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Abstract 

TTPs (Tactics, Techniques, and Procedures), which represent an attacker’s goals and methods, are the long period 
and essential feature of the attacker. Defenders can use TTP intelligence to perform the penetration test and com-
pensate for defense deficiency. However, most TTP intelligence is described in unstructured threat data, such as APT 
analysis reports. Manually converting natural language TTPs descriptions to standard TTP names, such as ATT&CK TTP 
names and IDs, is time-consuming and requires deep expertise. In this paper, we define the TTP classification task as 
a sentence classification task. We annotate a new sentence-level TTP dataset with 6 categories and 6061 TTP descrip-
tions from 10761 security analysis reports. We construct a threat context-enhanced TTP intelligence mining (TIM) 
framework to mine TTP intelligence from unstructured threat data. The TIM framework uses TCENet (Threat Context 
Enhanced Network) to find and classify TTP descriptions, which we define as three continuous sentences, from textual 
data. Meanwhile, we use the element features of TTP in the descriptions to enhance the TTPs classification accuracy 
of TCENet. The evaluation result shows that the average classification accuracy of our proposed method on the 6 TTP 
categories reaches 0.941. The evaluation results also show that adding TTP element features can improve our classifi-
cation accuracy compared to using only text features. TCENet also achieved the best results compared to the previous 
document-level TTP classification works and other popular text classification methods, even in the case of few-shot 
training samples. Finally, the TIM framework organizes TTP descriptions and TTP elements into STIX 2.1 format as final 
TTP intelligence for sharing the long-period and essential attack behavior characteristics of attackers. In addition, we 
transform TTP intelligence into sigma detection rules for attack behavior detection. Such TTP intelligence and rules 
can help defenders deploy long-term effective threat detection and perform more realistic attack simulations to 
strengthen defense.
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Introduction
Cyber threat intelligence (CTI) is the information and 
knowledge used for defense and detection in cyber war-
fare. Traditional threat protection uses IOC (indicator of 
compromise) intelligence, such as IP, domain name, and 
malicious file hash to generate detection rules. However, 
there are many problems with IOC intelligence-based 

protection. Zhu and Dumitras (2018) mentioned that, 
although intelligence sharing standard STIX 2.1 (OASIS 
2021) includes an attack pattern field, most open-source 
intelligence feeds do not provide IOC-related attack pat-
terns or attack technique information to enrich IOC 
intelligence (e.g., IP threat type: a brute-force IP or a 
command & control server IP). This makes IOC-based 
protection more blind. When an IOC-based protection 
device generates an alert, the defender does not know 
what kind of attack is going on behind this IOC alert and 
cannot respond effectively because the IOC does not 
have an attack technique description. Nation-state APT 
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(advanced persistent threat) groups can also easily evade 
this IOC protection mechanism by shifting their attack 
infrastructures, such as changing attack IPs, phishing 
domain names, and modifying malicious codes. Thus, the 
Pyramid of Pain (DavidJBianco 2021) considers IOC as 
low-value and easily accessible intelligence.

TTPs (Tactics, Techniques, and Procedures) can 
describe the long-term behavior and essential features 
of an attacker. MITRE constructs a TTP knowledge base 
named ATT&CK (MITRE 2021) to provide TTP unified 
names and procedure examples of attack techniques. 
They use the tactic to represent the goals of each attack 
campaign stage and techniques to describe how attack-
ers accomplish these goals. TTP intelligence can thus be 
used in penetration tests of enterprises to compensate for 
defense deficiencies.

However, high-value TTP intelligence is difficult to 
obtain directly. Cybersecurity analysts generally use 
natural language to describe TTP intelligence in security 
analysis reports (Tartare 2021).

Figure  1 shows the TTP description examples in a 
security analysis report. The left represents the report 
text, and we use different colors to annotate the differ-
ent TTP descriptions. The left also shows that the TTP 

description contains a great deal of IOC information 
and other security terms. We use the gray background 
to annotate them. This paper refers to these IOCs and 
other types of security terms in the TTP description as 
TTP elements. The right side shows the ATT&CK TTP 
name and TTP elements obtained from the left descrip-
tion text.

Manually converting these TTP descriptions into 
ATT&CK standard names is very time-consuming and 
requires in-depth expert knowledge. The existing NLP 
(natural language processing) methods (training on SST, 
AG News, DBpedia corpus, etc.) cannot be directly used 
on cybersecurity-related text because there is no avail-
able security corpus to train a TTP classification model.

Several existing TTP classification methods (Ayoade 
et al. 2018; Legoy 2019; Li et al. 2019; Niakanlahiji et al. 
2018) are at the document level, which may cause low-
accuracy problems since the articles may consist of 
different kinds of TTPs. These methods also have limi-
tations that can only provide static names with a confi-
dence coefficient without providing more details, such as 
related TTP elements, which are also significant to cyber 
defenders. The static bag-of-words method proposed 
by Husari et  al. (2017) is not robust enough to classify 

Fig. 1  The left figure is the origin security analysis report, and the right figure is the corresponding normalized TTP names and TTP elements. 
Security analysts need to manually extract these attack descriptions to normalize TTP names with the ATT&CK framework. Different colors in the 
figure represent different TTPs, and elements mentioned in the context are annotated with the gray background
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TTP intelligence in complex security analysis articles 
and needs a prebuild knowledge base. The subsequent 
work of Husari et al. (2018) tries to find threat behavior, 
consisting of one verb and one noun object. These verb-
object pairs are too simple to describe complete TTPs. 
However, none of the existing TTP classification meth-
ods have evaluated the performance of their method on 
few-shot training sample cases, and many TTPs have 
only a few description texts.

In addition, previous methods have taken static TTP 
names as the final outcome and lacked TTP description 
details. As a result, this TTP information is difficult for 
defenders to use.

Motivation & Challenges
Based on the above discussion, our motivation is to auto-
mate obtaining long-term valid and more essential fea-
tures of attackers, such as the TTPs from unstructured 
threat data. Specifically, this paper uses the text clas-
sification method to find and classify TTP descriptions 
from security analysis reports to represent such features 
and use them for better protection. Therefore, our work 
mainly faces two major challenges: the lack of available 
sentence-level TTP dataset and the need to accurately 
find and classify TTP-related descriptions, even in the 
case of few-shot training samples.

Our study
We define TTP intelligence as the detailed description 
and elements of TTPs in unstructured threat data. To 
obtain TTP intelligence from unstructured threat data, 
we built a threat context-enhanced TTP intelligence min-
ing framework named TIM that crawls analysis reports 
from security websites and mines the TTPs intelligence.

