
You et al. Cybersecurity (2022) 5:3
https://doi.org/10.1186/s42400-021-00106-5

RESEARCH

TIM: threat context‑enhanced TTP
intelligence mining on unstructured threat data
Yizhe You1,2, Jun Jiang1,2, Zhengwei Jiang1,2*  , Peian Yang1, Baoxu Liu1,2, Huamin Feng4, Xuren Wang3 and
Ning Li1,2 

Abstract 

TTPs (Tactics, Techniques, and Procedures), which represent an attacker’s goals and methods, are the long period
and essential feature of the attacker. Defenders can use TTP intelligence to perform the penetration test and com-
pensate for defense deficiency. However, most TTP intelligence is described in unstructured threat data, such as APT
analysis reports. Manually converting natural language TTPs descriptions to standard TTP names, such as ATT&CK TTP
names and IDs, is time-consuming and requires deep expertise. In this paper, we define the TTP classification task as
a sentence classification task. We annotate a new sentence-level TTP dataset with 6 categories and 6061 TTP descrip-
tions from 10761 security analysis reports. We construct a threat context-enhanced TTP intelligence mining (TIM)
framework to mine TTP intelligence from unstructured threat data. The TIM framework uses TCENet (Threat Context
Enhanced Network) to find and classify TTP descriptions, which we define as three continuous sentences, from textual
data. Meanwhile, we use the element features of TTP in the descriptions to enhance the TTPs classification accuracy
of TCENet. The evaluation result shows that the average classification accuracy of our proposed method on the 6 TTP
categories reaches 0.941. The evaluation results also show that adding TTP element features can improve our classifi-
cation accuracy compared to using only text features. TCENet also achieved the best results compared to the previous
document-level TTP classification works and other popular text classification methods, even in the case of few-shot
training samples. Finally, the TIM framework organizes TTP descriptions and TTP elements into STIX 2.1 format as final
TTP intelligence for sharing the long-period and essential attack behavior characteristics of attackers. In addition, we
transform TTP intelligence into sigma detection rules for attack behavior detection. Such TTP intelligence and rules
can help defenders deploy long-term effective threat detection and perform more realistic attack simulations to
strengthen defense.

Keywords:  TTPs, Threat intelligence, Natural language processing (NLP), Advanced persistent threat (APT)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Cyber threat intelligence (CTI) is the information and
knowledge used for defense and detection in cyber war-
fare. Traditional threat protection uses IOC (indicator of
compromise) intelligence, such as IP, domain name, and
malicious file hash to generate detection rules. However,
there are many problems with IOC intelligence-based

protection. Zhu and Dumitras (2018) mentioned that,
although intelligence sharing standard STIX 2.1 (OASIS
2021) includes an attack pattern field, most open-source
intelligence feeds do not provide IOC-related attack pat-
terns or attack technique information to enrich IOC
intelligence (e.g., IP threat type: a brute-force IP or a
command & control server IP). This makes IOC-based
protection more blind. When an IOC-based protection
device generates an alert, the defender does not know
what kind of attack is going on behind this IOC alert and
cannot respond effectively because the IOC does not
have an attack technique description. Nation-state APT

Open Access

Cybersecurity

*Correspondence: jiangzhengwei@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0843-4482
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00106-5&domain=pdf

Page 2 of 17You et al. Cybersecurity (2022) 5:3

(advanced persistent threat) groups can also easily evade
this IOC protection mechanism by shifting their attack
infrastructures, such as changing attack IPs, phishing
domain names, and modifying malicious codes. Thus, the
Pyramid of Pain (DavidJBianco 2021) considers IOC as
low-value and easily accessible intelligence.

TTPs (Tactics, Techniques, and Procedures) can
describe the long-term behavior and essential features
of an attacker. MITRE constructs a TTP knowledge base
named ATT&CK (MITRE 2021) to provide TTP unified
names and procedure examples of attack techniques.
They use the tactic to represent the goals of each attack
campaign stage and techniques to describe how attack-
ers accomplish these goals. TTP intelligence can thus be
used in penetration tests of enterprises to compensate for
defense deficiencies.

However, high-value TTP intelligence is difficult to
obtain directly. Cybersecurity analysts generally use
natural language to describe TTP intelligence in security
analysis reports (Tartare 2021).

Figure 1 shows the TTP description examples in a
security analysis report. The left represents the report
text, and we use different colors to annotate the differ-
ent TTP descriptions. The left also shows that the TTP

description contains a great deal of IOC information
and other security terms. We use the gray background
to annotate them. This paper refers to these IOCs and
other types of security terms in the TTP description as
TTP elements. The right side shows the ATT&CK TTP
name and TTP elements obtained from the left descrip-
tion text.

Manually converting these TTP descriptions into
ATT&CK standard names is very time-consuming and
requires in-depth expert knowledge. The existing NLP
(natural language processing) methods (training on SST,
AG News, DBpedia corpus, etc.) cannot be directly used
on cybersecurity-related text because there is no avail-
able security corpus to train a TTP classification model.

Several existing TTP classification methods (Ayoade
et al. 2018; Legoy 2019; Li et al. 2019; Niakanlahiji et al.
2018) are at the document level, which may cause low-
accuracy problems since the articles may consist of
different kinds of TTPs. These methods also have limi-
tations that can only provide static names with a confi-
dence coefficient without providing more details, such as
related TTP elements, which are also significant to cyber
defenders. The static bag-of-words method proposed
by Husari et al. (2017) is not robust enough to classify

Fig. 1  The left figure is the origin security analysis report, and the right figure is the corresponding normalized TTP names and TTP elements.
Security analysts need to manually extract these attack descriptions to normalize TTP names with the ATT&CK framework. Different colors in the
figure represent different TTPs, and elements mentioned in the context are annotated with the gray background

Page 3 of 17You et al. Cybersecurity (2022) 5:3 	

TTP intelligence in complex security analysis articles
and needs a prebuild knowledge base. The subsequent
work of Husari et al. (2018) tries to find threat behavior,
consisting of one verb and one noun object. These verb-
object pairs are too simple to describe complete TTPs.
However, none of the existing TTP classification meth-
ods have evaluated the performance of their method on
few-shot training sample cases, and many TTPs have
only a few description texts.

In addition, previous methods have taken static TTP
names as the final outcome and lacked TTP description
details. As a result, this TTP information is difficult for
defenders to use.

Motivation & Challenges
Based on the above discussion, our motivation is to auto-
mate obtaining long-term valid and more essential fea-
tures of attackers, such as the TTPs from unstructured
threat data. Specifically, this paper uses the text clas-
sification method to find and classify TTP descriptions
from security analysis reports to represent such features
and use them for better protection. Therefore, our work
mainly faces two major challenges: the lack of available
sentence-level TTP dataset and the need to accurately
find and classify TTP-related descriptions, even in the
case of few-shot training samples.

Our study
We define TTP intelligence as the detailed description
and elements of TTPs in unstructured threat data. To
obtain TTP intelligence from unstructured threat data,
we built a threat context-enhanced TTP intelligence min-
ing framework named TIM that crawls analysis reports
from security websites and mines the TTPs intelligence.

To solve the challenge of no available dataset, we build
a new TTP dataset at the sentence level. We use the
MITRE ATT&CK framework to define TTPs rather than
the incomplete and simple threat action used by Husari
et al. (2018). Based on the suggestions of frontline threat
intelligence analysts, we selected 6 categories of TTPs as
classification targets to validate the feasibility of the TTP
intelligence mining framework in this paper. These TTP
categories cover the 7 major tactics of ATT&CK and are
very representative. We annotate 6061 TTP descriptions
from 10761 security reports.

