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Abstract 

The C standard libraries are basic function libraries standardized by the C language. Programmers usually refer to their 
API documentation provided by third-party websites. Unfortunately, these documents are not necessarily complete 
or accurate, especially for constraint sentences of API usage, which are called Security Specifications (SSs). SS issues 
can prevent programmers from following obligatory constraints, which results in API misuse vulnerabilities. Previous 
work studying SS issues could only find certain types of inaccurate SSs through checking the compliance between 
API usage and existing SSs. Therefore, we propose a novel approach SSeeker for quickly discovering missing and 
inaccurate SSs through the inconsistency of semantically similar SSs. More specifically, SSeeker first completes broken 
sentences and discovers SSs from them by judging their constraint sentiment. Then SSeeker puts semantically similar 
SSs from different sources into a group, which can be used to discover missing or inaccurate SSs. With the help of 
SSeeker, we investigated 4 popular online third-party C standard library documents, studied their conformity with the 
C99 standard, analyzed their APIs and SSs, and discovered 92 prototype issues, 15 web page issues, and 96 SS issues.
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Introduction
Software libraries provide Application Program Inter-
faces (APIs) for users to implement specific functional-
ity when developing programs. While using these APIs, 
programmers are expected to follow certain constraints 
on their inputs (e.g., the size limit on argument), outputs 
(e.g., check if the return value is NULL), and invoca-
tion sequences (e.g., call another API before invocation). 
These constraints are called Security Specifications (SSs) 
and are described in the API documents along with these 
APIs’ prototypes and functionality descriptions. If these 
SSs in the API documents are not followed, it may intro-
duce API misuse bugs and cause severe security prob-
lems  (Liu et  al. 2020; Yu et  al. 2021), e.g., execution of 
arbitrary code (CVE-2005-3346) in “SS and API misuse”  
section. Not only do programmers trust the reliability of 
the API documents but also some API misuse detection 

studies  (Tan et al. 2007, 2012; Blasi et al. 2018; Lv et al. 
2020) depend on the documents. However, according to 
our observation, even popular API document has some 
documentation issues, such as wrong prototype and inac-
curate or lacking SS. For example, the cplusplus docu-
ment (cplusplus 2021a) of nanl has a prototype issue. It 
says the return type is float, which is wrong and should 
be long double according to the official C99 stand-
ard document (ISO 2021a). The SSs of APIs could also be 
inaccurate. An SS of memcpy API in Microsoft documen-
tation (Microsoft 2021a), “Make sure that the destination 
buffer is the same size or larger than the source buffer.”, 
states the size limit on arguments. However, when the 
“destination buffer” is larger than the number characters 
to copy (“count”), it doesn’t matter even if the “destina-
tion buffer” is smaller than the “source buffer”, which is 
also very common during programming. Besides, miss-
ing SS is also very common, e.g., we found 95 missing SSs 
of 4 popular document websites shown in  “Discoveries” 
section.
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Previous research  (Tan et  al. 2007, 2012; Blasi et  al. 
2018) to discover SS issues mainly detect the inconsist-
ency between API usage code and SSs of API document 
or library code comment. For example, in2000_bus_
reset calls UnlockSet before ConvertToSID, 
which is inconsistent with the comment of Convert-
ToSID (“Caller must hold cache lock ...”) in Fig. 1. After 
manual review, library maintainers confirmed this SS is 
wrong. However, due to the designs of their approaches 
and the limitations of code analysis used, these work 
could not check some SSs on API usage, e.g., SSs about 
library compilation options. Besides, they can only find 
the inaccuracy of SSs only if SSs are inconsistent with API 
usage but cannot find the absence of SSs. Compared with 
previous work, our study can not only uncover a wider 
range of SS issues but also uncover missing SSs because 
we study inconsistencies across documents rather than 
documentation versus code.

Challenges. Sentences in API documents are often 
loosely organized and broken, i.e., lacking constituents 
and having coreferences, which will reduce the perfor-
mance of the following text parsing. For example, this 
sentence “Copies the first num characters of source to des-
tination” lacks the subject constituent. Except the coref-
erence of pronouns (e.g., “it”, “they”), API documents have 
specific coreference of API and arguments, such as “The 
function” in “The function shall return no value and take 
no arguments”. The lacking constituent and referent can 
be the API of this sentence or its arguments, return value, 
or even other APIs that appears around this sentence. 
Another challenge is to group SSs with similar semantic 
when the group number is unknown and the SSs number 
is small. According to our discoveries in “APIs and SSs of 
the Documentation” section most of the API documents 
have 0 to 4 SSs so the SSs to be grouped would be only 
dozens. Besides, the quantity of constraint types is differ-
ent among APIs and sealed before grouping.

Therefore, we proposed a new approach SSeeker to find 
missing or inaccurate SSs through the inconsistency of 

semantically similar SSs. It first completes broken sen-
tences using context-sensitive dependency parsing and 
Part-of-speech (POS) tagging. It then discovers SSs from 
sentences using sentiment analysis since SSs often have 
strong sentiments to restrict what API users should do 
when using these APIs. Next, for every API, SSeeker col-
lects its SSs from different document sources and gener-
ates their semantically meaningful sentence embeddings. 
Last, SSeeker uses a greedy algorithm to group these 
embeddings into an indefinite number of SS groups. It 
would be easy to find missing SS if one document source 
lacks SS in one SS group and wrong SS if this SS is differ-
ent from other SSs in the group.

To evaluate the effectiveness of SSeeker, we chose 
4 popular third-party websites among programmers 
including cplusplus  (cplusplus 2021b) (we call it “cpp” 
for short in our paper), cppreference  (cppreference 
2021) (“cppref” for short), Linux manual page  (man7 
2021a) (“Linux” for short), and Microsoft documenta-
tion  (Microsoft 2021a) (“Microsoft” for short). 10% of 
sentences sampled from these documents were used 
for evaluation of SS discovery, which was implemented 
based on a pre-trained Sentence-Hierarchical Attention 
Network (S-HAN) (Lv et al. 2020). It achieved 91% accu-
racy in the evaluation (“Experiments for Answering RQ1” 
section), which performs much better than the keyword-
based method (Tan et al. 2007). In order to measure the 
performance of sentence embedding generation, we com-
pared our utilized SBERT (Sentence-BERT) (Reimers and 
Gurevych 2019) with four models based on Word2Vec 
and the SBERT model outperforms others (“Experiments 
for Answering RQ2” section).

