
Liao et al. Cybersecurity (2022) 5:20
https://doi.org/10.1186/s42400-022-00122-z

RESEARCH

A fully dynamic forward‑secure group
signature from lattice
Zhijian Liao1, Qiong Huang1,2*  and Xinjian Chen1 

Abstract 

A forward-secure group signature (FSGS) ensures the unforgeability of signatures in the past time period despite
signing secret key is leaked in the current time period. As we know, traditional FSGS schemes are mostly relying on
number-theoretic assumptions unable to resist quantum attacks. Therefore, we present an efficient lattice-based
fully dynamic (i.e. users can flexibly join or quit the group) forward-secure group signature (DFSGS) by combining an
improved version of FSGS scheme proposed by Ling. Based on an efficient zero-knowledge argument, we construct
argument of knowledge of the committed value and the plaintext that help with privacy protection. Our DFSGS
scheme is proved to be anonymous and forward-secure traceable relying on short integer solution and learning
with errors assumptions in random oracle model. Moreover, the lengths of group public key and signature of our
DFSGS scheme have been improved, and the length of user secret key has no connection with the quantity of group
members.

Keywords:  Dynamic group signature, Forward-secure, Lattice, SIS, LWE, Zero-knowledge argument

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Group signature
With the rapid development of informatization, ordinary
digital signatures can no longer meet the requirements
of both authentication and privacy protection in the
secure authentication protocol under the large environ-
ment of e-commerce and e-government. Subsequently,
people began to research and construct other signature
schemes that can meet some special requirements or
properties on the basis of ordinary digital signatures. The
group signature(GS) was formally proposed by Chaum
and Van Heyst (1991) in 1991. Traditional group signa-
ture schemes usually require two properties: anonymity
and traceability. Anonymity signifies that legal users sign
the message representing the whole group, and the sign-
er’s identity is unknown to the verifier when verifying the
validity of the signature. Traceability means that when a
signature is disputed, the group manager could find out

the signer’s identity through the tracing secret key. Then
the stronger security of full anonymity and full traceabil-
ity was proposed by Bellare et al. (2003).

As we know, the initial group signature is static, that
is, once the group system is established, new users can-
not join the group. If a new user needs to be added, the
group system must reinitialize the group public key
and signing secret key. Meanwhile, group systems often
need to add new users frequently in practical applica-
tions. Therefore, static group signatures are unsuitable
for practical applications. At the same time, static group
signing schemes cannot revoke group members. In group
signature schemes, it is a difficult problem to realize the
revocation of group members. A group manager cannot
prohibit revoked group member from continuing to sign
with his secret key. Therefore, it is necessary to have an
effective verification algorithm and group member revo-
cation mechanism, so that the signatures generated by
the members that have not been revoked can pass the
verification algorithm, while the signatures generated
by the revoked members cannot pass the verification
algorithm. Currently, the revocation methods of group

Open Access

Cybersecurity

*Correspondence: qhuang@scau.edu.cn
1 College of Mathematics and Informatics, South China Agricultural
University, 483 Wushan Road, Guangzhou 510642, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7666-8985
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00122-z&domain=pdf

Page 2 of 14Liao et al. Cybersecurity (2022) 5:20

signature mainly include the following: (1) update all the
keys; (2) dynamic accumulators(DA) based (Camenisch
and Lysyanskaya 2002; Nguyen 2005); (3) verifier-local
revocation(VLR) model (Boneh and Shacham 2004); (4)
broadcast encryption(BE) based (Libert et al. 2012a, b);
(5) time period based update scheme of authorization
(Song 2001). Among these methods, VLR has received
wide attentions. VLR means that revocation messages
are only sent to signature verifiers, who then checks the
validity of the signature locally without contacting the
individual signers when some user is revoked. Since then,
many researchers had conducted in-depth research on
dynamic group signatures (i.e. support joining and revo-
cation mechanisms). Most group signature schemes that
consider both function and security, on the other hand,
have an issue with inefficiency when group members join
and be revoked. As a result, group signature researches
based on traditional difficulty assumptions are focused
on building an efficient group signature that takes both
usefulness and security into account. In the mean-
time, the features of group signature make it applicable
in many privacy protection scenarios such as anony-
mous electronic voting, electronic currency and trusted
computing.

Related work
In the past, most group signatures were relied on the tra-
ditional difficulty assumptions such as large integer fac-
torization and discrete logarithms. In 1994, Shor (1994)
proposed a quantum algorithm putting the security of
traditional cryptographic schemes in jeopardy. Ajtai
(1996) pioneered the proof that the difficulty of the lattice
problem in the average case is the same as the difficulty
in the worst case in 1996. This advancement establishes
a theoretical foundation for the design of lattice-based
cryptosystem. With the development of quantum com-
puting, traditional group signatures (Ateniese et al. 2000;
Bellare et al. 2003; Boneh and Shacham 2004; Boneh et al.
2004; Kiayias et al. 2004; Bellare et al. 2005; Kiayias and
Yung 2006; Boyen and Waters 2006; Groth 2006; Boyen
and Waters 2007; Groth 2007) based on number-theo-
retic assumptions can no longer resist quantum attacks.
The lattice-based cryptosystem has gradually gained
popularity as a research topic in the post-quantum cryp-
tographic era owing to its simple structure and security
against quantum computing attacks.

Gordon et al. (2010) proposed the first lattice-based GS
in Asiacrypt 2010. After that, some schemes have been
proposed successively, which have improved efficiency.
Many of them (Laguillaumie et al. 2013; Ling et al. 2015;
Nguyen et al. 2015) aim to make the key and signature
smaller, varying from a linear relationship with the quan-
tity of group members to a logarithmic relationship, and

then independent of the quantity of group members.
Since users need flexibly join a group and group man-
ager should have the right to revoke illegal users when
they are found to be misbehaving, group signature should
support the dynamicity of group users joining and rev-
ocation mechanisms. In 2016, Libert et al. (2016) con-
structed a GS with a joining mechanism, but does not
support dynamic revocation of group users. The first fully
dynamic GS from lattice was introduced by Ling et al.
(2017) which is based on Merkle hash tree. But it needs
update the Merkle hash tree when revoking users and the
calculation is more complicated and time-consuming. A
GS scheme based on lattice that supports verifier-local
revocation was put forward by Ling et al. (2018) in 2018.
But it does not support the dynamic joining of group
users.

Sometimes secret key leakage is unavoidable, but the
loss caused by key leakage can be reduced using forward
security technology. To ensure the signature’s security
after signing secret key is leaked, Song (2001) proposed
the first FSGS scheme. Ling et al. (2019) had constructed
the first FSGS scheme based on lattice. But this scheme is
a static group signature, and the secret key of time period
is updated through the hierarchical structure of the
Bonsai tree and node select algorithm. In 2020, Kansal
et al. (2020) put forward the first lattice-based dynamic
forward-secure GS scheme. It includes an updating algo-
rithm based on Hamming weight of node select algo-
rithm. However, both of the member certificate and
secret key need be updated, and the length of the public
key and signature needs be further optimized.

To the best of our knowledge, there are few lattice-
based GS schemes achieve both dynamics and forward
security which is provably secure in RO model.

Our contributions
Aiming at the problem of insufficient dynamic flexibility
and inefficiency of the existing part of the work, we pro-
pose an efficient fully dynamic forward-secure group sig-
nature from lattice with the following contributions.

