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Abstract 

A forward-secure group signature (FSGS) ensures the unforgeability of signatures in the past time period despite 
signing secret key is leaked in the current time period. As we know, traditional FSGS schemes are mostly relying on 
number-theoretic assumptions unable to resist quantum attacks. Therefore, we present an efficient lattice-based 
fully dynamic (i.e. users can flexibly join or quit the group) forward-secure group signature (DFSGS) by combining an 
improved version of FSGS scheme proposed by Ling. Based on an efficient zero-knowledge argument, we construct 
argument of knowledge of the committed value and the plaintext that help with privacy protection. Our DFSGS 
scheme is proved to be anonymous and forward-secure traceable relying on short integer solution and learning 
with errors assumptions in random oracle model. Moreover, the lengths of group public key and signature of our 
DFSGS scheme have been improved, and the length of user secret key has no connection with the quantity of group 
members.
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Introduction
Group signature
With the rapid development of informatization, ordinary 
digital signatures can no longer meet the requirements 
of both authentication and privacy protection in the 
secure authentication protocol under the large environ-
ment of e-commerce and e-government. Subsequently, 
people began to research and construct other signature 
schemes that can meet some special requirements or 
properties on the basis of ordinary digital signatures. The 
group signature(GS) was formally proposed by Chaum 
and Van Heyst (1991) in 1991. Traditional group signa-
ture schemes usually require two properties: anonymity 
and traceability. Anonymity signifies that legal users sign 
the message representing the whole group, and the sign-
er’s identity is unknown to the verifier when verifying the 
validity of the signature. Traceability means that when a 
signature is disputed, the group manager could find out 

the signer’s identity through the tracing secret key. Then 
the stronger security of full anonymity and full traceabil-
ity was proposed by Bellare et al. (2003).

As we know, the initial group signature is static, that 
is, once the group system is established, new users can-
not join the group. If a new user needs to be added, the 
group system must reinitialize the group public key 
and signing secret key. Meanwhile, group systems often 
need to add new users frequently in practical applica-
tions. Therefore, static group signatures are unsuitable 
for practical applications. At the same time, static group 
signing schemes cannot revoke group members. In group 
signature schemes, it is a difficult problem to realize the 
revocation of group members. A group manager cannot 
prohibit revoked group member from continuing to sign 
with his secret key. Therefore, it is necessary to have an 
effective verification algorithm and group member revo-
cation mechanism, so that the signatures generated by 
the members that have not been revoked can pass the 
verification algorithm, while the signatures generated 
by the revoked members cannot pass the verification 
algorithm. Currently, the revocation methods of group 
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signature mainly include the following: (1) update all the 
keys; (2) dynamic accumulators(DA) based (Camenisch 
and Lysyanskaya 2002; Nguyen 2005); (3) verifier-local 
revocation(VLR) model (Boneh and Shacham 2004); (4) 
broadcast encryption(BE) based (Libert et  al. 2012a, b); 
(5) time period based update scheme of authorization 
(Song 2001). Among these methods, VLR has received 
wide attentions. VLR means that revocation messages 
are only sent to signature verifiers, who then checks the 
validity of the signature locally without contacting the 
individual signers when some user is revoked. Since then, 
many researchers had conducted in-depth research on 
dynamic group signatures (i.e. support joining and revo-
cation mechanisms). Most group signature schemes that 
consider both function and security, on the other hand, 
have an issue with inefficiency when group members join 
and be revoked. As a result, group signature researches 
based on traditional difficulty assumptions are focused 
on building an efficient group signature that takes both 
usefulness and security into account. In the mean-
time, the features of group signature make it applicable 
in many privacy protection scenarios such as anony-
mous electronic voting, electronic currency and trusted 
computing.

Related work
In the past, most group signatures were relied on the tra-
ditional difficulty assumptions such as large integer fac-
torization and discrete logarithms. In 1994, Shor (1994) 
proposed a quantum algorithm putting the security of 
traditional cryptographic schemes in jeopardy. Ajtai 
(1996) pioneered the proof that the difficulty of the lattice 
problem in the average case is the same as the difficulty 
in the worst case in 1996. This advancement establishes 
a theoretical foundation for the design of lattice-based 
cryptosystem. With the development of quantum com-
puting, traditional group signatures (Ateniese et al. 2000; 
Bellare et al. 2003; Boneh and Shacham 2004; Boneh et al. 
2004; Kiayias et al. 2004; Bellare et al. 2005; Kiayias and 
Yung 2006; Boyen and Waters 2006; Groth 2006; Boyen 
and Waters 2007; Groth 2007) based on number-theo-
retic assumptions can no longer resist quantum attacks. 
The lattice-based cryptosystem has gradually gained 
popularity as a research topic in the post-quantum cryp-
tographic era owing to its simple structure and security 
against quantum computing attacks.

Gordon et al. (2010) proposed the first lattice-based GS 
in Asiacrypt 2010. After that, some schemes have been 
proposed successively, which have improved efficiency. 
Many of them (Laguillaumie et al. 2013; Ling et al. 2015; 
Nguyen et  al. 2015) aim to make the key and signature 
smaller, varying from a linear relationship with the quan-
tity of group members to a logarithmic relationship, and 

then independent of the quantity of group members. 
Since users need flexibly join a group and group man-
ager should have the right to revoke illegal users when 
they are found to be misbehaving, group signature should 
support the dynamicity of group users joining and rev-
ocation mechanisms. In 2016, Libert et  al. (2016) con-
structed a GS with a joining mechanism, but does not 
support dynamic revocation of group users. The first fully 
dynamic GS from lattice was introduced by Ling et  al. 
(2017) which is based on Merkle hash tree. But it needs 
update the Merkle hash tree when revoking users and the 
calculation is more complicated and time-consuming. A 
GS scheme based on lattice that supports verifier-local 
revocation was put forward by Ling et al. (2018) in 2018. 
But it does not support the dynamic joining of group 
users.

Sometimes secret key leakage is unavoidable, but the 
loss caused by key leakage can be reduced using forward 
security technology. To ensure the signature’s security 
after signing secret key is leaked, Song (2001) proposed 
the first FSGS scheme. Ling et al. (2019) had constructed 
the first FSGS scheme based on lattice. But this scheme is 
a static group signature, and the secret key of time period 
is updated through the hierarchical structure of the 
Bonsai tree and node select algorithm. In 2020, Kansal 
et  al. (2020) put forward the first lattice-based dynamic 
forward-secure GS scheme. It includes an updating algo-
rithm based on Hamming weight of node select algo-
rithm. However, both of the member certificate and 
secret key need be updated, and the length of the public 
key and signature needs be further optimized.

To the best of our knowledge, there are few lattice-
based GS schemes achieve both dynamics and forward 
security which is provably secure in RO model.

Our contributions
Aiming at the problem of insufficient dynamic flexibility 
and inefficiency of the existing part of the work, we pro-
pose an efficient fully dynamic forward-secure group sig-
nature from lattice with the following contributions. 