With the help of SSeeker, we further investigated these 
4 online C standard library API documents for C99, since 
C99 is widely used for C language programming. Note 
that our approach can be directly applied to other stand-
ards, e.g. C11. We revealed the correlation between their 
APIs and SSs, discovered 3 types of API documentation 
issues and provided advice for document maintainers. 

Fig. 1  An example of the API misuse
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The contributions of this paper are summarized as 
follows:

•	 Proposed an approach SSeeker to quickly discover 
missing or inaccurate SS through sentiment analysis, 
and semantic similarity analysis.

•	 Analyzed the C standard library documents of 4 
popular third-party websites, and found 92 prototype 
issues, 15 web page issues, and 96 SS issues.

•	 Categorized the documentation issues on third-party 
websites and provided suggestions for documenta-
tion maintainers to write secure API documentation.

Paper structure. The rest of the paper is structured as 
follows. “Background” section describes the related work, 
while  “Approach” section illustrates the design of our 
proposed approach SSeeker. We present our evaluation 
of SSeeker in “Evaluation” section and show the discovery 
when investigating the online documents with the help 
of SSeeker in “Discoveries” section. “Discussion” section 
presents a discussion of our work and  “Related work” 
section concludes.

Background
SS and API misuse
API documents of software library not only declare the 
basic functionality of provided functions, but also indi-
cate some constraints, i.e., security specifications (SSs), 
that developers need to comply with when using this API, 
e.g., value range for arguments, a need to check the return 
value, and API call sequence. Otherwise, it may cause 
severe security issues (such as buffer overflow, privilege 
escalation, use-after-free, and etc.). For example, there is 
an SS in the getenv function of the C99 standard: “The 
getenv function returns a pointer to a string ... The string 
pointed to shall not be modified by the program, but may 
be overwritten by a subsequent call to the getenv function.” 
ISO (2021a), which restricts developers from modifying 
the return value except using getenv. Figure 1 shows a 
code snippet using getenv in OSH 1.7-14. OSH didn’t 
follow this SS but modified the return value of getenv 
directly thus introducing a buffer overflow vulnerability, 
which allows execution of arbitrary code (CVE-2005-
3346) (NVD 2021).

C standard library
The C standard library  (Wikipedia 2021a) is a basic 
function library for the standardized C programming 
language and provides users with unified APIs, which 
ensures the platform portability of software written in 
the C language. The library is continuously improved 
with the revision of the C language standards  (Wiki-
pedia 2021b). Named by the released year, there are 

C89  (Wikipedia 2021c), C90  (Wikipedia 2021d) (same 
with C89), C95  (Wikipedia 2021e), C99  (Wikipedia 
2021f), C11  (Wikipedia 2021g), and C17  (ISO 2021b) 
(also known as C18) standards, among which C99 is one 
of the most widely used one. The C99 standard library 
contains 24 header files and 463 functions (not consid-
ering macros). The official documentation of C standard 
library is within the hundreds of pages PDF file specified 
by the International Organization for Standardization 
(ISO) and it is not free. Instead of buying official PDFs, 
programmers usually read API reference documents on 
third-party websites, e.g., cplusplus  (cplusplus 2021b) 
and cppreference (cppreference 2021). Unlike tidy official 
standard documents released after years of discussion, 
third-party documents are more frequently updated by 
developers with what they think is important for users. 
This makes third-party documents contain more SSs 
than the official documents.

Natural language processing
Here is a brief introduction of a set of NLP techniques we 
leveraged in our research.

Dependency parsing
Dependency parsing is the process of analyzing the syn-
tactic structure in a sentence and extracting grammati-
cal relations between terms. Its result is this sentence’s 
dependency tree, where the root is the verb of a clause 
and other words are linked to the root by relations. Every 
relation has one headword and a dependent that modi-
fies the head and point to it by a directed line in the tree. 
For example, Fig.  3a shows the dependency tree of one 
sentence. The verb “Invokes” is the root and “proces-
sor” is the object through “obj” relation. In our research, 
we utilize the Stanford parser  (StanfordParser 2016) to 
detect if a sentence lacks constituents and resolve specific 
coreferences.

Part‑of‑speech (POS) tagging
POS tagging assigns POS labels, e.g., noun, adjective, 
and verb, to words of a sentence. POS tag of one word 
is decided by its definition and context since the same 
word can have more than one POS at different times. For 
example, the POS of word “command” is a noun (tagging 
is “NN”) as shown in Fig.  3a. However, this word could 
also be a verb in a different context. Stanford POS Tag-
ger (Group 2021a) is one of the state-of-the-art POS tag-
ging tools so we utilize it to help sentence completion.

Coreference resolution
Coreference occurs when some expressions refer to the 
same entity in a text and coreference resolution is the 
process of finding them. For every coreference, there 
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would be a referent, which is usually a full form, and 
one expression refers to it. This expression would often 
be an abbreviated form for traditional coreference, e.g., 
pronouns “it” and “they”. In our research, API docu-
ments may have specific coreferences, e.g., “the function” 
or “the return value”, referring to APIs, their arguments, 
or return values. In our research, we leverage Stanford 
Deterministic Coreference Resolution System  (Group 
2021b) to resolve traditional coreferences.

Sentiment analysis
Sentiment analysis, also known as opinion mining, is the 
process of identifying and extracting the opinion and 
subjective information in a text. It can be used as a text 
classification tool to judge the underlying sentiment is 
positive, negative, or neutral. In recent years, more Deep 
Learning-based classifiers were proposed for sentiment 
analysis, e.g., Text-CNN  (Kim 2014), RCNN  (Lai et  al. 
2015), and HAN (Yang et  al. 2016). Since HAN outper-
forms the other two approaches in previous research (Lv 
et al. 2020), we employ the S-HAN model (Lv et al. 2020) 
modified based on HAN.

Approach
In this section, we elaborate on the design of SSeeker, 
which can help quickly discover the missing or inaccurate 
security specifications. We first give an overview of the 
design and then describe the individual components.