1.	 Our DFSGS scheme achieves forward security while
achieving dynamics to ensure security after the key
is exposed. Compared with other dynamic group
signature schemes, our DFSGS scheme is support-
ing forward security while the length of public key
( Õ(�2 · d + � · L) ) and secret keys ( Õ(� · d3) ) are
not increased much, where L and d are logarithmi-
cally related to the quantity of group members and
the time periods, respectively. Moreover, the length
of secret key has no connection with the quantity of
group members.

Page 3 of 14Liao et al. Cybersecurity (2022) 5:20 	

2.	 Due to the combination of efficient zero-knowledge
arguments of knowledge for linear equations from
Yang et al. (2019) which makes the soundness error
of our scheme reach 1/poly, it can significantly reduce
the times of repetition for the protocol. Thereby, we
reduce the length of the signature and improve the
protocol’s verification efficiency. Compared with the
first lattice-based dynamic FSGS scheme (Kansal
et al. 2020), our DFSGS scheme’s length of group
public key and signature has been greatly improved.

3.	 Our scheme supports to revoke members through
verifier-local revocation. User’s revocation token
will be changed when his secret key is updated, and
the token in the revocation list will also be updated.
If group member need to restore the user’s legal
identity, just remove his revocation token from the
revocation list. This also implies that a user can be
revoked in time period t1 and regain the legal author-
ity in the time period t2(t2 > t1) without resetting
the public key and secret key.

Application to internet of vehicles With the continuous
development of the Internet of Vehicles (IoV), privacy
protection has become more and more important. The
DFSGS can achieve the privacy protection of vehicles in
the vehicle network, and the dynamics of the group sig-
nature ensures the dynamic joining and revoking of vehi-
cles. The system model of the Internet of Vehicles mainly
includes: Trusted Authority(TA), Road Side Unit(RSU)
fixed on the roadside and On Board Unit(OBU) loaded
on the vehicles. The TA has sufficient communication,
computation and storage capacity and interacts with the
RSUs. It is responsible for the registration and revoca-
tion of vehicle users, and also acts as the tracing manager
when any abnormal behavior is detected. The RSUs act
as the group manager and are responsible for managing
the group consisting of vehicle users. The OBUs act as
the vehicle users to represent the members in the group.
In the stage of OBU joining the group, OBU submits its
own identity information to the group manager, who sub-
sequently issues certificates and secret key to the vehi-
cle for authentication after passing. In the cooperation
phase, the vehicle members use their own secret key to
sign their information, and use inductive sensors to send
it to nearby vehicle units to realize cooperative driving
with the vehicle. In the message verification phase, other
vehicles receiving the information judge whether the
vehicle has been revoked according to the revocation list,
and then check the validity of the message without know-
ing the true identity of the message sender, so as to real-
ize anonymous communication between vehicles. When
a vehicle member publishes a false message that causes
a traffic accident or a dispute, the tracing manager uses

the tracing key to open the signature of the message and
holds the corresponding vehicle member accountable.
After that, the corresponding vehicle members will be
added to the revocation list and be punished for a corre-
sponding time period. After waiting for the penalty time
to expire, the group manager may consider to remove
them from the revocation list and reset them as legal
members (Fig. 1).

Preliminaries
Notations
In the whole paper, ||a|| denotes the l2-norm of a vector a ,
and ||b||∞ denotes the l∞-norm of a vector b . Let (a||b)
denote two vectors’ horizontal concatenation, (A|B)
denotes the concatenation of two matrices A ∈ R

n×m1
and B ∈ R

n×m2 . [N] indicates the set of integer {1, . . . ,N } .

For matrix In =







1 · · · 0
...

. . .
...

0 · · · 1







n×n

 and

g = (1 2 . . . 2⌊log q⌉−1) , we define

G = In
�

g =







1 2 ... 2⌊log q⌉−1 · · · 0
...

. . .
...

0 · · · 1 2 ... 2⌊log q⌉−1







where G is a matrix of n times m and m = n · ⌊log q⌉.

Lattice
Let linearly independent vectors bi ∈ R

n for i ∈ [m] and
matrix B = [b1||...||bm] ∈ Z

n×m
q  . The n-dimension lattice

generated by B is denoted by �(B) =
∑m

i=1 bixi : xi ∈ Z .
The set of vectors {b1, . . . ,bm} represents a basis of �(B)
and m is the rank of �(B).

The security proof of our DFSGS scheme relies on the
lattice hard assumptions(SIS problem and LWE problem)
defined below.

Definition 1  (SIS Problem Ajtai 1996; Gentry et al.
2008; Peikert 2015; Micciancio and Peikert 2013) For
matrix A $← Z

n×m
q  , the SIS∞n,m,q,β problem is to find a

non-zero vector e ∈ Z
m satisfying that A · e = 0 mod q

and ||e||∞ ≤ β.

Let m, β = poly(n) , and for any q > β
√
n , the SIS∞n,m,q,β

problem is at least as difficult as the worst-case SIVPγ
problem for some γ = β · Õ(

√
n).

Definition 2  (LWE Problem Peikert 2015; Regev
2009) LWEn,m,q,χ is parametrized by positive integers n,
m ≥ 1 , q ≥ 2 and probability distribution χ . For s ∈ Z

n
q

and χ , the distribution As,χ is obtained by sampling
a

$← Z
n
q and e $← χ , it outputs the pair (a, c = a⊤ · s+ e) .

When m vectors a are selected and e′ is selected from

Page 4 of 14Liao et al. Cybersecurity (2022) 5:20

the distribution χm , for s′ ∈ Z
n
q and A ∈ Z

n×m
q  , the

LWE probability distribution can be expressed as
As′,χm = (A,C = A⊤ · s′ + e′).

There are two kinds of LWE problems. The
search− LWEn,m,q,χ problem refers to the problem of
discovering the secret vector s given (A,C) , while the
decision− LWEn,m,q,χ problem requires distinguishing
the LWE sample from the uniform sample. The security
of our scheme relies on the difficulty of the latter.

For q ≥ 2 , β ≥ √
nω(log n) and distribution χ , the

LWEn,m,q,χ problem is as hard as SIVP
Õ(nq/β).

Lemma 1  (TrapGen Algorithm Alwen and Peik-
ert 2009) Given positive integer n, q = poly(n) and
m = O(n log q). This algorithm TrapGen(1n, 1m, q) out-
puts B ∈ Z

n×m
q and its trapdoor TB for �⊥

q (B) satisfying
B · TB = 0 mod q. The matrix B is uniformly distributed
in Zn×m

q and ||TB|| ≤ O(
√

n log q).

Lemma 2  (SampleD Algorithm Gentry et al. 2008)
Given a lattice �⊥(B) and its basis TB where B ∈ Z

n×m
q

and TB ∈ Z
m×m
q . Let s ≥ ω(

√

log n) and u ∈ Z
n
q

. The algorithm SampleD(B,TB,u, s) which outputs

x ∈ �u(B) sampled from the distribution DZm,s satisfying
B · x = u mod q.