To solve the challenge of no available dataset, we build 
a new TTP dataset at the sentence level. We use the 
MITRE ATT&CK framework to define TTPs rather than 
the incomplete and simple threat action used by Husari 
et al. (2018). Based on the suggestions of frontline threat 
intelligence analysts, we selected 6 categories of TTPs as 
classification targets to validate the feasibility of the TTP 
intelligence mining framework in this paper. These TTP 
categories cover the 7 major tactics of ATT&CK and are 
very representative. We annotate 6061 TTP descriptions 
from 10761 security reports.

To solve the low-accuracy problem of the previous 
document-level TTP classification methods, we design 
and propose the TCENet (Threat Context Enhanced Net-
work) model to classify TTPs at the sentence level. We 
define the threat context as the TTP description and the 
TTP elements. A TTP description consists of three con-
tinuous sentences and includes the textual information 
of the threat context. The TTPs element represents the 

12 categories of security terms contained in the threat 
context, such as IPs, URLs, file hashes, CVE, protocols, 
encryption algorithms, etc. We design a TTP elements 
correlation coefficient calculation method to prove the 
rationality of adding TTP element features into the 
classification.

To demonstrate that the TCENet used by the TIM 
framework can accurately find and classify TTP descrip-
tions in security analysis reports, we perform a variety of 
evaluations on our annotated dataset.

The evaluation results show that our TCENet is better 
than previous document-level methods and mainstream 
text classification methods. The evaluation results also 
show that the TTP element feature improves the clas-
sification performance. In the case of small samples, the 
TTP classification accuracy of TCENet is still better than 
that of the comparison model.

Finally, we organize the TTP descriptions and cor-
responding TTP elements into shareable intelligence in 
STIX 2.1 format as well as Sigma detection rules (MSig-
maHQ 2021). Cyber defenders can obtain more valuable 
and direct intelligence about the attack and update their 
defense rules and mechanism without reading the whole 
security analysis report. TTP intelligence containing spe-
cific TTP elements allows for more realistic attack simu-
lation. Sigma detection rules that include TTP names and 
TTP elements can provide richer threat context informa-
tion, enabling defenders to make more targeted defenses.

Contributions
In general, our contributions are as follows:

•	 We annotate 10761 reports from 5 security vendor 
websites and build a TTP corpus containing 6 types 
of popular ATT&CK TTPs and 6061 descriptions. 
This will be the first study that builds a sentence-level 
TTP dataset.

•	 We propose a framework named TIM for min-
ing TTP intelligence from unstructured threat data 
such as security analysis reports. The TIM frame-
work uses our proposed TCENet to find and classify 
TTP descriptions from reports. This is the first work 
to perform TTP classification at the sentence level 
using pretrained language models and TTP element 
features. The TIM framework eventually generates 
shareable TTP intelligence in STIX 2.1 format as well 
as Sigma detection rules for better protection.

•	 The final experimental results show that the sen-
tence-level TCENet in our TIM framework achieves 
better performance on precision, recall, and F1 than 
previous document-level TTP classification work and 
mainstream text classification methods, even in the 
case of few-shot training samples. The experimental 
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results also demonstrate that our work can be gener-
alized for mining TTP intelligence in most categories; 
in particular, some TTPs only have a few description 
texts.

Related works
Ayoade et al. (2018) used a TF-IDF with the SVM classi-
fier to classify TTPs at the document level. Legoy (2019) 
used TF-IDF and Word2Vec to represent the whole secu-
rity analysis report. They leverage Adaboost, linear SVC, 
decision tree, etc., to classify TTPs at the document level. 
The linear SVC with the TF-IDF article vector achieved 
the best performance in their experiments. Li et  al. 
(2019) used latent semantic analysis to generate top-
ics of targeting articles and compared the topic vectors 
with the TF-IDF vectors of ATT&CK description pages 
to obtain cosine similarity. Then, they used these similar-
ity vectors with naive Bayes and decision trees to classify 
TTPs. Niakanlahiji et al. (2018) used the TF-IDF score of 
the independent noun phrase in security analysis articles 
to find the keywords to represent the TTPs. They used 
these keywords to query analysis articles in their corpus.

The above document-level methods can only out-
put several static TTP names and cannot provide more 
detailed and specific information about an attack. Our 
work uses regex and gazetteer to extract TTP elements 
from the TTP description text, making the result more 
concrete than a static TTPs name. The IOC intelligence 
extracted in the TTP context can be used for intelli-
gence sharing and detection rule generation, which has 
more security value than the general IOC without TTP 
information.

Other previous methods tried to find more atomistic 
descriptions of TTP, such as a verb-noun phrase, which 
they defined as threat action. Husari et  al. (2017) used 
TF-IDF with an enhanced BM25 weight function to gen-
erate a word bag of candidate threat action text and com-
pared it with the word bags in their knowledge base to 
obtain threat action in the text. The subsequent work of 
Husari et al. (2018) used entropy and mutual information 

to find the object-verb pairs of high mutual information 
in the malicious software-related Wikipedia and used 
these object-verb pairs to find the threat actions of equal 
mutual information in the security analysis report.

Compared with the above two works, our work does 
not need a heavy prebuild knowledge base. Unlike the 
bag-of-words method used by Husari et  al. (2017), our 
work uses a pretrained language model as our word 
embedding model, which gives more context features 
than bag-of-words methods or static word-vector mod-
els. Therefore, compared with bag-of-words and static 
word embedding, the pretraining model can improve 
classification accuracy. Our work uses 6061 TTP descrip-
tions from 10761 reports for TCENet training, which is 
more robust than the word-bag method in Ghaith’s work 
(Husari et  al. 2017). We classify TTPs at the ATT&CK 
technique level rather than the threat action level in 
Husari et al. (2018) because the threat action is too sim-
ple to represent the complete TTPs.

None of the current work evaluates the performance 
of TTP classification in few-shot training sample cases. 
However, many TTPs only have a few description texts, 
which makes the existing work not generalizable in the 
TTP classification task.

Our work uses both textual and TTP element features 
to enhance our TCENet. The evaluation result also shows 
that the classification accuracy of our TCENet model is 
better than that of other methods, even in the case of 
few-shot training samples. This means that our method 
can be generalized to most TTP classification tasks.

Preliminaries
TTPs
Tactics, Techniques, and Procedures are three different 
levels of the cyberattack campaign derived from military 
terminology. In this work, we select the most popular 5 
techniques and 1 tactic from ATT&CK as our TTP clas-
sification targets, as shown in Table 1.