Overview
Architecture. Figure  2 illustrates the architecture of 
our approach SSeeker, including four components: sen-
tence completion, SS discovery, sentence embedding 
generation, and SS grouping. SSeeker takes API docu-
ments from different sources as input. During the sen-
tence completion step, SSeeker utilizes dependency 
parsing to decide if one sentence lacks constituents and 
completes the sentence with the consideration of its POS 
and its context. Then SSeeker uses a sentiment analysis 
model S-HAN (Lv et al. 2020) to judge if one sentence is 
SS by detecting the specific emotional tone of SS. Next, 
SSeeker collects SSs from different document sources 

for every API and generates their sentence embeddings 
using SBERT. Last, SSs of every API would be grouped 
into several groups by a greedy algorithm according to 
their semantic similarity.

Sentence completion
Due to the casual writing style of API documentation 
maintainers, the documents of C language-based librar-
ies are loosely organized and often lack constituents or 
have coreferences as shown in the “Challenges” of “Intro-
duction” section. These flaws of sentences would impede 
the following sentiment analysis and semantic grouping 
due to the missing constituents or unsolved referents. 

Fig. 2  The design of our approach

Fig. 3  Constituent completion
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Therefore, SSeeker utilizes dependency parsing and POS 
tagging to complete the lacking constituents and resolve 
coreferences with the consideration of context.

Constituent completion
Specifically, we utilize the dependency parsing tech-
nique to generate the dependency tree of one sentence 
and check if this tree misses basic grammatical relations, 
e.g., “nsubj” and “obj”. For example, Fig.  3a shows the 
basic dependency tree of “Invokes the command proces-
sor to execute a command” in the above and another one 
with POS. Examining this tree, we could easily find that 
the root word lacks the “nsubj” relation, which means 
this sentence lacks the subject constituent. Next, SSeeker 
infers the lacking subject according to the context of this 
sentence. Based on our observation, it can be decided by 
which paragraph this sentence belongs to, i.e., the para-
graph of API or different arguments or the return value. 
For this sentence, it lies in the paragraph of system so 
the subject word should be system. Then SSeeker gener-
ates the POS of this sentence and decides how to add the 
dependent word to this sentence according to the POS of 
headword and our summarized rules. For this example, 
the head and dependent words of missing “nsubj” relation 
are “invokes” and system respectively and the “invokes” 
is recognized as a 3rd person sigular present verb (tagged 
as “VBZ”) so the word system should be added to the 
beginning of this sentence. We have summarized three 
rules for adding the subject and elaborated them with 
examples in Fig. 3b. These three rules correspond to the 
cases when the root word is a verb, noun, and adjective.

Coreference resolution
For the traditional coreference of pronouns, we utilize 
AllenNLP  (Gardner et  al. 2017) tool to resolve them. 
For the specific coreference, e.g., “the function” and “the 
return value”, we infer the referent according the the 
context of this sentence. Like in the “Constituent Com-
pletion”, the referent is decided by the paragraph this 
sentence lies in. Specifically, the referent would be the 
subject of the previous sentence if this subject is another 
API, its arguments, or its return value.

SS discovery
Because of the loose structure of API documents and the 
different writing styles of library maintainers, the form of 
SSs varies greatly. Previous work  (Tan et al. 2012, 2007) 
using keyword-based or rule-based method can only 
detect limited SSs and have high false negative rate (86% 
in “Experiments for answering RQ1” section). Despite 
the varying syntax structure, SSs have a specific emo-
tional tone, which shows the developers the explicit or 
implicit directions constraining what developers should 

follow. For example, “The strings may not overlap, and the 
destination string dest must be large enough to receive the 
copy” in strcpy from Linux man page has very strong 
sentiment (“must” and “may not”) to stress the con-
straints; “The behavior is undefined if either dest or src is a 
null pointer.” in memcpy from cppreference also implies 
the constraint on arguments. Therefore, we choose a sen-
timent analysis-based boolean classifier to detect SSs.

The classifier is composed of a Bi-GRU-based 
encoder  (Chung et  al. 2014) and an attention mecha-
nism (Vaswani et al. 2017), as shown in the second step 
of Fig. 2. The first layer is an embedding layer, which gen-
erates the word vectors wi of one sentence using the pre-
trained Word2Vec  (Mikolov et al. 2013) model. Then wi 
are fed into the Bidirectional GRUs (Bi-GRU) to learn the 
context of this sentence by collecting information from 
both directions. After that, the word annotation vectors 
hi outputted by Bi-GRU would be input into an atten-
tion layer, which first generates ui using the Multilayer 
Perceptron (MLP) and then the attention weight αi using 
the softmax function, as in Eq. 1, where uw is a word-level 
context vector. Last, the sentence vector v is produced by 
summing the word annotation vectors hi with its atten-
tion weights αi and ready to be inputted into the softmax 
function to give boolean result whether this sentence is 
an SS.

We choose the pre-trained model S-HAN, which was 
trained on a dataset collected from OpenSSL documen-
tation and annotated manually. The dataset consists of 
2,601 SSs (1,296 SSs from back-translation) and 3,881 
non-SSs. S-HAN achieved an accuracy 91% for Standard 
C library documentation classification task in our evalua-
tion of effectiveness (“Effectiveness” section), higher than 
88% in the original work.

Sentence embedding generation
Online documents from different sources should pro-
vide similar SSs for the same API. Based on our observa-
tion, SSs with the same meaning may not have the same 
grammatical structure but similar semantics. For exam-
ple, programmer should not modify the return value of 
the char *getenv( const char *name ). This 
SS is described as “The caller must take care not to mod-
ify this getenv_Param0, ...” in Linux and “Modifying the 
getenv_Param0 returned by getenv_API invokes undefined 
behavior.” in cppref, where the “getenv_Param0” means 
the return value of getenv. The variety of syntax and 
words makes it hard for knowledge-based approaches to 
conduct the sentence similarity comparison, so SSeeker 

(1)αi =
exp

(

uTi uw
)

∑

i exp
(

uTi uw
)
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utilizes a model to generate semantically meaningful sen-
tence embeddings.

Specially, we choose SBERT (Sentence-BERT) model, 
which modifies the pretrained BERT model by using 
siamese and triplet network structures so that it can 
generate sentence embeddings suitable for semantic 
comparison. As shown in Fig.  2, a pooling operation is 
added to the output of BERT so that SBERT can derive 
fixed-sized sentence embedding vectors, which can be 
compared with cosine-similarity.