Lemma 3  (ExtBasis Algorithm Cash et al. 2010)
Given B′ ∈ Z

n×m′, a lattice �⊥(B) and its basis TB
where B ∈ Z

n×m
q and TB ∈ Z

m×m
q , there is a PPT algo-

rithm ExtBasis(TB,B|B′) which generates the basis
TB|B′ of �⊥(B|B′) with ||TB|| = ||TB|B′ || satisfying
(B|B′) · TB|B′ = 0 mod q.

Lemma 4  (RandBasis Algirithm Cash et al. 2010) There
is a PPT algorithm RandBasis(B,TB, σ) which takes a
basis TB of �(B) a parameter σ ≥ ||T̃B|| · ω

√

log n as
input, returns a new basis T′

B of � with ||T′
B|| ≤ σ · √m

. If TB and T′
B are two different bases for the same � and

σ ≥ max{||T̃B||, ||T̃′
B||} · ω(

√

log n), the bases TB and T′
B

are statistically close.

Bonsai tree signature scheme and node select algorithm
Bonsai tree: Bonsai tree can also be called a hierarchy
of trapdoor functions. In a lattice-based instantiation of
Bonsai tree, the root node constructed by a lattice can
generate a new lattice with lager dimension as the branch
node of next level and its basis. The growth from root to
branch includes undirected growth without trapdoor and

Fig. 1  IoV model

Page 5 of 14Liao et al. Cybersecurity (2022) 5:20 	

controlled growth with trapdoor. The controlled growth
also requires extending control and randomizing con-
trol. Extending control extends the basis TA of �⊥

q (A) to
the basis TA′ of �⊥

q (A
′) with larger dimension without

increasing the norm. Randomizing control ensures that
TA and TA′ are independent of each other.

Bonsai tree is widely used in signature schemes. The
bonsai tree signature scheme (Cash et al. 2010) is given
as follows.

	Setup.	Take security parameter � as input, n = O(�) ,
m = O(n log q) and integer q = poly(n) .
Set l be message’s length, m̃ = m(l + 1) and
s = O(

√

n log q) · ω(log n).
	KeyGen.Run algorithm TrapGen to obtain (A0, S0) with

||S0|| ≤ O(
√

n log q) . Sample Ab
i

$← Z
n×m
q for

b ∈ {0, 1} and i ∈ [l] . Output verification public key
vk = (A0,A

b
i) , secret key sk = S0.

	Sign.	 Let message µ = (µ1, . . . ,µl) ∈ {0, 1}l ,Aµ =
(A0|A

µ1

1
|...|A

µl

l
) .

 The signer outputs signature σ.
	Verify.	If σ = 0 , ||σ || ≤ s

√
m̃ and Aµ · σ = 0 mod q ,

return true. Otherwise, return false.

Node select algorithm: For each user, there is a binary tree
which represents the composition of the time period. Each
leaf node represents the time period of each key. Assume
that the maximum lifetime is partitioned into T = 2d

σ ← SampleD(ExtBasis(S0,Aµ), 0, s).

discrete periods for d ∈ Z
+ . These time periods are rep-

resented using a binary tree which are associated with
leaf node where time period t ∈ {0, 1, 2, . . . ,T − 1} , and
each node of the binary tree at depth k is associated with
a binary number z of length k − 1 . Following (Boyen et al.
2006), we define the node’s “second sibling at depth k”
sibling(k, t) for k ∈ [1, d + 1] and t ∈ [0,T − 1] as follows.

From depth 1 to d+1, we sequentially number the nodes
from 0 and increase by 1 with binary from left to right. For
the target leaf node t, we can figure out the path nodes from
the leaf node to the root node. For each path node from
depth 1 to d, if it exits right neighbor, then set sibling(k, t)
to its corresponding number, and set sibling(k , t) = ⊥ ,
otherwise. Finally, set sibling(d + 1, t) = Bin(t) and gen-
erate the node set Nodes(t→T−1) which is composed of
{sibling(k , t)} . Then we can generate all path nodes after
the current time period by node set (Fig. 2).

Efficient lattice‑based zero‑knowledge arguments
The basic protocol
In an efficient zero-knowledge argument of
knowledge(ZKAoK) (Yang et al. 2019), which has the quad-
ratic constraints, it has standard soundness and soundness
error 1/poly, which is much smaller than the soundness
error 2/3 of stern-type protocol.

Define m, n, l and θ be positive integers, respectively, q
be prime number, C be challenge space. Define matrix
A ∈ Z

n×m
q  , vector x ∈ Z

n
q , y ∈ Z

m
q  , and M is represented as

a collection of l 3-tuples, each containing three integers in
the range [1, n]. The relation R as follows:

Fig. 2  For example, there is a tree with 23 = 8 leaves representing 8 time periods. For each level in the path of the target node (010) which stands
for time periods T = 2 , we add its right sibling to the set Nodes(2→7) . Then we have Nodes(2→7) = {(1)⊤ ,⊥, (011)⊤ , (010)⊤}

Page 6 of 14Liao et al. Cybersecurity (2022) 5:20

The following is a description of the basic ZKAoK pro-
tocol. Firstly, the verifier receives the vector t = A · r
sent by prover. Then the prover computes z = α · x + r
to the verifier where α ∈ C is sampled by the verifier.
Finally, the verifier determines whether the condition
A · z = α · y + t is met. As for proving quadratic con-
straints over the witnesses, it can be transform into prove
that the quadratic polynomial is linear in α . Furthermore,
the homomorphic commitment scheme is employed to
hide information about witness.

The basic protocol can transform into non-
interactive zero-knowledge arguments of
knowledge(NIZKAoK) via Fiat-Shamir transform and
reach negligible soundness error by repetition. The
increase in completeness error caused by repeating
protocol is avoided by rejecting sampling techniques.
The specific construction of protocol and security
proof follows directly from Yang et al. (2019) relying
on the SIS and LWE assumptions, and we omit the
details here.

Our zero‑knowledge AoK of committed values
We construct an AoK of committed values for the
commitment scheme. There is a ZKAoK that proves
the knowledge of

that satisfies the following relation:

where A′,A′′,B ∈ Z
n×m
q and c1, c2 ∈ Z

n
q.

We define w′
1 = w1 + θ1 , w′

2 = w2 + θ1 , s′ = s+ θ1
and e′ = e+ θ2 where θ1 = (θ θ ... θ) ∈ Z

m
q and

θ2 = (θ θ ... θ) ∈ Z
n
q . For vectors w′

1 , w′
2 , s′ and

e′ , we use vector decomposition techniques to
decompose them into binary representations. Let
g = (⌊(2θ + 21−1)/21⌋||...||⌊(2θ + 2k−1)/2k⌋) where
k = ⌊log 2θ⌋ + 1 , and define the gadget matrices
G1 = Im

⊗

g and G2 = In
⊗

g.
Therefore, vectors w′

1 , w
′
2 , s

′ and e′ can be repre-
sented as binary vectors ŵ1 , ŵ2 , ŝ1 and ê1 which satisfy
that w′

1 = G1 · ŵ1 , w′
2 = G1 · ŵ2 , s′ = G1 · ŝ1 and

e′ = G2 · ê1 . Finally, we set A =
(

A′G1 A′′G1 0 0
0 0 BG1 G2

)

 ,

R = {(A, y,M), (x) : A · x
= y ∧ ∀(h, i, j) ∈ M, x[h]
= x[i] · x[j]}.