1.	 Our DFSGS scheme achieves forward security while 
achieving dynamics to ensure security after the key 
is exposed. Compared with other dynamic group 
signature schemes, our DFSGS scheme is support-
ing forward security while the length of public key 
( Õ(�2 · d + � · L) ) and secret keys ( Õ(� · d3) ) are 
not increased much, where L and d are logarithmi-
cally related to the quantity of group members and 
the time periods, respectively. Moreover, the length 
of secret key has no connection with the quantity of 
group members.
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2.	 Due to the combination of efficient zero-knowledge 
arguments of knowledge for linear equations from 
Yang et al. (2019) which makes the soundness error 
of our scheme reach 1/poly, it can significantly reduce 
the times of repetition for the protocol. Thereby, we 
reduce the length of the signature and improve the 
protocol’s verification efficiency. Compared with the 
first lattice-based dynamic FSGS scheme (Kansal 
et  al. 2020), our DFSGS scheme’s length of group 
public key and signature has been greatly improved.

3.	 Our scheme supports to revoke members through 
verifier-local revocation. User’s revocation token 
will be changed when his secret key is updated, and 
the token in the revocation list will also be updated. 
If group member need to restore the user’s legal 
identity, just remove his revocation token from the 
revocation list. This also implies that a user can be 
revoked in time period t1 and regain the legal author-
ity in the time period t2(t2 > t1) without resetting 
the public key and secret key.

Application to internet of vehicles With the continuous 
development of the Internet of Vehicles (IoV), privacy 
protection has become more and more important. The 
DFSGS can achieve the privacy protection of vehicles in 
the vehicle network, and the dynamics of the group sig-
nature ensures the dynamic joining and revoking of vehi-
cles. The system model of the Internet of Vehicles mainly 
includes: Trusted Authority(TA), Road Side Unit(RSU) 
fixed on the roadside and On Board Unit(OBU) loaded 
on the vehicles. The TA has sufficient communication, 
computation and storage capacity and interacts with the 
RSUs. It is responsible for the registration and revoca-
tion of vehicle users, and also acts as the tracing manager 
when any abnormal behavior is detected. The RSUs act 
as the group manager and are responsible for managing 
the group consisting of vehicle users. The OBUs act as 
the vehicle users to represent the members in the group. 
In the stage of OBU joining the group, OBU submits its 
own identity information to the group manager, who sub-
sequently issues certificates and secret key to the vehi-
cle for authentication after passing. In the cooperation 
phase, the vehicle members use their own secret key to 
sign their information, and use inductive sensors to send 
it to nearby vehicle units to realize cooperative driving 
with the vehicle. In the message verification phase, other 
vehicles receiving the information judge whether the 
vehicle has been revoked according to the revocation list, 
and then check the validity of the message without know-
ing the true identity of the message sender, so as to real-
ize anonymous communication between vehicles. When 
a vehicle member publishes a false message that causes 
a traffic accident or a dispute, the tracing manager uses 

the tracing key to open the signature of the message and 
holds the corresponding vehicle member accountable. 
After that, the corresponding vehicle members will be 
added to the revocation list and be punished for a corre-
sponding time period. After waiting for the penalty time 
to expire, the group manager may consider to remove 
them from the revocation list and reset them as legal 
members (Fig. 1).

Preliminaries
Notations
In the whole paper, ||a|| denotes the l2-norm of a vector a , 
and ||b||∞ denotes the l∞-norm of a vector b . Let (a||b) 
denote two vectors’ horizontal concatenation, (A|B) 
denotes the concatenation of two matrices A ∈ R

n×m1 
and B ∈ R

n×m2 . [N] indicates the set of integer {1, . . . ,N } . 

For matrix In =







1 · · · 0
...

. . .
...

0 · · · 1







n×n

 and 

g = (1 2 . . . 2⌊log q⌉−1) , we define 

G = In
�

g =







1 2 ... 2⌊log q⌉−1 · · · 0
...

. . .
...

0 · · · 1 2 ... 2⌊log q⌉−1






 

where G is a matrix of n times m and m = n · ⌊log q⌉.

Lattice
Let linearly independent vectors bi ∈ R

n for i ∈ [m] and 
matrix B = [b1||...||bm] ∈ Z

n×m
q  . The n-dimension lattice 

generated by B is denoted by �(B) =
∑m

i=1 bixi : xi ∈ Z . 
The set of vectors {b1, . . . ,bm} represents a basis of �(B) 
and m is the rank of �(B).

The security proof of our DFSGS scheme relies on the 
lattice hard assumptions(SIS problem and LWE problem) 
defined below.

Definition 1  (SIS Problem Ajtai 1996; Gentry et  al. 
2008; Peikert 2015; Micciancio and Peikert 2013) For 
matrix A $← Z

n×m
q  , the SIS∞n,m,q,β problem is to find a 

non-zero vector e ∈ Z
m satisfying that A · e = 0 mod q 

and ||e||∞ ≤ β.

Let m, β = poly(n) , and for any q > β
√
n , the SIS∞n,m,q,β 

problem is at least as difficult as the worst-case SIVPγ 
problem for some γ = β · Õ(

√
n).

Definition 2  (LWE Problem Peikert 2015; Regev 
2009) LWEn,m,q,χ is parametrized by positive integers n, 
m ≥ 1 , q ≥ 2 and probability distribution χ . For s ∈ Z

n
q 

and χ , the distribution As,χ is obtained by sampling 
a

$← Z
n
q and e $← χ , it outputs the pair (a, c = a⊤ · s+ e) . 

When m vectors a are selected and e′ is selected from 
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the distribution χm , for s′ ∈ Z
n
q and A ∈ Z

n×m
q  , the 

LWE probability distribution can be expressed as 
As′,χm = (A,C = A⊤ · s′ + e′).

There are two kinds of LWE problems. The 
search− LWEn,m,q,χ problem refers to the problem of 
discovering the secret vector s given (A,C) , while the 
decision− LWEn,m,q,χ problem requires distinguishing 
the LWE sample from the uniform sample. The security 
of our scheme relies on the difficulty of the latter.

For q ≥ 2 , β ≥ √
nω(log n) and distribution χ , the 

LWEn,m,q,χ problem is as hard as SIVP
Õ(nq/β).

Lemma 1  (TrapGen Algorithm Alwen and Peik-
ert 2009)  Given positive integer n, q = poly(n) and 
m = O(n log q). This algorithm TrapGen(1n, 1m, q) out-
puts B ∈ Z

n×m
q  and its trapdoor TB for �⊥

q (B) satisfying 
B · TB = 0 mod q. The matrix B is uniformly distributed 
in Zn×m

q  and ||TB|| ≤ O(
√

n log q).

Lemma 2  (SampleD Algorithm Gentry et  al. 2008) 
Given a lattice �⊥(B) and its basis TB where B ∈ Z

n×m
q  

and TB ∈ Z
m×m
q . Let s ≥ ω(

√

log n) and u ∈ Z
n
q

. The algorithm SampleD(B,TB,u, s) which outputs 

x ∈ �u(B) sampled from the distribution DZm,s satisfying 
B · x = u mod q.

Lemma 3  (ExtBasis Algorithm Cash et  al. 2010) 
Given B′ ∈ Z

n×m′, a lattice �⊥(B) and its basis TB 
where B ∈ Z

n×m
q  and TB ∈ Z

m×m
q , there is a PPT algo-

rithm ExtBasis(TB,B|B′) which generates the basis 
TB|B′ of �⊥(B|B′) with ||TB|| = ||TB|B′ || satisfying 
(B|B′) · TB|B′ = 0 mod q.

Lemma 4  (RandBasis Algirithm Cash et al. 2010) There 
is a PPT algorithm RandBasis(B,TB, σ) which takes a 
basis TB of �(B) a parameter σ ≥ ||T̃B|| · ω

√

log n as 
input, returns a new basis T′

B of � with ||T′
B|| ≤ σ · √m

. If TB and T′
B are two different bases for the same � and 

σ ≥ max{||T̃B||, ||T̃′
B||} · ω(

√

log n), the bases TB and T′
B 

are statistically close.