Tactics represent multiphases objectives of an attack 
campaign, such as initial access, persistence, and privi-
lege escalation. Techniques represent the method to 
accomplish the stage objective, such as using phishing or 

Table 1  TTPs categories and TTPs description text examples

TTPs Description example

Phishing Dragonfly has used spearphising campaigns to gain access to victims.

Scheduled Task/Job Remsec schedules the execution one of its modules by creating a new scheduler task.

Obfuscated Files or Information Agent Tesla has had its code obfuscated in an apparent attempt to make analysis difficult.

Deobfuscate/Decode Files or Information Carbon decrypts task and configuration files for execution.

Collection* The jar file contains various classes for platform-specific implementations for capturing 
screenshots, capturing audio, logging keystrokes, among others.

Application Layer Protocol Carbon can use HTTPs in C2 communications.
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drive-by compromise to enter the victim’s network; pro-
cedures represent the specific implementation instance 
of a technique.

TTP intelligence
Previous TTP intelligence mining works only output 
static TTP names as results. These results lack descrip-
tion details about the TTPs and are difficult to use for 
defense. We define TTP intelligence as the detailed 
description and elements of TTPs in unstructured threat 
data.

Threat context
In this paper, the threat context of TTP intelligence is 
defined as two parts: TTP description and TTP elements.

TTP description
Rather than supposing a whole paragraph as a TTP 
description, as in the work of Li et  al. (2019), we focus 
on TTPs at the sentence-level to achieve a more accurate 
classification. We define three continuous sentences as a 
TTP description.

TTP element
As shown in Fig.  1, the TTP description contains a 
number of terms that are closely related to a particular 
TTP: IP, domain name, URL, CVE, and security terms. 
We refer to these terms as elements. In this paper, we 
have defined 12 types of TTP elements: IPv4, domain, 
email, filename, URL, file hash, file path, regkey, CVE, 
encode&encryption algorithm, communication proto-
cols and the data object keyword (e.g., clipboard, screen, 
snap-shot, keylogging, password, outlook, etc. ), as 
shown in Table 2.

TTP description example
Gorgon Group uses Microsoft Word documents with 
CVE-2017-0199 to implement the phishing attack. And 
the Patchwork group uses the MS PowerPoint document, 
which exploits CVE-2014-6352, to implement the phish-
ing attack. APT groups frequently use this method to gain 
initial access to victims’ networks.

This is an example of a TTP description that describes 
the procedure of two different APT groups. This descrip-
tion belongs to the phishing TTP category. CVE-2017-
0199 and CVE-2014-6352 are the TTP elements of the 
above two TTP procedures examples. Based on the TTP 
elements in intelligence, defenders can perform different 
attack simulations and generate threat detection rules to 
improve the effectiveness of the defense.

TTP classification definition
In this paper, we define the TTP classification prob-
lem as a text classification task. Given a sentence 
Sn in an analysis report, we first obtain its context 
Cn = {Sn−1, Sn, Sn+1} and sentence embedding CEn using 
Sentence-BERT (Reimers and Gurevych 2019). We then 
use regex and gazetteer to extract TTP elements in the 
context Cn . We use the occurrence number of spe-
cific TTP element types in Cn to represent the TTP ele-
ment features. The element feature vector represents 
Elmsn = {Elm1,Elm2, . . . ,Elmk , . . . ,Elmm} , where Elmk 
represents the number of occurrences of the k-th type 
TTP element in the context Cn . The length of vector 
Elmsn is 12 because we define 12 types of elements in this 
work. Our proposed method TCENet uses the descrip-
tion context embedding CEn and the TTPs element type 
vector Elmsn as input and classifies the TTP type TTPi of 
sentence Sn , which can be denoted as Eq. 1.

Table 2  12 TTPs element types

TTPs Element Example Extract Method

IPv4 192.168.1.1 Regex

Domain Example.com Regex

Email mail@example.com Regex

Filename example.vba Regex

URL http://​examp​le.​com/​proje​ct/​examp​le.​php Regex

File Hash 66efff4c945d3c3b87fc271b47d456db Regex

File Path /home/example/example.o Regex

CVE cve-2017-11882 Regex

Encode&Encryption Algorithm Base64, XOR, etc. Gazetteer

Communication Protocols HTTP, SMTP, etc. Gazetteer

Data Object clipboard, screen, password, etc. Gazetteer

Regkey HKCU/Software/Microsoft/Windows/CurrentVersion/Run Regex

http://example.com/project/example.php
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TTP intelligence mining
TTP intelligence mining is the process of finding TTP-
related description texts from security analysis reports 
and organizing them into a shareable intelligence format 
(e.g., STIX 2.1). In this paper, we propose a threat con-
text-enhanced TTP intelligence mining framework TIM 
that finds and classifies TTP descriptions from secu-
rity analysis reports by using the TCENet proposed in 
this paper. The TIM framework then organizes the TTP 
descriptions and TTP elements into a shareable intelli-
gence in STIX 2.1 format as well as Sigma detection rules.

Algorithm  1 describes the TTP intelligence mining 
process for one cybersecurity analysis report. 

Dataset
Data source
A major contribution of our work is to annotate the 
first sentence-level TTP dataset. We build our dataset 
by crawling the security analysis reports from security 
vendor websites, including: Malwarebytes (Malware-
bytes 2021), Securelist (Securelist 2021), Welivesecu-
rity (ESET 2021), Trendmicro  (Trendmicro 2021), and 
Threatpost (Threatpost 2021). We crawl security analysis 
reports using the category tag of the report (e.g., malware, 
analysis, apt, etc.). Therefore, it is possible to remove ads 
and other nonsecurity analysis reports directly. We finally 
acquired 10761 security analysis reports.

The statistics of reports used by previous document-
level TTP mining methods (Ayoade et  al. 2018; Legoy 

(1)TTPi = TCENet(CEn,Elmsn)

2019; Li et al. 2019) and our annotated dataset are shown 
in Table 3.

Our sentence-level dataset are more bigger than that 
of Legoy (2019) and Li et al. (2019). While 17600 reports 
of Ayoade et al. (2018) dataset from a single resource of 
Symantec, ours comes from five different vendors with 
more balanced distribution. Therefore, our dataset is 
more general.

The distribution of reports in our dataset according to 
different vendors is shown in Table 4.

Annotation
Our annotation work is done by three threat intelligence 
researchers.

