistance of S-Boxes against a different type 
of attacks. It is not sufficient to consider only transpar-
ency orders or confusion coefficients.

Deep learning based profiled attacks
Recently, deep learning techniques gained substantial 
interest in the community of side-channel analysis. Pre-
vious researches have evidenced deep learning based 
attacks give a very efficient alternative to the state-of-the-
art profiled attacks, and even outperform the traditional 
profiled attacks (Maghrebi et al. 2016; Cagli et al. 2017). 
We explore the resistance of the nine 4 × 4 S-Boxes 
against such attacks, and whether the three metrics are 
effective when measuring the resistance against deep 
learning based attacks. According to the work in Wouters 
et al. (2020), when the traces are synchronized, the Multi 
Layer Perceptron (MLP) models are as effective as Con-
volutional Neural Network (CNN) models. Since we only 
consider the case of the traces are aligned in this work, 
the attacks based on the MLP networks are performed.

In this subsection, all experiments are conducted on 
an Intel(R) Xeon(R) CPU E5-2667 v4 @3.20 GHz 32 core 
machine with two NVIDIA TITAN Xp GPUs. We use the 
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Fig. 4  Simulated and practical ETA attacks on first-order masked 4× 4 S-Boxes

Fig. 5  Simulated and practical ETA attacks on second-order masked 4× 4 S-Boxes
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Keras library (version 2.2.2) with the TensorFlow library 
(version 1.10.0) as the backend for MLP.

MLP architecture We refer to the recent work (Wout-
ers et  al. 2020) and then design our MLP models. For 
the unprotected and first-order masking cases, the MLP 
is composed of one hidden layer with 10 neurons. And 
for the second-order masking case, the MLP is composed 
of two hidden layers with 10 neurons. Each layer is acti-
vated by the ReLU function and He Uniform initializa-
tion is used to improve the weight initialization. The 
output layer contains 16 neurons activated by the soft-
max function. Cross-entropy is used as the loss function. 
As a remark, the network architectures used in this sub-
section are surely not optimal, as our goal is not to select 
the optimal parameters.

For the training of MLP networks, the mini-batch size 
is 128 and the maximum iterative epoch is 100. And the 
network kernel weights are recorded for the best valida-
tion loss. Once the training is done, we reconstruct the 
neuron network with the best recorded weights. The 
learning rate is initially 0.005, and a technique called 
One Cycle Policy (Smith 2017) is used to choose the right 
learning rate.

Experiments of the Unprotected S‑Boxes
Experimental setup As for simulated experiments, we 
generate 10 sample points for each trace, of which the 
first three points are PoIs corresponding to the output of 
S-Boxes and the rest are randomly generated in [0, 4]. As 
for practical experiments, 10 samples that contain infor-
mation on the output of S-Boxes are captured for each 
trace. There are 10,000 traces for profiling and 5,000 
traces for the attack. In the profiling traces, 90% are used 
for training and 10% are used for validation. We run each 
attack 100 times with randomly selected sub-samples of 
attack sets and record the minimum number of traces 
required to achieve an attack success rate of 90%. Since 
the training of the neural network might be unstable, we 
repeat the experiments 10 times and take the average 
results.

Experimental results The experimental results are 
shown in Fig. 15 of the Appendix. Similar to the results 
of ETA attacks, the resistance of different unprotected 
S-Boxes against deep learning based attacks is still very 
close, even under the high noise condition. Next, we 
further investigate the resistance of different S-Boxes in 
first- and second-order masking cases.

Experiments of the masked S‑Boxes
Experimental setup Both the simulated and practi-
cal traces consist of 10 sample points. As for simulated 
experiments, we generate 3 PoIs corresponding to each 
share of the output of S-Boxes, and the rest are randomly 

generated in [0, 4]. As for practical experiments, 10 sam-
ples that contain information on each share of the output 
of S-Boxes are captured. For the first-order masking case, 
there are 10,000 traces for profiling and 10,000 traces for 
the attack. And for the 2nd-order masking case, there 
are 30,000 traces for profiling and 20,000 traces for the 
attack.

Experimental results The results of first- and second-
order masking cases are shown in Figs. 6 and 7, respec-
tively. Similar to the results of ETA attacks, when the 
noise level is very low, the resistance of different S-Boxes 
against deep learning based attacks is still very close to 
each other in both first- and second-order masking cases. 
As the noise increases, the difference between different 
S-Boxes becomes more obvious. However, we still can-
not find patterns in the experimental results. On the 
one hand, the practical results are not consistent with 
the simulation results. In addition to the reasons men-
tioned above, the instability of the network training may 
also contribute to this phenomenon. On the other hand, 
neither the simulated results nor the practical results 
are consistent with the results of all the three metrics. 
Namely, all the three metrics are not suitable for evalu-
ating the resistance of S-Boxes against deep learning 
based attacks. Therefore, how to quantify the resistance 
of S-Boxes against deep learning based attacks still has a 
long way to go.

