
Li et al. Cybersecurity (2022) 5:14
https://doi.org/10.1186/s42400-022-00118-9

RESEARCH

The inconsistency of documentation: a study
of online C standard library documents
Ruishi Li1,2  , Yunfei Yang1,2, Jinghua Liu1,2, Peiwei Hu1,2 and Guozhu Meng1,2*   

Abstract 

The C standard libraries are basic function libraries standardized by the C language. Programmers usually refer to their
API documentation provided by third-party websites. Unfortunately, these documents are not necessarily complete
or accurate, especially for constraint sentences of API usage, which are called Security Specifications (SSs). SS issues
can prevent programmers from following obligatory constraints, which results in API misuse vulnerabilities. Previous
work studying SS issues could only find certain types of inaccurate SSs through checking the compliance between
API usage and existing SSs. Therefore, we propose a novel approach SSeeker for quickly discovering missing and
inaccurate SSs through the inconsistency of semantically similar SSs. More specifically, SSeeker first completes broken
sentences and discovers SSs from them by judging their constraint sentiment. Then SSeeker puts semantically similar
SSs from different sources into a group, which can be used to discover missing or inaccurate SSs. With the help of
SSeeker, we investigated 4 popular online third-party C standard library documents, studied their conformity with the
C99 standard, analyzed their APIs and SSs, and discovered 92 prototype issues, 15 web page issues, and 96 SS issues.

Keywords:  Documentation issues, Security specification, Standard library

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Software libraries provide Application Program Inter-
faces (APIs) for users to implement specific functional-
ity when developing programs. While using these APIs,
programmers are expected to follow certain constraints
on their inputs (e.g., the size limit on argument), outputs
(e.g., check if the return value is NULL), and invoca-
tion sequences (e.g., call another API before invocation).
These constraints are called Security Specifications (SSs)
and are described in the API documents along with these
APIs’ prototypes and functionality descriptions. If these
SSs in the API documents are not followed, it may intro-
duce API misuse bugs and cause severe security prob-
lems (Liu et al. 2020; Yu et al. 2021), e.g., execution of
arbitrary code (CVE-2005-3346) in “SS and API misuse”
section. Not only do programmers trust the reliability of
the API documents but also some API misuse detection

studies (Tan et al. 2007, 2012; Blasi et al. 2018; Lv et al.
2020) depend on the documents. However, according to
our observation, even popular API document has some
documentation issues, such as wrong prototype and inac-
curate or lacking SS. For example, the cplusplus docu-
ment (cplusplus 2021a) of nanl has a prototype issue. It
says the return type is float, which is wrong and should
be long double according to the official C99 stand-
ard document (ISO 2021a). The SSs of APIs could also be
inaccurate. An SS of memcpy API in Microsoft documen-
tation (Microsoft 2021a), “Make sure that the destination
buffer is the same size or larger than the source buffer.”,
states the size limit on arguments. However, when the
“destination buffer” is larger than the number characters
to copy (“count”), it doesn’t matter even if the “destina-
tion buffer” is smaller than the “source buffer”, which is
also very common during programming. Besides, miss-
ing SS is also very common, e.g., we found 95 missing SSs
of 4 popular document websites shown in “Discoveries”
section.

Open Access

Cybersecurity

*Correspondence: mengguozhu@iie.ac.cn
1 SKLOIS, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2513-1704
http://orcid.org/0000-0001-6388-2571
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00118-9&domain=pdf

Page 2 of 15Li et al. Cybersecurity (2022) 5:14

Previous research (Tan et al. 2007, 2012; Blasi et al.
2018) to discover SS issues mainly detect the inconsist-
ency between API usage code and SSs of API document
or library code comment. For example, in2000_bus_
reset calls UnlockSet before ConvertToSID,
which is inconsistent with the comment of Convert-
ToSID (“Caller must hold cache lock ...”) in Fig. 1. After
manual review, library maintainers confirmed this SS is
wrong. However, due to the designs of their approaches
and the limitations of code analysis used, these work
could not check some SSs on API usage, e.g., SSs about
library compilation options. Besides, they can only find
the inaccuracy of SSs only if SSs are inconsistent with API
usage but cannot find the absence of SSs. Compared with
previous work, our study can not only uncover a wider
range of SS issues but also uncover missing SSs because
we study inconsistencies across documents rather than
documentation versus code.

Challenges. Sentences in API documents are often
loosely organized and broken, i.e., lacking constituents
and having coreferences, which will reduce the perfor-
mance of the following text parsing. For example, this
sentence “Copies the first num characters of source to des-
tination” lacks the subject constituent. Except the coref-
erence of pronouns (e.g., “it”, “they”), API documents have
specific coreference of API and arguments, such as “The
function” in “The function shall return no value and take
no arguments”. The lacking constituent and referent can
be the API of this sentence or its arguments, return value,
or even other APIs that appears around this sentence.
Another challenge is to group SSs with similar semantic
when the group number is unknown and the SSs number
is small. According to our discoveries in “APIs and SSs of
the Documentation” section most of the API documents
have 0 to 4 SSs so the SSs to be grouped would be only
dozens. Besides, the quantity of constraint types is differ-
ent among APIs and sealed before grouping.

Therefore, we proposed a new approach SSeeker to find
missing or inaccurate SSs through the inconsistency of

semantically similar SSs. It first completes broken sen-
tences using context-sensitive dependency parsing and
Part-of-speech (POS) tagging. It then discovers SSs from
sentences using sentiment analysis since SSs often have
strong sentiments to restrict what API users should do
when using these APIs. Next, for every API, SSeeker col-
lects its SSs from different document sources and gener-
ates their semantically meaningful sentence embeddings.
Last, SSeeker uses a greedy algorithm to group these
embeddings into an indefinite number of SS groups. It
would be easy to find missing SS if one document source
lacks SS in one SS group and wrong SS if this SS is differ-
ent from other SSs in the group.

To evaluate the effectiveness of SSeeker, we chose
4 popular third-party websites among programmers
including cplusplus (cplusplus 2021b) (we call it “cpp”
for short in our paper), cppreference (cppreference
2021) (“cppref” for short), Linux manual page (man7
2021a) (“Linux” for short), and Microsoft documenta-
tion (Microsoft 2021a) (“Microsoft” for short). 10% of
sentences sampled from these documents were used
for evaluation of SS discovery, which was implemented
based on a pre-trained Sentence-Hierarchical Attention
Network (S-HAN) (Lv et al. 2020). It achieved 91% accu-
racy in the evaluation (“Experiments for Answering RQ1”
section), which performs much better than the keyword-
based method (Tan et al. 2007). In order to measure the
performance of sentence embedding generation, we com-
pared our utilized SBERT (Sentence-BERT) (Reimers and
Gurevych 2019) with four models based on Word2Vec
and the SBERT model outperforms others (“Experiments
for Answering RQ2” section).

With the help of SSeeker, we further investigated these
4 online C standard library API documents for C99, since
C99 is widely used for C language programming. Note
that our approach can be directly applied to other stand-
ards, e.g. C11. We revealed the correlation between their
APIs and SSs, discovered 3 types of API documentation
issues and provided advice for document maintainers.

Fig. 1  An example of the API misuse

Page 3 of 15Li et al. Cybersecurity (2022) 5:14 	

The contributions of this paper are summarized as
follows:

•	 Proposed an approach SSeeker to quickly discover
missing or inaccurate SS through sentiment analysis,
and semantic similarity analysis.

•	 Analyzed the C standard library documents of 4
popular third-party websites, and found 92 prototype
issues, 15 web page issues, and 96 SS issues.

•	 Categorized the documentation issues on third-party
websites and provided suggestions for documenta-
tion maintainers to write secure API documentation.

Paper structure. The rest of the paper is structured as
follows. “Background” section describes the related work,
while “Approach” section illustrates the design of our
proposed approach SSeeker. We present our evaluation
of SSeeker in “Evaluation” section and show the discovery
when investigating the online documents with the help
of SSeeker in “Discoveries” section. “Discussion” section
presents a discussion of our work and “Related work”
section concludes.