{w1,w2, s ∈ Z
m
q , e ∈ Z

n
q; ||w1||∞, ||w2||∞, ||s||∞ ≤ θ}

A′ · w1 + A′′ · w2 = c1 mod q

B · s+ e = c2 mod q

x = (ŵ⊤
1 ŵ⊤

2 ŝ⊤1 ê⊤1)
⊤,y =

(

c1 + (A′ + A′′) · θ1
c2 + B · θ1 + θ2

)

 and

M = {(h, h, h)}h∈[1,(3m+n)·k] . The new form (A, x, y,M)
is the same as original relation. Therefore, we can
prove knowledge of secret committed values satisfying
correlation equations.

Our zero‑knowledge AoK of plaintext
Here, we introduce a ZKAoK of the plaintext for the
encryption scheme from Yang et al. (2019). Let l1 , l2 and
L be positive integers. Define the relation Renc as follows.

We convert relation Renc to relation R by following these
steps. First, we define vectors θx = (θ θ ... θ)⊤ ∈ Z

l2
q  ,

θy = (θ θ ... θ)⊤ ∈ Z
l1
q  , θ z = (θ θ ... θ)⊤ ∈ Z

L
q and

define r′ = r + θx , e′1 = e1 + θy and e′2 = e1 + θ z .
According to the binary decomposition method,
for integer a ∈ [0, 2θ] , there is a set of sequences
θ1, θ2, ..., θp in which

∑p
j=1 ujθj = a , where

u = (u1 u2 ... uj) ∈ {0, 1}p, p = ⌊log 2θ⌋ + 1, θ1 = ⌈θ/2⌉,
θ2 = ⌈(θ − θ1)/2⌉, θ3 = ⌈(θ − θ1 − θ2)/2⌉, ..., θp = 1.

Next, we convert vectors r′ , e′1 , e
′
2 to binary vectors r̂ ,

ê1 , ê2 by binary decomposition. Let g = (θ1||θ2||...||θp)
and define gadget matrices G1 = Il2

⊗

g , G2 = Il1
⊗

g ,
G3 = IL

⊗

g which satisfy G1 · r̂ = r′ , G2 · ê1 = e′1 ,
G3 · ê2 = e′2.

Finally, we set A =
(

B1 ·G1 G2 0 0
B2 ·G1 0 G3 ⌊q/2⌉ · IL

)

 ,

x = (r̂⊤ ê⊤1 ê⊤2 w⊤)⊤ , y =
(

c1 + B1 · θ1 + θ2

c2 + B2 · θ1 + θ3

)

 and

M = {(h, h, h)}h∈[1,(l1+l2+L)·k+L] . Similarly, we can prove
knowledge of secret plaintext satisfying correlation
equations.

Dynamic forward‑secure group signature
Definition
A fully DFSGS scheme is composed of eight algorithms
(GSetup,GKgen, 〈GUJoin,GIssue〉,GSign,GRevoke,
KeyUpdate,GVerify,GOpen) described as follows:

GSetup(� ) → pp . On input � , this algorithm outputs
public parameter pp.

GKgen(pp ) → ((msk,mpk),(tsk,tpk)). On input pp,
group manager GM generates group manager’s key pair
(msk, mpk), and tracing manager TM generates tracing

Renc = {(B1,B2, c1, c2), (r, e1, e2,w)

∈ (Zl1×l2
q × Z

L×l2
q × Z

l1
q × Z

L
q)× (Zl2

q × Z
l1
q × Z

L
q × {0, 1}L) :

||r||∞, ||e1||∞, ||e2||∞ ≤ θ ∧ B1 · r + e1 = c1

∧ B2 · r + e2 + ⌊q/2⌉ · w = c2}.

Page 7 of 14Liao et al. Cybersecurity (2022) 5:20 	

manager’s tracing key pair (tsk, tpk). GM initializes regis-
tration table reg, revocation list RL and token list TL. We
define the group public key gpk = (pp,mpk , tpk).
〈 GUJoin(tokensk,t) → (cert,uskt[i]),GIssue(gpk,msk,t)

→ reg 〉 . The interactive protocol is performed by the
GM and user. A new user i first generates revoca-
tion tokensk at time period t. If the protocol ends suc-
cessfully, GM generates user’s secret key uskt [i] and
certificate for an identify id and revocation token tokeni,t ,
and sends uskt [i] and group membership certificate
cert = (certindex, certtoken, id, tokeni,t) to the group user.
Finally, GM updates registration table reg.

GRevoke(gpk,RLt,TLt,t) → ( (RLt)new,(TLt)new ). GM is
in charge of executing this algorithm. GM adds the revo-
cation tokeni,t and tokensk to the revocation list RLt and
token list TLt , respectively, then it updates revocation list
and token list to (RLt)new and (TLt)new at time period t.

KeyUpdate(gpk,uskt[i],tokeni,t,RLt,TLt,t+1) →
(uskt+1[i], tokeni,t+1,RLt+1,TLt+1) . The algorithm is
operated by user and GM to update uskt [i] , tokeni,t , RLt
and TLt from time period t to t + 1.

GSign(gpk,uskt[i],M,t) →
∑

 . On input gpk, signing
secret key uskt [i] and time period t, it returns

∑

 as a sig-
nature of message M.

GVerify(gpk,RLt,M,
∑

,t) → 0/1. This algorithm is run
by verifier to determine whether the signer has been
revoked and the signature’s validity, and outputs 1 if the
signature is legitimate and 0 otherwise.

GOpen(gpk,tsk,M,
∑

 ) → id. TM is in charge of execut-
ing this algorithm. It outputs the signer’s identity id if the
signature

∑

 is valid, and outputs ⊥(false) otherwise.

Security requirements
The security of DFSGS scheme requires correctness, full
anonymity and forward-secure traceability. Correctness
includes verification correctness and opening correctness.
Verification correctness demands the signature produced
by a legal user should pass the verification algorithm while
opening correctness requires that a valid signature should
be traced by TM to reveal the real signer’s identity. Full
anonymity means that anyone who receives a signature
cannot identify which signer generated the signature on
challenged message, and adversary A could query the
opening of any signatures. Forward-secure traceability
requires that even if the adversary A could corrupt tracing
manager’s secret key as well as some of the users, A can-
not generate a legal signature which could be traced back
to a non-corrupted user, or a corrupted user but the sig-
nature had been produced before this user was corrupted.

•	 AddU(i): Add an honest user i into the list HUL
whose signing secret keys are generated honestly.

•	 CrptU(i): Choose a new user i corrupted by adver-
sary A and add i to the list CUL storing corrupted
users.

•	 SenToGM(i,Min) : This interactive protocol is carried
out collaboratively by the corrupted user i and the
legitimate GM.

•	 SenToUser(i,Min) : This interactive protocol is car-
ried out collaboratively by the corrupted GM and the
legitimate user i.

•	 AlterReg(i, val): Alter the registration table informa-
tion regi to a specific value val chosen by A.

•	 ReadReg(i): A obtains the registration information
regi of group.

•	 RevealU(i, t): Sent the user’s secret key to A and add
i to BUL which means that its signing secret key is
sent to A at time t.

•	 RevealRT(i, t): Sent the user’s revocation token to A
and add the user i to UTL at time t which means that
its revocation token is sent to A.

•	 Sign(i, M, t): A receives a signature
∑

 on message M
from an honest user i at time t and adds it to list SL.