Bonsai tree signature scheme and node select algorithm
Bonsai tree: Bonsai tree can also be called a hierarchy 
of trapdoor functions. In a lattice-based instantiation of 
Bonsai tree, the root node constructed by a lattice can 
generate a new lattice with lager dimension as the branch 
node of next level and its basis. The growth from root to 
branch includes undirected growth without trapdoor and 

Fig. 1  IoV model
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controlled growth with trapdoor. The controlled growth 
also requires extending control and randomizing con-
trol. Extending control extends the basis TA of �⊥

q (A) to 
the basis TA′ of �⊥

q (A
′) with larger dimension without 

increasing the norm. Randomizing control ensures that 
TA and TA′ are independent of each other.

Bonsai tree is widely used in signature schemes. The 
bonsai tree signature scheme (Cash et al. 2010) is given 
as follows. 

	Setup.	Take security parameter � as input, n = O(�) , 
m = O(n log q) and integer q = poly(n) . 
Set l be message’s length, m̃ = m(l + 1) and 
s = O(

√

n log q) · ω(log n).
	KeyGen.Run algorithm TrapGen to obtain (A0, S0) with 

||S0|| ≤ O(
√

n log q) . Sample Ab
i

$← Z
n×m
q  for 

b ∈ {0, 1} and i ∈ [l] . Output verification public key 
vk = (A0,A

b
i ) , secret key sk = S0.

	Sign.	 Let message µ = (µ1, . . . ,µl) ∈ {0, 1}l ,Aµ =
(A0|A

µ1

1
|...|A

µl

l
) . 

 The signer outputs signature σ.
	Verify.	If σ  = 0 , ||σ || ≤ s

√
m̃ and Aµ · σ = 0 mod q , 

return true. Otherwise, return false.

Node select algorithm: For each user, there is a binary tree 
which represents the composition of the time period. Each 
leaf node represents the time period of each key. Assume 
that the maximum lifetime is partitioned into T = 2d 

σ ← SampleD(ExtBasis(S0,Aµ), 0, s).

discrete periods for d ∈ Z
+ . These time periods are rep-

resented using a binary tree which are associated with 
leaf node where time period t ∈ {0, 1, 2, . . . ,T − 1} , and 
each node of the binary tree at depth k is associated with 
a binary number z of length k − 1 . Following (Boyen et al. 
2006), we define the node’s “second sibling at depth k” 
sibling(k, t) for k ∈ [1, d + 1] and t ∈ [0,T − 1] as follows.

From depth 1 to d+1, we sequentially number the nodes 
from 0 and increase by 1 with binary from left to right. For 
the target leaf node t, we can figure out the path nodes from 
the leaf node to the root node. For each path node from 
depth 1 to d, if it exits right neighbor, then set sibling(k, t) 
to its corresponding number, and set sibling(k , t) = ⊥ , 
otherwise. Finally, set sibling(d + 1, t) = Bin(t) and gen-
erate the node set Nodes(t→T−1) which is composed of 
{sibling(k , t)} . Then we can generate all path nodes after 
the current time period by node set (Fig. 2).

Efficient lattice‑based zero‑knowledge arguments
The basic protocol
In an efficient zero-knowledge argument of 
knowledge(ZKAoK) (Yang et al. 2019), which has the quad-
ratic constraints, it has standard soundness and soundness 
error 1/poly, which is much smaller than the soundness 
error 2/3 of stern-type protocol.

Define m, n, l and θ be positive integers, respectively, q 
be prime number, C be challenge space. Define matrix 
A ∈ Z

n×m
q  , vector x ∈ Z

n
q , y ∈ Z

m
q  , and M is represented as 

a collection of l 3-tuples, each containing three integers in 
the range [1, n]. The relation R as follows:

Fig. 2  For example, there is a tree with 23 = 8 leaves representing 8 time periods. For each level in the path of the target node (010) which stands 
for time periods T = 2 , we add its right sibling to the set Nodes(2→7) . Then we have Nodes(2→7) = {(1)⊤ ,⊥, (011)⊤ , (010)⊤}
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The following is a description of the basic ZKAoK pro-
tocol. Firstly, the verifier receives the vector t = A · r 
sent by prover. Then the prover computes z = α · x + r 
to the verifier where α ∈ C is sampled by the verifier. 
Finally, the verifier determines whether the condition 
A · z = α · y + t is met. As for proving quadratic con-
straints over the witnesses, it can be transform into prove 
that the quadratic polynomial is linear in α . Furthermore, 
the homomorphic commitment scheme is employed to 
hide information about witness.

The basic protocol can transform into non-
interactive zero-knowledge arguments of 
knowledge(NIZKAoK) via Fiat-Shamir transform and 
reach negligible soundness error by repetition. The 
increase in completeness error caused by repeating 
protocol is avoided by rejecting sampling techniques. 
The specific construction of protocol and security 
proof follows directly from Yang et  al. (2019) relying 
on the SIS and LWE assumptions, and we omit the 
details here.

Our zero‑knowledge AoK of committed values
We construct an AoK of committed values for the 
commitment scheme. There is a ZKAoK that proves 
the knowledge of

that satisfies the following relation:

where A′,A′′,B ∈ Z
n×m
q  and c1, c2 ∈ Z

n
q.

We define w′
1 = w1 + θ1 , w′

2 = w2 + θ1 , s′ = s+ θ1 
and e′ = e+ θ2 where θ1 = (θ θ ... θ) ∈ Z

m
q  and 

θ2 = (θ θ ... θ) ∈ Z
n
q . For vectors w′

1 , w′
2 , s′ and 

e′ , we use vector decomposition techniques to 
decompose them into binary representations. Let 
g = (⌊(2θ + 21−1)/21⌋||...||⌊(2θ + 2k−1)/2k⌋) where 
k = ⌊log 2θ⌋ + 1 , and define the gadget matrices 
G1 = Im

⊗

g and G2 = In
⊗

g.
Therefore, vectors w′

1 , w
′
2 , s

′ and e′ can be repre-
sented as binary vectors ŵ1 , ŵ2 , ŝ1 and ê1 which satisfy 
that w′

1 = G1 · ŵ1 , w′
2 = G1 · ŵ2 , s′ = G1 · ŝ1 and 

e′ = G2 · ê1 . Finally, we set A =
(

A′G1 A′′G1 0 0
0 0 BG1 G2

)

 , 

R = {(A, y,M), (x) : A · x
= y ∧ ∀(h, i, j) ∈ M, x[h]
= x[i] · x[j]}.

{w1,w2, s ∈ Z
m
q , e ∈ Z

n
q; ||w1||∞, ||w2||∞, ||s||∞ ≤ θ}

A′ · w1 + A′′ · w2 = c1 mod q

B · s+ e = c2 mod q

x = (ŵ⊤
1 ŵ⊤

2 ŝ⊤1 ê⊤1 )
⊤,y =

(

c1 + (A′ + A′′) · θ1
c2 + B · θ1 + θ2

)

 and 

M = {(h, h, h)}h∈[1,(3m+n)·k] . The new form (A, x, y,M) 
is the same as original relation. Therefore, we can 
prove knowledge of secret committed values satisfying 
correlation equations.