Background
SS and API misuse
API documents of software library not only declare the
basic functionality of provided functions, but also indi-
cate some constraints, i.e., security specifications (SSs),
that developers need to comply with when using this API,
e.g., value range for arguments, a need to check the return
value, and API call sequence. Otherwise, it may cause
severe security issues (such as buffer overflow, privilege
escalation, use-after-free, and etc.). For example, there is
an SS in the getenv function of the C99 standard: “The
getenv function returns a pointer to a string ... The string
pointed to shall not be modified by the program, but may
be overwritten by a subsequent call to the getenv function.”
ISO (2021a), which restricts developers from modifying
the return value except using getenv. Figure 1 shows a
code snippet using getenv in OSH 1.7-14. OSH didn’t
follow this SS but modified the return value of getenv
directly thus introducing a buffer overflow vulnerability,
which allows execution of arbitrary code (CVE-2005-
3346) (NVD 2021).

C standard library
The C standard library (Wikipedia 2021a) is a basic
function library for the standardized C programming
language and provides users with unified APIs, which
ensures the platform portability of software written in
the C language. The library is continuously improved
with the revision of the C language standards (Wiki-
pedia 2021b). Named by the released year, there are

C89 (Wikipedia 2021c), C90 (Wikipedia 2021d) (same
with C89), C95 (Wikipedia 2021e), C99 (Wikipedia
2021f), C11 (Wikipedia 2021g), and C17 (ISO 2021b)
(also known as C18) standards, among which C99 is one
of the most widely used one. The C99 standard library
contains 24 header files and 463 functions (not consid-
ering macros). The official documentation of C standard
library is within the hundreds of pages PDF file specified
by the International Organization for Standardization
(ISO) and it is not free. Instead of buying official PDFs,
programmers usually read API reference documents on
third-party websites, e.g., cplusplus (cplusplus 2021b)
and cppreference (cppreference 2021). Unlike tidy official
standard documents released after years of discussion,
third-party documents are more frequently updated by
developers with what they think is important for users.
This makes third-party documents contain more SSs
than the official documents.

Natural language processing
Here is a brief introduction of a set of NLP techniques we
leveraged in our research.

Dependency parsing
Dependency parsing is the process of analyzing the syn-
tactic structure in a sentence and extracting grammati-
cal relations between terms. Its result is this sentence’s
dependency tree, where the root is the verb of a clause
and other words are linked to the root by relations. Every
relation has one headword and a dependent that modi-
fies the head and point to it by a directed line in the tree.
For example, Fig. 3a shows the dependency tree of one
sentence. The verb “Invokes” is the root and “proces-
sor” is the object through “obj” relation. In our research,
we utilize the Stanford parser (StanfordParser 2016) to
detect if a sentence lacks constituents and resolve specific
coreferences.

Part‑of‑speech (POS) tagging
POS tagging assigns POS labels, e.g., noun, adjective,
and verb, to words of a sentence. POS tag of one word
is decided by its definition and context since the same
word can have more than one POS at different times. For
example, the POS of word “command” is a noun (tagging
is “NN”) as shown in Fig. 3a. However, this word could
also be a verb in a different context. Stanford POS Tag-
ger (Group 2021a) is one of the state-of-the-art POS tag-
ging tools so we utilize it to help sentence completion.

Coreference resolution
Coreference occurs when some expressions refer to the
same entity in a text and coreference resolution is the
process of finding them. For every coreference, there

Page 4 of 15Li et al. Cybersecurity (2022) 5:14

would be a referent, which is usually a full form, and
one expression refers to it. This expression would often
be an abbreviated form for traditional coreference, e.g.,
pronouns “it” and “they”. In our research, API docu-
ments may have specific coreferences, e.g., “the function”
or “the return value”, referring to APIs, their arguments,
or return values. In our research, we leverage Stanford
Deterministic Coreference Resolution System (Group
2021b) to resolve traditional coreferences.

Sentiment analysis
Sentiment analysis, also known as opinion mining, is the
process of identifying and extracting the opinion and
subjective information in a text. It can be used as a text
classification tool to judge the underlying sentiment is
positive, negative, or neutral. In recent years, more Deep
Learning-based classifiers were proposed for sentiment
analysis, e.g., Text-CNN (Kim 2014), RCNN (Lai et al.
2015), and HAN (Yang et al. 2016). Since HAN outper-
forms the other two approaches in previous research (Lv
et al. 2020), we employ the S-HAN model (Lv et al. 2020)
modified based on HAN.

Approach
In this section, we elaborate on the design of SSeeker,
which can help quickly discover the missing or inaccurate
security specifications. We first give an overview of the
design and then describe the individual components.

Overview
Architecture. Figure 2 illustrates the architecture of
our approach SSeeker, including four components: sen-
tence completion, SS discovery, sentence embedding
generation, and SS grouping. SSeeker takes API docu-
ments from different sources as input. During the sen-
tence completion step, SSeeker utilizes dependency
parsing to decide if one sentence lacks constituents and
completes the sentence with the consideration of its POS
and its context. Then SSeeker uses a sentiment analysis
model S-HAN (Lv et al. 2020) to judge if one sentence is
SS by detecting the specific emotional tone of SS. Next,
SSeeker collects SSs from different document sources

for every API and generates their sentence embeddings
using SBERT. Last, SSs of every API would be grouped
into several groups by a greedy algorithm according to
their semantic similarity.

Sentence completion
Due to the casual writing style of API documentation
maintainers, the documents of C language-based librar-
ies are loosely organized and often lack constituents or
have coreferences as shown in the “Challenges” of “Intro-
duction” section. These flaws of sentences would impede
the following sentiment analysis and semantic grouping
due to the missing constituents or unsolved referents.

Fig. 2  The design of our approach

Fig. 3  Constituent completion

Page 5 of 15Li et al. Cybersecurity (2022) 5:14 	

Therefore, SSeeker utilizes dependency parsing and POS
tagging to complete the lacking constituents and resolve
coreferences with the consideration of context.

Constituent completion
Specifically, we utilize the dependency parsing tech-
nique to generate the dependency tree of one sentence
and check if this tree misses basic grammatical relations,
e.g., “nsubj” and “obj”. For example, Fig. 3a shows the
basic dependency tree of “Invokes the command proces-
sor to execute a command” in the above and another one
with POS. Examining this tree, we could easily find that
the root word lacks the “nsubj” relation, which means
this sentence lacks the subject constituent. Next, SSeeker
infers the lacking subject according to the context of this
sentence. Based on our observation, it can be decided by
which paragraph this sentence belongs to, i.e., the para-
graph of API or different arguments or the return value.
For this sentence, it lies in the paragraph of system so
the subject word should be system. Then SSeeker gener-
ates the POS of this sentence and decides how to add the
dependent word to this sentence according to the POS of
headword and our summarized rules. For this example,
the head and dependent words of missing “nsubj” relation
are “invokes” and system respectively and the “invokes”
is recognized as a 3rd person sigular present verb (tagged
as “VBZ”) so the word system should be added to the
beginning of this sentence. We have summarized three
rules for adding the subject and elaborated them with
examples in Fig. 3b. These three rules correspond to the
cases when the root word is a verb, noun, and adjective.

Coreference resolution
For the traditional coreference of pronouns, we utilize
AllenNLP (Gardner et al. 2017) tool to resolve them.
For the specific coreference, e.g., “the function” and “the
return value”, we infer the referent according the the
context of this sentence. Like in the “Constituent Com-
pletion”, the referent is decided by the paragraph this
sentence lies in. Specifically, the referent would be the
subject of the previous sentence if this subject is another
API, its arguments, or its return value.