•	 Chalb(i0, i1,M, t) : Return a signature for given mes-
sage M signed by user ib for b ∈ {0, 1} at time t and
adds the challenge signature to list CL. Moreover,
both of i0 , i1 are honest and active at time t. Specially,
this oracle could only be invoked once.

•	 Revoke(i, t): A could specify any user and request
to be revoked. Then, add revoked user’s revocation
tokeni,t to list RL at time t.

•	 UpdateK(info, t): Update info including all of the
secret keys of user and revocation tokens from time
t − 1 to t.

•	 Open(M,
∑

, t) : A can obtain the user’s identity who
generates a signature

∑

 at time t, and the signature
∑

/∈ CL.
•	 IsActive(i, reg, t): This algorithm checks whether the

user i is registered in the group at time t and returns
either 0 (indicating illegal user) or 1 (indicating legal
user).

Given security parameter � and time period T, the follow-
ing is our definition of security experiments.

Definition 3  (Correctness) A DFSGS scheme is cor-
rect if all PPT adversaries A have at most a negli-
gible advantage winning the correctness game that
AdvCorrDFSGS,A = Pr[ExpCorrDFSGS,A(�,T) = 1] in experiment
ExpCorrDFSGS,A(�,T).

Page 8 of 14Liao et al. Cybersecurity (2022) 5:20

Correctness: ExpCorrDFSGS,A(�, T)

(gpk,msk, tsk, uskt) ← GKgen(�, T);HUL ← ∅.

(i,M) ← A
AddU,ReadReg,Revoke(gpk).

uskt [i] ← KeyUpdate(gpk, uskt−1[i], tokeni,t , RLt−1, t).

If i /∈ HUL or uskt [i] = ⊥ or IsActive(i, regi , t) = 0 , output 0.
∑

← GSign(gpk, uskt [i],M, t).

Output 1 if GVerify(gpk, RLt ,M,
∑

, t) = 0 or GOpen(gpk, tsk,M,
∑

) = j
and j = i,

else output 0.

Definition 4  (Full Anonymity) A DFSGS scheme is
anonymous if all PPT adversaries A have at most a neg-
ligible advantage winning the anonymity game that
AdvAnonDFSGS,A = Pr[ExpAnon−1

DFSGS,A(�,T) = 1] − Pr[ExpAnon−0
DFSGS,A

(�,T) = 1] = 1 in experiment ExpAnon−b
DFSGS,A(�,T).

Full Anonymity: ExpAnon−b
DFSGS,A(�, T)

(gpk,msk, tsk, uskt) ← GKgen(�, T);HUL, CUL, BUL, CL, SL,UTL ← ∅.

b∗ ← A
AddU,CrptU,RevealU,SenToUser ,Open,AlterReg,UpdateK ,Chalb (gpk).

Output b∗.

Definition 5  (Forward-secure Traceability) A DFSGS
scheme is forward-secure traceable if all PPT adver-
saries A have at most a negligible advantage win-
ning the forward-secure traceability game that
AdvFS−Trace

DFSGS,A = Pr[ExpFS−Trace
DFSGS,A (�,T) = 1].

Forward-secure Traceability: ExpFS−Trace
DFSGS,A(�, T)

(gpk,msk, tsk, uskt) ← GKgen(�, T);HUL, CUL, BUL, SL,UTL ← ∅.

(t∗ ,M∗ ,
∑∗

) ← A
AddU,CrptU,RevealU,SenToGM,Open,AlterReg,UpdateK ,Revoke(gpk, tsk).

If GVerify(gpk, RLt∗ ,M∗ ,
∑∗

, t∗) = 0 or
∑∗ ∈ SL , then output 0.

i∗ ← GOpen(gpk, tsk,M∗ ,
∑∗

).

If i∗ /∈ BUL or i∗ ∈ BUL and A only queried uskt [i∗] for t > t∗ , then
output 1, else output 0.

Our dynamic forward‑secure group signature
from lattice
The core construction of our DFSGS scheme is to imple-
ment base extension by combining bonsai tree signature
and node select algorithm to achieve key update to satisfy
forward security. The revocation function is implemented
by generating a revocation token and then using the ver-
ifier-local revocation method. Finally, ZKAoK is con-
structed according to the relevant conditions.

Let N an anticipated number of prospective users, e.g.
N = 2L for L ∈ Z

+ , and T maximum time periods, e.g.
T = 2d for d ∈ Z

+ . Our DFSGS scheme consists of several
algorithms as shown below.

GSetup(� ). Take security parameter � as input, select
n = O(�) , q = poly(n) , k = ⌈log q⌉ , m = 2nk and
m′ = 2(n+ L)k . Let p = poly(�) , κ = �/ log p and col-
lision resistant hash function H1 : {0, 1}∗ → [−p, p]κ .
Define G = In

⊗

(1 2 ... 2k−1) . For every vec-
tor b ∈ Z

n
q , it can be expressed as b = G · bin(b) ,

where bin(b) ∈ {0, 1}nk . Select Gaussian parameters
si = O(

√

nk log q)i+1 · ω(
√

log n)i+1 to generate bases
or sample vectors for i ∈ {0, 1, . . . , d} and integer bound
β = ⌈sd+1 · log n⌉ . Finally, output public parameters

GKgenGM,TM(pp) . The algorithm initializes the keys of
group manager GM and tracing manager TM. Subse-
quently, GM outputs the group public key.

GKgenGM(pp)
 :

1.	 Run algorithm TrapGen to get A0 ∈ Z
n×m
q and

S0 ∈ Z
m×m
q  . Define mpk = A0 and msk = S0.

2.	 Sample e $← Z
n
q , A1 , A2 , B

$← Z
n×m
q and Ab

j

$← Z
n×m
q

for b ∈ {0, 1} and j ∈ [d].

GKgenTM(pp) :

1.	 Sample D0
$← Z

n×m′
q and for each i ∈ {1, 2} , sample

Si
$← {0, 1}L×n , Ei

$← {0, 1}L×m′.
2.	 Compute D1 = S1 ·D0 + E1 , D2 = S2 ·D0 + E2 , set

tsk = S1 , tpk = (D0,D1,D2) and send tpk to GM.

Then, GM initializes the counter of registered users
to be c = 0 , the revocation list RL = ∅ , the token list
TL = ∅ and outputs

〈 GUJoin(tokensk,t),GIssue(gpk,msk,t) 〉 . The user who
has a personal key pair (pusk, pupk) registered in the PKI
interact with GM as follows.

1.	 The user samples tokensk = xi ∈ Z
(d+2)m
q  . Then user

generates sigi = Sigpusk(xi) by normal digital signa-
ture, and send (sigi, xi) to GM.

2.	 GM receives the user’s requisition to join the group
and checks the legitimacy of sigi with pupk. The
value c is the counter of current users in the group,
which is initially 0 and increases by 1 when a new
user joins the group. If the signature is valid, GM sets
id := c ∈ [0, 2L − 1] as the member identifier for the
user. Then, GM generates the certificate for the index
certindex = Sign(msk , id) and increases the counter

pp = {�, n,m,m′, q, L, d, s0, . . . , sd}.

gpk = (pp,A0,A1,A2,A
0
1,A

1
1, ...,A

0
d ,A

1
d ,B,D0,D1,D2, e).