Our zero‑knowledge AoK of plaintext
Here, we introduce a ZKAoK of the plaintext for the 
encryption scheme from Yang et al. (2019). Let l1 , l2 and 
L be positive integers. Define the relation Renc as follows.

We convert relation Renc to relation R by following these 
steps. First, we define vectors θx = (θ θ ... θ)⊤ ∈ Z

l2
q  , 

θy = (θ θ ... θ)⊤ ∈ Z
l1
q  , θ z = (θ θ ... θ)⊤ ∈ Z

L
q and 

define r′ = r + θx , e′1 = e1 + θy and e′2 = e1 + θ z . 
According to the binary decomposition method, 
for integer a ∈ [0, 2θ ] , there is a set of sequences 
θ1, θ2, ..., θp in which 

∑p
j=1 ujθj = a , where 

u = (u1 u2 ... uj) ∈ {0, 1}p, p = ⌊log 2θ⌋ + 1, θ1 = ⌈θ/2⌉,
θ2 = ⌈(θ − θ1)/2⌉, θ3 = ⌈(θ − θ1 − θ2)/2⌉, ..., θp = 1.

Next, we convert vectors r′ , e′1 , e
′
2 to binary vectors r̂ , 

ê1 , ê2 by binary decomposition. Let g = (θ1||θ2||...||θp) 
and define gadget matrices G1 = Il2

⊗

g , G2 = Il1
⊗

g , 
G3 = IL

⊗

g which satisfy G1 · r̂ = r′ , G2 · ê1 = e′1 , 
G3 · ê2 = e′2.

Finally, we set A =
(

B1 ·G1 G2 0 0
B2 ·G1 0 G3 ⌊q/2⌉ · IL

)

 , 

x = (r̂⊤ ê⊤1 ê⊤2 w⊤)⊤ , y =
(

c1 + B1 · θ1 + θ2

c2 + B2 · θ1 + θ3

)

 and 

M = {(h, h, h)}h∈[1,(l1+l2+L)·k+L] . Similarly, we can prove 
knowledge of secret plaintext satisfying correlation 
equations.

Dynamic forward‑secure group signature
Definition
A fully DFSGS scheme is composed of eight algorithms 
(GSetup,GKgen, 〈GUJoin,GIssue〉,GSign,GRevoke,
KeyUpdate,GVerify,GOpen) described as follows:

GSetup(� ) → pp . On input � , this algorithm outputs 
public parameter pp.

GKgen(pp ) → ((msk,mpk),(tsk,tpk)). On input pp, 
group manager GM generates group manager’s key pair 
(msk,  mpk), and tracing manager TM generates tracing 

Renc = {(B1,B2, c1, c2), (r, e1, e2,w)

∈ (Zl1×l2
q × Z

L×l2
q × Z

l1
q × Z

L
q)× (Zl2

q × Z
l1
q × Z

L
q × {0, 1}L) :

||r||∞, ||e1||∞, ||e2||∞ ≤ θ ∧ B1 · r + e1 = c1

∧ B2 · r + e2 + ⌊q/2⌉ · w = c2}.
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manager’s tracing key pair (tsk, tpk). GM initializes regis-
tration table reg, revocation list RL and token list TL. We 
define the group public key gpk = (pp,mpk , tpk).
〈 GUJoin(tokensk,t) → (cert,uskt[i]),GIssue(gpk,msk,t) 

→ reg 〉 . The interactive protocol is performed by the 
GM and user. A new user i first generates revoca-
tion tokensk at time period t. If the protocol ends suc-
cessfully, GM generates user’s secret key uskt [i] and 
certificate for an identify id and revocation token tokeni,t , 
and sends uskt [i] and group membership certificate 
cert = (certindex, certtoken, id, tokeni,t) to the group user. 
Finally, GM updates registration table reg.

GRevoke(gpk,RLt,TLt,t) → ( (RLt)new,(TLt)new ). GM is 
in charge of executing this algorithm. GM adds the revo-
cation tokeni,t and tokensk to the revocation list RLt and 
token list TLt , respectively, then it updates revocation list 
and token list to (RLt)new and (TLt)new at time period t.

KeyUpdate(gpk,uskt[i],tokeni,t,RLt,TLt,t+1) → 
(uskt+1[i], tokeni,t+1,RLt+1,TLt+1) . The algorithm is 
operated by user and GM to update uskt [i] , tokeni,t , RLt 
and TLt from time period t to t + 1.

GSign(gpk,uskt[i],M,t) →
∑

 . On input gpk, signing 
secret key uskt [i] and time period t, it returns 

∑

 as a sig-
nature of message M.

GVerify(gpk,RLt,M,
∑

,t) → 0/1. This algorithm is run 
by verifier to determine whether the signer has been 
revoked and the signature’s validity, and outputs 1 if the 
signature is legitimate and 0 otherwise.

GOpen(gpk,tsk,M,
∑

 ) → id. TM is in charge of execut-
ing this algorithm. It outputs the signer’s identity id if the 
signature 

∑

 is valid, and outputs ⊥(false) otherwise.

Security requirements
The security of DFSGS scheme requires correctness, full 
anonymity and forward-secure traceability. Correctness 
includes verification correctness and opening correctness. 
Verification correctness demands the signature produced 
by a legal user should pass the verification algorithm while 
opening correctness requires that a valid signature should 
be traced by TM to reveal the real signer’s identity. Full 
anonymity means that anyone who receives a signature 
cannot identify which signer generated the signature on 
challenged message, and adversary A could query the 
opening of any signatures. Forward-secure traceability 
requires that even if the adversary A could corrupt tracing 
manager’s secret key as well as some of the users, A can-
not generate a legal signature which could be traced back 
to a non-corrupted user, or a corrupted user but the sig-
nature had been produced before this user was corrupted.

•	 AddU(i): Add an honest user i into the list HUL 
whose signing secret keys are generated honestly.

•	 CrptU(i): Choose a new user i corrupted by adver-
sary A and add i to the list CUL storing corrupted 
users.

•	 SenToGM(i,Min) : This interactive protocol is carried 
out collaboratively by the corrupted user i and the 
legitimate GM.

•	 SenToUser(i,Min) : This interactive protocol is car-
ried out collaboratively by the corrupted GM and the 
legitimate user i.

•	 AlterReg(i, val): Alter the registration table informa-
tion regi to a specific value val chosen by A.

•	 ReadReg(i): A obtains the registration information 
regi of group.

•	 RevealU(i, t): Sent the user’s secret key to A and add 
i to BUL which means that its signing secret key is 
sent to A at time t.

•	 RevealRT(i, t): Sent the user’s revocation token to A 
and add the user i to UTL at time t which means that 
its revocation token is sent to A.

•	 Sign(i, M, t): A receives a signature 
∑

 on message M 
from an honest user i at time t and adds it to list SL.

•	 Chalb(i0, i1,M, t) : Return a signature for given mes-
sage M signed by user ib for b ∈ {0, 1} at time t and 
adds the challenge signature to list CL. Moreover, 
both of i0 , i1 are honest and active at time t. Specially, 
this oracle could only be invoked once.

•	 Revoke(i,  t): A could specify any user and request 
to be revoked. Then, add revoked user’s revocation 
tokeni,t to list RL at time t.

•	 UpdateK(info,  t): Update info including all of the 
secret keys of user and revocation tokens from time 
t − 1 to t.

•	 Open(M,
∑

, t) : A can obtain the user’s identity who 
generates a signature 

∑

 at time t, and the signature 
∑

/∈ CL.
•	 IsActive(i, reg,  t): This algorithm checks whether the 

user i is registered in the group at time t and returns 
either 0 (indicating illegal user) or 1 (indicating legal 
user).