To solve the low-accuracy problem of the previous
document-level TTP classification methods, we design
and propose the TCENet (Threat Context Enhanced Net-
work) model to classify TTPs at the sentence level. We
define the threat context as the TTP description and the
TTP elements. A TTP description consists of three con-
tinuous sentences and includes the textual information
of the threat context. The TTPs element represents the

12 categories of security terms contained in the threat
context, such as IPs, URLs, file hashes, CVE, protocols,
encryption algorithms, etc. We design a TTP elements
correlation coefficient calculation method to prove the
rationality of adding TTP element features into the
classification.

To demonstrate that the TCENet used by the TIM
framework can accurately find and classify TTP descrip-
tions in security analysis reports, we perform a variety of
evaluations on our annotated dataset.

The evaluation results show that our TCENet is better
than previous document-level methods and mainstream
text classification methods. The evaluation results also
show that the TTP element feature improves the clas-
sification performance. In the case of small samples, the
TTP classification accuracy of TCENet is still better than
that of the comparison model.

Finally, we organize the TTP descriptions and cor-
responding TTP elements into shareable intelligence in
STIX 2.1 format as well as Sigma detection rules (MSig-
maHQ 2021). Cyber defenders can obtain more valuable
and direct intelligence about the attack and update their
defense rules and mechanism without reading the whole
security analysis report. TTP intelligence containing spe-
cific TTP elements allows for more realistic attack simu-
lation. Sigma detection rules that include TTP names and
TTP elements can provide richer threat context informa-
tion, enabling defenders to make more targeted defenses.

Contributions
In general, our contributions are as follows:

•	 We annotate 10761 reports from 5 security vendor
websites and build a TTP corpus containing 6 types
of popular ATT&CK TTPs and 6061 descriptions.
This will be the first study that builds a sentence-level
TTP dataset.

•	 We propose a framework named TIM for min-
ing TTP intelligence from unstructured threat data
such as security analysis reports. The TIM frame-
work uses our proposed TCENet to find and classify
TTP descriptions from reports. This is the first work
to perform TTP classification at the sentence level
using pretrained language models and TTP element
features. The TIM framework eventually generates
shareable TTP intelligence in STIX 2.1 format as well
as Sigma detection rules for better protection.

•	 The final experimental results show that the sen-
tence-level TCENet in our TIM framework achieves
better performance on precision, recall, and F1 than
previous document-level TTP classification work and
mainstream text classification methods, even in the
case of few-shot training samples. The experimental

Page 4 of 17You et al. Cybersecurity (2022) 5:3

results also demonstrate that our work can be gener-
alized for mining TTP intelligence in most categories;
in particular, some TTPs only have a few description
texts.

Related works
Ayoade et al. (2018) used a TF-IDF with the SVM classi-
fier to classify TTPs at the document level. Legoy (2019)
used TF-IDF and Word2Vec to represent the whole secu-
rity analysis report. They leverage Adaboost, linear SVC,
decision tree, etc., to classify TTPs at the document level.
The linear SVC with the TF-IDF article vector achieved
the best performance in their experiments. Li et al.
(2019) used latent semantic analysis to generate top-
ics of targeting articles and compared the topic vectors
with the TF-IDF vectors of ATT&CK description pages
to obtain cosine similarity. Then, they used these similar-
ity vectors with naive Bayes and decision trees to classify
TTPs. Niakanlahiji et al. (2018) used the TF-IDF score of
the independent noun phrase in security analysis articles
to find the keywords to represent the TTPs. They used
these keywords to query analysis articles in their corpus.

The above document-level methods can only out-
put several static TTP names and cannot provide more
detailed and specific information about an attack. Our
work uses regex and gazetteer to extract TTP elements
from the TTP description text, making the result more
concrete than a static TTPs name. The IOC intelligence
extracted in the TTP context can be used for intelli-
gence sharing and detection rule generation, which has
more security value than the general IOC without TTP
information.

Other previous methods tried to find more atomistic
descriptions of TTP, such as a verb-noun phrase, which
they defined as threat action. Husari et al. (2017) used
TF-IDF with an enhanced BM25 weight function to gen-
erate a word bag of candidate threat action text and com-
pared it with the word bags in their knowledge base to
obtain threat action in the text. The subsequent work of
Husari et al. (2018) used entropy and mutual information

to find the object-verb pairs of high mutual information
in the malicious software-related Wikipedia and used
these object-verb pairs to find the threat actions of equal
mutual information in the security analysis report.

Compared with the above two works, our work does
not need a heavy prebuild knowledge base. Unlike the
bag-of-words method used by Husari et al. (2017), our
work uses a pretrained language model as our word
embedding model, which gives more context features
than bag-of-words methods or static word-vector mod-
els. Therefore, compared with bag-of-words and static
word embedding, the pretraining model can improve
classification accuracy. Our work uses 6061 TTP descrip-
tions from 10761 reports for TCENet training, which is
more robust than the word-bag method in Ghaith’s work
(Husari et al. 2017). We classify TTPs at the ATT&CK
technique level rather than the threat action level in
Husari et al. (2018) because the threat action is too sim-
ple to represent the complete TTPs.

None of the current work evaluates the performance
of TTP classification in few-shot training sample cases.
However, many TTPs only have a few description texts,
which makes the existing work not generalizable in the
TTP classification task.

Our work uses both textual and TTP element features
to enhance our TCENet. The evaluation result also shows
that the classification accuracy of our TCENet model is
better than that of other methods, even in the case of
few-shot training samples. This means that our method
can be generalized to most TTP classification tasks.

Preliminaries
TTPs
Tactics, Techniques, and Procedures are three different
levels of the cyberattack campaign derived from military
terminology. In this work, we select the most popular 5
techniques and 1 tactic from ATT&CK as our TTP clas-
sification targets, as shown in Table 1.

Tactics represent multiphases objectives of an attack
campaign, such as initial access, persistence, and privi-
lege escalation. Techniques represent the method to
accomplish the stage objective, such as using phishing or

Table 1  TTPs categories and TTPs description text examples

TTPs Description example

Phishing Dragonfly has used spearphising campaigns to gain access to victims.

Scheduled Task/Job Remsec schedules the execution one of its modules by creating a new scheduler task.

Obfuscated Files or Information Agent Tesla has had its code obfuscated in an apparent attempt to make analysis difficult.

Deobfuscate/Decode Files or Information Carbon decrypts task and configuration files for execution.

Collection* The jar file contains various classes for platform-specific implementations for capturing
screenshots, capturing audio, logging keystrokes, among others.

Application Layer Protocol Carbon can use HTTPs in C2 communications.

Page 5 of 17You et al. Cybersecurity (2022) 5:3 	

drive-by compromise to enter the victim’s network; pro-
cedures represent the specific implementation instance
of a technique.

TTP intelligence
Previous TTP intelligence mining works only output
static TTP names as results. These results lack descrip-
tion details about the TTPs and are difficult to use for
defense. We define TTP intelligence as the detailed
description and elements of TTPs in unstructured threat
data.

Threat context
In this paper, the threat context of TTP intelligence is
defined as two parts: TTP description and TTP elements.

TTP description
Rather than supposing a whole paragraph as a TTP
description, as in the work of Li et al. (2019), we focus
on TTPs at the sentence-level to achieve a more accurate
classification. We define three continuous sentences as a
TTP description.