SS grouping
Different documents of one API are supposed to provide 
semantically similar SSs, which can be divided into dif-
ferent SS groups according to their meaning. The num-
ber of SS groups differs among APIs, especially when 
the problem of lacking SSs can happen as discussed in 
“Introduction” section. In addition, the SSs number of 
most documents ranges between 0 and 4 as shown in our 
discoveries “APIs and SSs of the documentation” section. 
Even if we collect documents from four sources for one 
API, the SSs to be grouped would be no more than 20. In 
order to group a small number of SSs whose group num-
ber is unknown, we propose a greedy algorithm based on 
the semantic similarity of sentence embeddings.

As presented in Algorithm  1, SSeeker collects the 
embedding of one API’s SSs to the set X. Initially, it cre-
ates the first alive SS group g1 with the randomly cho-
sen x from X and deletes x from X. Next, it loops every 
alive group until X is empty. For every alive group gi , 
SSeeker averages all the embeddings of gi as the group 
embedding ci and find the most similar embedding xsc 
and dissimilar embedding xsf  between ci and X by com-
paring their consine-similarity. Then, SSeeker adopts 
a greedy strategy to add ungrouped embeddings. If 
the similarity between the group embedding ci and its 
most dissimilar embedding xsf  is larger than the preset 
threshold t, all the embeddings in X are similar with 
gi and should be added to it. Then X is empty and the 
loop would stop. If the similarity between ci and its 
most similar embedding xsc is smaller than t, there is 
no embedding in X similar with gi so gi would become 
dead and not looped anymore. A new group would 
be created with xsc , which would be deleted from X. 
Another case is when ci and xsc are similar, SSeeker 
would add xsc to gi and delete it from X. When the 
looping is finished, all the SSs of this API are divided 
into several SS groups, which are ready to be reviewed 
by humans to find the SS issues.

Table 1  Dataset for SS discovery evaluation

Name API S Suniq Ssam SS Non-SS

cpp 397 4287 1938 194 30 164

cppref 463 4021 1130 113 21 92

Linux 463 4878 1669 167 26 141

Microsoft 459 4920 2312 200 41 159

Total 463 18,106 7049 674 118 556

Table 2  The effectiveness of SS discovery, compared with keywords-based method

Name S-HAN Keyword

ACC​ F1 FPR FNR ACC​ F1 FPR FNR

cpp 0.9 0.69 0.06 0.3 0.85 0.18 0.01 0.9

cppref 0.91 0.77 0.07 0.19 0.84 0.25 0 0.86

Linux 0.92 0.8 0.09 0.04 0.86 0.3 0.02 0.81

Microsoft 0.92 0.8 0.05 0.2 0.82 0.26 0.01 0.85

Average 0.91 0.77 0.07 0.18 0.84 0.25 0.01 0.86
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Algorithm 1: Group SSs of one API
Function Main(X, t):

Input: X = {x1, x2, ..., xn}: the set of one API’s SS embeddings; t: threshold for
similarity

Output: G = {g1, g2, ..., gm}: the set of SS groups
x ← randomly choose(X) // Randomly choose one embedding x;
X.delete(x);
g1 = {x} // Create the first group g1 with x;
g1.alive ← True // The status of g1 is alive;
G.add(g1);
while X is not NULL do

foreach gi ∈ G do
if gi.alive then

ci ← average embeddings(gi) // Generate the group embedding by
averaging all the embeddings in gi;

sc, sf ← closest farthest(ci, X) // Locate the indexes of closest and
farthest embeddings in X compared with gi;

if cos(ci, xsf ) > t then
gi.add(X);
X ← NULL;

else if cos(ci, xsc) < t then
gi.alive ← False;
new g = {xsc};
X.delete(xsc);

else if cos(ci, xsc) > t then
gi.add(xsc);
X.delete(xsc);

end
end

end
return G
Function closest farthest(c, X):

Input: c: one embedding; X: the set of embeddings
Output: sc, sf : the indexes of closest and farthest embeddings in X compared with c
scorel, scores, sc, sf ← 0, 0, 0, 0;
foreach xj ∈ X do

score ← cos(c, xj);
if score > scorel then

scorel ← score;
sc ← j;

else if score < scoree then
scoree ← score;
sf ← j;

end
return xc, xf

Evaluation
Implementation
Below are the implementation details of the four compo-
nents of SSeeker.
Sentence completion. We utilized Stanford-
CoreNLP (Lynten 2018) to perform dependency parsing 
and POS tagging for consituent completion and resolu-
tion of specific coreference, while using AllenNLP (Gard-
ner et  al. 2017) to perform traditional coreference 
resolution of pronouns.

SS discovery. We employed the pre-trained S-HAN 
from the previous work (The pre-trained S-HAN 2021). 
The hyperparameters of this model are 300 dimension 
for word embedding, 50 layers for Bi-GRU with L2 regu-
larization of 1e−8 factor, 100 layers for dense layer with 
an ReLU activation and L2 regularization of 1e−8 factor, 
1 attention layer with normal distribution initialization, 
Adam optimizer of 0.001 learning rate, and categori-
cal cross-entropy loss strategy. The word embeddings 
were trained based on 40,000 sentences of Linux manual 
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pages (man3 2021) using gensim Řehůřek (2021) for 100 
iterations with 16 batch size, 2 epoch.

Sentence embedding generation. We chose pre-
trained “all-MiniLM-L6-v2” model  (SBERT 2021) which 
was trained on over 1 billion pairs. Its hyperparameters 
are 384 dimension for embeddings, 256 max sequence 
length and mean pooling strategy.

SS grouping. We utilized util.pytorch_cos_
sim() API of SBERT to quickly compute the cosine 
scores of one SS (query) with other SSs of the same API 
(corpus).

Experiment setting
Dataset
We chose API reference documents from 4 popular C 
Standard library online websites (cpp, cppref, Linux, and 
Microsoft). As mentioned earlier (“C standard library” 
section), C standard library is not the same under differ-
ent C language standards, so in order to conduct further 
experiments, we investigated APIs under the C99 since 
it is widely used. Note that our approach can be applied 
to other C standards and other documents easily. For 
cpp and cppref, we crawled all the webpages and parsed 
documents to extract API-related information using 
bs4 (Beautiful Soup Documentation 2021) and lxml (lxml 
2021). For Linux, we downloaded the document archive 
from the official site  (Linux man page 2021) and parsed 
the files under “man2” and “man3”. For Microsoft, we 
cloned their MicrosoftDocs Github repository  (Micro-
soft 2021b) and parsed Markdown files. We stored 
API-related information (including API prototypes and 
documents) if this API belongs to C99 APIs. Note that 
there are 463 APIs in total after summing all the APIs 
from different websites, which is also the number of all 
C99 APIs. Table  1 shows the number of APIs (Column 
“API”) and the number of these APIs’ sentences (Column 
“S” before removing duplicate data and column “ Suniq ” 
after deduplication).