Annotators first learn the specific concepts of the 6 
ATT&CK TTPs used in this paper. Then, annotators start 
to read the 10761 security analysis reports collected. We 
split the report into sentences. The annotator manually 
extracts the TTP descriptions (three continuous sen-
tences) from the security analysis report and saves them 
in a file of specific TTPs.

From these reports, we annotated 6061 TTP descrip-
tions and used regexps with a gazetteer to obtain TTPs 
elements. The annotation number of each TTP category 
is shown in Table 5. The annotation results were revised 
by three other cybersecurity researchers.

Dataset validation
As mentioned above, our dataset has been annotated by 
threat intelligence researchers and revised by cyberse-
curity researchers with domain expertise. To objectively 

Table 3  Report statistics of different researches

Dataset The 
number of 
reports

Legoy (2019) 1490

Li et al. (2019) 55

Ayoade et al. (2018) 18257

Our sentence-level dataset 10761

Table 4  Report statistics of different security vendors

Vendor name Number 
of 
reports

Malwarebytes 3047

Securelist 1299

Welivesecurity 675

Trendmicro 3951

Threatpost 1789
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demonstrate the validity of our dataset, we use the TTP 
keyword matching method to evaluate the TTP keyword 
match rate of our dataset.

To obtain objective and accurate TTP keywords, we 
use the TTP procedure description instances from the 
ATT&CK website as the corpus. After removing the 
stop words, we calculate the TF-IDF score of terms in 
TTP description instances and select the top ten scored 
words. We use these keywords for queries in the dataset 
and calculate how many TTP descriptions are matched. 
The matching result shows that the keyword match 
reaches an average of 0.925 in the positive sample. This 
indicates that the vast majority of our labeled positive 
samples are consistent with the keywords mentioned 
in the TTP descriptions of the ATT&CK website. This 
means that our labeled dataset is valid and can be used 
for model training.

TTP correlation
The TTP description example in Fig.  1 shows the TTP 
elements that appear in the TTP threat context and cor-
relate with specific TTPs.

Therefore, we designed a TTP elements correlation 
calculation method based on our dataset to evaluate the 
correlation between TTP elements and TTP categories.

We use Cyobstract  (cmu-sei 2021) and our TTP ele-
ment gazetteer to extract TTP elements of each TTP 
description in our TTP dataset.

We first calculate the support coefficients of each 
TTP element category at different positions of the TTP 
description. This coefficient represents the distribution 
of TTP elements categories in our dataset, as shown in 
Eq. 2:

(2)

Supportp(Elmsi) =
ln(

∣

∣

∣
Elmsip

∣

∣

∣
)

ln(
∣

∣Elmsp
∣

∣)
, where p ∈

{

c, d
}

Elmsisup =

{

Supportc(Elmsi) if p = c

Supportd(Elmsi) if p = d

where i denotes the i-th type of TTP element and p 
denotes the TTP element position in the TTP descrip-
tion. If an element is described in mid-sentence, it is as a 
direct element, represented as d in Eq. 2. Otherwise, it is 
a context element represented as c. Elmsip denotes the ith 
type elements described in position p. We use a logarith-
mic fraction to measure the support coefficients of the 
Elmsi in position p. Elmsisup denotes two different posi-
tion support coefficients of Elmsi.

For each element in a specific TTP description, we 
select three verbs closest to the target element and then 
compare these verbs to the verbs in the corresponding 
ATT&CK TTP description page with BERT (Devlin et al. 
2018) embedding. We select ATT&CK description verbs 
by using TF-IDF. Then we calculate the cosine similar-
ity between the candidate verb and the TTP description 
page verb to find the most similar verb in a TTP descrip-
tion. SimV denotes the max cosine similarity, and the 
Vmax denotes the most similar verb.

We also take the distance factor between the verb Vmax 
and element into account, denoted as dist(Vmax, Elms). 
Thus, the text relevance about textual and lexical features 
of Elmsi computed from:

j in Eq. 3 is the jth instance of the TTP description. With 
the data distribution, textual, and lexical features, we 
calculate the average correlation coefficient of the ith ele-
ment type to the specific TTPs using Eq. 4, where |Elmsi| 
is the amount of the ith element type.

We then normalize each TTP correlation coefficient 
score and show the coefficient by using a heat map in 
Fig. 2. The normalized coefficient score takes values from 
0 to 1. Scores close to 1 indicate strong relevance, and 
scores closer to 0 indicate weak relevance.

The result in Fig. 2 shows that there is a strong correla-
tion between some elements and the particular TTPs. The 
code method, protocol, and data object TTP elements are 
the most correlated elements in the obfuscate, C2 ppplica-
tion layer protocol, and collection TTPs. These elements 
can provide details to the TTP instance, so they frequently 
appear in the specific context. The filename element is the 
most correlated element in the Scheduled Task/Job TTPs 
because attackers would use some scripts (e.g., .bat or .vbs 
) and malicious files to create a scheduled task or create a 
scheduled task to execute other malicious files and scripts 
to perform a further attack. The Data object element is 

(3)Rtext(Elmsi) =

k
∑

j=1

exp(
SimV i

j

dist(Vmaxij ,Elmsij)
)

(4)coefficient(Elmsi) =
Elmsisup · Rtext(Elmsi)

∣

∣Elmsi
∣

∣

Table 5  TTPs description annotation number in our dataset

TTPs TTPs Description 
Annotation 
Number

Phishing 2599

Scheduled Task/Job 451

Obfuscated Files or Information 439

Deobfuscate/Decode Files or Information 475

Collection 1401

Application Layer Protocol 696
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the most correlated element type in the Phishing TTPs 
because email service names such as Microsoft Outlook and 
Mailbox (we defined as data objects) are frequently men-
tioned in the Phishing threat context. The FQDN and CVE 
are the second and third correlated elements in Phishing 
TTPs since many phishing attack descriptions would men-
tion the phishing domain names and the CVE exploit by 
attackers to create malicious phishing documents.

It is worth noting that the email elements obtain a low 
correlation score because only a few reports disclose the 
attack email address or victim address. The URL elements 
also obatin a low correlation value because there are only 
a few Phishing description instances that mentioned the 
specific URL in our dataset.

Many URL phishing description texts would only men-
tion the attacker performing the attack by using URLs 
without giving the URL details, or the phishing URLs are 
mentioned outside the context window, so they would not 
be considered TTP elements.

The regkey element encounters the same problem that it 
may be described outside the context window, so there are 
only a few instances in our dataset. This is the limitation of 
our work, and we will discuss how to solve it in the future 
work section.