TTP element
As shown in Fig. 1, the TTP description contains a
number of terms that are closely related to a particular
TTP: IP, domain name, URL, CVE, and security terms.
We refer to these terms as elements. In this paper, we
have defined 12 types of TTP elements: IPv4, domain,
email, filename, URL, file hash, file path, regkey, CVE,
encode&encryption algorithm, communication proto-
cols and the data object keyword (e.g., clipboard, screen,
snap-shot, keylogging, password, outlook, etc.), as
shown in Table 2.

TTP description example
Gorgon Group uses Microsoft Word documents with
CVE-2017-0199 to implement the phishing attack. And
the Patchwork group uses the MS PowerPoint document,
which exploits CVE-2014-6352, to implement the phish-
ing attack. APT groups frequently use this method to gain
initial access to victims’ networks.

This is an example of a TTP description that describes
the procedure of two different APT groups. This descrip-
tion belongs to the phishing TTP category. CVE-2017-
0199 and CVE-2014-6352 are the TTP elements of the
above two TTP procedures examples. Based on the TTP
elements in intelligence, defenders can perform different
attack simulations and generate threat detection rules to
improve the effectiveness of the defense.

TTP classification definition
In this paper, we define the TTP classification prob-
lem as a text classification task. Given a sentence
Sn in an analysis report, we first obtain its context
Cn = {Sn−1, Sn, Sn+1} and sentence embedding CEn using
Sentence-BERT (Reimers and Gurevych 2019). We then
use regex and gazetteer to extract TTP elements in the
context Cn . We use the occurrence number of spe-
cific TTP element types in Cn to represent the TTP ele-
ment features. The element feature vector represents
Elmsn = {Elm1,Elm2, . . . ,Elmk , . . . ,Elmm} , where Elmk
represents the number of occurrences of the k-th type
TTP element in the context Cn . The length of vector
Elmsn is 12 because we define 12 types of elements in this
work. Our proposed method TCENet uses the descrip-
tion context embedding CEn and the TTPs element type
vector Elmsn as input and classifies the TTP type TTPi of
sentence Sn , which can be denoted as Eq. 1.

Table 2  12 TTPs element types

TTPs Element Example Extract Method

IPv4 192.168.1.1 Regex

Domain Example.com Regex

Email mail@example.com Regex

Filename example.vba Regex

URL http://​examp​le.​com/​proje​ct/​examp​le.​php Regex

File Hash 66efff4c945d3c3b87fc271b47d456db Regex

File Path /home/example/example.o Regex

CVE cve-2017-11882 Regex

Encode&Encryption Algorithm Base64, XOR, etc. Gazetteer

Communication Protocols HTTP, SMTP, etc. Gazetteer

Data Object clipboard, screen, password, etc. Gazetteer

Regkey HKCU/Software/Microsoft/Windows/CurrentVersion/Run Regex

http://example.com/project/example.php

Page 6 of 17You et al. Cybersecurity (2022) 5:3

TTP intelligence mining
TTP intelligence mining is the process of finding TTP-
related description texts from security analysis reports
and organizing them into a shareable intelligence format
(e.g., STIX 2.1). In this paper, we propose a threat con-
text-enhanced TTP intelligence mining framework TIM
that finds and classifies TTP descriptions from secu-
rity analysis reports by using the TCENet proposed in
this paper. The TIM framework then organizes the TTP
descriptions and TTP elements into a shareable intelli-
gence in STIX 2.1 format as well as Sigma detection rules.

Algorithm 1 describes the TTP intelligence mining
process for one cybersecurity analysis report.

Dataset
Data source
A major contribution of our work is to annotate the
first sentence-level TTP dataset. We build our dataset
by crawling the security analysis reports from security
vendor websites, including: Malwarebytes (Malware-
bytes 2021), Securelist (Securelist 2021), Welivesecu-
rity (ESET 2021), Trendmicro (Trendmicro 2021), and
Threatpost (Threatpost 2021). We crawl security analysis
reports using the category tag of the report (e.g., malware,
analysis, apt, etc.). Therefore, it is possible to remove ads
and other nonsecurity analysis reports directly. We finally
acquired 10761 security analysis reports.

The statistics of reports used by previous document-
level TTP mining methods (Ayoade et al. 2018; Legoy

(1)TTPi = TCENet(CEn,Elmsn)

2019; Li et al. 2019) and our annotated dataset are shown
in Table 3.

Our sentence-level dataset are more bigger than that
of Legoy (2019) and Li et al. (2019). While 17600 reports
of Ayoade et al. (2018) dataset from a single resource of
Symantec, ours comes from five different vendors with
more balanced distribution. Therefore, our dataset is
more general.

The distribution of reports in our dataset according to
different vendors is shown in Table 4.

Annotation
Our annotation work is done by three threat intelligence
researchers.

Annotators first learn the specific concepts of the 6
ATT&CK TTPs used in this paper. Then, annotators start
to read the 10761 security analysis reports collected. We
split the report into sentences. The annotator manually
extracts the TTP descriptions (three continuous sen-
tences) from the security analysis report and saves them
in a file of specific TTPs.

From these reports, we annotated 6061 TTP descrip-
tions and used regexps with a gazetteer to obtain TTPs
elements. The annotation number of each TTP category
is shown in Table 5. The annotation results were revised
by three other cybersecurity researchers.

Dataset validation
As mentioned above, our dataset has been annotated by
threat intelligence researchers and revised by cyberse-
curity researchers with domain expertise. To objectively

Table 3  Report statistics of different researches

Dataset The
number of
reports

Legoy (2019) 1490

Li et al. (2019) 55

Ayoade et al. (2018) 18257

Our sentence-level dataset 10761

Table 4  Report statistics of different security vendors

Vendor name Number
of
reports

Malwarebytes 3047

Securelist 1299

Welivesecurity 675

Trendmicro 3951

Threatpost 1789

Page 7 of 17You et al. Cybersecurity (2022) 5:3 	

demonstrate the validity of our dataset, we use the TTP
keyword matching method to evaluate the TTP keyword
match rate of our dataset.

To obtain objective and accurate TTP keywords, we
use the TTP procedure description instances from the
ATT&CK website as the corpus. After removing the
stop words, we calculate the TF-IDF score of terms in
TTP description instances and select the top ten scored
words. We use these keywords for queries in the dataset
and calculate how many TTP descriptions are matched.
The matching result shows that the keyword match
reaches an average of 0.925 in the positive sample. This
indicates that the vast majority of our labeled positive
samples are consistent with the keywords mentioned
in the TTP descriptions of the ATT&CK website. This
means that our labeled dataset is valid and can be used
for model training.

TTP correlation
The TTP description example in Fig. 1 shows the TTP
elements that appear in the TTP threat context and cor-
relate with specific TTPs.

Therefore, we designed a TTP elements correlation
calculation method based on our dataset to evaluate the
correlation between TTP elements and TTP categories.

We use Cyobstract (cmu-sei 2021) and our TTP ele-
ment gazetteer to extract TTP elements of each TTP
description in our TTP dataset.

We first calculate the support coefficients of each
TTP element category at different positions of the TTP
description. This coefficient represents the distribution
of TTP elements categories in our dataset, as shown in
Eq. 2:

(2)

Supportp(Elmsi) =
ln(

∣

∣

∣
Elmsip

∣

∣

∣
)

ln(
∣

∣Elmsp
∣

∣)
, where p ∈

{

c, d
}

Elmsisup =

{

Supportc(Elmsi) if p = c

Supportd(Elmsi) if p = d

where i denotes the i-th type of TTP element and p
denotes the TTP element position in the TTP descrip-
tion. If an element is described in mid-sentence, it is as a
direct element, represented as d in Eq. 2. Otherwise, it is
a context element represented as c. Elmsip denotes the ith
type elements described in position p. We use a logarith-
mic fraction to measure the support coefficients of the
Elmsi in position p. Elmsisup denotes two different posi-
tion support coefficients of Elmsi.