Given security parameter � and time period T, the follow-
ing is our definition of security experiments.

Definition 3  (Correctness) A DFSGS scheme is cor-
rect if all PPT adversaries A have at most a negli-
gible advantage winning the correctness game that 
AdvCorrDFSGS,A = Pr[ExpCorrDFSGS,A(�,T ) = 1] in experiment 
ExpCorrDFSGS,A(�,T ).
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Correctness: ExpCorrDFSGS,A(�, T )

(gpk,msk, tsk, uskt) ← GKgen(�, T );HUL ← ∅.

(i,M) ← A
AddU,ReadReg,Revoke(gpk).

uskt [i] ← KeyUpdate(gpk, uskt−1[i], tokeni,t , RLt−1, t).

If i /∈ HUL or uskt [i] = ⊥ or IsActive(i, regi , t) = 0 , output 0.
∑

← GSign(gpk, uskt [i],M, t).

Output 1 if GVerify(gpk, RLt ,M,
∑

, t) = 0 or GOpen(gpk, tsk,M,
∑

) = j 
and j  = i,

else output 0.

Definition 4  (Full Anonymity) A DFSGS scheme is 
anonymous if all PPT adversaries A have at most a neg-
ligible advantage winning the anonymity game that 
AdvAnonDFSGS,A = Pr[ExpAnon−1

DFSGS,A(�,T ) = 1] − Pr[ExpAnon−0
DFSGS,A

(�,T ) = 1] = 1 in experiment ExpAnon−b
DFSGS,A(�,T ).

Full Anonymity: ExpAnon−b
DFSGS,A(�, T )

(gpk,msk, tsk, uskt) ← GKgen(�, T );HUL, CUL, BUL, CL, SL,UTL ← ∅.

b∗ ← A
AddU,CrptU,RevealU,SenToUser ,Open,AlterReg,UpdateK ,Chalb (gpk).

Output b∗.

Definition 5  (Forward-secure Traceability) A DFSGS 
scheme is forward-secure traceable if all PPT adver-
saries A have at most a negligible advantage win-
ning the forward-secure traceability game that 
AdvFS−Trace

DFSGS,A = Pr[ExpFS−Trace
DFSGS,A (�,T ) = 1].

Forward-secure Traceability: ExpFS−Trace
DFSGS,A(�, T )

(gpk,msk, tsk, uskt) ← GKgen(�, T );HUL, CUL, BUL, SL,UTL ← ∅.

(t∗ ,M∗ ,
∑∗

) ← A
AddU,CrptU,RevealU,SenToGM,Open,AlterReg,UpdateK ,Revoke(gpk, tsk).

If GVerify(gpk, RLt∗ ,M∗ ,
∑∗

, t∗) = 0 or 
∑∗ ∈ SL , then output 0.

i∗ ← GOpen(gpk, tsk,M∗ ,
∑∗

).

If i∗ /∈ BUL or i∗ ∈ BUL and A only queried uskt [i∗] for t > t∗ , then 
output 1, else output 0.

Our dynamic forward‑secure group signature 
from lattice
The core construction of our DFSGS scheme is to imple-
ment base extension by combining bonsai tree signature 
and node select algorithm to achieve key update to satisfy 
forward security. The revocation function is implemented 
by generating a revocation token and then using the ver-
ifier-local revocation method. Finally, ZKAoK is con-
structed according to the relevant conditions.

Let N an anticipated number of prospective users, e.g. 
N = 2L for L ∈ Z

+ , and T maximum time periods, e.g. 
T = 2d for d ∈ Z

+ . Our DFSGS scheme consists of several 
algorithms as shown below.

GSetup(� ). Take security parameter � as input, select 
n = O(�) , q = poly(n) , k = ⌈log q⌉ , m = 2nk and 
m′ = 2(n+ L)k . Let p = poly(�) , κ = �/ log p and col-
lision resistant hash function H1 : {0, 1}∗ → [−p, p]κ . 
Define G = In

⊗

(1 2 ... 2k−1) . For every vec-
tor b ∈ Z

n
q , it can be expressed as b = G · bin(b) , 

where bin(b) ∈ {0, 1}nk . Select Gaussian parameters 
si = O(

√

nk log q)i+1 · ω(
√

log n)i+1 to generate bases 
or sample vectors for i ∈ {0, 1, . . . , d} and integer bound 
β = ⌈sd+1 · log n⌉ . Finally, output public parameters

GKgenGM,TM(pp) . The algorithm initializes the keys of 
group manager GM and tracing manager TM. Subse-
quently, GM outputs the group public key.

GKgenGM(pp)
 : 

1.	 Run algorithm TrapGen to get A0 ∈ Z
n×m
q  and 

S0 ∈ Z
m×m
q  . Define mpk = A0 and msk = S0.

2.	 Sample e $← Z
n
q , A1 , A2 , B

$← Z
n×m
q  and Ab

j

$← Z
n×m
q  

for b ∈ {0, 1} and j ∈ [d].

GKgenTM(pp) : 

1.	 Sample D0
$← Z

n×m′
q  and for each i ∈ {1, 2} , sample 

Si
$← {0, 1}L×n , Ei

$← {0, 1}L×m′.
2.	 Compute D1 = S1 ·D0 + E1 , D2 = S2 ·D0 + E2 , set 

tsk = S1 , tpk = (D0,D1,D2) and send tpk to GM.

Then, GM initializes the counter of registered users 
to be c = 0 , the revocation list RL = ∅ , the token list 
TL = ∅ and outputs

〈 GUJoin(tokensk,t),GIssue(gpk,msk,t) 〉 . The user who 
has a personal key pair (pusk, pupk) registered in the PKI 
interact with GM as follows. 

1.	 The user samples tokensk = xi ∈ Z
(d+2)m
q  . Then user 

generates sigi = Sigpusk(xi) by normal digital signa-
ture, and send (sigi, xi) to GM.

2.	 GM receives the user’s requisition to join the group 
and checks the legitimacy of sigi with pupk. The 
value c is the counter of current users in the group, 
which is initially 0 and increases by 1 when a new 
user joins the group. If the signature is valid, GM sets 
id := c ∈ [0, 2L − 1] as the member identifier for the 
user. Then, GM generates the certificate for the index 
certindex = Sign(msk , id) and increases the counter 

pp = {�, n,m,m′, q, L, d, s0, . . . , sd}.

gpk = (pp,A0,A1,A2,A
0
1,A

1
1, ...,A

0
d ,A

1
d ,B,D0,D1,D2, e).
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c := c + 1 . The node set should be determined as fol-
lows. For z ∈ Nodes(0→T−1) , we set usk0[i][z] = ⊥ if 
z = ⊥ . Else, we use dz represent the length of z with 
dz ≤ d , and define the matrix 

    If dz = d , it generates a vector vi,z ∈ Z
(d+2)m by 

 and set usk0[i][z] = vi,z .    If 1 ≤ dz < d , it generates 
a matrix Si,z ∈ Z

(dz+2)m×(dz+2)m by 

 and set usk0[i][z] = Si,z .       The user secret key is 
usk0[i] = {usk0[i][z], z ∈ Nodes(0→T−1), id, xi}   . 
Then, run KeyUpdate algorithm to get 
uskt [i] = {uskt [i][z], z ∈ Nodes(t→T−1), id, xi}   , 
and revocation token is tokeni,t = Ai,t · xi where 
Ai,t represents Ai,z when dz = d at period t. 
GM generates the certificate for the token 
certtoken = Sign(msk , tokeni,t) . Finally, GM sends the 
certi = (certindex, certtoken, id, tokeni,t) to the user and 
updates the registration table reg.