Platform
All the experiments are conducted on an Ubuntu 16.08 
with 8 cores CPU (Intel(R) Xeon(R) CPU E5-2620 v4 @ 
2.10GHz), 128G memory, and 3TB hard drivers.

Effectiveness
In this part, we would evaluate the effectiveness and per-
formance of SSeeker to answer two research questions.

•	 RQ1: Can SSeeker discover SSs from API documents 
effectively even if SSs have various syntax structures?

•	 RQ2: Would our sentence embeddings method per-
form well in the semantic similarity comparison?

Experiments for answering RQ1
In order to evaluate the effectiveness of discovering SSs, 
we applied the S-HAN model to sampled sentences of 
every document source and measure its performance 
through accuracy, F1, FPR, and FNR metrics. Besides, 
we compared S-HAN with the previous keyword-based 
method (Tan et al. 2007) to check if the sentiment analy-
sis-based method outperforms other methods.

Firstly, we applied systematic sampling to the sorted 
Suniq and sampled around 10% sentences (Column “ Ssam ” 
in Table 1). If the number of samples is larger than 200, 
we only choose 200 samples. Then we manually anno-
tated them as SS (Column “SS” in Table  1) and non-SS 
(Column “non-SS” in Table 1). Next, we applied S-HAN 
model to the Ssam and achieved an average accuracy 
of 91.2%, false negative rate of 19.4%, and false positive 
rate of 6.2%, as shown in Table 2. In addition, the results 
showed that S-HAN outperforms the keywords-based 

Fig. 4  Evaluation of SS grouping
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SS discovery method (Tan et al. 2012), especially for the 
accuracy and F1. Then we ran SS discovery on all the sen-
tences of 4 online document websites and identified 691, 
871, 971, and 967 SS for cpp, cppref, Linux, and Micro-
soft respectively.

Experiments for answering RQ2
To measure the effectiveness of our sentence embedding 
method, we first evaluated the performance of SS group-
ing on sampled APIs using metrics of clustering (NMI, 
RI, F1). Then we compared the SBERT model with other 
sentence embedding methods based on the Word2Vec 
model.

Firstly, in order to evaluate the effectiveness of SS 
grouping, we first applied SS discovery to all the S in Ddoc 
and collected the common APIs (168) with SS among 4 
documentation websites. Then we applied systematic 
sampling to the sorted common APIs and sampled 13 
APIs. These APIs have 125 SSs and 54 SS groups ( Dssg ) 
in total. Next, we chose the optimal similarity thresh-
old t by setting the threshold in the range [0.3, 0.85] and 
measuring the performance of SS grouping. Since the SS 
grouping is similar to clustering, we chose the external 
criterions of clustering as metrics. The set of SSs to be 
clustered has N SSs; SS group generated by SS grouping 
is the cluster and its label is assigned to the most com-
mon class in the group; the manually labelled Dssg is the 
benchmark or gold standard. Here are the criteria we 
used (Wikipedia 2021h; NLP 2021).

•	  Normalized Mutual Information (NMI). It measures 
the mutual dependence between the two variables. 
As the normalized MI, NMI ranges between 0 (no 
mutual information) and 1 (perfect correlation).

•	  Rand Index (RI). RI measures the percentage of cor-
rect decisions. Its equation is: 

 where TP, TN, FP, and FN have the same meaning as 
in the classification task. From this perspective, RI is 
to clustering as the accuracy is to classification.

•	  F-1 measure (F1). F1 is the weighted average of pre-
cision ( TP/(TP + FP) ) and recall ( TP/(TP + FN ) ), 
which also has the same meaning as in classification.

Using these criteria, SS grouping performs best under the 
threshold 0.65, achieving an average NMI of 69%, RI of 
73%, and F1 of 63%, which can be seen in the Fig. 4a.

Furthermore, we compared the SBERT sentence 
embedding model with another state-of-the-art word 
embedding model Word2Vec. Since Word2Vec only pro-
vides embeddings for words, we adopted two popular 

(2)RI =
TP + TN

TP + FP + FN + TN

methods to compute sentence embeddings respectively: 
the first method averages all the word embeddings (we 
call it “w2v-avg” for short) and the second method uses 
“tf-idf” (Wikipedia 2021i) as the weight of word embed-
dings (we call it “w2v-tfidf” for short). For the Word2Vec 
model, we used the pre-trained model (Google 2021) on 
Google News Corpus or the new model trained on the C 
library document sentences S of Ddoc respectively. The 
hyperparameters for newly trained Word2Vec model 
are iteration 50, word embedding dimension 128, and 
the windows size 3. Thus the four models compared 
with SBERT are “w2v-avg-google”, “w2v-avg-s”, “w2v-
tfidf-google”, and “w2v-tfidf-s”, where “-google” means 
using Google pre-trained model and “-s” means using 
our trained model. Their thresholds are determined 
separately and optimal for each model. The comparison 
results are shown in Fig. 4b. Our study shows that SBERT 
performs better than other models, especially in the F1 
score.

Performance
We ran SSeeker on the 4 online C documents (1.91MB 
files), the first two components took 1,796 seconds. The 
time cost of SS grouping varies with the number of SSs 
and the average cost is 60 seconds per API (186 SSs). We 
can conclude that SSeeker is quite fast and efficient.

Discoveries
With the help of SSeeker to find the missing and inac-
curate SS, we deeply investigated into 4 popular online 
C Standard libraries API documentation and revealed 
3 types of documentation issues. Lastly, we proposed 3 
suggestions for documentation maintainers.

Findings of the online C standard library documents
The conformity with the C99 standard
Not all the popular online C standard library documents 
conform with C99 standard completely and accurately 
neither as developers thought of or as documentation 
maintainers declared. According to C99 Standard official 
document (ISO 2021a), there are 24 header files and 463 
functions (not considering macros). However, as shown 
in Table  1, only cppref and Linux provide all the C99 
APIs but they also have API prototype and SS issues as 
described in the following.