For each element in a specific TTP description, we
select three verbs closest to the target element and then
compare these verbs to the verbs in the corresponding
ATT&CK TTP description page with BERT (Devlin et al.
2018) embedding. We select ATT&CK description verbs
by using TF-IDF. Then we calculate the cosine similar-
ity between the candidate verb and the TTP description
page verb to find the most similar verb in a TTP descrip-
tion. SimV denotes the max cosine similarity, and the
Vmax denotes the most similar verb.

We also take the distance factor between the verb Vmax
and element into account, denoted as dist(Vmax, Elms).
Thus, the text relevance about textual and lexical features
of Elmsi computed from:

j in Eq. 3 is the jth instance of the TTP description. With
the data distribution, textual, and lexical features, we
calculate the average correlation coefficient of the ith ele-
ment type to the specific TTPs using Eq. 4, where |Elmsi|
is the amount of the ith element type.

We then normalize each TTP correlation coefficient
score and show the coefficient by using a heat map in
Fig. 2. The normalized coefficient score takes values from
0 to 1. Scores close to 1 indicate strong relevance, and
scores closer to 0 indicate weak relevance.

The result in Fig. 2 shows that there is a strong correla-
tion between some elements and the particular TTPs. The
code method, protocol, and data object TTP elements are
the most correlated elements in the obfuscate, C2 ppplica-
tion layer protocol, and collection TTPs. These elements
can provide details to the TTP instance, so they frequently
appear in the specific context. The filename element is the
most correlated element in the Scheduled Task/Job TTPs
because attackers would use some scripts (e.g., .bat or .vbs
) and malicious files to create a scheduled task or create a
scheduled task to execute other malicious files and scripts
to perform a further attack. The Data object element is

(3)Rtext(Elmsi) =

k
∑

j=1

exp(
SimV i

j

dist(Vmaxij ,Elmsij)
)

(4)coefficient(Elmsi) =
Elmsisup · Rtext(Elmsi)

∣

∣Elmsi
∣

∣

Table 5  TTPs description annotation number in our dataset

TTPs TTPs Description
Annotation
Number

Phishing 2599

Scheduled Task/Job 451

Obfuscated Files or Information 439

Deobfuscate/Decode Files or Information 475

Collection 1401

Application Layer Protocol 696

Page 8 of 17You et al. Cybersecurity (2022) 5:3

the most correlated element type in the Phishing TTPs
because email service names such as Microsoft Outlook and
Mailbox (we defined as data objects) are frequently men-
tioned in the Phishing threat context. The FQDN and CVE
are the second and third correlated elements in Phishing
TTPs since many phishing attack descriptions would men-
tion the phishing domain names and the CVE exploit by
attackers to create malicious phishing documents.

It is worth noting that the email elements obtain a low
correlation score because only a few reports disclose the
attack email address or victim address. The URL elements
also obatin a low correlation value because there are only
a few Phishing description instances that mentioned the
specific URL in our dataset.

Many URL phishing description texts would only men-
tion the attacker performing the attack by using URLs
without giving the URL details, or the phishing URLs are
mentioned outside the context window, so they would not
be considered TTP elements.

The regkey element encounters the same problem that it
may be described outside the context window, so there are
only a few instances in our dataset. This is the limitation of
our work, and we will discuss how to solve it in the future
work section.

Threat context‑enhanced TTP intelligence mining
framework
We designed a threat context-enhanced TTP intelli-
gence mining framework named TIM, as shown in Fig. 3.
The TIM framework consists of five modules: crawling,

preprocessing, feature embedding, TTP classification,
and TTP intelligence generation.

Crawling and preprocessing
Crawling
We first crawl 10761 security analysis reports from 5
data sources using category tags such as malware, threat
analysis, etc., to filter security-related articles.

Preprocessing
We use BeautifulSoup (Richardson 2021) to clean all
HTML tags and continuous line breaks. As we defined
above, the TTP description contains three continu-
ous sentences. We then split these articles with a 3-size
sliding window by NLTK tools in Python. Next, we
extract the TTP elements from each TTP description.
We use Cyobstract (cmu-sei 2021) to extract TTP ele-
ments of the IOC type. The actual output of Cyobstract
is normalized format IOC, such as 192.168.1.1. Thus, we
modify the output function of Cyobstact to find the orig-
inal IOC elements in the cyber analysis report, such as
192[.]168[.]1[.]1. We also construct a TTP element gaz-
etteer, as shown in Table 6, to match non-IOC elements
such as protocol names and encryption algorithms.

We then replace all found TTP elements with ele-
ment holder $[Elms.] to avoid unexpected tokens when
tokenizing the whole TTP description. We resume these
elements after TTP classification and use them to gener-
ate TTP intelligence.

Feature embedding and TTP classification
Figure 4 shows the architecture of our TCENet. Based on
the TTP elements correlation result in Fig. 2, the TCE-
Net model consists of two paths: element feature extrac-
tion path (upper) and description feature extraction path
(lower). A fully connected layer would jointly learn the
feature extracted by these two paths for final classifica-
tion. We use binary-relevance to train the TCENet model
on 6 types of TTP data.

Elements feature path
We use regex and a TTP elements gazetteer to extract 12
types of TTP elements in the TTP description. We con-
struct the number of occurrences of each element type as
a TTP element feature vector Elms.

Each type of element corresponds to one dimension
of the vector. For example, if there are 2 hashes, 3 email
addresses and 1 CVE ID described in the spear-phish-
ing TTP threat context, the element embedding vector
Elms would be the vector as: [0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0,
0]. Elements are organized in the following order: [ip,
fqdn, email, filename, url, hash, file path, regkey, cve,
code method, protocol, data object]. We then normalize

Fig. 2  Heat map of TTP elemental correlation coefficients. The
vertical axis is the TTP element, and the horizontal axis is the TTP
category. The correlation coefficients are normalized and take values
between 0 and 1. A correlation coefficient closer to 0 indicates
a weaker relationship between the element and the TTPs, and a
correlation coefficient closer to 1 indicates a stronger relationship

Page 9 of 17You et al. Cybersecurity (2022) 5:3 	

these element vectors before training. The TTP element
embedding process is shown in Algorithm 2.

Inspired by the malware analysis work of Nataraj
et al. (2011) that transforms the binary file to a 2D grey-
scale map, we resize the element vector to a 4*3 matrix
and use two different CNN filters to extract element
features Elmfn.

In the TTPs element correlation section, we have
proven that some types of elements may co-occur in
the specific TTP description context. Therefore, trans-
forming the TTP element vectors into 2D matrices can
express the spatial relationship of co-occurring TTPs
elements in the matrix. We use CNN to obtain the spa-
tial features of TTP elements in the matrix, which can-
not be obtained by 1D TTP element vectors and the
fully connected layer. The Elmfn is computed from:

where σ is the ReLU activation function and Wk denotes
different filters.