GRevoke(gpk,RLt,TLt,t). GM publishes RL at the begin-
ning of each period, marking users who have been 
revoked from this period. To revoke a group member 
Useri , GM adds tokeni,t directly into the revocation 
list RLt at period t where t ∈ [0,T − 1] and updates 
RLt = RLt ∪ tokeni,t and TLt = TLt ∪ xi . Then GM pub-
lishes the revocation information RLt.

KeyUpdate(gpk,uskt[i],tokeni,t,RLt,TLt,t+1). Parse 
the set uskt [i] = {uskt [i][z], z ∈ Nodes(t→T−1), id, xi} 
and determine the set Nodes(t+1→T−1) . If 
z′ ∈ Nodes(t+1→T−1) = ⊥ , set uskt+1[i][z′] = ⊥ . Else, 
there is a z ∈ Nodes(t→T−1) as a prefix of z′ = z||h . The 
following are two scenarios. 

1.	 If z′ = z (i.e. h is empty), then 
uskt+1[i][z′] = uskt [i][z].

2.	 If z′ = z||h (i.e. h is non-empty), it can delegate the 
basis in following two subcases.    If dz′ = d , then run 

 and set uskt+1[i][z′] = vi,z′ .    If dz′ < d , it computes 
a matrix Si,z′ by 

 and set uskt+1[i][z′] = Si,z′.
The updated key is uskt+1[i] = {uskt+1[i][z′], z′
∈ Nodes(t+1→T−1), id, xi} . At the same time, the user 
needs update tokeni,t to tokeni,t+1 and GM also needs 

Ai,z = [A0|A1 + idA2|Az[1]
1

|...|Az[dz ]
dz

] ∈ Z
n×(dz+2)m
q .

vi,z ← SampleD(ExtBasis(S0,Ai,z), e, sd),

Si,z ← RandBasis(ExtBasis(S0,Ai,z), sdz ),

vi,z′ ← SampleD(ExtBasis(Si,z ,Ai,z′), e, sd),

Si,z′ ← RandBasis(ExtBasis(Si,z ,Ai,z′), sd′z ),

update RLt to RLt+1 . For xi ∈ TLt , GM computes 
tokeni,t+1 = Ai,z′ · xi where dz′ = d , and publishes RLt+1

.
GSign(gpk,uskt[i],M,t). Based on the node set 

Nodes(t→T−1) , we can find a z satisfying z = bin(t) 
and uskt [i][z] = vi,z . The user signs a message M using 
uskt [i] = {vi,z , bin(id), xi} as follows. 

1.	 For each j ∈ {1, 2} , sample rj
$← {0, 1}m′ , e0

$← χm , 
ej,1

$← {0, 1}n , ej,2
$← {0, 1}L and compute 

2.	 Generate a NIZKAoK 
∏

gs to demonstrate the pos-
session of tuple 

 satisfying that: 1) (c1,1, c1,2) and (c2,1, c2,2) are 
two legitimate ciphertexts of identity id; 2) 
Ai,z · vi,z = e mod q and ||vi,z||∞ ≤ β ; and 3) 
w = B⊤ · Ai,t · xi + e0 mod q . The ZKAoK for 
the encryption scheme to handle statement 1) 
was mentioned in section "The basic protocol". 
The matrix Ai,z can be represented as [Aid |Az] , 
so the form Ai,z · vi,z = e can be expressed as 
Aid · v1 + Az · v2 = e . To protect the anonym-
ity of the user, the matrix Aid cannot be disclosed. 
Therefore, we convert Aid = [A0|A1 + idA2] to 
A′ = [A0|A1|A2|2A2|...|2L−1A2] = [A0|A1|gL

⊗

A2] 
and Aid · v1 can be expressed as 
[A0|A1|gL

⊗

A2] · (v1,1, v1,2, bin(id)
⊗

v1,2) . The 
statements 2) and 3) were covered by ZKAok for 
committed values mentioned in section "Our 
zero-knowledge AoK of committed values". Then, 
we convert all of the conditions into the equa-
tion Â · x̂ = ŷ where Â, ŷ are public and x̂ is secret. 
Finally, the protocol is repeated κ = �/ log p 
times to ensure negligible soundness error and 
make it non-interactive via Fiat-Shamir trans-
form as a triple 

∏

gs = ((αi)
κ
i=1, (RSPi)

κ
i=1) where 

(αi)
κ
i=1

= H1(M, {Cauxi
}κ
i=1

, Â, ŷ,M,w, c1,1, c1,2, c2,1, c2,2, t)

∈ [−p, p] and Cauxi is computed according to 
the commitment scheme aCommit from Yang 
et  al. (2019). Finally, output the signature 
∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2).

GVerify(gpk,RLt,M,
∑

,t). The following is how the algo-
rithm works. 



























Ai,z · vi,z = e mod q

w = B⊤ · tokeni,t + e0 mod q
c1,1 = D0 · r1 + e1,1
c1,2 = D1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)
c2,1 = D0 · r2 + e2,1
c2,2 = D2 · r2 + e2,2 + ⌊q/2⌉ · bin(id)

ξ = (vi,z , xi, r1, r2, e1,1, e1,2, e2,1, e2,2, id)
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1.	 Run the verification phase of the NIZKAoK to check 
the proof 

∏

gs . If any of the conditions fails, output 0.
2.	 Check the revocation list RLt . For tokenj,t ∈ RLt , 

compute w′ = w − B⊤ · tokenj,t which is w′ = B
⊤

(tokeni,t − tokenj,t)+ e0 . If tokeni,t = tokenj,t and 
||w′||∞ ≤ β , it proves that the signer has been 
revoked. In this case, output 0.

3.	 Output 1.

GOpen(gpk,tsk,M,
∑

 ). Check the signature’s legitimacy 
before proceeding with the steps below. 

1.	 Use S1 to decrypt id by computing b = ⌊ c1,2−S1·c1,1
q/2 ⌉.

2.	 Compute the identity id =
∑L

l=1 2
l−1 · b[l] and out-

put the identity.

Security analysis
Correctness
For each tokenj,t ∈ RLt , compute w

′ = w − B
⊤

tokenj,t = B
⊤(tokeni,t − tokenj,t)+ e0 . If there is 

a revocation token such as tokeni,t = tokenj,t and 
||w′||∞ ≤ β , it means that the verification fails, and 
the signature is rejected. Due to the completeness of 
the argument of knowledge, the valid signature 

∑

 is 
always accepted by algorithm GVerify. As for open-
ing correctness, the algorithm GOpen computes 
b = c1,2 − S1 · c1,1 = E1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)− S1 · e1 . For 
l ∈ [1, L] , it sets b[l] = 1 if b[l] is closer to ⌊q/2⌉ than to 0 
and b[l] = 0 otherwise. Finally, it converts binary b to an 
integer id.

Full anonymity

Theorem 1  In the RO model, our DFSGS scheme is fully 
anonymous under the LWE assumption.

Proof  Define the challenger and adversary role of C and 
A , respectively. A sequence of indistinguishable games 
will be used to prove this theorem. In game i, let Wi 
denote the adversary’s output.