SS discovery
Because of the loose structure of API documents and the
different writing styles of library maintainers, the form of
SSs varies greatly. Previous work (Tan et al. 2012, 2007)
using keyword-based or rule-based method can only
detect limited SSs and have high false negative rate (86%
in “Experiments for answering RQ1” section). Despite
the varying syntax structure, SSs have a specific emo-
tional tone, which shows the developers the explicit or
implicit directions constraining what developers should

follow. For example, “The strings may not overlap, and the
destination string dest must be large enough to receive the
copy” in strcpy from Linux man page has very strong
sentiment (“must” and “may not”) to stress the con-
straints; “The behavior is undefined if either dest or src is a
null pointer.” in memcpy from cppreference also implies
the constraint on arguments. Therefore, we choose a sen-
timent analysis-based boolean classifier to detect SSs.

The classifier is composed of a Bi-GRU-based
encoder (Chung et al. 2014) and an attention mecha-
nism (Vaswani et al. 2017), as shown in the second step
of Fig. 2. The first layer is an embedding layer, which gen-
erates the word vectors wi of one sentence using the pre-
trained Word2Vec (Mikolov et al. 2013) model. Then wi
are fed into the Bidirectional GRUs (Bi-GRU) to learn the
context of this sentence by collecting information from
both directions. After that, the word annotation vectors
hi outputted by Bi-GRU would be input into an atten-
tion layer, which first generates ui using the Multilayer
Perceptron (MLP) and then the attention weight αi using
the softmax function, as in Eq. 1, where uw is a word-level
context vector. Last, the sentence vector v is produced by
summing the word annotation vectors hi with its atten-
tion weights αi and ready to be inputted into the softmax
function to give boolean result whether this sentence is
an SS.

We choose the pre-trained model S-HAN, which was
trained on a dataset collected from OpenSSL documen-
tation and annotated manually. The dataset consists of
2,601 SSs (1,296 SSs from back-translation) and 3,881
non-SSs. S-HAN achieved an accuracy 91% for Standard
C library documentation classification task in our evalua-
tion of effectiveness (“Effectiveness” section), higher than
88% in the original work.

Sentence embedding generation
Online documents from different sources should pro-
vide similar SSs for the same API. Based on our observa-
tion, SSs with the same meaning may not have the same
grammatical structure but similar semantics. For exam-
ple, programmer should not modify the return value of
the char *getenv(const char *name). This
SS is described as “The caller must take care not to mod-
ify this getenv_Param0, ...” in Linux and “Modifying the
getenv_Param0 returned by getenv_API invokes undefined
behavior.” in cppref, where the “getenv_Param0” means
the return value of getenv. The variety of syntax and
words makes it hard for knowledge-based approaches to
conduct the sentence similarity comparison, so SSeeker

(1)αi =
exp

(

uTi uw
)

∑

i exp
(

uTi uw
)

Page 6 of 15Li et al. Cybersecurity (2022) 5:14

utilizes a model to generate semantically meaningful sen-
tence embeddings.

Specially, we choose SBERT (Sentence-BERT) model,
which modifies the pretrained BERT model by using
siamese and triplet network structures so that it can
generate sentence embeddings suitable for semantic
comparison. As shown in Fig. 2, a pooling operation is
added to the output of BERT so that SBERT can derive
fixed-sized sentence embedding vectors, which can be
compared with cosine-similarity.

SS grouping
Different documents of one API are supposed to provide
semantically similar SSs, which can be divided into dif-
ferent SS groups according to their meaning. The num-
ber of SS groups differs among APIs, especially when
the problem of lacking SSs can happen as discussed in
“Introduction” section. In addition, the SSs number of
most documents ranges between 0 and 4 as shown in our
discoveries “APIs and SSs of the documentation” section.
Even if we collect documents from four sources for one
API, the SSs to be grouped would be no more than 20. In
order to group a small number of SSs whose group num-
ber is unknown, we propose a greedy algorithm based on
the semantic similarity of sentence embeddings.

As presented in Algorithm 1, SSeeker collects the
embedding of one API’s SSs to the set X. Initially, it cre-
ates the first alive SS group g1 with the randomly cho-
sen x from X and deletes x from X. Next, it loops every
alive group until X is empty. For every alive group gi ,
SSeeker averages all the embeddings of gi as the group
embedding ci and find the most similar embedding xsc
and dissimilar embedding xsf between ci and X by com-
paring their consine-similarity. Then, SSeeker adopts
a greedy strategy to add ungrouped embeddings. If
the similarity between the group embedding ci and its
most dissimilar embedding xsf is larger than the preset
threshold t, all the embeddings in X are similar with
gi and should be added to it. Then X is empty and the
loop would stop. If the similarity between ci and its
most similar embedding xsc is smaller than t, there is
no embedding in X similar with gi so gi would become
dead and not looped anymore. A new group would
be created with xsc , which would be deleted from X.
Another case is when ci and xsc are similar, SSeeker
would add xsc to gi and delete it from X. When the
looping is finished, all the SSs of this API are divided
into several SS groups, which are ready to be reviewed
by humans to find the SS issues.

Table 1  Dataset for SS discovery evaluation

Name API S Suniq Ssam SS Non-SS

cpp 397 4287 1938 194 30 164

cppref 463 4021 1130 113 21 92

Linux 463 4878 1669 167 26 141

Microsoft 459 4920 2312 200 41 159

Total 463 18,106 7049 674 118 556

Table 2  The effectiveness of SS discovery, compared with keywords-based method

Name S-HAN Keyword

ACC​ F1 FPR FNR ACC​ F1 FPR FNR

cpp 0.9 0.69 0.06 0.3 0.85 0.18 0.01 0.9

cppref 0.91 0.77 0.07 0.19 0.84 0.25 0 0.86

Linux 0.92 0.8 0.09 0.04 0.86 0.3 0.02 0.81

Microsoft 0.92 0.8 0.05 0.2 0.82 0.26 0.01 0.85

Average 0.91 0.77 0.07 0.18 0.84 0.25 0.01 0.86

Page 7 of 15Li et al. Cybersecurity (2022) 5:14 	

Algorithm 1: Group SSs of one API
Function Main(X, t):

Input: X = {x1, x2, ..., xn}: the set of one API’s SS embeddings; t: threshold for
similarity

Output: G = {g1, g2, ..., gm}: the set of SS groups
x ← randomly choose(X) // Randomly choose one embedding x;
X.delete(x);
g1 = {x} // Create the first group g1 with x;
g1.alive ← True // The status of g1 is alive;
G.add(g1);
while X is not NULL do

foreach gi ∈ G do
if gi.alive then

ci ← average embeddings(gi) // Generate the group embedding by
averaging all the embeddings in gi;

sc, sf ← closest farthest(ci, X) // Locate the indexes of closest and
farthest embeddings in X compared with gi;

if cos(ci, xsf) > t then
gi.add(X);
X ← NULL;

else if cos(ci, xsc) < t then
gi.alive ← False;
new g = {xsc};
X.delete(xsc);

else if cos(ci, xsc) > t then
gi.add(xsc);
X.delete(xsc);

end
end

end
return G
Function closest farthest(c, X):

Input: c: one embedding; X: the set of embeddings
Output: sc, sf : the indexes of closest and farthest embeddings in X compared with c
scorel, scores, sc, sf ← 0, 0, 0, 0;
foreach xj ∈ X do

score ← cos(c, xj);
if score > scorel then

scorel ← score;
sc ← j;

else if score < scoree then
scoree ← score;
sf ← j;

end
return xc, xf

Evaluation
Implementation
Below are the implementation details of the four compo-
nents of SSeeker.
Sentence completion. We utilized Stanford-
CoreNLP (Lynten 2018) to perform dependency parsing
and POS tagging for consituent completion and resolu-
tion of specific coreference, while using AllenNLP (Gard-
ner et al. 2017) to perform traditional coreference
resolution of pronouns.