(5)Elmfn = σ(Wk · Elmsn + b)

Fig. 3  Threat Context Enhanced TTPs Intelligence Mining Framework (TIM). The whole workflow starts with the crawling module. Via preprocessing,
feature embedding, TTP classification (TCENet), and intelligence&detection rule generation modules, we finally obtain TTP intelligence in STIX 2.1
format and Sigma detection rules. We use these TTP intelligence and detection rule for intelligence sharing and defense

Table 6  TTPs element gazetteer

Element Gazetteer words

Encode&Encryption Algorithm aes,xor,ror,base64,rc4,des,lznt1

cast,3des,lzo

Communication Protocols http,https,ftp,smtp,pop3,dns.

Data Object desktop,clipboard,directory,

exchange,gmail,outlook,mailbox,

keystroke,keylogger,password.

Page 10 of 17You et al. Cybersecurity (2022) 5:3

We compare the feature extraction accuracy, recall, and
F1 of using the fully connected layer or the CNN layer in
the evaluation section. The result shows that the 2D ele-
ment matrix with CNN performs better than the 1D vec-
tor with a fully connected layer. The element correlation
heat map (Fig. 2) also proves that there is a co-occurrence
relationship among TTP elements.

At the end of the element feature path, we use two dif-
ferent max pooling to handle the feature vector from two
different CNN filters. The max-pooling layer lowers the
feature dimension and reserves the main features. This
path finally outputs a 4 * 1 dimension vector Elmfpn.

Description Feature Embedding. We use Sentence-
Bert (Reimers and Gurevych 2019) to embed the descrip-
tion text into three 768-dimensional vectors CEn . These
vectors capture the word features inside the sentence,
and with the sentence-BERT mean-pooling embedding,
the embedding vector could represent the sentence and
be used for downstream tasks.

Then, we feed the sentence-embedding into stack Bi-
LSTM. The output of the stack Bi-LSTM layers computed
from:

(6)

→

hj =
→

LSTM(xj ,
→

hj−1)

←

hj =
←

LSTM(xj ,
←

hj−1)

hj =

[

→

hj ,
←

hj

]

, j ∈ [1, n]

where
→

hj and
←

hj represent the j-th state produced by
LSTM from two directions; xj is the j-th input vector;
hj is the j-th state, and [·, ·] represents the concatenation
operation. After that, the attention mechanism (Shen
and Lee 2016) outputs the weighted summing of the Bi-
LSTM output sequence H = [h1, h2, · · · , hn] , which is
computed from:

where Z is the TTPs description representation. Next, we
use a fully connected layer to lower the dimension of the
attention layer output. The final output of the description
feature path is a 128-dimensional vector Zl.

TTPs classification
After TTP elements feature embedding and TTPs descrip-
tion feature embedding, we obtain the element features
Elmfpn and textual features Zl . At the end of our TCENet
architecture, we concatenate these two feature vectors into
a 132-dimensional vector Zc and use a fully connected layer
to output the final vector Zf  . We use the position in the
final two-dimensional vector as the class label. If the max

(7)

ā = σ(W2(tanhW1H + B1)+ B2)

a =
ā

∑T
j=1 āj

Z = Att([h1, h2, · · · , hn])

Fig. 4  The TCENet architecture. The upper path uses CNN and max-pooling to extract element features, and the lower path uses stack-BiLSTM +
attention to extract text features. A fully connected layer is used to obtain the final feature vector after concatenating the result of two paths

Page 11 of 17You et al. Cybersecurity (2022) 5:3 	

value appears in the first dimension, the prediction result is
negative; otherwise, it is positive, which is computed from:

We use the cross-entropy as the loss function and use
binary relevance to train six different TTP classification
models. The loss L is computed from:

where y is the true label of the TTP description, and pred
is the predicted result of our TCENet. α and β are cross-
entropy weights used to balance positive and negative
train samples. We minimize the loss L to train the TCE-
Net. Algorithm 3 summarizes the training process.

(8)pred = arg max(Dense([Elmfpn,Zl]))

(9)L = −(αy log(pred)+ β(1− y) log(1− pred))

TTP intelligence generation
Based on our proposed TIM framework, we organize the
TTP descriptions and TTP elements into Sigma (MSig-
maHQ 2021) attack detection rules and shareable intel-
ligence in STIX 2.1 format, as shown in Fig. 5.

Sigma is a generic and open signature format that
allows defenders to describe cyber-attack log events.
Sigma rules can be used to transform TTPs into search
criteria for system logs and SIEM alert events, as well
as detection rules for defensive devices such as firewalls
to detect threats in the system. Sigma rules can also be
used for direct sharing, such as in the MISP intelligence
community.

STIX 2.1 (OASIS 2021) is a language and a serialization
format used to exchange cyber threat intelligence (CTI).
Defenders can also use STIX 2.1 TTP intelligence for
penetration testing to simulate attack methods and opti-
mize protection strategies.

As shown in Fig. 5, we organize the TTP description
and TTP element information obtained from the TCE-
Net into STIX 2.1 intelligence and Sigma rules for query-
ing relevant threats in the log data of multiple protection
devices. The defender can also better grasp the long-
period and more essential attack characteristics of the
attacker by using TTP intelligence. At the same time, we
share the TTP intelligence and Sigma rules in the intel-
ligence community, so that defenders can defend against
threats more timely and effectively.

Fig. 5  We use TTP descriptions and TTP elements obtained from the TIM framework for threat detection and intelligence sharing

Page 12 of 17You et al. Cybersecurity (2022) 5:3

Examples of TTP intelligence in STIX 2.1 format and
Sigma detection rules can be found in our anonymous
Github repository (TCENet 2021).

Evaluation
In this section, we evaluate the proposed TCENet using
our labeled dataset.

Metrics
We evaluate the precision, recall, and F1 metrics of the
TCENet and other models in comparison experiments
and ablation experiments.

TP (True Positives) and TN (True Negatives) denote
correctly classified data, while FP (False Positives) and
FN (False Negatives) denote misclassified data.

Accuracy

Precision

Recall

F1

Evaluation data
Since the model in this paper uses a binary-relevance
method, we construct a negative sample set for each TTP
category.

(10)Accuracy =
TP + TN

TP + FP + TN + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

Negative samples
The negative samples consist of the non-TTP descrip-
tions, which are also annotated by annotators, and the
TTPs of the other categories. For model training, we use
non-TTP descriptions equal to the number of positive
samples and other TTP descriptions as negative samples.
The negative sample composition is shown in Eq. 14:

The Nsamj in Eq. 14 denotes the negative sample num-
bers of the jth type TTPs. NonTTP denotes the number of
non-TTP descriptions, which is equal to the number of
positive samples of the jth type TTPs. OtheriTTP denotes
the number of positive samples of the ith type TTP
descriptions, where i = j . The m denotes all 6 categories
of TTPs. Since we do not use positive samples of the jth
type TTPs as its negative samples, only positive samples
of other m-1 TTP categories are used as negative sam-
ples. Table 7 shows the number of positive and negative
samples for the six types of TTP.

Dataset validation result
In the dataset section, we propose using the TTP key-
word matching method to validate our dataset. Table 8
shows the matching rate of TTP keywords in both posi-
tive and negative samples. Table 8 also shows the accu-
racy of classifying TTP descriptions directly by TTP
keywords.

The results show that the average matching rate of TTP
keywords in the positive sample is 92.5%. This indicates
that the vast majority of our labeled positive samples
are consistent with the keywords mentioned in the TTP
descriptions of the ATT&CK website. This means that
our dataset is valid and can be used for model training.