Game 0 :	� We define the experiment ExpAnon−0
DFSGS,A(�,T ) 

as original game. Challenger C obtains the 
group public key, member certificate, exist-
ing group user’s secret key, tracing pub-
lic key according to the scheme and sends 
them to adversary A . C initializes the revo-
cation list RL = ∅ , registration query list 
RU, corruption user list CL and revocation 

token query list UTL. In the query stage, 
A can query for the signature of any mes-
sage of any user, open the query of the sig-
nature on the corresponding message and 
update RU, CL, UTL. In the challenge 
phase, A sends message M∗ along with 
two users i0,i1 ∈ [N ] , i0,i1 /∈ CL ∪ UTL and 
tokeni0 , tokeni1 /∈ RL . C sends back a signature 
∑∗ = (

∏∗
gs
,w∗, c∗

1,1
, c∗

1,2
, c∗

2,1
, c∗

2,2
) ← GSign

(gpk ,uskt∗ [i0],M∗, t∗) . A can still perform 
signature query, secret key query, open-
ing query and revocation token query 
about ib  = {i0, i1} . In the end, A returns 
b∗ = 1 for the conjecture of ib . We have 
Pr[W0 = 1] = Pr[ExpAnon−0

DFSGSA(�,T ) = 1].
Game 1 :	� This game is completely consistent with 

Game 0 aside from adding S2 to tsk 
instead of erasing it. This change makes 
no difference to Game 0 in A ’s view. So 
Pr[W1 = 1] = Pr[W0 = 1].

Game 2 :	� This game is completely consistent with 
Game 1 aside from the open oracle opens sig-
natures using the S2 instead of using real tsk 
S1 . It is clear that A ’s perspective will remain 
unchanged from Game 1 until incident F1 
happens that A queries the opening of a sig-
nature 

∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2) which 
encrypts distinct bit strings. Since F1 breaks 
the soundness of the argument system 

∏

gs , 
|Pr[W2 = 1] − Pr[W1 = 1]| ≤ Pr[F1] ≤ Advsound∏

gs
= negl(�).

Game 3 :	� This game follows Game 2 aside from C 
replaces the legitimate proof with a simu-
lated proof without using the witness. Game 
3 and Game 2 are statistically indistinguish-
able from each other from the perspec-
tive of A since the argument system is sta-
tistically zero-knowledge. For this reason, 
Pr[W3 = 1] ≈ Pr[W2 = 1].

Game 4 :	� In this game, we compute (c∗1,1, c
∗
1,2) by 

encrypting the binary representation of i1 
while (c∗2,1, c

∗
2,2) still encrypt i0 . The seman-

tic security of our encryption scheme 
with respect to (D0,D1) (which is implied 
by the LWE assumption) ensures that 
|Pr[W4 = 1] − Pr[W3 = 1]| = negl(�).

Game 5 :	� This game is completely consistent with 
Game 4 with one modification that we 
switch back to use S1 for open oracle. Obvi-
ously, the view of A ’s will remain unchanged 
unless incident F2 that A queries the open 
oracle for 

∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2) 
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which encrypts distinct strings. By reason of 
F2 violates the simulation soundness of the 
protocol, we have |Pr[W5 = 1] − Pr[W4 = 1]|
≤ Pr[F2] ≤ Advsim∏

gs
= negl(�).

Game 6 :	� This game is completely consistent with game 
5 aside from we change (c∗2,1, c

∗
2,2) by encrypt-

ing the binary representation of i1 . By the 
semantic security of the encryption scheme 
for (D0,D2) , A is unaffected by this change. 
Since we are now using S1 for open oracle, 
changing (c∗2,1, c

∗
2,2) has no effect on A ’s view. 

Hence, |Pr[W6 = 1] − Pr[W5 = 1]| = negl(�).
Game 7 :	� This game is totally coequal with 

Game 6 aside from the C replaces 
the initial revocation token. We have 
w = B⊤ · tokeni,t + e0 mod q . C sam-
ples v

$← Z
n
q uniformly and com-

pute w = B⊤ · v + e0 mod q . Thus, 
Pr[W7 = 1] ≈ Pr[W6 = 1].

Game 8 :	� In this game, the challenge C samples w uni-
formly. Since the pair (B,w) is an LWEn,m,q,χ 
instance, C replaces w with uniformly sam-
pled w′ $← Z

m
q  , Pr[W8 = 1] ≈ Pr[W7 = 1].

Game 9 :	� This game is totally coequal with Game 8 
aside from that replace the simulated proof 
with a real proof 

∏

gs∗ using the witnesses 
i.e. replace the simulated transcript by a real 
transcript. Due to the statistical zero-knowl-
edge property of argument system 

∏

gs∗ , 
the two transcripts are indistinguishable. 
Thus, we have Pr[W9 = 1] ≈ Pr[W8 = 1] . 
In this instance, the view of the A is the 
same as the experiment ExpAnon−1

DFSGS,A(�) . So 
Pr[W9 = 1] = Pr[ExpAnon−1

DFSGS,A(�) = 1].

Finally, we have |Pr[ExpAnon−1
DFSGS,A

(�) = 1] − Pr[ExpAnon−0
DFSGS,A

(�) = 1]| = negl(�) . Thereby, our scheme is proved anony-
mous by these games.

Forward‑secure traceability

Theorem 2  In the RO model, our DFSGS scheme is for-
ward-secure traceable under the SIS assumption.

Proof
Assume that adversary A could break the forward-secure 
traceability of our scheme with non-negligible probability, 
there is a adversary B can solve the SIS∞n,m̄,q,2β problem 
with non-negligible probability as well. �

Given a matrix Ā ∈ Z
n×m̄
q  , B is required to discover a 

non-zero vector v̄ ∈ Z
m̄
q  satisfying that Ā · v̄ = 0 mod q 

and ||v̄||∞ ≤ 2β . Simulating the view of the adversary 
A attacking the forward-secure traceability, B con-
structs an algorithm that outputs a valid v̄ satisfying 
Ā · v̄ = 0 mod q and ||v̄||∞ ≤ 2β . 

Setup:	Define matrix Ā = [Ā0|Āi|Ā1|...|Ād] for 
Āj ∈ Z

n×m
q  , j ∈ {0, i, 1, 2, ..., d} . Set t = 0 and BUL 

to be empty, sample z̄ = (z0||zi||z1||...||zd) ∈ Z
m̄ 

where zj is sampled from DZm,sd+1
 and ||z̄||∞ ≤ β , 

and compute e = Ā · z̄ mod q . Let i∗ ∈ [0,N − 1] 
be the targeted user, t∗ ∈ [0,T − 1] be the tar-
geted forgery time and z∗ = bin(t∗) . Define A0 
to be Ā0 , A1 + idA2 to be Āi and Az∗[b]

b  to be Āb 
for b ∈ [d] . Generate A1−z∗[b]

b  via the algorithm 
(A

1−z∗[b]
b , Sb) ← TrapGen(n,m, q) and the tracing 

manager key pair (B, S) ← TrapGen(n,m, q) . Finally, 
send group public key and tracking key to the adver-
sary A.

Join:	 For i ∈ [N ] , if i  = i∗ , choose xi
$← Z

(d+2)m
q  

randomly and send xi , sigi = Sig(xi) to B . Then 
B computes Ai,t = [A0|A1 + idA2|Az[1]

1 |...|Az[d]
d ] 

and revocation tokeni,t = Ai,t · xi . Finally, B sends 
certi = (certindex, certtoken, id, tokeni,t) to user.