Page 9 of 14Liao et al. Cybersecurity (2022) 5:20 	

c := c + 1 . The node set should be determined as fol-
lows. For z ∈ Nodes(0→T−1) , we set usk0[i][z] = ⊥ if
z = ⊥ . Else, we use dz represent the length of z with
dz ≤ d , and define the matrix

 If dz = d , it generates a vector vi,z ∈ Z
(d+2)m by

 and set usk0[i][z] = vi,z . If 1 ≤ dz < d , it generates
a matrix Si,z ∈ Z

(dz+2)m×(dz+2)m by

 and set usk0[i][z] = Si,z . The user secret key is
usk0[i] = {usk0[i][z], z ∈ Nodes(0→T−1), id, xi}   .
Then, run KeyUpdate algorithm to get
uskt [i] = {uskt [i][z], z ∈ Nodes(t→T−1), id, xi}   ,
and revocation token is tokeni,t = Ai,t · xi where
Ai,t represents Ai,z when dz = d at period t.
GM generates the certificate for the token
certtoken = Sign(msk , tokeni,t) . Finally, GM sends the
certi = (certindex, certtoken, id, tokeni,t) to the user and
updates the registration table reg.

GRevoke(gpk,RLt,TLt,t). GM publishes RL at the begin-
ning of each period, marking users who have been
revoked from this period. To revoke a group member
Useri , GM adds tokeni,t directly into the revocation
list RLt at period t where t ∈ [0,T − 1] and updates
RLt = RLt ∪ tokeni,t and TLt = TLt ∪ xi . Then GM pub-
lishes the revocation information RLt.

KeyUpdate(gpk,uskt[i],tokeni,t,RLt,TLt,t+1). Parse
the set uskt [i] = {uskt [i][z], z ∈ Nodes(t→T−1), id, xi}
and determine the set Nodes(t+1→T−1) . If
z′ ∈ Nodes(t+1→T−1) = ⊥ , set uskt+1[i][z′] = ⊥ . Else,
there is a z ∈ Nodes(t→T−1) as a prefix of z′ = z||h . The
following are two scenarios.

1.	 If z′ = z (i.e. h is empty), then
uskt+1[i][z′] = uskt [i][z].

2.	 If z′ = z||h (i.e. h is non-empty), it can delegate the
basis in following two subcases. If dz′ = d , then run

 and set uskt+1[i][z′] = vi,z′ . If dz′ < d , it computes
a matrix Si,z′ by

 and set uskt+1[i][z′] = Si,z′.
The updated key is uskt+1[i] = {uskt+1[i][z′], z′
∈ Nodes(t+1→T−1), id, xi} . At the same time, the user
needs update tokeni,t to tokeni,t+1 and GM also needs

Ai,z = [A0|A1 + idA2|Az[1]
1

|...|Az[dz]
dz

] ∈ Z
n×(dz+2)m
q .

vi,z ← SampleD(ExtBasis(S0,Ai,z), e, sd),

Si,z ← RandBasis(ExtBasis(S0,Ai,z), sdz),

vi,z′ ← SampleD(ExtBasis(Si,z ,Ai,z′), e, sd),

Si,z′ ← RandBasis(ExtBasis(Si,z ,Ai,z′), sd′z),

update RLt to RLt+1 . For xi ∈ TLt , GM computes
tokeni,t+1 = Ai,z′ · xi where dz′ = d , and publishes RLt+1

.
GSign(gpk,uskt[i],M,t). Based on the node set

Nodes(t→T−1) , we can find a z satisfying z = bin(t)
and uskt [i][z] = vi,z . The user signs a message M using
uskt [i] = {vi,z , bin(id), xi} as follows.

1.	 For each j ∈ {1, 2} , sample rj
$← {0, 1}m′ , e0

$← χm ,
ej,1

$← {0, 1}n , ej,2
$← {0, 1}L and compute

2.	 Generate a NIZKAoK
∏

gs to demonstrate the pos-
session of tuple

 satisfying that: 1) (c1,1, c1,2) and (c2,1, c2,2) are
two legitimate ciphertexts of identity id; 2)
Ai,z · vi,z = e mod q and ||vi,z||∞ ≤ β ; and 3)
w = B⊤ · Ai,t · xi + e0 mod q . The ZKAoK for
the encryption scheme to handle statement 1)
was mentioned in section "The basic protocol".
The matrix Ai,z can be represented as [Aid |Az] ,
so the form Ai,z · vi,z = e can be expressed as
Aid · v1 + Az · v2 = e . To protect the anonym-
ity of the user, the matrix Aid cannot be disclosed.
Therefore, we convert Aid = [A0|A1 + idA2] to
A′ = [A0|A1|A2|2A2|...|2L−1A2] = [A0|A1|gL

⊗

A2]
and Aid · v1 can be expressed as
[A0|A1|gL

⊗

A2] · (v1,1, v1,2, bin(id)
⊗

v1,2) . The
statements 2) and 3) were covered by ZKAok for
committed values mentioned in section "Our
zero-knowledge AoK of committed values". Then,
we convert all of the conditions into the equa-
tion Â · x̂ = ŷ where Â, ŷ are public and x̂ is secret.
Finally, the protocol is repeated κ = �/ log p
times to ensure negligible soundness error and
make it non-interactive via Fiat-Shamir trans-
form as a triple

∏

gs = ((αi)
κ
i=1, (RSPi)

κ
i=1) where

(αi)
κ
i=1

= H1(M, {Cauxi
}κ
i=1

, Â, ŷ,M,w, c1,1, c1,2, c2,1, c2,2, t)

∈ [−p, p] and Cauxi is computed according to
the commitment scheme aCommit from Yang
et al. (2019). Finally, output the signature
∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2).

GVerify(gpk,RLt,M,
∑

,t). The following is how the algo-
rithm works.



























Ai,z · vi,z = e mod q

w = B⊤ · tokeni,t + e0 mod q
c1,1 = D0 · r1 + e1,1
c1,2 = D1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)
c2,1 = D0 · r2 + e2,1
c2,2 = D2 · r2 + e2,2 + ⌊q/2⌉ · bin(id)

ξ = (vi,z , xi, r1, r2, e1,1, e1,2, e2,1, e2,2, id)

Page 10 of 14Liao et al. Cybersecurity (2022) 5:20

1.	 Run the verification phase of the NIZKAoK to check
the proof

∏

gs . If any of the conditions fails, output 0.
2.	 Check the revocation list RLt . For tokenj,t ∈ RLt ,

compute w′ = w − B⊤ · tokenj,t which is w′ = B
⊤

(tokeni,t − tokenj,t)+ e0 . If tokeni,t = tokenj,t and
||w′||∞ ≤ β , it proves that the signer has been
revoked. In this case, output 0.

3.	 Output 1.

GOpen(gpk,tsk,M,
∑

 ). Check the signature’s legitimacy
before proceeding with the steps below.

1.	 Use S1 to decrypt id by computing b = ⌊ c1,2−S1·c1,1
q/2 ⌉.

2.	 Compute the identity id =
∑L

l=1 2
l−1 · b[l] and out-

put the identity.