SS discovery. We employed the pre-trained S-HAN
from the previous work (The pre-trained S-HAN 2021).
The hyperparameters of this model are 300 dimension
for word embedding, 50 layers for Bi-GRU with L2 regu-
larization of 1e−8 factor, 100 layers for dense layer with
an ReLU activation and L2 regularization of 1e−8 factor,
1 attention layer with normal distribution initialization,
Adam optimizer of 0.001 learning rate, and categori-
cal cross-entropy loss strategy. The word embeddings
were trained based on 40,000 sentences of Linux manual

Page 8 of 15Li et al. Cybersecurity (2022) 5:14

pages (man3 2021) using gensim Řehůřek (2021) for 100
iterations with 16 batch size, 2 epoch.

Sentence embedding generation. We chose pre-
trained “all-MiniLM-L6-v2” model (SBERT 2021) which
was trained on over 1 billion pairs. Its hyperparameters
are 384 dimension for embeddings, 256 max sequence
length and mean pooling strategy.

SS grouping. We utilized util.pytorch_cos_
sim() API of SBERT to quickly compute the cosine
scores of one SS (query) with other SSs of the same API
(corpus).

Experiment setting
Dataset
We chose API reference documents from 4 popular C
Standard library online websites (cpp, cppref, Linux, and
Microsoft). As mentioned earlier (“C standard library”
section), C standard library is not the same under differ-
ent C language standards, so in order to conduct further
experiments, we investigated APIs under the C99 since
it is widely used. Note that our approach can be applied
to other C standards and other documents easily. For
cpp and cppref, we crawled all the webpages and parsed
documents to extract API-related information using
bs4 (Beautiful Soup Documentation 2021) and lxml (lxml
2021). For Linux, we downloaded the document archive
from the official site (Linux man page 2021) and parsed
the files under “man2” and “man3”. For Microsoft, we
cloned their MicrosoftDocs Github repository (Micro-
soft 2021b) and parsed Markdown files. We stored
API-related information (including API prototypes and
documents) if this API belongs to C99 APIs. Note that
there are 463 APIs in total after summing all the APIs
from different websites, which is also the number of all
C99 APIs. Table 1 shows the number of APIs (Column
“API”) and the number of these APIs’ sentences (Column
“S” before removing duplicate data and column “ Suniq ”
after deduplication).

Platform
All the experiments are conducted on an Ubuntu 16.08
with 8 cores CPU (Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz), 128G memory, and 3TB hard drivers.

Effectiveness
In this part, we would evaluate the effectiveness and per-
formance of SSeeker to answer two research questions.

•	 RQ1: Can SSeeker discover SSs from API documents
effectively even if SSs have various syntax structures?

•	 RQ2: Would our sentence embeddings method per-
form well in the semantic similarity comparison?

Experiments for answering RQ1
In order to evaluate the effectiveness of discovering SSs,
we applied the S-HAN model to sampled sentences of
every document source and measure its performance
through accuracy, F1, FPR, and FNR metrics. Besides,
we compared S-HAN with the previous keyword-based
method (Tan et al. 2007) to check if the sentiment analy-
sis-based method outperforms other methods.

Firstly, we applied systematic sampling to the sorted
Suniq and sampled around 10% sentences (Column “ Ssam ”
in Table 1). If the number of samples is larger than 200,
we only choose 200 samples. Then we manually anno-
tated them as SS (Column “SS” in Table 1) and non-SS
(Column “non-SS” in Table 1). Next, we applied S-HAN
model to the Ssam and achieved an average accuracy
of 91.2%, false negative rate of 19.4%, and false positive
rate of 6.2%, as shown in Table 2. In addition, the results
showed that S-HAN outperforms the keywords-based

Fig. 4  Evaluation of SS grouping

Page 9 of 15Li et al. Cybersecurity (2022) 5:14 	

SS discovery method (Tan et al. 2012), especially for the
accuracy and F1. Then we ran SS discovery on all the sen-
tences of 4 online document websites and identified 691,
871, 971, and 967 SS for cpp, cppref, Linux, and Micro-
soft respectively.

Experiments for answering RQ2
To measure the effectiveness of our sentence embedding
method, we first evaluated the performance of SS group-
ing on sampled APIs using metrics of clustering (NMI,
RI, F1). Then we compared the SBERT model with other
sentence embedding methods based on the Word2Vec
model.

Firstly, in order to evaluate the effectiveness of SS
grouping, we first applied SS discovery to all the S in Ddoc
and collected the common APIs (168) with SS among 4
documentation websites. Then we applied systematic
sampling to the sorted common APIs and sampled 13
APIs. These APIs have 125 SSs and 54 SS groups ( Dssg )
in total. Next, we chose the optimal similarity thresh-
old t by setting the threshold in the range [0.3, 0.85] and
measuring the performance of SS grouping. Since the SS
grouping is similar to clustering, we chose the external
criterions of clustering as metrics. The set of SSs to be
clustered has N SSs; SS group generated by SS grouping
is the cluster and its label is assigned to the most com-
mon class in the group; the manually labelled Dssg is the
benchmark or gold standard. Here are the criteria we
used (Wikipedia 2021h; NLP 2021).

•	 Normalized Mutual Information (NMI). It measures
the mutual dependence between the two variables.
As the normalized MI, NMI ranges between 0 (no
mutual information) and 1 (perfect correlation).

•	 Rand Index (RI). RI measures the percentage of cor-
rect decisions. Its equation is:

 where TP, TN, FP, and FN have the same meaning as
in the classification task. From this perspective, RI is
to clustering as the accuracy is to classification.

•	 F-1 measure (F1). F1 is the weighted average of pre-
cision ( TP/(TP + FP) ) and recall ( TP/(TP + FN) ),
which also has the same meaning as in classification.

Using these criteria, SS grouping performs best under the
threshold 0.65, achieving an average NMI of 69%, RI of
73%, and F1 of 63%, which can be seen in the Fig. 4a.

Furthermore, we compared the SBERT sentence
embedding model with another state-of-the-art word
embedding model Word2Vec. Since Word2Vec only pro-
vides embeddings for words, we adopted two popular

(2)RI =
TP + TN

TP + FP + FN + TN

methods to compute sentence embeddings respectively:
the first method averages all the word embeddings (we
call it “w2v-avg” for short) and the second method uses
“tf-idf” (Wikipedia 2021i) as the weight of word embed-
dings (we call it “w2v-tfidf” for short). For the Word2Vec
model, we used the pre-trained model (Google 2021) on
Google News Corpus or the new model trained on the C
library document sentences S of Ddoc respectively. The
hyperparameters for newly trained Word2Vec model
are iteration 50, word embedding dimension 128, and
the windows size 3. Thus the four models compared
with SBERT are “w2v-avg-google”, “w2v-avg-s”, “w2v-
tfidf-google”, and “w2v-tfidf-s”, where “-google” means
using Google pre-trained model and “-s” means using
our trained model. Their thresholds are determined
separately and optimal for each model. The comparison
results are shown in Fig. 4b. Our study shows that SBERT
performs better than other models, especially in the F1
score.

Performance
We ran SSeeker on the 4 online C documents (1.91MB
files), the first two components took 1,796 seconds. The
time cost of SS grouping varies with the number of SSs
and the average cost is 60 seconds per API (186 SSs). We
can conclude that SSeeker is quite fast and efficient.

Discoveries
With the help of SSeeker to find the missing and inac-
curate SS, we deeply investigated into 4 popular online
C Standard libraries API documentation and revealed
3 types of documentation issues. Lastly, we proposed 3
suggestions for documentation maintainers.

Findings of the online C standard library documents
The conformity with the C99 standard
Not all the popular online C standard library documents
conform with C99 standard completely and accurately
neither as developers thought of or as documentation
maintainers declared. According to C99 Standard official
document (ISO 2021a), there are 24 header files and 463
functions (not considering macros). However, as shown
in Table 1, only cppref and Linux provide all the C99
APIs but they also have API prototype and SS issues as
described in the following.