Queries:	 When A asks the random oracle H1 , B 
responds to a uniformly random string and records 
the information inquired. At time period t, B interact 
with A and replies with A ’s queries as follows.

•	Secret key Queries: When the queried user’s 
identity i = i∗ , if i∗ ∈ BUL or t ≤ t∗ , B aborts. 
Besides, for z ∈ Nodes(t→T−1) , B generates usk[i]
[z] via SampleD(ExtBasis(Si∗ ,z′ ,Ai∗,z), e, sd) and 
RandBasis(ExtBasis(Si∗,z′ ,Ai∗,z), sdz ) . Next, B 
sends uskt [i] to A and adds i∗ to BUL. When A 
queried user’s identity i  = i∗ , if i ∈ BUL , B aborts. 
Otherwise, B uses the same method to compute 
uskt [i] . Finally, B sends uskt [i] to A and adds i to 
BUL.

•	Signature Queries: A queries the random oracle 
for the signature of the message M. If i ∈ BUL at 
time t, B aborts. Otherwise, if i = i∗ , B utilizes 
simulated zero-knowledge proof 

∏∗ with the help 
of oracle H1 to generate a signature of M, and 
return the signature 

∑

 to A . If i  = i∗ , B answers A 
with algorithm GSign.

Forgery:	A forges a signature 
∑∗ of message M∗ at tar-

geted time period t ′ satisfying that GVerify = 1 
and making a signing query at M∗ yields no 
result for 

∏∗ . If t ′ �= t∗ , B aborts. Assum-
ing that A successfully forges the signature 
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∑∗ = ((α∗
i )

κ
i=1, (RSP

∗
i )

κ
i=1,w, c1,1, c1,2, c2,1, c2,2) with 

advantage ε . i′ can be obtained by algorithm GOpen. 
If i′ = i∗ , B can use the forgery to handle the SIS 
problem in the following way.

For (M∗, {C∗
aux}κi=1,w

∗, c∗1,1, c
∗
1,2, c

∗
2,1, c

∗
2,2, t

∗) , A must 
have queried oracle H1 . Owing to the challenge space 
CH : {−p, . . . , 0, . . . , p} and the quadratic constraint, 
the probability of guessing challenge value is 
2/(2p+ 1) . The probability of correctly guessing this 
value (i.e. (2/(2p+ 1))κ ) is negligible because of the 
choice of κ . Let QH1 be the upper limit of queries to 
oracle H1 and (M∗, {C∗

aux}κi=1,w
∗, c∗1,1, c

∗
1,2, c

∗
2,1, c

∗
2,2, t

∗) 
be the h-th oracle query. Let h represents the forking 
point that is being targeted. B replays A polynomial-
number times. Among these queries, the first h-1 que-
ries keep the input and the oracle H1 unchanged, and 
the challenge values α1,α2, ...,αh−1 are the same. But 
starting from the h-th query, the challenge values 
αh,αh+1, . . . ,αQH1

 start to be different. The improved 
Forking Lemma (Brickell et  al. 2000) guarantees that 
for (M∗, {C∗

auxi
}κi=1,w

∗, c∗1,1, c
∗
1,2, c

∗
2,1, c

∗
2,2, t

∗) , B can 
obtain (α−p

h , . . . ,α
p
h) ∈ {−p, . . . , p}κ with a probability 

greater than 1/2. There exits 
(α

−p
h,j , . . . ,α

p
h,j) = {−p, . . . , p} for some j ∈ [κ] with a 

probability close to 1. From the corresponding 
response (RSP−p

h,j , . . . ,RSP
p
h,j) , B can extract the witness 

tuple ξ∗ = (vi,z , xi, r1, r2, e1,1, e1,2, e2,1, e2,2, id) such that 
||vi,z||∞ ≤ β , ||xi||∞ ≤ β and

   When correctly guessing i∗ and t∗ , it means id = id∗ and 
z = z∗ . In this case, we have Ā · vi,z = Ā · z̄ = e mod q 
where Ā = Ai,z . Because A has never queried the 
secret key at all or user secret key at time before t∗ , z̄ is 
unknown to A . Moreover, from the perspective of A , z̄ is 
from the distribution DZm,sd+1

 . At this time, there is a high 



























Ai,z · vi,z = e mod q

w = B⊤ · tokeni,t + e0 mod q
c1,1 = D0 · r1 + e1,1
c1,2 = D1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)
c2,1 = D0 · r2 + e2,1
c2,2 = D2 · r2 + e2,2 + ⌊q/2⌉ · bin(id).

probability that vi,z  = z̄ . Let v̄ = vi,z − z̄ and ||v̄||∞ ≤ 2β , 
so v̄ is a non-zero solution of Ā · v̄ = 0 mod q . Due to 
the difficulty of the SIS problem, the advantage of A ’s 
successful forgery of a signature is negligible and hence 
the scheme is forward-secure traceable.

Efficiency analysis
In Table  1, we show the comparison between some 
related GS schemes based on lattice in term of the length 
of Gpk, the length of Usk, the length of signature GS, 
forward security and support of full dynamics. Among 
them, N = 2L is the quantity of group members, T = 2d 
is the max quantity of time periods. Define t = ω(log �) 
for other schemes and t ′ = �/ log p for our scheme which 
represent the number of interactions between the prover 
and verifier in zero knowledge where p is polynomial in �.

From Table  1, our scheme has the forward-security 
while achieving full dynamics. Moreover, Compared with 
Kansal et al. (2020), the length of Gpk and GS has been 
improved, and the length of Usk has no connection with 
the quantity of group members. Since our scheme com-
bines an efficient ZKAoK with soundness error 1/poly, 
for the same negligible soundness error, the number t ′ 
of repeating the protocol is much smaller than t. At the 
same time, the verification efficiency of the protocol will 
also be significantly improved.

Conclusion
In this paper, we constructed a lattice-based DFSGS 
scheme which is provably secure under the RO model. 
Compared with the existing schemes, our DFSGS scheme 
allows members to join and to be revoked at any time 
and achieves forward security, and the length of signa-
ture have been improved by constructing an efficient 
zero-knowledge proof. In our next work, we will explore 
to design a more efficient dynamic forward-secure group 
signature scheme based on lattice such as the length of 
group public key and signature have no connection with 
the quantity of group members and DFSGS scheme with-
out NIZK in the standard model. Besides, it would bring 
a further improvement of signature size if we modify our 

Table 1  Comparison among lattice-based dynamic signature schemes

Schemes Gpk Usk GS Forward Secure Dynamic

Libert et al. (2016) Õ(�2 · L) Õ(�) Õ(� · L) No Partially Dynamic

Ling et al. (2018) Õ(�2 · L) Õ(� · L) Õ(� · L) No Partially Dynamic

Ling et al. (2019) Õ(�2 + � · L) Õ(�+ L) Õ(� · L) No Fully Dynamic

Kansal et al. (2020) Õ(�2 · L) Õ(�) Õ(�3 · L) Yes Fully Dynamic

Ours Õ(�2 · d + � · L) Õ(� · d3) Õ(�2 · (L+ d)) Yes Fully Dynamic
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scheme to work over ideal lattice or NTRU lattice and 
apply the zero-knowledge argument as Esgin et al. (2020), 
Lyubashevsky et al. (2020), Attema et al. (2020). In addi-
tion, we will consider whether there is another approach 
to design a fully dynamic forward-secure group signature 
from lattice in our further research.
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