However, TTP keywords cannot be directly used to
classify TTP descriptions. The matching result also
shows TTP keywords can also match many TTP descrip-
tion negative samples. Meanwhile, due to the limited
nature of keyword enumeration, not all samples of TTP

(14)NSamj = NonTTP +

m−1
∑

i=1

OtheriTTP

Table 7  The positive and negative sample number of six TTPs

TTPs Positive Samples Negative: Non TTPs Samples Negative:
Other TTPs
Samples

Phishing 2599 2599 3462

Scheduled Task/Job 451 451 5610

Obfuscated Files or Information 439 439 5622

Deobfuscate/Decode Files or Information 475 475 5586

Collection 1401 1401 4660

Application Layer Protocol 696 696 5365

Page 13 of 17You et al. Cybersecurity (2022) 5:3 	

descriptions can be covered by keywords. Moreover, if
we directly classify the TTP descriptions using TTP key-
words, it would introduce 28.3% false positives.

Therefore, training a deep learning model for TTP clas-
sification can address the limitations of TTP keyword
enumeration and also identify the false positive sam-
ples that are easily confused by the keyword matching
approach. Our subsequent experiments show that our
TCENet achieves an accuracy of 0.94 on 6 TTP classifi-
cations, which is much higher than the accuracy of key-
word-based TTP classification (0.82).

Baseline model
The models we chose for comparison can be divided into
four categories: document-level methods from previous
work, machine learning methods based on static word
embeddings, deep learning methods based on static
word embeddings, and deep learning methods based
on pre-trained models. Ayoade et al. (2018) and Legoy
(2019) both use TF-IDF with an SVM classifier to clas-
sify TTPs at the document level. Li et al. (2019) lever-
age latent semantic indexing to compare the targeting
analysis articles with ATT&CK description articles and
use SVM with the cosine similarity to classify TTPs.
Machine learning methods based on static word embed-
ding include: Doc2Vec (Le and Mikolov 2014) with Lin-
ear SVC, Doc2Vec with Decision Tree (DT), Doc2Vec
with random forest (RF). Deep learning methods based
on static word embedding include: FastText (Joulin et al.
2016), TextCNN (Rakhlin 2016) with GloVe word embed-
ding (Pennington et al. 2014), Bi-LSTM + Attention with
GloVe word embedding. Methods based on pre-trained
models include Bert-CLS and our proposed TCENet.

Train settings
We grid search for the best performance hyperparameter
of our TCENet and other baseline models. Table 9 shows
the results of our experiments on the hidden layer size
and layer number of the Bi-LSTM network.

Based on the experimental results, we finally used
a 3-layer Bi-LSTM and a hidden layer size of 200. The
other hyperparameters are shown in Table 10. For cross-
entropy weights α and β in Eq. 9, we use the inverse ratio
of positive and negative samples as the weight to train the
model.

Overall results
We evaluate the overall accuracy of our TCENet on all six
TTPs. We divide each TTP-labeled dataset into training,
validation, and testing sets according to a 7:1:2 ratio. We
train each model for 80 epochs. Table 11 shows the over-
all accuracy on six TTPs by using TCENet. The phish-
ing classification model achieves the best performance
because it has the largest dataset (2599 positive samples).
The accuracies of obfuscated files or information and
deobfuscate/decode Files or information are 0.92 and
0.916, respectively, because they have a smaller anno-
tated dataset (439, 475, respectively).

Comparison evaluation
Table 12 shows the precision, recall, and F1 of TCENet
compared to the three previous methods and six base-
line models. Comparison evaluation is performed on the
Phishing TTP data.

The result shows that our TCENet method achieves the
best performance on all three metrics, and sentence-level

Table 8  Matching rate of TTP keywords in the dataset

TTPs Pos-hit Neg-hit Accuracy

Phishing 0.91 0.17 0.873

Scheduled Task/Job 0.988 0.22 0.884

Obfuscated Files or Information 0.902 0.529 0.6865

Deobfuscate/Decode Files or Informa-
tion

0.92 0.33 0.795

Collection 0.879 0.351 0.764

Application Layer Protocol 0.945 0.102 0.9215

Average 0.925 0.283 0.820

Table 9  LSTM hidden size and layer number evaluation
experiment on TTPs Phishing, using F1 score

Hidden Node Size LSTM layer number

1 2 3

50 0.939 0.941 0.944

100 0.939 0.970 0.944

200 0.950 0.941 0.971

300 0.968 0.969 0.950

Table 10  Model parameter settings

Parameters Setting

Sentence Length 300

SentenceBert Vector Size 768

LSTM Hidden Layer Size 200

LSTM layers 3

Batch size 32

Epochs 80

Learning rate 1e-3

Cross-Entropy Weight Inverse ratio of
positive and negative
samples

Page 14 of 17You et al. Cybersecurity (2022) 5:3

methods are obviously more accurate than document-
level methods. The results also indicate that methods
based on the pretrained language model perform better
than static word embedding methods such as GloVe and
fastText. Language models such as BERT and its variant
Sentence-BERT consider the context features of a word
and generate dynamic word embedding compared to
static word embedding methods using the co-occurrence
matrix.

Three Dov2Vec based baseline models achieve approxi-
mate results. The method using the random forest (RF)
classifier performs better than the linear SVC and deci-
sion tree (DT).

FastText considers the n-gram features of words and
achieves the best precision among the three static word
embedding models. BiLSTM+Attention considers the
temporal features of text and uses the attention mecha-
nism to determine the weights of context and achieves
the best recall among the three static word vector mod-
els. TextCNN uses multiple convolution kernels to cap-
ture the spatial features of the text and achieves the best
F1 score among the three static word embedding models.

Our TCENet and the mainstream BERT-CLS model
performed better than the above baseline. TCENet out-
performs BERT by 3-4% on three metrics. TCENet uses a
pretrained model, considers the differences between con-
textual sentences, and assigns weights to contexts using
bidirectional LSTM and attention. Additionally, TCENet
uses TTP element features to enhance the classification
effect.

We then conducted ablation experiments to explore
the effects of text features and TTP element features on
the final classification results.

Ablation experiment
To demonstrate the effectiveness of each component of
TCENet, we perform an ablation experiment. We evalu-
ate the classification accuracy results using only TTP ele-
ment features, only text features, and TCENet variants,
as shown in Table 13. For TCENet variants, we change or
remove different parts of TCENet to prove the validity of
each part, e.g., using different neural networks to extract
the text or the TTP element features, or not using TTP
elements.

We first evaluate the TTP classification performance
of the TCENet model without considering text features
using only TTP element features and CNN. We denote
this model as Only TTPs Elms. in Table 13.

The TCENet w/o Elms with CNN model in Table 13
uses Sentence-BERT for text embedding and CNN to
extract context textual features without any elements fea-
tures. The TCENet w/o Elms with BiLSTM model uses
BiLSTM to extract context textual features without ele-
ments features. The TCENet with FC_E (TCENet with
a fully connected layer for element features) uses contex-
tual text features and TTP element features for TTP clas-
sification. It uses FC for TTP element features extracting.
The TCENet with FC_C (TCENet with a fully connected

Table 11  Overall TTPs classification accuracy by using our
TCENet on six different TTPs

The average accuracy is noted in bold font

TTPs Accuracy

Phishing 0.972

Scheduled Task/Job 0.934

Obfuscated Files or Information 0.920

Deobfuscate/Decode Files or Information 0.916

Collection 0.964

Application Layer Protocol 0.943

Average Accuracy 0.941

Table 12  The comparison evaluation of the TCENet on the phishing TTP

The best classification result is shown in bold font

Text level Model Precision Recall F1

Document-level Ayoade et al. (2018) & Legoy (2019) 0.437 0.500 0.608

Li et al. (2019) 0.444 0.509 0.547

Sentence-level Doc2Vec + linear SVC 0.859 0.881 0.870

Doc2Vec + DT 0.853 0.857 0.855

Doc2Vec + RF 0.895 0.902 0.899

Bi-LSTM + Attention (GloVe) 0.871 0.923 0.896

TextCNN (GloVe) 0.913 0.914 0.927

fastText 0.936 0.895 0.915

BERT-CLS 0.940 0.935 0.935

TCENet 0.970 0.973 0.971

Page 15 of 17You et al. Cybersecurity (2022) 5:3 	

layer for context features) uses FC rather than BiLSTM
to capture the TTP description context feature and uses
CNN for the TTP elements feature.