Threat context‑enhanced TTP intelligence mining 
framework
We designed a threat context-enhanced TTP intelli-
gence mining framework named TIM, as shown in Fig. 3. 
The TIM framework consists of five modules: crawling, 

preprocessing, feature embedding, TTP classification, 
and TTP intelligence generation.

Crawling and preprocessing
Crawling
We first crawl 10761 security analysis reports from 5 
data sources using category tags such as malware, threat 
analysis, etc., to filter security-related articles.

Preprocessing
We use BeautifulSoup (Richardson 2021) to clean all 
HTML tags and continuous line breaks. As we defined 
above, the TTP description contains three continu-
ous sentences. We then split these articles with a 3-size 
sliding window by NLTK tools in Python. Next, we 
extract the TTP elements from each TTP description. 
We use Cyobstract (cmu-sei 2021) to extract TTP ele-
ments of the IOC type. The actual output of Cyobstract 
is normalized format IOC, such as 192.168.1.1. Thus, we 
modify the output function of Cyobstact to find the orig-
inal IOC elements in the cyber analysis report, such as 
192[.]168[.]1[.]1. We also construct a TTP element gaz-
etteer, as shown in Table 6, to match non-IOC elements 
such as protocol names and encryption algorithms.

We then replace all found TTP elements with ele-
ment holder $[Elms. ] to avoid unexpected tokens when 
tokenizing the whole TTP description. We resume these 
elements after TTP classification and use them to gener-
ate TTP intelligence.

Feature embedding and TTP classification
Figure 4 shows the architecture of our TCENet. Based on 
the TTP elements correlation result in Fig.  2, the TCE-
Net model consists of two paths: element feature extrac-
tion path (upper) and description feature extraction path 
(lower). A fully connected layer would jointly learn the 
feature extracted by these two paths for final classifica-
tion. We use binary-relevance to train the TCENet model 
on 6 types of TTP data.

Elements feature path
We use regex and a TTP elements gazetteer to extract 12 
types of TTP elements in the TTP description. We con-
struct the number of occurrences of each element type as 
a TTP element feature vector Elms.

Each type of element corresponds to one dimension 
of the vector. For example, if there are 2 hashes, 3 email 
addresses and 1 CVE ID described in the spear-phish-
ing TTP threat context, the element embedding vector 
Elms would be the vector as: [0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 
0]. Elements are organized in the following order: [ip, 
fqdn, email, filename, url, hash, file path, regkey, cve, 
code method, protocol, data object]. We then normalize 

Fig. 2  Heat map of TTP elemental correlation coefficients. The 
vertical axis is the TTP element, and the horizontal axis is the TTP 
category. The correlation coefficients are normalized and take values 
between 0 and 1. A correlation coefficient closer to 0 indicates 
a weaker relationship between the element and the TTPs, and a 
correlation coefficient closer to 1 indicates a stronger relationship
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these element vectors before training. The TTP element 
embedding process is shown in Algorithm 2. 

Inspired by the malware analysis work of Nataraj 
et al. (2011) that transforms the binary file to a 2D grey-
scale map, we resize the element vector to a 4*3 matrix 
and use two different CNN filters to extract element 
features Elmfn.

In the TTPs element correlation section, we have 
proven that some types of elements may co-occur in 
the specific TTP description context. Therefore, trans-
forming the TTP element vectors into 2D matrices can 
express the spatial relationship of co-occurring TTPs 
elements in the matrix. We use CNN to obtain the spa-
tial features of TTP elements in the matrix, which can-
not be obtained by 1D TTP element vectors and the 
fully connected layer. The Elmfn is computed from:

where σ is the ReLU activation function and Wk denotes 
different filters.

(5)Elmfn = σ(Wk · Elmsn + b)

Fig. 3  Threat Context Enhanced TTPs Intelligence Mining Framework (TIM). The whole workflow starts with the crawling module. Via preprocessing, 
feature embedding, TTP classification (TCENet), and intelligence&detection rule generation modules, we finally obtain TTP intelligence in STIX 2.1 
format and Sigma detection rules. We use these TTP intelligence and detection rule for intelligence sharing and defense

Table 6  TTPs element gazetteer

Element Gazetteer words

Encode&Encryption Algorithm aes,xor,ror,base64,rc4,des,lznt1

cast,3des,lzo

Communication Protocols http,https,ftp,smtp,pop3,dns.

Data Object desktop,clipboard,directory,

exchange,gmail,outlook,mailbox,

keystroke,keylogger,password.
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We compare the feature extraction accuracy, recall, and 
F1 of using the fully connected layer or the CNN layer in 
the evaluation section. The result shows that the 2D ele-
ment matrix with CNN performs better than the 1D vec-
tor with a fully connected layer. The element correlation 
heat map (Fig. 2) also proves that there is a co-occurrence 
relationship among TTP elements.

At the end of the element feature path, we use two dif-
ferent max pooling to handle the feature vector from two 
different CNN filters. The max-pooling layer lowers the 
feature dimension and reserves the main features. This 
path finally outputs a 4 * 1 dimension vector Elmfpn.

Description Feature Embedding. We use Sentence-
Bert (Reimers and Gurevych 2019) to embed the descrip-
tion text into three 768-dimensional vectors CEn . These 
vectors capture the word features inside the sentence, 
and with the sentence-BERT mean-pooling embedding, 
the embedding vector could represent the sentence and 
be used for downstream tasks.

Then, we feed the sentence-embedding into stack Bi-
LSTM. The output of the stack Bi-LSTM layers computed 
from:

(6)

→

hj =
→

LSTM(xj ,
→

hj−1)

←

hj =
←

LSTM(xj ,
←

hj−1)

hj =

[

→

hj ,
←

hj

]

, j ∈ [1, n]

where 
→

hj and 
←

hj represent the j-th state produced by 
LSTM from two directions; xj is the j-th input vector; 
hj is the j-th state, and [·, ·] represents the concatenation 
operation. After that, the attention mechanism (Shen 
and Lee 2016) outputs the weighted summing of the Bi-
LSTM output sequence H = [h1, h2, · · · , hn] , which is 
computed from:

where Z is the TTPs description representation. Next, we 
use a fully connected layer to lower the dimension of the 
attention layer output. The final output of the description 
feature path is a 128-dimensional vector Zl.