4× 4 S‑Boxes versus 8× 8 S‑Boxes
In this section, taking several 4 × 4 S-Boxes and 8× 8 
S-Boxes as examples, we verify whether VTO, CCV 
and MCC can be applied to compare the resistance of 
S-Boxes with different sizes through simulated and prac-
tical experiments.

Non‑profiled side‑channel attacks
From the perspective of theoretical analysis, among nine 
4 × 4 S-Boxes, the S-Box of PHOTON is the hardest to 
attack, and the S-Box of Spook is one of the easiest to 
attack. In addition, according to the experimental results, 
the S-Box of Elephant is the most resistant against CPA 
attacks, and the S-Box of Spook is one of the easiest to 
attack. Considering the above factors, we select the 
S-Boxes of PHOTON, Elephant, and Spook as the repre-
sentatives of the 4 × 4 S-Boxes to compare with the 8× 8 
S-Boxes of SKINNY-128 and AES.

Experimental setup We study the resistance of S-Boxes 
in unprotected, first- and second-order masking cases, 
respectively. And the simulated and practical experi-
ments are performed with different noise levels. Due to 
the simulated traces and practical traces are standard-
ized (zero mean and unit variance) before Gaussian noise 
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Fig. 6  Simulated and practical deep learning based profiled attacks on first-order masked 4× 4 S-Boxes

Fig. 7  Simulated and practical deep learning based profiled attacks on second-order masked 4× 4 S-Boxes
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added, the 4 × 4 S-Boxes and 8× 8 S-Boxes are com-
pared at almost the same SNR.

Experimental results The results of simulated and 
practical experiments are shown in Figs.  8 and  9, 
respectively. In the unprotected case, we can observe 
that the S-Boxes of SKINNY-128 and AES perform 
worse than that of Elephant, similar to PHOTON, and 
better than Spook. Therefore, the 4 × 4 S-Boxes that are 
selected carefully could be even more resistant against 
CPA attacks than certain 8× 8 S-Boxes. However, 
according to the values of theoretical metrics, the two 
8× 8 S-Boxes lead to higher values of VTO0 and MCC 
than the 4 × 4 S-Boxes, which implies 8× 8 S-Boxes 
are more vulnerable to attacks. And the resistance of 
the S-Box of SKINNY-128 should be worse than that of 
PHOTON and Elephant, and slightly better than that 
of Spook in terms of VCC. As for the S-Box of AES, it 
should be the easiest to attack among all the S-Boxes. 
The inconsistency between theoretical analysis and 

practical results indicates that none of the three met-
rics can be used to quantify and compare S-Boxes with 
different sizes.

As for first- and second-order masking cases, the 
two 8× 8 S-Boxes perform much better than the 4 × 4 
S-Boxes. The main reason is that the 8-bit masks pro-
vide much better randomization than the 4-bit masks. 
Of course, the larger size of S-Boxes also leads to higher 
implementation costs. This is a trade-off between the 
security and costs, which is outside the scope of this 
work.

In addition, for the two 8× 8 S-Boxes we evaluated, 
the S-Box of SKINNY-128 always performs better than 
that of AES. However, the results in Heuser et al. (2016) 
show that the 4 × 4 S-Boxes they studied have a differ-
ent side-channel resiliency, while the difference in the 
8× 8 S-Boxes is only theoretically present. We argue 
that a good selection of 8× 8 S-Boxes could also result 
in an improvement in inherent resilience.

Fig. 8  Simulated CPA attacks on 4× 4 S-Boxes and 8× 8 S-Boxes

Fig. 9  Practical CPA attacks on 4× 4 S-Boxes and 8× 8 S-Boxes
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Profiled side‑channel attacks
In this section, we compare the resistance of 4-bit and 
8-bit S-Boxes against profiled side-channel attacks. The 
S-Boxes used are the same as above.

Template attacks
Experimental setup We study the resistance of S-Boxes 
in unprotected and first-order masking cases. And the 
simulated and practical experiments are performed with 
different noise levels. We profile 16 efficient templates 
using 10,000 traces for each 4 × 4 S-Box, and profile 256 
efficient templates using 160,000 traces for each 8× 8 
S-Box. Therefore, the number of profiling traces for each 
class of 4 × 4 S-Boxes and 8× 8 S-Boxes is roughly the 
same.