Although cpp says that they support C90 and C99 in 
the “Note on versions” part of the introduction of the C 
library, their displayed C99 APIs are not complete and 
accurate. Compared with 24 headers and 463 APIs of 
C99 standard, cplusplus only provide 23 headers and 
397 APIs, while lacking complex.h header and 66 APIs, 
e.g., cacos. Cppref is the most comprehensive docu-
mentation among 5 online documents. It contains API 
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documents for different C standard libraries (C90, C95, 
C99, C11, and C17). Linux man page also provides all 
the C99 APIs, but they don’t distinguish between dif-
ferent versions of APIs. For example, according to the 
“CONFORMING TO” part of the webpage(man7 2021b) 
of strcat, this document conforms to C89 and C99. 
However, the provided prototype only includes the C99 
version “char *strcat(char * restrict dest, 
const char * restrict src);” not the C89 ver-
sion “char *strcat( char *dest, const char 
*src );”. Although there are no explicit notes about the 
supported standards in every API’s web page, Microsoft 
says that they basically support C99, while missing the 
implementation of some types and APIs. From Table  1, 
we can see Microsoft provide 459 C99 APIs, while lack-
ing 4 APIs, which are unimplemented (copysignf and 
copysignl), obsoleted (gets), or just forgotten to dis-
play the prototype (truncf) on the webpage.

APIs and SSs of the documentation
In this part, we further inspected the basic information 
about APIs and their SSs every documentation website 
provides.

From Table  1, we could find that cppref, Linux, and 
Microsoft provide most of the C99 APIs (more than 450 
APIs). Besides, the common intersection of 4 documents 
are 397 APIs, mostly limited by cpp documentation.

Next, we studied the number of APIs, SSs and the ratio 
of SS per API, shown in Fig.  5a. We found that every 
API has around 2 SSs on average, which is the same in 
4 documentation websites. Then we concentrated on the 
common 397 APIs and studied the distribution of SSs per 
API, shown in Fig. 5b. We discovered that nearly all the 

APIs in cppref have their SSs, and only 3 APIs has no SS. 
Most APIs have 0, 1, 2 or 3 SSs, which is consistent with 
the previous observation that averages SSs per API is 
about 2. There is an anomaly that cppref and Linux have 
several APIs possessing more than 20 SSs. We looked 
into that and found these APIs are printf, vfprintf, 
and other APIs related to formatted data. Their docu-
ments include not only the basic information of these 
APIs but also the syntax of conversion specifications, 
which is very long and contains lots of SSs.

Issues of API prototype
After the inspection of these documents’ conformance 
with the C99 standard, we continued to look into the 
API name, parameter types, and return type to check if 
prototypes of these APIs are the same as proclaimed in 
the C99 standard. We found 92 prototype issues through 
comparing online documents with C99 standard docu-
ments. Here are the main types and examples.

•	 Mishandled type qualifier. Type qualifier is a key-
word that is applied to a type, which will turn into 
a qualified type. We found that type qualifiers const 
and restict are often mishandled. Cpp lacks const 
in 9 APIs prototype. For example, the prototype of 
strrchr in cpp is “char * strrchr ( char 
* str, int character );”, while the correct 
one should be “char * strrchr (const char 
* str, int character );”. Even though the 
webpage of strrchr in cpp also provides another 
prototype “const char * strrchr (const 
char * str, int character );”, it’s still not 
right. On the opposite, Microsoft puts an extra const 

(a) API number, SS numbers and the ratio of
SS per API

(b) The number of APIs with different num-
ber of SSs

Fig. 5  Comparing the APIs, SS and the ratio of SS per API
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in the prototype of _Exit and exit. For keyword 
restict, cpp misses it in 74 APIs (e.g., fopen), cppref 
only misses it in wcsftime and Linux only misses 
it in strcpy. Microsoft doesn’t provide restict type 
qualifier but implements its specific __restict key-
word. There are 87 prototype issues of this type: 74 
issues of restict for cpp, 1 issues of restict for cppref, 1 
issue of restict for Linux, 9 issues of const for cpp, and 
2 issues of const for Microsoft.

•	 Wrong type or API name. Except for the missing or 
extra type qualifier, parameter types and return types 
can also be wrong. The return type of nanl in cpp 
should be long double not float. The return type 
of towupper and towlower in Microsoft should 
be wint_t not int. Besides, the API name of 
wcstoll prototype in cpp is mistakenly written as 
strtoll. There are 4 prototype issues of this type 
as shown above.

•	 Missing prototype. It can happen that one API has 
its document but not its prototype on its web page. 
For example, the web page of truncf in Microsoft 
has a “Syntax” part, which describes the prototypes 
of other APIs on this page but misses the one of 
truncf.

Issues of API SS
After manually analyzing the discovered missing and 
inaccurate SSs, we found 96 SS issues and summarized 7 
common types of SS issues. 96 SS issues include 1 inac-
curacy issue and 95 absence issues. These absence issues 
cannot be found by previous work because they are not 
designed to detect missing SSs.

•	 Array. Important SSs for array include “should have 
enough size”, “should not overlap”, and “should not be 
NULL pointer”. However, these SSs are often miss-
ing. For example, memmove in Linux lacks “should 
have enough size”; strncat in cpp lacks “should not 
overlap”; memcpy in cpp lacks “should not be NULL 
pointer’. During the analysis, we found an inaccurate 
SS of memcpy in Microsoft Docs. The SS is “Make 
sure that the destination buffer is the same size or 
larger than the source buffer.”, but it doesn’t mat-
ter even if the destination buffer is smaller than the 
source buffer when the destination buffer is larger 
than the count (number of characters to copy). This 
issue has been confirmed  (Zero0one1 2021) by the 
documentation maintainers. Lacking this type of SSs 
may cause programmers to write code with bug, e.g., 
buffer overflow. There are 39 SS issues of this type: 11 
for cpp, 2 for cppref, 15 for Linux, and 11 for Micro-

soft. 1 SS issue of Microsoft is inaccuracy and the 
others are missing issues.

•	 Pointer. In special cases, pointers shall not be deref-
erenced. For example, if the parameter of malloc is 
zero, the return value may be a non-NULL pointer 
but shall not be dereferenced, as described in cpp 
and cppref. Lacking this type of SSs may cause NULL 
pointer dereference vulnerability. There are 2 SS 
missing issues of this type: 1 for Linux and Microsoft 
respectively.