Security analysis
Correctness
For each tokenj,t ∈ RLt , compute w

′ = w − B
⊤

tokenj,t = B
⊤(tokeni,t − tokenj,t)+ e0 . If there is

a revocation token such as tokeni,t = tokenj,t and
||w′||∞ ≤ β , it means that the verification fails, and
the signature is rejected. Due to the completeness of
the argument of knowledge, the valid signature

∑

 is
always accepted by algorithm GVerify. As for open-
ing correctness, the algorithm GOpen computes
b = c1,2 − S1 · c1,1 = E1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)− S1 · e1 . For
l ∈ [1, L] , it sets b[l] = 1 if b[l] is closer to ⌊q/2⌉ than to 0
and b[l] = 0 otherwise. Finally, it converts binary b to an
integer id.

Full anonymity

Theorem 1  In the RO model, our DFSGS scheme is fully
anonymous under the LWE assumption.

Proof  Define the challenger and adversary role of C and
A , respectively. A sequence of indistinguishable games
will be used to prove this theorem. In game i, let Wi
denote the adversary’s output.

Game 0 :	� We define the experiment ExpAnon−0
DFSGS,A(�,T)

as original game. Challenger C obtains the
group public key, member certificate, exist-
ing group user’s secret key, tracing pub-
lic key according to the scheme and sends
them to adversary A . C initializes the revo-
cation list RL = ∅ , registration query list
RU, corruption user list CL and revocation

token query list UTL. In the query stage,
A can query for the signature of any mes-
sage of any user, open the query of the sig-
nature on the corresponding message and
update RU, CL, UTL. In the challenge
phase, A sends message M∗ along with
two users i0,i1 ∈ [N] , i0,i1 /∈ CL ∪ UTL and
tokeni0 , tokeni1 /∈ RL . C sends back a signature
∑∗ = (

∏∗
gs
,w∗, c∗

1,1
, c∗

1,2
, c∗

2,1
, c∗

2,2
) ← GSign

(gpk ,uskt∗ [i0],M∗, t∗) . A can still perform
signature query, secret key query, open-
ing query and revocation token query
about ib = {i0, i1} . In the end, A returns
b∗ = 1 for the conjecture of ib . We have
Pr[W0 = 1] = Pr[ExpAnon−0

DFSGSA(�,T) = 1].
Game 1 :	� This game is completely consistent with

Game 0 aside from adding S2 to tsk
instead of erasing it. This change makes
no difference to Game 0 in A ’s view. So
Pr[W1 = 1] = Pr[W0 = 1].

Game 2 :	� This game is completely consistent with
Game 1 aside from the open oracle opens sig-
natures using the S2 instead of using real tsk
S1 . It is clear that A ’s perspective will remain
unchanged from Game 1 until incident F1
happens that A queries the opening of a sig-
nature

∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2) which
encrypts distinct bit strings. Since F1 breaks
the soundness of the argument system

∏

gs ,
|Pr[W2 = 1] − Pr[W1 = 1]| ≤ Pr[F1] ≤ Advsound∏

gs
= negl(�).

Game 3 :	� This game follows Game 2 aside from C
replaces the legitimate proof with a simu-
lated proof without using the witness. Game
3 and Game 2 are statistically indistinguish-
able from each other from the perspec-
tive of A since the argument system is sta-
tistically zero-knowledge. For this reason,
Pr[W3 = 1] ≈ Pr[W2 = 1].

Game 4 :	� In this game, we compute (c∗1,1, c
∗
1,2) by

encrypting the binary representation of i1
while (c∗2,1, c

∗
2,2) still encrypt i0 . The seman-

tic security of our encryption scheme
with respect to (D0,D1) (which is implied
by the LWE assumption) ensures that
|Pr[W4 = 1] − Pr[W3 = 1]| = negl(�).

Game 5 :	� This game is completely consistent with
Game 4 with one modification that we
switch back to use S1 for open oracle. Obvi-
ously, the view of A ’s will remain unchanged
unless incident F2 that A queries the open
oracle for

∑

= (
∏

gs,w, c1,1, c1,2, c2,1, c2,2)

Page 11 of 14Liao et al. Cybersecurity (2022) 5:20 	

which encrypts distinct strings. By reason of
F2 violates the simulation soundness of the
protocol, we have |Pr[W5 = 1] − Pr[W4 = 1]|
≤ Pr[F2] ≤ Advsim∏

gs
= negl(�).

Game 6 :	� This game is completely consistent with game
5 aside from we change (c∗2,1, c

∗
2,2) by encrypt-

ing the binary representation of i1 . By the
semantic security of the encryption scheme
for (D0,D2) , A is unaffected by this change.
Since we are now using S1 for open oracle,
changing (c∗2,1, c

∗
2,2) has no effect on A ’s view.

Hence, |Pr[W6 = 1] − Pr[W5 = 1]| = negl(�).
Game 7 :	� This game is totally coequal with

Game 6 aside from the C replaces
the initial revocation token. We have
w = B⊤ · tokeni,t + e0 mod q . C sam-
ples v

$← Z
n
q uniformly and com-

pute w = B⊤ · v + e0 mod q . Thus,
Pr[W7 = 1] ≈ Pr[W6 = 1].

Game 8 :	� In this game, the challenge C samples w uni-
formly. Since the pair (B,w) is an LWEn,m,q,χ
instance, C replaces w with uniformly sam-
pled w′ $← Z

m
q  , Pr[W8 = 1] ≈ Pr[W7 = 1].

Game 9 :	� This game is totally coequal with Game 8
aside from that replace the simulated proof
with a real proof

∏

gs∗ using the witnesses
i.e. replace the simulated transcript by a real
transcript. Due to the statistical zero-knowl-
edge property of argument system

∏

gs∗ ,
the two transcripts are indistinguishable.
Thus, we have Pr[W9 = 1] ≈ Pr[W8 = 1] .
In this instance, the view of the A is the
same as the experiment ExpAnon−1

DFSGS,A(�) . So
Pr[W9 = 1] = Pr[ExpAnon−1

DFSGS,A(�) = 1].

Finally, we have |Pr[ExpAnon−1
DFSGS,A

(�) = 1] − Pr[ExpAnon−0
DFSGS,A

(�) = 1]| = negl(�) . Thereby, our scheme is proved anony-
mous by these games.

Forward‑secure traceability

Theorem 2  In the RO model, our DFSGS scheme is for-
ward-secure traceable under the SIS assumption.

Proof
Assume that adversary A could break the forward-secure
traceability of our scheme with non-negligible probability,
there is a adversary B can solve the SIS∞n,m̄,q,2β problem
with non-negligible probability as well. �

Given a matrix Ā ∈ Z
n×m̄
q  , B is required to discover a

non-zero vector v̄ ∈ Z
m̄
q satisfying that Ā · v̄ = 0 mod q

and ||v̄||∞ ≤ 2β . Simulating the view of the adversary
A attacking the forward-secure traceability, B con-
structs an algorithm that outputs a valid v̄ satisfying
Ā · v̄ = 0 mod q and ||v̄||∞ ≤ 2β .

Setup:	Define matrix Ā = [Ā0|Āi|Ā1|...|Ād] for
Āj ∈ Z

n×m
q  , j ∈ {0, i, 1, 2, ..., d} . Set t = 0 and BUL

to be empty, sample z̄ = (z0||zi||z1||...||zd) ∈ Z
m̄

where zj is sampled from DZm,sd+1
 and ||z̄||∞ ≤ β ,

and compute e = Ā · z̄ mod q . Let i∗ ∈ [0,N − 1]
be the targeted user, t∗ ∈ [0,T − 1] be the tar-
geted forgery time and z∗ = bin(t∗) . Define A0
to be Ā0 , A1 + idA2 to be Āi and Az∗[b]

b to be Āb
for b ∈ [d] . Generate A1−z∗[b]

b via the algorithm
(A

1−z∗[b]
b , Sb) ← TrapGen(n,m, q) and the tracing

manager key pair (B, S) ← TrapGen(n,m, q) . Finally,
send group public key and tracking key to the adver-
sary A.