Although cpp says that they support C90 and C99 in
the “Note on versions” part of the introduction of the C
library, their displayed C99 APIs are not complete and
accurate. Compared with 24 headers and 463 APIs of
C99 standard, cplusplus only provide 23 headers and
397 APIs, while lacking complex.h header and 66 APIs,
e.g., cacos. Cppref is the most comprehensive docu-
mentation among 5 online documents. It contains API

Page 10 of 15Li et al. Cybersecurity (2022) 5:14

documents for different C standard libraries (C90, C95,
C99, C11, and C17). Linux man page also provides all
the C99 APIs, but they don’t distinguish between dif-
ferent versions of APIs. For example, according to the
“CONFORMING TO” part of the webpage(man7 2021b)
of strcat, this document conforms to C89 and C99.
However, the provided prototype only includes the C99
version “char *strcat(char * restrict dest,
const char * restrict src);” not the C89 ver-
sion “char *strcat(char *dest, const char
*src);”. Although there are no explicit notes about the
supported standards in every API’s web page, Microsoft
says that they basically support C99, while missing the
implementation of some types and APIs. From Table 1,
we can see Microsoft provide 459 C99 APIs, while lack-
ing 4 APIs, which are unimplemented (copysignf and
copysignl), obsoleted (gets), or just forgotten to dis-
play the prototype (truncf) on the webpage.

APIs and SSs of the documentation
In this part, we further inspected the basic information
about APIs and their SSs every documentation website
provides.

From Table 1, we could find that cppref, Linux, and
Microsoft provide most of the C99 APIs (more than 450
APIs). Besides, the common intersection of 4 documents
are 397 APIs, mostly limited by cpp documentation.

Next, we studied the number of APIs, SSs and the ratio
of SS per API, shown in Fig. 5a. We found that every
API has around 2 SSs on average, which is the same in
4 documentation websites. Then we concentrated on the
common 397 APIs and studied the distribution of SSs per
API, shown in Fig. 5b. We discovered that nearly all the

APIs in cppref have their SSs, and only 3 APIs has no SS.
Most APIs have 0, 1, 2 or 3 SSs, which is consistent with
the previous observation that averages SSs per API is
about 2. There is an anomaly that cppref and Linux have
several APIs possessing more than 20 SSs. We looked
into that and found these APIs are printf, vfprintf,
and other APIs related to formatted data. Their docu-
ments include not only the basic information of these
APIs but also the syntax of conversion specifications,
which is very long and contains lots of SSs.

Issues of API prototype
After the inspection of these documents’ conformance
with the C99 standard, we continued to look into the
API name, parameter types, and return type to check if
prototypes of these APIs are the same as proclaimed in
the C99 standard. We found 92 prototype issues through
comparing online documents with C99 standard docu-
ments. Here are the main types and examples.

•	 Mishandled type qualifier. Type qualifier is a key-
word that is applied to a type, which will turn into
a qualified type. We found that type qualifiers const
and restict are often mishandled. Cpp lacks const
in 9 APIs prototype. For example, the prototype of
strrchr in cpp is “char * strrchr (char
* str, int character);”, while the correct
one should be “char * strrchr (const char
* str, int character);”. Even though the
webpage of strrchr in cpp also provides another
prototype “const char * strrchr (const
char * str, int character);”, it’s still not
right. On the opposite, Microsoft puts an extra const

(a) API number, SS numbers and the ratio of
SS per API

(b) The number of APIs with different num-
ber of SSs

Fig. 5  Comparing the APIs, SS and the ratio of SS per API

Page 11 of 15Li et al. Cybersecurity (2022) 5:14 	

in the prototype of _Exit and exit. For keyword
restict, cpp misses it in 74 APIs (e.g., fopen), cppref
only misses it in wcsftime and Linux only misses
it in strcpy. Microsoft doesn’t provide restict type
qualifier but implements its specific __restict key-
word. There are 87 prototype issues of this type: 74
issues of restict for cpp, 1 issues of restict for cppref, 1
issue of restict for Linux, 9 issues of const for cpp, and
2 issues of const for Microsoft.

•	 Wrong type or API name. Except for the missing or
extra type qualifier, parameter types and return types
can also be wrong. The return type of nanl in cpp
should be long double not float. The return type
of towupper and towlower in Microsoft should
be wint_t not int. Besides, the API name of
wcstoll prototype in cpp is mistakenly written as
strtoll. There are 4 prototype issues of this type
as shown above.

•	 Missing prototype. It can happen that one API has
its document but not its prototype on its web page.
For example, the web page of truncf in Microsoft
has a “Syntax” part, which describes the prototypes
of other APIs on this page but misses the one of
truncf.

Issues of API SS
After manually analyzing the discovered missing and
inaccurate SSs, we found 96 SS issues and summarized 7
common types of SS issues. 96 SS issues include 1 inac-
curacy issue and 95 absence issues. These absence issues
cannot be found by previous work because they are not
designed to detect missing SSs.

•	 Array. Important SSs for array include “should have
enough size”, “should not overlap”, and “should not be
NULL pointer”. However, these SSs are often miss-
ing. For example, memmove in Linux lacks “should
have enough size”; strncat in cpp lacks “should not
overlap”; memcpy in cpp lacks “should not be NULL
pointer’. During the analysis, we found an inaccurate
SS of memcpy in Microsoft Docs. The SS is “Make
sure that the destination buffer is the same size or
larger than the source buffer.”, but it doesn’t mat-
ter even if the destination buffer is smaller than the
source buffer when the destination buffer is larger
than the count (number of characters to copy). This
issue has been confirmed (Zero0one1 2021) by the
documentation maintainers. Lacking this type of SSs
may cause programmers to write code with bug, e.g.,
buffer overflow. There are 39 SS issues of this type: 11
for cpp, 2 for cppref, 15 for Linux, and 11 for Micro-

soft. 1 SS issue of Microsoft is inaccuracy and the
others are missing issues.

•	 Pointer. In special cases, pointers shall not be deref-
erenced. For example, if the parameter of malloc is
zero, the return value may be a non-NULL pointer
but shall not be dereferenced, as described in cpp
and cppref. Lacking this type of SSs may cause NULL
pointer dereference vulnerability. There are 2 SS
missing issues of this type: 1 for Linux and Microsoft
respectively.

•	 String. It is important to make sure the string is valid,
i.e., C-string ending with a terminating “null char-
acter”, during the reading or writing operations. The
documents of atoi in cpp and cppref stress this SS,
while Linux and Microsoft miss it. If the program-
mer doesn’t follow this SS, overrun or NULL pointer
dereference can occur, e.g., CVE-2018-14884 in PHP.
There are 30 SS missing issues of this type: 12 for cpp,
2 for cppref, 14 for Linux, and 2 for Microsoft.

•	 API sequence. This type includes the specification
of parameters or the return value and the specifica-
tion of the API call sequence. The former type of SS
looks like “The parameters or return value should
(not) be called with another API before or after you
call this API.”. One example of the latter type is the
SS of quick_exit in cpp, “If a program calls both
exit and quick_exit, or quick_exit more than once, it
causes undefined behavior.”. Lacking this type of SSs
may cause memory leaks or system crashes. There
are 14 SS missing issues of this type: 4 for cpp, 1 for
cppref, 4 for Linux, and 5 for Microsoft.

•	 Data type range. The range of basic data type is lim-
ited and the behavior would be undefined if the con-
verted data is out of the range of representable values
by basic data type, e.g., atoi and abs. There are 6
SS missing issues: 4 for Linux and 2 for Microsoft.

•	 Direct modification. The return value of some APIs
should not be modified, otherwise cause undefined
behavior, e.g., getenv. Lacking this type of SSs may
cause buffer overflow vulnerability. Cpp, Linux, and
Microsoft lack 1 SS of this type respectively.

•	 Suggestion. The SS suggestions are not compulsory
but can make the application more secure. For exam-
ple, rand is “not recommended for serious random-
number generation needs, like cryptography” as noted
in cppref, while the other three document websites
lack it.

Issues of web page display
The web pages of API documentation have the follow-
ing display issues, which can make readers confused and
should be improved.