Our TCENet uses both context textual features and
TTP element features. It leverages the Bi-LSTM to cap-
ture description context features and uses CNN to
extract TTP element features. Inspired by Nataraj et al.
(2011), who transformed binary files into matrices, the
TCENet transforms 1D TTP element vectors into 2D
TTP element matrices and uses CNN to extract the spa-
tial features of TTP element co-occurrences implicitly in
the matrices.

The results show that both context description features
and TTP element features improve the TTP classifica-
tion performance. The result also shows that the model
cannot perform effective classification when using only
TTP element features. Without TTP elements features,
the two TCENet variants (w/o Elms. models in Table 13)
drops 3-4 % compared with TCENet. The TCENet with
FC_E and the TCENet with FC_C leverage FC to extract
TTP element features and context features. These two
TCNet variants cannot better capture the text and TTP
element features using FC than TCENet.

Therefore, TCENet obtains the best evaluation results
using CNN to extract elemental features and BiLSTM to
extract contextual features.

Few‑shot evaluation
Some ATT&CK TTPs may have only a small amount
of description text. Therefore, we performed a few-shot
evaluation on the obfuscated files or information TTPs
dataset, which has the least data.

In this experiment, we divided the positive sample
data into training and test data a ratio of 8:2. We then
keep reducing the positive sample training data (from
350 to 50) to evaluate the performance of different
models in the case of few-shot training samples. The
results are shown in Fig. 6.

From 350 to 50 training samples, Doc2Vec+RF and
FastText’s performance drops sharply on 200 samples.

TextCNN also drops sharply on 50 samples, which
obtains only a 0.638 accuracy score.

In this experiment, the results of BERT-CLS and the
TCENet w/o Elms are similar. Without element fea-
tures, the performance of TCENet w/o Elms, is also
influenced by the number of training samples when it
drops to 100.

Our TCENet method achieves the most stable perfor-
mance on small training sets and achieves 0.857 accu-
rate performance even when the training dataset drops
to 50 samples.

The results demonstrate that our TCENet can be gen-
eralized to most TTP classification tasks, even in the
few-shot training data case.

Annotation cost reduction
TTP data annotation requires expert knowledge and is
time-consuming. However, there is no available dataset
for sentence-level TTP description, which also hinders
research in TTP classification. Therefore, our dataset is
necessary and valuable.

Table 13  Ablation experiments on the phishing TTP

The best result is noted in bold font

Model Component Precision Recall F1

Only TTPs Elms. CNN 0.566 0.497 0.339

TCENet w/o Elms. with CNN Sentence-BERT + CNN 0.915 0.954 0.934

TCENet w/o Elms. with BiLSTM. Sentence-BERT + BiLSTM 0.941 0.950 0.945

TCENet with FC_E Sentence-BERT + FC + BiLSTM 0.940 0.965 0.952

TCENet with FC_C Sentence-BERT + CNN + FC 0.949 0.953 0.951

TCENet Sentence-BERT + CNN + BiLSTM 0.970 0.973 0.971

Fig. 6  Few-shot case evaluation on TTPs Obfuscated Files or
Information. With the reduction of training samples, our TCENet still
achieves considerable performance (0.875), even after training with
50 samples

Page 16 of 17You et al. Cybersecurity (2022) 5:3

We annotated a total of 10761 security articles with
6061 TTP descriptions in 6 TTP categories. Based on the
experience of annotation and the results of our proposed
method, we believe that we can reduce the annotation
cost and extend the approach of this paper to other TTP
annotation tasks in two ways.

To reduce the time cost of TTP annotation, the anno-
tation process can utilize the aforementioned TTP key-
word matching method to prioritize the annotation
of sentences containing TTP keywords in the security
analysis reports. The annotator only needs to confirm
whether the matched descriptions are false positives.
False alarm data can be used as negative sample data for
model training data. Therefore, the annotator does not
need to read the full analysis report to obtain the TTP
description data.

The few-shot evaluation experiment (shown in Fig. 6)
shows that our TCENet achieves an accuracy of 0.857
even for 50 training data samples and 0.93 for 350 train-
ing data samples. Therefore, we believe that the absolute
number of data annotations can be reduced when the
TCENet model is extended to other TTP classification
tasks.

Limitations
In this paper, we use a sliding window of size 3 to obtain
the TTP description, and the annotators keep only these
three sentences in the final dataset when annotating the
data. However, we find that some TTP elements may be
outside the sliding window, so some elements in the TTP
element association heat map show weak associations
with TTPs, such as Phishing-URL and Scheduled Task/
Job-Regkey. These TTP elements and TTPs that theoreti-
cally have strong correlations may also show weak corre-
lations in the heat map (Fig. 2) due to insufficient data.
In future work, we will retain longer contextual infor-
mation to introduce more TTP element features in TTP
classification.

Conclusions
In this work, we propose a threat context-enhanced
TTP intelligence mining framework named TIM to
mine TTP intelligence from unstructured threat data.
This framework uses TCENet to classify sentences in
security analysis reports for TTP intelligence by using
threat context features consisting of TTP descriptions
and TTP elements. TCENet achieve an average of 0.94
classification accuracies on 6 types of TTP data and
achieves the best performance compared with previ-
ous document-level methods and mainstream text clas-
sification methods. The TTP element features promote
overall performance by 2-3%. Our TCENet achieves

considerable performance (0.875) even in the case of
few-shot training samples, which means our proposed
method could be generalized to classify most ATT&CK
TTPs with a few training data.

Our TIM framework finally organizes the TTP
description and the TTP elements into STIX 2.1 intel-
ligence format and Sigma attack detection rules. TTP
intelligence and sigma detection rules can be used to
attack simulation and threat detection and greatly ben-
efit security defenders for better protection in enter-
prise security operations centers.

In the future, we will find the relationship of TTPs
and their elements in the global document to solve the
limitations of this work. We will also expand our data-
set and use our proposed TCENet on all ATT&CK
TTPs. With TTP intelligence and other cybersecurity
entities, we will build a cyber threat knowledge graph
to go deeper into APT attack campaigns in a more
grand threat context.

Acknowledgements
The authors would like to thank all the annotators and anonymous reviewers
for their useful comments and suggestions.

Authors’ contributions
YY designed the data collection, model structure, experiments and drafted the
manuscript. JJ, ZJ and XW made crucial contributions the experimental design
and manuscript revised. PY, BL, HF and NL participated in problem discussions
and manuscript revised. All authors read and approved the final manuscript.

Funding
Our research was supported by the National Key Research and Development
Program of China (Grant No. 2018YFC0824801, No. 2019QY1302) and the
National Natural Science Foundation of China (No. 61802404). This research
was also partially supported by the Key Laboratory of Network Assessment
Technology, the Chinese Academy of Sciences, and the Beijing Key Laboratory
of Network Security and Protection Technology.