•	 String. It is important to make sure the string is valid, 
i.e., C-string ending with a terminating “null char-
acter”, during the reading or writing operations. The 
documents of atoi in cpp and cppref stress this SS, 
while Linux and Microsoft miss it. If the program-
mer doesn’t follow this SS, overrun or NULL pointer 
dereference can occur, e.g., CVE-2018-14884 in PHP. 
There are 30 SS missing issues of this type: 12 for cpp, 
2 for cppref, 14 for Linux, and 2 for Microsoft.

•	 API sequence. This type includes the specification 
of parameters or the return value and the specifica-
tion of the API call sequence. The former type of SS 
looks like “The parameters or return value should 
(not) be called with another API before or after you 
call this API.”. One example of the latter type is the 
SS of quick_exit in cpp, “If a program calls both 
exit and quick_exit, or quick_exit more than once, it 
causes undefined behavior.”. Lacking this type of SSs 
may cause memory leaks or system crashes. There 
are 14 SS missing issues of this type: 4 for cpp, 1 for 
cppref, 4 for Linux, and 5 for Microsoft.

•	 Data type range. The range of basic data type is lim-
ited and the behavior would be undefined if the con-
verted data is out of the range of representable values 
by basic data type, e.g., atoi and abs. There are 6 
SS missing issues: 4 for Linux and 2 for Microsoft.

•	 Direct modification. The return value of some APIs 
should not be modified, otherwise cause undefined 
behavior, e.g., getenv. Lacking this type of SSs may 
cause buffer overflow vulnerability. Cpp, Linux, and 
Microsoft lack 1 SS of this type respectively.

•	 Suggestion. The SS suggestions are not compulsory 
but can make the application more secure. For exam-
ple, rand is “not recommended for serious random-
number generation needs, like cryptography” as noted 
in cppref, while the other three document websites 
lack it.

Issues of web page display
The web pages of API documentation have the follow-
ing display issues, which can make readers confused and 
should be improved.
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•	 Unclear support for different standards. As men-
tioned in “The Conformity with C99 Standard” (“The 
conformity with the C99 standard” section), most of 
the online documentation websites don’t have a clear, 
correct, and integrated indication web page about 
their supported C standards. They might provide an 
outdated blog or scattered blogs explaining their sup-
port for different features. It brings quite hard work 
for programmers, who want to use APIs correctly, to 
search standard related information in their official 
websites or search engines, which may turn out to be 
no search result or inaccurate result.

•	 Unobvious distinction of different standards. When 
online C standard library documentation supports 
more than one standard, it may ignore the difference 
between different versions of the API. For one thing, 
the documentation may only give one prototype of 
the API and does not mark its standard; for another 
thing, the SSs might be mixed together with no mat-
ter which standard its API belongs to. This unobvious 
distinction gives the programmer inaccurate infor-
mation and probably wrong guidance. Among these 
4 websites, the cppreference website provides the 
clearest and most obvious distinction in the proto-
types and SSs.

•	 Incomplete and inconsistent displayed information. 
The information displayed on the web pages can 
be incomplete and inconsistent. Online C stand-
ard library documentation (e.g., cppref, Linux, and 
Microsoft) often offers a web page showing the 
alphabetic list of APIs it provides. But the content 
may be incomplete and inconsistent with all the APIs 
it actually provides. Microsoft lacks expl and other 
9 APIs in the API list. Other display incompleteness 
includes missing API name in the web page header 
(e.g., fdimf in cpp), the incomplete web page dis-
play (e.g., setjmp.h web page does not have the refer-
ence section on its bottom right corner).

Suggestions for documentation maintainers
According to the above findings, we propose several sug-
gestions for documentation maintainers. Among these, 
the second and the third suggestions are not limited to 
the C standard library but also apply to other libraries.

•	 Clearly depicting the supported standards. First, doc-
umentation maintainers should depict its supported 
standards clearly and accurately on the home web 
page of the document introduction. If only support-
ing certain features or having its specific implemen-
tation, they also should describe it at the same time. 
Secondly, API documents should distinguish the API 

prototypes and SSs if they differ among standards as 
cppref documentation does.

•	 Providing comprehensive SSs. The documentation 
maintainers should provide comprehensive SSs to 
guide developers securely using APIs. Based on our 
summary of frequently missing SSs, documenta-
tion maintainers of C language software should pay 
more attention to the SSs related to the array, pointer, 
string, API call sequence, direct modification, and 
secure suggestions.

•	 Maintaining the consistency between code and docu-
mentation. The consistency between code and docu-
mentation is significant during the development and 
maintenance of software, which can be seen from our 
research. Microsoft implements its C runtime library, 
which includes most of C standard library APIs and 
Microsoft-specific APIs. However, there are incon-
sistencies between the code and the online documen-
tation, e.g., the return type of towupper is win_t 
in the code implementation but the online prototype 
says it’s int_t, as mentioned in “Issues of API pro-
totype” section. Keeping the consistency between 
code and documentation can reduce the documen-
tation issues and lower the cost of development and 
maintenance.

Discussion
Limitations. With the high accuracy of 91.2%, SS classi-
fication still introduces false data affecting the result and 
the analysis in “APIs and SSs of the documentation” sec-
tion. Besides, SSeeker cannot effectively group complex 
SSs, which contain more than one constraint meaning or 
that contain clauses that are not related to constraints. 
For example, an SS containing two constraint meanings 
is semantically similar to two SS groups but it can only 
be divided into one group according to our algorithm. In 
addition, SSeeker considers all words of the sentence to 
generate its embedding, but there may be phrases that 
are irrelevant to the content of the constraint thus intro-
ducing noise into the embedding.