Page 12 of 15Li et al. Cybersecurity (2022) 5:14

•	 Unclear support for different standards. As men-
tioned in “The Conformity with C99 Standard” (“The
conformity with the C99 standard” section), most of
the online documentation websites don’t have a clear,
correct, and integrated indication web page about
their supported C standards. They might provide an
outdated blog or scattered blogs explaining their sup-
port for different features. It brings quite hard work
for programmers, who want to use APIs correctly, to
search standard related information in their official
websites or search engines, which may turn out to be
no search result or inaccurate result.

•	 Unobvious distinction of different standards. When
online C standard library documentation supports
more than one standard, it may ignore the difference
between different versions of the API. For one thing,
the documentation may only give one prototype of
the API and does not mark its standard; for another
thing, the SSs might be mixed together with no mat-
ter which standard its API belongs to. This unobvious
distinction gives the programmer inaccurate infor-
mation and probably wrong guidance. Among these
4 websites, the cppreference website provides the
clearest and most obvious distinction in the proto-
types and SSs.

•	 Incomplete and inconsistent displayed information.
The information displayed on the web pages can
be incomplete and inconsistent. Online C stand-
ard library documentation (e.g., cppref, Linux, and
Microsoft) often offers a web page showing the
alphabetic list of APIs it provides. But the content
may be incomplete and inconsistent with all the APIs
it actually provides. Microsoft lacks expl and other
9 APIs in the API list. Other display incompleteness
includes missing API name in the web page header
(e.g., fdimf in cpp), the incomplete web page dis-
play (e.g., setjmp.h web page does not have the refer-
ence section on its bottom right corner).

Suggestions for documentation maintainers
According to the above findings, we propose several sug-
gestions for documentation maintainers. Among these,
the second and the third suggestions are not limited to
the C standard library but also apply to other libraries.

•	 Clearly depicting the supported standards. First, doc-
umentation maintainers should depict its supported
standards clearly and accurately on the home web
page of the document introduction. If only support-
ing certain features or having its specific implemen-
tation, they also should describe it at the same time.
Secondly, API documents should distinguish the API

prototypes and SSs if they differ among standards as
cppref documentation does.

•	 Providing comprehensive SSs. The documentation
maintainers should provide comprehensive SSs to
guide developers securely using APIs. Based on our
summary of frequently missing SSs, documenta-
tion maintainers of C language software should pay
more attention to the SSs related to the array, pointer,
string, API call sequence, direct modification, and
secure suggestions.

•	 Maintaining the consistency between code and docu-
mentation. The consistency between code and docu-
mentation is significant during the development and
maintenance of software, which can be seen from our
research. Microsoft implements its C runtime library,
which includes most of C standard library APIs and
Microsoft-specific APIs. However, there are incon-
sistencies between the code and the online documen-
tation, e.g., the return type of towupper is win_t
in the code implementation but the online prototype
says it’s int_t, as mentioned in “Issues of API pro-
totype” section. Keeping the consistency between
code and documentation can reduce the documen-
tation issues and lower the cost of development and
maintenance.

Discussion
Limitations. With the high accuracy of 91.2%, SS classi-
fication still introduces false data affecting the result and
the analysis in “APIs and SSs of the documentation” sec-
tion. Besides, SSeeker cannot effectively group complex
SSs, which contain more than one constraint meaning or
that contain clauses that are not related to constraints.
For example, an SS containing two constraint meanings
is semantically similar to two SS groups but it can only
be divided into one group according to our algorithm. In
addition, SSeeker considers all words of the sentence to
generate its embedding, but there may be phrases that
are irrelevant to the content of the constraint thus intro-
ducing noise into the embedding.

Specific implementations of C standard library.
Linux and Microsoft don’t simply provide documenta-
tion for C standard library APIs like cpp and cppref. They
also implement their own C runtime libraries (“glibc”
for Linux, “MSVCRT” and “UCRT” for Microsoft) and
may bring in a few changes which make their API docu-
ments different from the original C standard library API
documents. For example, Linux brings in a new type
sighandler_t for signal API and Microsoft does
not support C99 restrict. Despite these differences, it
is still meaningful to study their conformity with the C

Page 13 of 15Li et al. Cybersecurity (2022) 5:14 	

standard and useful to discover missing SSs through the
help of existing ones.
The reason for not choosing official documentation.
We didn’t compare online documentation with the offi-
cial C standard files to find the missing SSs because
the official files only supply a part of SSs. Specified by a
committee after years of discussion, official C standard
documentation is tidy, precious, concise, and time-con-
suming. Unofficial online documentation is based on
official documentation and is open source so it can be
updated in time and take into consideration SSs which
programmers often violate more freely. For example, the
memcpy in cppref has an SS “The behavior is undefined
if either dest or src is a null pointer.”, while official docu-
mentation does not. Based on this observation, we chose
to compare unofficial online documentation to discover
more SSs.
Future work.
We will first address the above limitations by breaking
sentences into finer granularity to improve the perfor-
mance of SSeeker. Furthermore, we will study the incon-
sistency between API documentation and a larger range
of text sources (e.g., questions and answers in the Stack-
Overflow and bug reports). These text are numerous, eas-
ily accessible for most popular libraries and contain SSs
that developers may overlook and thus probably are miss-
ing or inaccurate in the API documentation. In addition,
these newly found SSs can be used to detect API misuse
vulnerability, which could find more bugs than other
detection methods based solely on API documentation.

Related work
In this part, we first discussed the related work of study-
ing documentation issues and then talked about previous
research related to the two components of SSeeker.
Study of documentation issues.
Previous work discover the documentation issues mainly
through detecting the inconsistency between code and
descriptive text (API documentation or code comment).
Tan et al. (2007) chose comments related to topic “key-
words” (e.g., “lock”) of C language software when the
sentences have imperative words. Their solution iCom-
ment then utilized a decision tree to map the com-
ments to rule templates, which were used to generate a
state machine to detect rule violation of code. iCom-
ment detected 27 bad comments related with “lock” and
“call” topic. Another work of detecting comment-code
inconsistencies, tComment (Tan et al. 2012) targeted
the NULL-related API misuse or wrong comment. It
used simple pattern matching to extract properties from
Javadoc comments for a method and then generated ran-
dom tests to check properties and report bugs or wrong
comments. Blasi et al. (2018) proposed Jdoctor, which

translated Javadoc comments to procedure specifications
using pattern matching, lexical matching, and semantic
matching. It chose the first successful result of the three
approaches. For the semantic matching, Jdoctor used
Glove to generate word embeddings and Word Mover’s
Distance (WMD) algorithm to compare multiple words
together. Although it does not aim to find comment
issues at first, the authors reported six types of incon-
sistencies after analyzing Jdoctor’s output. Zhong and
Su (2013) combined natural language and code analysis
technology to detect Java API documentation errors,
but their detection range is limited to syntax errors and
broken code names. These work listed above can not
detect missing SSs but only wrong SSs, whose types are
also limited by their text-parsing approaches. DRONE,
proposed by Zhou et al. (2020), is an extended version
of previous work (Zhou et al. 2017). DRONE parsed the
abstract syntax tree of Java code and generated code con-
straint first-order logic (FOL) with the help of control-
flow analysis while generating document constraint FOL
using dependency parsing and pattern analysis. Then an
SMT solver was applied to report four types of document
defects. As far as we know, there is no work studying the
documentation issues (including API prototype issues
and SS issues) of online C standard library documents.
Classification of security specification.
As for the problem of classifying the security specifica-
tion sentences in documents, most of the previous work
used fixed keywords (Tan et al. 2007) or template match-
ing (Pandita et al. 2012; Zhong et al. 2009; Chen et al.
2019). Tan et al. (2007) summarized frequently appearing
keywords in SS, such as “must” and “need to”, to deter-
mine whether a sentence is an security specification.
Template matching uses part of speech analysis technol-
ogy in the NLP field to determine whether a sentence
meets certain sentence requirements based on a preset
shallow parsing (Sha and Pereira 2003) template. Tan
et al. (2012) used simple pattern matching to decide three
types of NULL-related comments. Toradocu (Goffi et al.
2016) did not classify SS but tried to directly translate the
sentence using pattern matching and lexical matching.
Similarly, Jdoctor (Blasi et al. 2018) directly translated
comments but added semantic similarity analysis to this
step. Lv et al. (2020) trained the bidirectional GRU model
with attention capturing the emotional tone of SS to
complete the judgment, which outperformed keywords-
based and template-based methods and could discover
more types of SSs.
Semantic similarity of text.
Previous studies on semantic similarity of text can be
divided into the corpus-based approach and knowl-
edge-based approach (Chandrasekaran and Mago 2021).
Knowledge-based similarity methods calculate the