Availability of data and materials
We will open-source the full dataset after the paper is published. The demo
model and data samples of the model can be found at the following anony-
mous GitHub address: https://​github.​com/​TCENet/​TCENet.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Information Engineering, Chinese Academy of Sciences, Bei-
jing 100093, China. 2 School of Cyber Security, University of Chinese Academy
of Sciences, Beijing 100029, China. 3 College of Information Engineering,
Capital Normal University, Beijing 100048, China. 4 Beijing Electronic Science
and Technology Institute, Beijing 102627, China.

Received: 30 August 2021 Accepted: 13 December 2021

References
Ayoade G, Chandra S, Khan L, Hamlen K, Thuraisingha, B (2018) Automated

threat report classification over multi-source data. In: 2018 IEEE 4th

https://github.com/TCENet/TCENet

Page 17 of 17You et al. Cybersecurity (2022) 5:3 	

international conference on collaboration and internet computing (CIC).
IEEE, pp 236–245

cmu-sei (2021) Cyobstract github repository. [EB/OL]. https://​github.​com/​
cmu-​sei/​cyobs​tract Accessed August 24, 2021

DavidJBianco (2021) The Pyramid of Pain. [EB/OL]. https://​detect-​respo​nd.​
blogs​pot.​com/​2013/​03/​the-​pyram​id-​of-​pain.​html Accessed August 24,
2021

Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint
arXiv:​1810.​04805

ESET (2021) Welivesecurity website. [EB/OL]. https://​www.​weliv​esecu​rity.​com/​
categ​ory/​malwa​re/ Accessed August 24, 2021

Husari G, Al-Shaer E, Ahmed M, Chu B, Niu X (2017) Ttpdrill: Automatic and
accurate extraction of threat actions from unstructured text of CTI
sources. In: Proceedings of the 33rd annual computer security applica-
tions conference, pp 103–115

Husari G, Niu X, Chu B, Al-Shaer E (2018) Using entropy and mutual informa-
tion to extract threat actions from cyber threat intelligence. In: 2018 IEEE
international conference on intelligence and security informatics (ISI).
IEEE, pp 1–6

Joulin A, Grave E, Bojanowski P, Douze M, Jégou H, Mikolov T (2016) Fasttext.
zip: Compressing text classification models. arXiv preprint arXiv:​1612.​
03651

Le QV, Mikolov T (2014) Distributed representations of sentences and docu-
ments. arXiv:​1405.​4053

Legoy VSM (2019) Retrieving att&ck tactics and techniques in cyber threat
reports. Master’s thesis, University of Twente

Li M, Zheng R, Liu L, Yang P (2019) Extraction of threat actions from threat-
related articles using multi-label machine learning classification method.
In: 2019 2nd international conference on safety produce informatization
(IICSPI). IEEE, pp 428–431

Malwarebytes (2021) Malwarebytes website. [EB/OL]. https://​resou​rces.​malwa​
rebyt​es.​com/#​analy​st-​repor​ts Accessed August 24, 2021

MITRE (2021) MITRE ATT&CK. [EB/OL]. https://​attack.​mitre.​or Accessed August
24, 2021

MSigmaHQ (2021) Generic Signature Format for SIEM Systems. [EB/OL] https://​
github.​com/​Sigma​HQ/​sigma Accessed August 24, 2021

Nataraj L, Karthikeyan S, Jacob G, Manjunath BS (2011) Malware images:
visualization and automatic classification. In: Proceedings of the 8th inter-
national symposium on visualization for cyber security, pp 1–7

Niakanlahiji A, Wei J, Chu B-T (2018) A natural language processing based
trend analysis of advanced persistent threat techniques. In: 2018 IEEE
international conference on big data (Big Data). IEEE, pp 2995–3000

OASIS (2021) Introduction to STIX. [EB/OL] https://​oasis-​open.​github.​io/​cti-​
docum​entat​ion/​stix/​intro Accessed August 24, 2021

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word
representation. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp 1532–1543

Rakhlin A (2016) Convolutional neural networks for sentence classification.
GitHub

Reimers N, Gurevych I (2019) Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:​1908.​10084

Richardson L (2021) BeautifulSoup. [EB/OL]. https://​www.​crummy.​com/​softw​
are/​Beaut​ifulS​oup Accessed August 24, 2021

Securelist (2021) Securelist website. [EB/OL]. https://​secur​elist.​com/​categ​ory/​
apt-​repor​ts/ Accessed August 24, 2021

Shen S-s, Lee H-y (2016) Neural attention models for sequence classification:
Analysis and application to key term extraction and dialogue act detec-
tion. arXiv preprint arXiv:​1604.​00077

Tartare M (2021) Operation StealthyTrident: corporate software under attack.
[EB/OL]. https://​www.​weliv​esecu​rity.​com/​2020/​12/​10/​lucky​mouse-​
ta428-​compr​omise-​able-​deskt​op/ Accessed August 24, 2021

TCENet (2021) TCENet Repository. [EB/OL]. https://​github.​com/​TCENet/​TCENet
Accessed August 24, 2021

Threatpost (2021) Trendmicro website. [EB/OL]. https://​threa​tpost.​com/​categ​
ory/​malwa​re-2/ Accessed August 24, 2021

Trendmicro (2021) Trendmicro website. [EB/OL]. https://​blog.​trend​micro.​com/​
trend​labs-​secur​ity-​intel​ligen​ce/​categ​ory/​malwa​re Accessed August 24,
2021

Zhu Z, Dumitras T (2018) Chainsmith: automatically learning the semantics
of malicious campaigns by mining threat intelligence reports. In: 2018

IEEE European symposium on security and privacy (EuroS&P). IEEE, pp
458–472

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/cmu-sei/cyobstract
https://github.com/cmu-sei/cyobstract
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://arxiv.org/abs/1810.04805
https://www.welivesecurity.com/category/malware/
https://www.welivesecurity.com/category/malware/
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1405.4053
https://resources.malwarebytes.com/#analyst-reports
https://resources.malwarebytes.com/#analyst-reports
https://attack.mitre.or
https://github.com/SigmaHQ/sigma
https://github.com/SigmaHQ/sigma
https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
http://arxiv.org/abs/1908.10084
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://securelist.com/category/apt-reports/
https://securelist.com/category/apt-reports/
http://arxiv.org/abs/1604.00077
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://github.com/TCENet/TCENet
https://threatpost.com/category/malware-2/
https://threatpost.com/category/malware-2/
https://blog.trendmicro.com/trendlabs-security-intelligence/category/malware
https://blog.trendmicro.com/trendlabs-security-intelligence/category/malware

	TIM: threat context-enhanced TTP intelligence mining on unstructured threat data
	Abstract
	Introduction
	Motivation & Challenges
	Our study
	Contributions

	Related works
	Preliminaries
	TTPs
	TTP intelligence
	Threat context
	TTP description
	TTP element
	TTP description example

	TTP classification definition
	TTP intelligence mining

	Dataset
	Data source
	Annotation
	Dataset validation
	TTP correlation

	Threat context-enhanced TTP intelligence mining framework
	Crawling and preprocessing
	Crawling
	Preprocessing

	Feature embedding and TTP classification
	Elements feature path
	TTPs classification

	TTP intelligence generation

	Evaluation
	Metrics
	Evaluation data
	Negative samples

	Dataset validation result
	Baseline model
	Train settings
	Overall results
	Comparison evaluation
	Ablation experiment
	Few-shot evaluation
	Annotation cost reduction

	Limitations
	Conclusions
	Acknowledgements
	References