Experimental results The results of the unprotected 
and first-order cases are shown in Figs.  10 and  11, 
respectively. In the unprotected case, we can observe 
that the resistance of 8-bit S-Boxes and 4-bit S-Boxes 
are quite close. The main reason is that the efficient 
templates have a good characterization of the leakages. 
As for the first-order case, it is obvious that the two 

8-bit S-Boxes are more resistant against ETA attacks 
than the 4-bit S-Boxes. It seems natural since 8-bit 
S-Boxes have a significantly larger number of classes 
than 4-bit S-Boxes. In addition, in practical experi-
ments, the difference between the 4-bit and 8-bit 
S-Boxes is larger than that in the simulated experi-
ments. We infer the main reasons are the leakages in 
the real environment do not fully satisfy the HW leak-
age model and the noise does not fulfill the Gauss-
ian noise assumption. Because the traces of the 8-bit 
S-Box is divided into 256 classes, it requires higher 
precision of the constructed templates, and then the 
accuracy decreases faster.

Deep Learning Based Profiled Attacks
Experimental setup We study the resistance of 4 × 4 
S-Boxes and 8× 8 S-Boxes against deep learning 
based profiled attacks. The simulated and practi-
cal experiments are performed with different noise 
levels. We profile 16 efficient templates using 10,000 
traces for each 4 × 4 S-Box, and profile 256 efficient 

Fig. 10  Simulated and practical ETA attacks on unprotected 4× 4 S-Boxes and 8× 8 S-Boxes

Fig. 11  Simulated and practical ETA attacks on first-order masked 4× 4 S-Boxes and 8× 8 S-Boxes
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templates using 160,000 traces for each 8× 8 S-Box. 
The network architectures and other experimental 
settings are the same as those in the previous section.

Experimental results The results of the unprotected 
and first-order cases are shown in Figs.  12 and  13, 
respectively. It is obvious that, in both unprotected 
and first-order cases, the two 8-bit S-Boxes are more 
resistant against deep learning based profiled attacks 
than the 4-bit S-Boxes. It implies that, when the leak-
ages cannot be characterized very accurately, S-Boxes 
with larger sizes are more resistant than S-Boxes with 
smaller sizes. Interestingly, for the first-order case, 
practical attacks perform even better than simulated 
attacks. We guess the reason is the irregular noise in 
practical traces alleviates the overfitting during the 
training of networks. This phenomenon also shows 
that when evaluating the resistance of S-Boxes against 
deep learning based side-channel attacks, it is not suf-
ficient to perform simulated experiments alone.

Conclusions and future work
In this paper, taking the S-Boxes used in NIST Light-
weight Cryptography candidates as concrete examples, 
we give a comprehensive study of the applicability of 
three popular theoretical metrics for side-channel anal-
ysis, namely VTO, CCV and MCC. Firstly, we find that 
CCV is almost linearly correlated with VTO, while MCC 
is inconsistent with the other two metrics. Next, to ver-
ify which metric is more effective in which scenarios, we 
perform simulated and practical experiments on nine 
4-bit S-Boxes in the non-profiled and profiled scenarios, 
respectively. For the non-profiled attacks, when the dif-
ference of VTO (resp. CCV) values of the two S-Boxes is 
relatively large, the S-Box with a lower VTO (resp. higher 
CCV) value is generally more resistant to CPA attacks. 
However, when VTO and CCV values of S-Boxes become 
relatively close to each other, these two metrics turn less 
accurate. Interestingly, MCC fails to work in quantifying 
the resistance of S-Boxes against CPA attacks. As for the 

Fig. 12  Simulated and practical deep learning based profiled attacks on unprotected 4× 4 S-Boxes and 8× 8 S-Boxes

Fig. 13  Simulated and practical deep learning based profiled attacks on first-order masked 4× 4 S-Boxes and 8× 8 S-Boxes



Page 17 of 20Li et al. Cybersecur            (2021) 4:35 	

profiled scenario, we perform efficient template attacks 
and deep learning based profiled attacks. However, none 
of the three metrics is suitable for measuring the resist-
ance of S-Boxes against profiled SCAs. Finally, we try to 
verify whether these metrics can be applied to compare 
the resistance of S-Boxes with different sizes. Unfortu-
nately, all the three metrics fail to work when measuring 
and comparing S-Boxes with different sizes.

Since VTO and CCV lack the accuracy to evaluate the 
resistance of S-Boxes against CPA-like attacks, it is sig-
nificant to further analyze the reasons for the lack of 
precision of the existing metrics, and then explore the 

theoretical metric that fits the reality better. Additionally, 
exploring the theoretical relationship between transpar-
ency order and confusion coefficients may be helpful to 
propose the new metric.

Appendix
The experimental results of nine 4 × 4 unprotected 
S-Boxes against efficient template attacks and deep learn-
ing based profiled attacks are shown in Figs. 14 and 15, 
respectively.

Fig. 14  Simulated and practical ETA attacks on unprotected 4× 4 S-Boxes
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