Page 14 of 15Li et al. Cybersecurity (2022) 5:14

similarity based on the information derived from knowl-
edge sources (Mikolov et al. 2013), e.g., WordNet (Uni-
versity 2021) which is a popular lexical database of
English synonyms. Corpus-based approaches measure
the similarity using the information from large corpora
with the distributional hypothesis that similar words fre-
quently appear together. Over these years, approaches
based on word embedding have been promoted, includ-
ing Word2Vec (Mikolov et al. 2013), Glove (Pennington
et al. 2014), fastText (Bojanowski et al. 2017). With the
Transformer structure, Bidirectional Encoder Represen-
tations from Transformers(BERT) (Devlin et al. 2019)
performed well in multiple NLP tasks, including ques-
tion answering and classification. Based on BERT, Sen-
tence-BERT (SBERT) (Reimers and Gurevych 2019) was
proposed especially for sentence similarity comparison
and outperformed other sentence embedding methods,
including tf-idf, averaging Glove word vectors, and aver-
aging BERT word vectors and etc.

Conclusion
In this paper, we investigate the popular online web-
sites for C standard library documentation, study their
conformity with the C99 standard, and discover their
documentation issues. More specifically, we propose an
approach SSeeker to help quickly find missing or inaccu-
rate SSs through classifying SSs using sentiment analysis
and grouping semantically similar SSs. SSeeker can study
more types of SSs and find missing SSs compared with
previous work. We analyzed 4 popular online websites
and found 92 prototype issues, 15 web page issues, and 96
SS issues. We provide several suggestions for documenta-
tion maintainers correspondingly. This study reveals the
status quo of C standard library documentation main-
tained by third-parties and enhances their documents.

Acknowledgements
We would like to thank the anonymous reviewers for detailed comments and
useful feedback.

Authors’ contributions
Ruishi Li: investigation, conceptualization, methodology, materials, writing,
editing, experiment, validation, review, resources. Yunfei Yang: resources,
discussion, experiment, review. Jinghua Liu: discussion, experiment, review.
Peiwei Hu: discussion, experiment, review. Guozhu Meng: discussion, review,
supervision. All authors read and approved the final manuscript.

Funding
Our research was supported in part of the National Key Research and Devel-
opment Program (No. 2020AAA0104301), National Natural Science Founda-
tion of China (No. U1836211, 61902395), the Anhui Department of Science
and Technology (No. 202103a05020009) and Beijing Academy of Artificial
Intelligence (BAAI).

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China. 2 School of Cyber Security, University of Chinese Academy
of Sciences, Beijing, China.

Received: 4 January 2022 Accepted: 21 February 2022

References
Beautiful Soup Documentation (2021) https://​www.​crummy.​com/​softw​are/​

Beaut​ifulS​oup/​bs4/​doc/
Blasi A, Goffi A, Kuznetsov K, Gorla A, Ernst MD, Pezzè M, Castellanos SD (2018)

Translating code comments to procedure specifications. In: Proceedings
of the 27th ACM SIGSOFT international symposium on software testing
and analysis

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with
subword information. Trans Assoc Comput Linguist 5:135–146

Chandrasekaran D, Mago V (2021) Evolution of semantic similarity-a survey.
ACM Comput Surv (CSUR) 54:1–37

Chen Y, Xing L, Qin Y, Liao X, Wang X, Chen K, Zou W (2019) Devils in the
guidance: predicting logic vulnerabilities in payment syndication
services through automated documentation analysis. In: USENIX security
symposium

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated
recurrent neural networks on sequence modeling

cplusplus: cplusplus (2021) http://​www.​cplus​plus.​com/
cplusplus: nanl (2021). https://​www.​cplus​plus.​com/​refer​ence/​cmath/​nanl/?​

kw=​nanl
cppreference: cppreference (2021) https://​en.​cppre​feren​ce.​com/
Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training of deep

bidirectional transformers for language understanding. In: NAACL
Gardner M, Grus J, Neumann M, Tafjord O, Dasigi P, Liu NF, Peters M, Schmitz

M, Zettlemoyer LS (2017) Allennlp: a deep semantic natural language
processing platform. arXiv:​1803.​07640

Goffi A, Gorla A, Ernst MD, Pezzè M (2016) Automatic generation of oracles for
exceptional behaviors. In: Proceedings of the 25th international sympo-
sium on software testing and analysis

Google: GoogleNews-vectors-negative300.bin.gz (2021) https://​drive.​google.​
com/​file/d/​0B7Xk​CwpI5​KDYNl​NUTTl​SS21p​QmM/​edit?​usp=​shari​ng

Group, T.S.N.L.P. (2021) Stanford Log-linear Part-Of-Speech Tagger. https://​nlp.​
stanf​ord.​edu/​softw​are/​tagger.​shtml

Group, T.S.N.L.P. (2021) Stanford deterministic coreference resolution system.
https://​nlp.​stanf​ord.​edu/​softw​are/​dcoref.​shtml

ISO: ISO/IEC 9899:2018 (C17 and C18) (2021) https://​www.​iso.​org/​stand​ard/​
74528.​html

ISO: N1256 (C99) (2021) http://​www.​open-​std.​org/​jtc1/​sc22/​WG14/​www/​
docs/​n1256.​pdf

Kim Y (2014) Convolutional neural networks for sentence classification. arXiv
preprint arXiv:​1408.​5882

Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for
text classification. In: 29th AAAI conference on artificial intelligence

Linux man page (2021) https://​man7.​org/​linux/​posix-​man-​pages/
Liu B, Meng G, Zou W, Li F, Gong Q, Lin M, Sun D, Huo D, Zhang C (2020) A

large-scale empirical study on vulnerability distribution within projects
and the lessons learned. In: 2020 IEEE/ACM 42th international conference
on software engineering (ICSE), pp 1547–1559

Lv T, Li R, Yang Y, Chen K, Liao X, Wang X, Hu P, Xing L (2020) Rtfm! automatic
assumption discovery and verification derivation from library document
for api misuse detection. In: Proceedings of the 2020 ACM SIGSAC confer-
ence on computer and communications security

Lynten: stanfordcorenlp (2018) https://​github.​com/​Lynten/​stanf​ord-​coren​lp
lxml (2021) https://​lxml.​de/
man3 (2021) https://​linux.​die.​net/​man/3/
man7: man page (2021) https://​man7.​org/​linux/​man-​pages
man7: strcat (2021) https://​man7.​org/​linux/​man-​pages/​man3/​strcat.​3.​html
Microsoft: Microsoft documentation Github repository (2021) https://​github.​

com/​Micro​softD​ocs/​cpp-​docs/​blob/​master/​docs/c-​runti​me-​libra​ry/​refer​
ence

Microsoft: Microsoft documentation (2021) https://​docs.​micro​soft.​com/​en-​us

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.cplusplus.com/
https://www.cplusplus.com/reference/cmath/nanl/?kw=nanl
https://www.cplusplus.com/reference/cmath/nanl/?kw=nanl
https://en.cppreference.com/
http://arxiv.org/abs/1803.07640
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/dcoref.shtml
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://arxiv.org/abs/1408.5882
https://man7.org/linux/posix-man-pages/
https://github.com/Lynten/stanford-corenlp
https://lxml.de/
https://linux.die.net/man/3/
https://man7.org/linux/man-pages
https://man7.org/linux/man-pages/man3/strcat.3.html
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/c-runtime-library/reference
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/c-runtime-library/reference
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/c-runtime-library/reference
https://docs.microsoft.com/en-us