TTPs classification
After TTP elements feature embedding and TTPs descrip-
tion feature embedding, we obtain the element features 
Elmfpn and textual features Zl . At the end of our TCENet 
architecture, we concatenate these two feature vectors into 
a 132-dimensional vector Zc and use a fully connected layer 
to output the final vector Zf  . We use the position in the 
final two-dimensional vector as the class label. If the max 

(7)

ā = σ(W2(tanhW1H + B1)+ B2)

a =
ā

∑T
j=1 āj

Z = Att([h1, h2, · · · , hn])

Fig. 4  The TCENet architecture. The upper path uses CNN and max-pooling to extract element features, and the lower path uses stack-BiLSTM + 
attention to extract text features. A fully connected layer is used to obtain the final feature vector after concatenating the result of two paths
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value appears in the first dimension, the prediction result is 
negative; otherwise, it is positive, which is computed from:

We use the cross-entropy as the loss function and use 
binary relevance to train six different TTP classification 
models. The loss L is computed from:

where y is the true label of the TTP description, and pred 
is the predicted result of our TCENet. α and β are cross-
entropy weights used to balance positive and negative 
train samples. We minimize the loss L to train the TCE-
Net. Algorithm 3 summarizes the training process. 

(8)pred = arg max(Dense([Elmfpn,Zl]))

(9)L = −(αy log(pred)+ β(1− y) log(1− pred))

TTP intelligence generation
Based on our proposed TIM framework, we organize the 
TTP descriptions and TTP elements into Sigma (MSig-
maHQ 2021) attack detection rules and shareable intel-
ligence in STIX 2.1 format, as shown in Fig. 5.

Sigma is a generic and open signature format that 
allows defenders to describe cyber-attack log events. 
Sigma rules can be used to transform TTPs into search 
criteria for system logs and SIEM alert events, as well 
as detection rules for defensive devices such as firewalls 
to detect threats in the system. Sigma rules can also be 
used for direct sharing, such as in the MISP intelligence 
community.

STIX 2.1 (OASIS 2021) is a language and a serialization 
format used to exchange cyber threat intelligence (CTI). 
Defenders can also use STIX 2.1 TTP intelligence for 
penetration testing to simulate attack methods and opti-
mize protection strategies.

As shown in Fig.  5, we organize the TTP description 
and TTP element information obtained from the TCE-
Net into STIX 2.1 intelligence and Sigma rules for query-
ing relevant threats in the log data of multiple protection 
devices. The defender can also better grasp the long-
period and more essential attack characteristics of the 
attacker by using TTP intelligence. At the same time, we 
share the TTP intelligence and Sigma rules in the intel-
ligence community, so that defenders can defend against 
threats more timely and effectively.

Fig. 5  We use TTP descriptions and TTP elements obtained from the TIM framework for threat detection and intelligence sharing
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Examples of TTP intelligence in STIX 2.1 format and 
Sigma detection rules can be found in our anonymous 
Github repository (TCENet 2021).

Evaluation
In this section, we evaluate the proposed TCENet using 
our labeled dataset.

Metrics
We evaluate the precision, recall, and F1 metrics of the 
TCENet and other models in comparison experiments 
and ablation experiments.

TP (True Positives) and TN (True Negatives) denote 
correctly classified data, while FP (False Positives) and 
FN (False Negatives) denote misclassified data.

Accuracy

Precision

Recall

F1

Evaluation data
Since the model in this paper uses a binary-relevance 
method, we construct a negative sample set for each TTP 
category.

(10)Accuracy =
TP + TN

TP + FP + TN + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

Negative samples
The negative samples consist of the non-TTP descrip-
tions, which are also annotated by annotators, and the 
TTPs of the other categories. For model training, we use 
non-TTP descriptions equal to the number of positive 
samples and other TTP descriptions as negative samples. 
The negative sample composition is shown in Eq. 14:

The Nsamj in Eq.  14 denotes the negative sample num-
bers of the jth type TTPs. NonTTP denotes the number of 
non-TTP descriptions, which is equal to the number of 
positive samples of the jth type TTPs. OtheriTTP denotes 
the number of positive samples of the ith type TTP 
descriptions, where i  = j . The m denotes all 6 categories 
of TTPs. Since we do not use positive samples of the jth 
type TTPs as its negative samples, only positive samples 
of other m-1 TTP categories are used as negative sam-
ples. Table 7 shows the number of positive and negative 
samples for the six types of TTP.

Dataset validation result
In the dataset section, we propose using the TTP key-
word matching method to validate our dataset. Table  8 
shows the matching rate of TTP keywords in both posi-
tive and negative samples. Table  8 also shows the accu-
racy of classifying TTP descriptions directly by TTP 
keywords.

The results show that the average matching rate of TTP 
keywords in the positive sample is 92.5%. This indicates 
that the vast majority of our labeled positive samples 
are consistent with the keywords mentioned in the TTP 
descriptions of the ATT&CK website. This means that 
our dataset is valid and can be used for model training.

However, TTP keywords cannot be directly used to 
classify TTP descriptions. The matching result also 
shows TTP keywords can also match many TTP descrip-
tion negative samples. Meanwhile, due to the limited 
nature of keyword enumeration, not all samples of TTP 

(14)NSamj = NonTTP +

m−1
∑

i=1

OtheriTTP

Table 7  The positive and negative sample number of six TTPs

TTPs Positive Samples Negative: Non TTPs Samples Negative: 
Other TTPs 
Samples

Phishing 2599 2599 3462

Scheduled Task/Job 451 451 5610

Obfuscated Files or Information 439 439 5622

Deobfuscate/Decode Files or Information 475 475 5586

Collection 1401 1401 4660

Application Layer Protocol 696 696 5365
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descriptions can be covered by keywords. Moreover, if 
we directly classify the TTP descriptions using TTP key-
words, it would introduce 28.3% false positives.

Therefore, training a deep learning model for TTP clas-
sification can address the limitations of TTP keyword 
enumeration and also identify the false positive sam-
ples that are easily confused by the keyword matching 
approach. Our subsequent experiments show that our 
TCENet achieves an accuracy of 0.94 on 6 TTP classifi-
cations, which is much higher than the accuracy of key-
word-based TTP classification (0.82).