Specific implementations of C standard library. 
Linux and Microsoft don’t simply provide documenta-
tion for C standard library APIs like cpp and cppref. They 
also implement their own C runtime libraries (“glibc” 
for Linux, “MSVCRT” and “UCRT” for Microsoft) and 
may bring in a few changes which make their API docu-
ments different from the original C standard library API 
documents. For example, Linux brings in a new type 
sighandler_t for signal API and Microsoft does 
not support C99 restrict. Despite these differences, it 
is still meaningful to study their conformity with the C 
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standard and useful to discover missing SSs through the 
help of existing ones.
The reason for not choosing official documentation. 
We didn’t compare online documentation with the offi-
cial C standard files to find the missing SSs because 
the official files only supply a part of SSs. Specified by a 
committee after years of discussion, official C standard 
documentation is tidy, precious, concise, and time-con-
suming. Unofficial online documentation is based on 
official documentation and is open source so it can be 
updated in time and take into consideration SSs which 
programmers often violate more freely. For example, the 
memcpy in cppref has an SS “The behavior is undefined 
if either dest or src is a null pointer.”, while official docu-
mentation does not. Based on this observation, we chose 
to compare unofficial online documentation to discover 
more SSs.
Future work. 
We will first address the above limitations by breaking 
sentences into finer granularity to improve the perfor-
mance of SSeeker. Furthermore, we will study the incon-
sistency between API documentation and a larger range 
of text sources (e.g., questions and answers in the Stack-
Overflow and bug reports). These text are numerous, eas-
ily accessible for most popular libraries and contain SSs 
that developers may overlook and thus probably are miss-
ing or inaccurate in the API documentation. In addition, 
these newly found SSs can be used to detect API misuse 
vulnerability, which could find more bugs than other 
detection methods based solely on API documentation.

Related work
In this part, we first discussed the related work of study-
ing documentation issues and then talked about previous 
research related to the two components of SSeeker.
Study of documentation issues. 
Previous work discover the documentation issues mainly 
through detecting the inconsistency between code and 
descriptive text (API documentation or code comment). 
Tan et al. (2007) chose comments related to topic “key-
words” (e.g., “lock”) of C language software when the 
sentences have imperative words. Their solution iCom-
ment then utilized a decision tree to map the com-
ments to rule templates, which were used to generate a 
state machine to detect rule violation of code. iCom-
ment detected 27 bad comments related with “lock” and 
“call” topic. Another work of detecting comment-code 
inconsistencies, tComment  (Tan et  al. 2012) targeted 
the NULL-related API misuse or wrong comment. It 
used simple pattern matching to extract properties from 
Javadoc comments for a method and then generated ran-
dom tests to check properties and report bugs or wrong 
comments. Blasi et  al. (2018) proposed Jdoctor, which 

translated Javadoc comments to procedure specifications 
using pattern matching, lexical matching, and semantic 
matching. It chose the first successful result of the three 
approaches. For the semantic matching, Jdoctor used 
Glove to generate word embeddings and Word Mover’s 
Distance (WMD) algorithm to compare multiple words 
together. Although it does not aim to find comment 
issues at first, the authors reported six types of incon-
sistencies after analyzing Jdoctor’s output. Zhong and 
Su (2013) combined natural language and code analysis 
technology to detect Java API documentation errors, 
but their detection range is limited to syntax errors and 
broken code names. These work listed above can not 
detect missing SSs but only wrong SSs, whose types are 
also limited by their text-parsing approaches. DRONE, 
proposed by Zhou et  al. (2020), is an extended version 
of previous work (Zhou et al. 2017). DRONE parsed the 
abstract syntax tree of Java code and generated code con-
straint first-order logic (FOL) with the help of control-
flow analysis while generating document constraint FOL 
using dependency parsing and pattern analysis. Then an 
SMT solver was applied to report four types of document 
defects. As far as we know, there is no work studying the 
documentation issues (including API prototype issues 
and SS issues) of online C standard library documents.
Classification of security specification. 
As for the problem of classifying the security specifica-
tion sentences in documents, most of the previous work 
used fixed keywords (Tan et al. 2007) or template match-
ing  (Pandita et  al. 2012; Zhong et  al. 2009; Chen et  al. 
2019). Tan et al. (2007) summarized frequently appearing 
keywords in SS, such as “must” and “need to”, to deter-
mine whether a sentence is an security specification. 
Template matching uses part of speech analysis technol-
ogy in the NLP field to determine whether a sentence 
meets certain sentence requirements based on a preset 
shallow parsing  (Sha and Pereira 2003) template. Tan 
et al. (2012) used simple pattern matching to decide three 
types of NULL-related comments. Toradocu (Goffi et al. 
2016) did not classify SS but tried to directly translate the 
sentence using pattern matching and lexical matching. 
Similarly, Jdoctor  (Blasi et  al. 2018) directly translated 
comments but added semantic similarity analysis to this 
step. Lv et al. (2020) trained the bidirectional GRU model 
with attention capturing the emotional tone of SS to 
complete the judgment, which outperformed keywords-
based and template-based methods and could discover 
more types of SSs.
Semantic similarity of text. 
Previous studies on semantic similarity of text can be 
divided into the corpus-based approach and knowl-
edge-based approach (Chandrasekaran and Mago 2021). 
Knowledge-based similarity methods calculate the 
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similarity based on the information derived from knowl-
edge sources  (Mikolov et  al. 2013), e.g., WordNet  (Uni-
versity 2021) which is a popular lexical database of 
English synonyms. Corpus-based approaches measure 
the similarity using the information from large corpora 
with the distributional hypothesis that similar words fre-
quently appear together. Over these years, approaches 
based on word embedding have been promoted, includ-
ing Word2Vec  (Mikolov et al. 2013), Glove  (Pennington 
et  al. 2014), fastText  (Bojanowski et  al. 2017). With the 
Transformer structure, Bidirectional Encoder Represen-
tations from Transformers(BERT)  (Devlin et  al. 2019) 
performed well in multiple NLP tasks, including ques-
tion answering and classification. Based on BERT, Sen-
tence-BERT (SBERT) (Reimers and Gurevych 2019) was 
proposed especially for sentence similarity comparison 
and outperformed other sentence embedding methods, 
including tf-idf, averaging Glove word vectors, and aver-
aging BERT word vectors and etc.

Conclusion
In this paper, we investigate the popular online web-
sites for C standard library documentation, study their 
conformity with the C99 standard, and discover their 
documentation issues. More specifically, we propose an 
approach SSeeker to help quickly find missing or inaccu-
rate SSs through classifying SSs using sentiment analysis 
and grouping semantically similar SSs. SSeeker can study 
more types of SSs and find missing SSs compared with 
previous work. We analyzed 4 popular online websites 
and found 92 prototype issues, 15 web page issues, and 96 
SS issues. We provide several suggestions for documenta-
tion maintainers correspondingly. This study reveals the 
status quo of C standard library documentation main-
tained by third-parties and enhances their documents.
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