Page 15 of 15Li et al. Cybersecurity (2022) 5:14 	

Mikolov T, Chen K, Corrado GS, Dean J (2013) Efficient estimation of word
representations in vector space. In: ICLR

NLP S (2021) Evaluation of clustering. https://​nlp.​stanf​ord.​edu/​IR-​book/​html/​
htmle​dition/​evalu​ation-​of-​clust​ering-1.​html

(NVD), N.V.D.: CVE-2005-3346 (2021) https://​nvd.​nist.​gov/​vuln/​detail/​
CVE-​2005-​3346

Pandita R, Xiao X, Zhong H, Xie T, Oney S, Paradkar A (2012) Inferring method
specifications from natural language api descriptions. In: 2012 34th inter-
national conference on software engineering (ICSE), pp 815–825

Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word
representation. In: EMNLP

Řehůřek R (2021) gensim . https://​radim​rehur​ek.​com/​gensim/
Reimers N, Gurevych I (2019) Sentence-bert: sentence embeddings using

siamese bert-networks. ArXiv:​abs/​1908.​10084
SBERT: all-MiniLM-L6-v2 model (2021) https://​huggi​ngface.​co/​sente​nce-​trans​

forme​rs/​all-​MiniLM-​L6-​v2
Sha F, Pereira F (2003) Shallow parsing with conditional random fields. In:

Proceedings of the 2003 human language technology conference of the
North American chapter of the association for computational linguistics,
pp 213–220. https://​www.​aclweb.​org/​antho​logy/​N03-​1028

StanfordParser (2016) https://​nlp.​stanf​ord.​edu/​softw​are/​depen​denci​es_​
manual.​pdf

Tan L, Yuan D, Krishna G, Zhou Y (2007) /*icomment: bugs or bad com-
ments?*/. In: SOSP

Tan SH, Marinov D, Tan L, Leavens G (2012) @tcomment: testing Javadoc
comments to detect comment-code inconsistencies. In: 2012 IEEE 5th
international conference on software testing, verification and validation,
pp 260–269

The pre-trained S-HAN (2021) https://​github.​com/​lvtao-​sec/​Advan​ce/​tree/​
master/​S-​HAN/​saved-​models

University P (2021) WordNet. https://​wordn​et.​princ​eton.​edu/
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł,

Polosukhin I (2017) Attention is all you need. In: Advances in neural
information processing systems, pp 5998–6008

Wikipedia: C standard library (2021) https://​en.​wikip​edia.​org/​wiki/C_​stand​ard_​
libra​ry

Wikipedia: The ISO/IEC 9899 Standard (2021) https://​www.​iso-​9899.​info/​wiki/​
The_​Stand​ard

Wikipedia: ANSI X3.159-1989 (C89) (2021) https://​en.​wikip​edia.​org/​wiki/​
ANSI_C#​C89

Wikipedia: ISO/IEC 9899:1990 (C90) (2021) https://​en.​wikip​edia.​org/​wiki/​
ANSI_C#​C90

Wikipedia: ISO/IEC 9899:1990/AMD1:1995 (C95) (2021) https://​en.​wikip​edia.​
org/​wiki/​ANSI_C#​C95

Wikipedia: ISO/IEC 9899:1999 (C99) (2021) https://​en.​wikip​edia.​org/​wiki/​
ANSI_C#​C99

Wikipedia: ISO/IEC 9899:2011 (C11) (2021) https://​en.​wikip​edia.​org/​wiki/​
ANSI_C#​C11

Wikipedia: Cluster analysis (2021) https://​en.​wikip​edia.​org/​wiki/​Clust​er_​analy​
sis#​Exter​nal_​evalu​ation

Wikipedia: tf-idf (2021) https://​en.​wikip​edia.​org/​wiki/​Tf-​idf
Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016) Hierarchical attention

networks for document classification. In: Proceedings of the 2016 confer-
ence of the North American chapter of the association for computational
linguistics: human language technologies, pp 1480–1489

Yu D, Yang G, Meng G, Gong X, Zhang X, Xiang X, Wang X, Jiang Y, Chen K, Zou
W, Lee W, Shi W (2021) SEPAL: Towards a large-scale analysis of SEAndroid
policy customization. In: Proceedings of the 30th The Web Conference
(WWW)

Zero0one1: Microsoft SS Issue (2021) https://​github.​com/​Micro​softD​ocs/​cpp-​
docs/​issues/​3366

Zhong H, Zhang L, Xie T, Mei H (2009) Inferring resource specifications from
natural language API documentation. IEEE/ACM Int Conf Autom Softw
Eng 2009:307–318

Zhong H, Su Z (2013) Detecting api documentation errors. In: Proceedings
of the 2013 ACM SIGPLAN international conference on Object oriented
programming systems languages & applications

Zhou Y, Wang C, Yan X, Chen T, Panichella S, Gall HC (2020) Automatic
detection and repair recommendation of directive defects in java API
documentation. IEEE Trans Softw Eng 46:1004–1023

Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall HC (2017) Analyzing apis
documentation and code to detect directive defects. In: 2017 IEEE/ACM
39th international conference on software engineering (ICSE), pp 27–37

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nvd.nist.gov/vuln/detail/CVE-2005-3346
https://nvd.nist.gov/vuln/detail/CVE-2005-3346
https://radimrehurek.com/gensim/
http://arxiv.org/abs/1908.10084
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://www.aclweb.org/anthology/N03-1028
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://github.com/lvtao-sec/Advance/tree/master/S-HAN/saved-models
https://github.com/lvtao-sec/Advance/tree/master/S-HAN/saved-models
https://wordnet.princeton.edu/
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library
https://www.iso-9899.info/wiki/The_Standard
https://www.iso-9899.info/wiki/The_Standard
https://en.wikipedia.org/wiki/ANSI_C#C89
https://en.wikipedia.org/wiki/ANSI_C#C89
https://en.wikipedia.org/wiki/ANSI_C#C90
https://en.wikipedia.org/wiki/ANSI_C#C90
https://en.wikipedia.org/wiki/ANSI_C#C95
https://en.wikipedia.org/wiki/ANSI_C#C95
https://en.wikipedia.org/wiki/ANSI_C#C99
https://en.wikipedia.org/wiki/ANSI_C#C99
https://en.wikipedia.org/wiki/ANSI_C#C11
https://en.wikipedia.org/wiki/ANSI_C#C11
https://en.wikipedia.org/wiki/Cluster_analysis#External_evaluation
https://en.wikipedia.org/wiki/Cluster_analysis#External_evaluation
https://en.wikipedia.org/wiki/Tf-idf
https://github.com/MicrosoftDocs/cpp-docs/issues/3366
https://github.com/MicrosoftDocs/cpp-docs/issues/3366

	The inconsistency of documentation: a study of online C standard library documents
	Abstract
	Introduction
	Background
	SS and API misuse
	C standard library
	Natural language processing
	Dependency parsing
	Part-of-speech (POS) tagging
	Coreference resolution
	Sentiment analysis

	Approach
	Overview
	Sentence completion
	Constituent completion
	Coreference resolution

	SS discovery
	Sentence embedding generation
	SS grouping

	Evaluation
	Implementation
	Experiment setting
	Dataset
	Platform

	Effectiveness
	Experiments for answering RQ1
	Experiments for answering RQ2

	Performance

	Discoveries
	Findings of the online C standard library documents
	The conformity with the C99 standard
	APIs and SSs of the documentation
	Issues of API prototype
	Issues of API SS
	Issues of web page display

	Suggestions for documentation maintainers

	Discussion
	Related work
	Conclusion
	Acknowledgements
	References