Baseline model
The models we chose for comparison can be divided into 
four categories: document-level methods from previous 
work, machine learning methods based on static word 
embeddings, deep learning methods based on static 
word embeddings, and deep learning methods based 
on pre-trained models. Ayoade et  al. (2018) and Legoy 
(2019) both use TF-IDF with an SVM classifier to clas-
sify TTPs at the document level. Li et  al. (2019) lever-
age latent semantic indexing to compare the targeting 
analysis articles with ATT&CK description articles and 
use SVM with the cosine similarity to classify TTPs. 
Machine learning methods based on static word embed-
ding include: Doc2Vec (Le and Mikolov 2014) with Lin-
ear SVC, Doc2Vec with Decision Tree (DT), Doc2Vec 
with random forest (RF). Deep learning methods based 
on static word embedding include: FastText (Joulin et al. 
2016), TextCNN (Rakhlin 2016) with GloVe word embed-
ding (Pennington et al. 2014), Bi-LSTM + Attention with 
GloVe word embedding. Methods based on pre-trained 
models include Bert-CLS and our proposed TCENet.

Train settings
We grid search for the best performance hyperparameter 
of our TCENet and other baseline models. Table 9 shows 
the results of our experiments on the hidden layer size 
and layer number of the Bi-LSTM network.

Based on the experimental results, we finally used 
a 3-layer Bi-LSTM and a hidden layer size of 200. The 
other hyperparameters are shown in Table 10. For cross-
entropy weights α and β in Eq. 9, we use the inverse ratio 
of positive and negative samples as the weight to train the 
model.

Overall results
We evaluate the overall accuracy of our TCENet on all six 
TTPs. We divide each TTP-labeled dataset into training, 
validation, and testing sets according to a 7:1:2 ratio. We 
train each model for 80 epochs. Table 11 shows the over-
all accuracy on six TTPs by using TCENet. The phish-
ing classification model achieves the best performance 
because it has the largest dataset (2599 positive samples). 
The accuracies of obfuscated files or information and 
deobfuscate/decode Files or information are 0.92 and 
0.916, respectively, because they have a smaller anno-
tated dataset (439, 475, respectively).

Comparison evaluation
Table 12 shows the precision, recall, and F1 of TCENet 
compared to the three previous methods and six base-
line models. Comparison evaluation is performed on the 
Phishing TTP data.

The result shows that our TCENet method achieves the 
best performance on all three metrics, and sentence-level 

Table 8  Matching rate of TTP keywords in the dataset

TTPs Pos-hit Neg-hit Accuracy

Phishing 0.91 0.17 0.873

Scheduled Task/Job 0.988 0.22 0.884

Obfuscated Files or Information 0.902 0.529 0.6865

Deobfuscate/Decode Files or Informa-
tion

0.92 0.33 0.795

Collection 0.879 0.351 0.764

Application Layer Protocol 0.945 0.102 0.9215

Average 0.925 0.283 0.820

Table 9  LSTM hidden size and layer number evaluation 
experiment on TTPs Phishing, using F1 score

Hidden Node Size LSTM layer number

1 2 3

50 0.939 0.941 0.944

100 0.939 0.970 0.944

200 0.950 0.941 0.971

300 0.968 0.969 0.950

Table 10  Model parameter settings

Parameters Setting

Sentence Length 300

SentenceBert Vector Size 768

LSTM Hidden Layer Size 200

LSTM layers 3

Batch size 32

Epochs 80

Learning rate 1e-3

Cross-Entropy Weight Inverse ratio of 
positive and negative 
samples
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methods are obviously more accurate than document-
level methods. The results also indicate that methods 
based on the pretrained language model perform better 
than static word embedding methods such as GloVe and 
fastText. Language models such as BERT and its variant 
Sentence-BERT consider the context features of a word 
and generate dynamic word embedding compared to 
static word embedding methods using the co-occurrence 
matrix.

Three Dov2Vec based baseline models achieve approxi-
mate results. The method using the random forest (RF) 
classifier performs better than the linear SVC and deci-
sion tree (DT).

FastText considers the n-gram features of words and 
achieves the best precision among the three static word 
embedding models. BiLSTM+Attention considers the 
temporal features of text and uses the attention mecha-
nism to determine the weights of context and achieves 
the best recall among the three static word vector mod-
els. TextCNN uses multiple convolution kernels to cap-
ture the spatial features of the text and achieves the best 
F1 score among the three static word embedding models.

Our TCENet and the mainstream BERT-CLS model 
performed better than the above baseline. TCENet out-
performs BERT by 3-4% on three metrics. TCENet uses a 
pretrained model, considers the differences between con-
textual sentences, and assigns weights to contexts using 
bidirectional LSTM and attention. Additionally, TCENet 
uses TTP element features to enhance the classification 
effect.

We then conducted ablation experiments to explore 
the effects of text features and TTP element features on 
the final classification results.

Ablation experiment
To demonstrate the effectiveness of each component of 
TCENet, we perform an ablation experiment. We evalu-
ate the classification accuracy results using only TTP ele-
ment features, only text features, and TCENet variants, 
as shown in Table 13. For TCENet variants, we change or 
remove different parts of TCENet to prove the validity of 
each part, e.g., using different neural networks to extract 
the text or the TTP element features, or not using TTP 
elements.

We first evaluate the TTP classification performance 
of the TCENet model without considering text features 
using only TTP element features and CNN. We denote 
this model as Only TTPs Elms. in Table 13.

The TCENet w/o Elms with CNN model in Table 13 
uses Sentence-BERT for text embedding and CNN to 
extract context textual features without any elements fea-
tures. The TCENet w/o Elms with BiLSTM model uses 
BiLSTM to extract context textual features without ele-
ments features. The TCENet with FC_E (TCENet with 
a fully connected layer for element features) uses contex-
tual text features and TTP element features for TTP clas-
sification. It uses FC for TTP element features extracting. 
The TCENet with FC_C (TCENet with a fully connected 

Table 11  Overall TTPs classification accuracy by using our 
TCENet on six different TTPs

The average accuracy is noted in bold font

TTPs Accuracy

Phishing 0.972

Scheduled Task/Job 0.934

Obfuscated Files or Information 0.920

Deobfuscate/Decode Files or Information 0.916

Collection 0.964

Application Layer Protocol 0.943

Average Accuracy 0.941

Table 12  The comparison evaluation of the TCENet on the phishing TTP

The best classification result is shown in bold font

Text level Model Precision Recall F1

Document-level Ayoade et al. (2018) & Legoy (2019) 0.437 0.500 0.608

Li et al. (2019) 0.444 0.509 0.547

Sentence-level Doc2Vec + linear SVC 0.859 0.881 0.870

Doc2Vec + DT 0.853 0.857 0.855

Doc2Vec + RF 0.895 0.902 0.899

Bi-LSTM + Attention (GloVe) 0.871 0.923 0.896

TextCNN (GloVe) 0.913 0.914 0.927

fastText 0.936 0.895 0.915

BERT-CLS 0.940 0.935 0.935

TCENet 0.970 0.973 0.971
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layer for context features) uses FC rather than BiLSTM 
to capture the TTP description context feature and uses 
CNN for the TTP elements feature.

Our TCENet uses both context textual features and 
TTP element features. It leverages the Bi-LSTM to cap-
ture description context features and uses CNN to 
extract TTP element features. Inspired by Nataraj et  al. 
(2011), who transformed binary files into matrices, the 
TCENet transforms 1D TTP element vectors into 2D 
TTP element matrices and uses CNN to extract the spa-
tial features of TTP element co-occurrences implicitly in 
the matrices.

The results show that both context description features 
and TTP element features improve the TTP classifica-
tion performance. The result also shows that the model 
cannot perform effective classification when using only 
TTP element features. Without TTP elements features, 
the two TCENet variants (w/o Elms. models in Table 13) 
drops 3-4 % compared with TCENet. The TCENet with 
FC_E and the TCENet with FC_C leverage FC to extract 
TTP element features and context features. These two 
TCNet variants cannot better capture the text and TTP 
element features using FC than TCENet.

Therefore, TCENet obtains the best evaluation results 
using CNN to extract elemental features and BiLSTM to 
extract contextual features.

Few‑shot evaluation
Some ATT&CK TTPs may have only a small amount 
of description text. Therefore, we performed a few-shot 
evaluation on the obfuscated files or information TTPs 
dataset, which has the least data.

In this experiment, we divided the positive sample 
data into training and test data a ratio of 8:2. We then 
keep reducing the positive sample training data (from 
350 to 50) to evaluate the performance of different 
models in the case of few-shot training samples. The 
results are shown in Fig. 6.

From 350 to 50 training samples, Doc2Vec+RF and 
FastText’s performance drops sharply on 200 samples. 

TextCNN also drops sharply on 50 samples, which 
obtains only a 0.638 accuracy score.

In this experiment, the results of BERT-CLS and the 
TCENet w/o Elms are similar. Without element fea-
tures, the performance of TCENet w/o Elms, is also 
influenced by the number of training samples when it 
drops to 100.

Our TCENet method achieves the most stable perfor-
mance on small training sets and achieves 0.857 accu-
rate performance even when the training dataset drops 
to 50 samples.

The results demonstrate that our TCENet can be gen-
eralized to most TTP classification tasks, even in the 
few-shot training data case.

Annotation cost reduction
TTP data annotation requires expert knowledge and is 
time-consuming. However, there is no available dataset 
for sentence-level TTP description, which also hinders 
research in TTP classification. Therefore, our dataset is 
necessary and valuable.

Table 13  Ablation experiments on the phishing TTP

The best result is noted in bold font

Model Component Precision Recall F1

Only TTPs Elms. CNN 0.566 0.497 0.339

TCENet w/o Elms. with CNN Sentence-BERT + CNN 0.915 0.954 0.934

TCENet w/o Elms. with BiLSTM. Sentence-BERT + BiLSTM 0.941 0.950 0.945

TCENet with FC_E Sentence-BERT + FC + BiLSTM 0.940 0.965 0.952

TCENet with FC_C Sentence-BERT + CNN + FC 0.949 0.953 0.951

TCENet Sentence-BERT + CNN + BiLSTM 0.970 0.973 0.971

Fig. 6  Few-shot case evaluation on TTPs Obfuscated Files or 
Information. With the reduction of training samples, our TCENet still 
achieves considerable performance (0.875 ), even after training with 
50 samples
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We annotated a total of 10761 security articles with 
6061 TTP descriptions in 6 TTP categories. Based on the 
experience of annotation and the results of our proposed 
method, we believe that we can reduce the annotation 
cost and extend the approach of this paper to other TTP 
annotation tasks in two ways.

To reduce the time cost of TTP annotation, the anno-
tation process can utilize the aforementioned TTP key-
word matching method to prioritize the annotation 
of sentences containing TTP keywords in the security 
analysis reports. The annotator only needs to confirm 
whether the matched descriptions are false positives. 
False alarm data can be used as negative sample data for 
model training data. Therefore, the annotator does not 
need to read the full analysis report to obtain the TTP 
description data.

The few-shot evaluation experiment (shown in Fig.  6) 
shows that our TCENet achieves an accuracy of 0.857 
even for 50 training data samples and 0.93 for 350 train-
ing data samples. Therefore, we believe that the absolute 
number of data annotations can be reduced when the 
TCENet model is extended to other TTP classification 
tasks.

Limitations
In this paper, we use a sliding window of size 3 to obtain 
the TTP description, and the annotators keep only these 
three sentences in the final dataset when annotating the 
data. However, we find that some TTP elements may be 
outside the sliding window, so some elements in the TTP 
element association heat map show weak associations 
with TTPs, such as Phishing-URL and Scheduled Task/
Job-Regkey. These TTP elements and TTPs that theoreti-
cally have strong correlations may also show weak corre-
lations in the heat map (Fig.  2) due to insufficient data. 
In future work, we will retain longer contextual infor-
mation to introduce more TTP element features in TTP 
classification.

Conclusions
In this work, we propose a threat context-enhanced 
TTP intelligence mining framework named TIM to 
mine TTP intelligence from unstructured threat data. 
This framework uses TCENet to classify sentences in 
security analysis reports for TTP intelligence by using 
threat context features consisting of TTP descriptions 
and TTP elements. TCENet achieve an average of 0.94 
classification accuracies on 6 types of TTP data and 
achieves the best performance compared with previ-
ous document-level methods and mainstream text clas-
sification methods. The TTP element features promote 
overall performance by 2-3%. Our TCENet achieves 

considerable performance (0.875) even in the case of 
few-shot training samples, which means our proposed 
method could be generalized to classify most ATT&CK 
TTPs with a few training data.

Our TIM framework finally organizes the TTP 
description and the TTP elements into STIX 2.1 intel-
ligence format and Sigma attack detection rules. TTP 
intelligence and sigma detection rules can be used to 
attack simulation and threat detection and greatly ben-
efit security defenders for better protection in enter-
prise security operations centers.

In the future, we will find the relationship of TTPs 
and their elements in the global document to solve the 
limitations of this work. We will also expand our data-
set and use our proposed TCENet on all ATT&CK 
TTPs. With TTP intelligence and other cybersecurity 
entities, we will build a cyber threat knowledge graph 
to go deeper into APT attack campaigns in a more 
grand threat context.
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