Join:	 For i ∈ [N] , if i = i∗ , choose xi
$← Z

(d+2)m
q

randomly and send xi , sigi = Sig(xi) to B . Then
B computes Ai,t = [A0|A1 + idA2|Az[1]

1 |...|Az[d]
d]

and revocation tokeni,t = Ai,t · xi . Finally, B sends
certi = (certindex, certtoken, id, tokeni,t) to user.

Queries:	 When A asks the random oracle H1 , B
responds to a uniformly random string and records
the information inquired. At time period t, B interact
with A and replies with A ’s queries as follows.

•	Secret key Queries: When the queried user’s
identity i = i∗ , if i∗ ∈ BUL or t ≤ t∗ , B aborts.
Besides, for z ∈ Nodes(t→T−1) , B generates usk[i]
[z] via SampleD(ExtBasis(Si∗ ,z′ ,Ai∗,z), e, sd) and
RandBasis(ExtBasis(Si∗,z′ ,Ai∗,z), sdz) . Next, B
sends uskt [i] to A and adds i∗ to BUL. When A
queried user’s identity i = i∗ , if i ∈ BUL , B aborts.
Otherwise, B uses the same method to compute
uskt [i] . Finally, B sends uskt [i] to A and adds i to
BUL.

•	Signature Queries: A queries the random oracle
for the signature of the message M. If i ∈ BUL at
time t, B aborts. Otherwise, if i = i∗ , B utilizes
simulated zero-knowledge proof

∏∗ with the help
of oracle H1 to generate a signature of M, and
return the signature

∑

 to A . If i = i∗ , B answers A
with algorithm GSign.

Forgery:	A forges a signature
∑∗ of message M∗ at tar-

geted time period t ′ satisfying that GVerify = 1
and making a signing query at M∗ yields no
result for

∏∗ . If t ′ �= t∗ , B aborts. Assum-
ing that A successfully forges the signature

Page 12 of 14Liao et al. Cybersecurity (2022) 5:20

∑∗ = ((α∗
i)

κ
i=1, (RSP

∗
i)

κ
i=1,w, c1,1, c1,2, c2,1, c2,2) with

advantage ε . i′ can be obtained by algorithm GOpen.
If i′ = i∗ , B can use the forgery to handle the SIS
problem in the following way.

For (M∗, {C∗
aux}κi=1,w

∗, c∗1,1, c
∗
1,2, c

∗
2,1, c

∗
2,2, t

∗) , A must
have queried oracle H1 . Owing to the challenge space
CH : {−p, . . . , 0, . . . , p} and the quadratic constraint,
the probability of guessing challenge value is
2/(2p+ 1) . The probability of correctly guessing this
value (i.e. (2/(2p+ 1))κ ) is negligible because of the
choice of κ . Let QH1 be the upper limit of queries to
oracle H1 and (M∗, {C∗

aux}κi=1,w
∗, c∗1,1, c

∗
1,2, c

∗
2,1, c

∗
2,2, t

∗)
be the h-th oracle query. Let h represents the forking
point that is being targeted. B replays A polynomial-
number times. Among these queries, the first h-1 que-
ries keep the input and the oracle H1 unchanged, and
the challenge values α1,α2, ...,αh−1 are the same. But
starting from the h-th query, the challenge values
αh,αh+1, . . . ,αQH1

 start to be different. The improved
Forking Lemma (Brickell et al. 2000) guarantees that
for (M∗, {C∗

auxi
}κi=1,w

∗, c∗1,1, c
∗
1,2, c

∗
2,1, c

∗
2,2, t

∗) , B can
obtain (α−p

h , . . . ,α
p
h) ∈ {−p, . . . , p}κ with a probability

greater than 1/2. There exits
(α

−p
h,j , . . . ,α

p
h,j) = {−p, . . . , p} for some j ∈ [κ] with a

probability close to 1. From the corresponding
response (RSP−p

h,j , . . . ,RSP
p
h,j) , B can extract the witness

tuple ξ∗ = (vi,z , xi, r1, r2, e1,1, e1,2, e2,1, e2,2, id) such that
||vi,z||∞ ≤ β , ||xi||∞ ≤ β and

 When correctly guessing i∗ and t∗ , it means id = id∗ and
z = z∗ . In this case, we have Ā · vi,z = Ā · z̄ = e mod q
where Ā = Ai,z . Because A has never queried the
secret key at all or user secret key at time before t∗ , z̄ is
unknown to A . Moreover, from the perspective of A , z̄ is
from the distribution DZm,sd+1

 . At this time, there is a high



























Ai,z · vi,z = e mod q

w = B⊤ · tokeni,t + e0 mod q
c1,1 = D0 · r1 + e1,1
c1,2 = D1 · r1 + e1,2 + ⌊q/2⌉ · bin(id)
c2,1 = D0 · r2 + e2,1
c2,2 = D2 · r2 + e2,2 + ⌊q/2⌉ · bin(id).

probability that vi,z = z̄ . Let v̄ = vi,z − z̄ and ||v̄||∞ ≤ 2β ,
so v̄ is a non-zero solution of Ā · v̄ = 0 mod q . Due to
the difficulty of the SIS problem, the advantage of A ’s
successful forgery of a signature is negligible and hence
the scheme is forward-secure traceable.

Efficiency analysis
In Table 1, we show the comparison between some
related GS schemes based on lattice in term of the length
of Gpk, the length of Usk, the length of signature GS,
forward security and support of full dynamics. Among
them, N = 2L is the quantity of group members, T = 2d
is the max quantity of time periods. Define t = ω(log �)
for other schemes and t ′ = �/ log p for our scheme which
represent the number of interactions between the prover
and verifier in zero knowledge where p is polynomial in �.

From Table 1, our scheme has the forward-security
while achieving full dynamics. Moreover, Compared with
Kansal et al. (2020), the length of Gpk and GS has been
improved, and the length of Usk has no connection with
the quantity of group members. Since our scheme com-
bines an efficient ZKAoK with soundness error 1/poly,
for the same negligible soundness error, the number t ′
of repeating the protocol is much smaller than t. At the
same time, the verification efficiency of the protocol will
also be significantly improved.

Conclusion
In this paper, we constructed a lattice-based DFSGS
scheme which is provably secure under the RO model.
Compared with the existing schemes, our DFSGS scheme
allows members to join and to be revoked at any time
and achieves forward security, and the length of signa-
ture have been improved by constructing an efficient
zero-knowledge proof. In our next work, we will explore
to design a more efficient dynamic forward-secure group
signature scheme based on lattice such as the length of
group public key and signature have no connection with
the quantity of group members and DFSGS scheme with-
out NIZK in the standard model. Besides, it would bring
a further improvement of signature size if we modify our

Table 1  Comparison among lattice-based dynamic signature schemes

Schemes Gpk Usk GS Forward Secure Dynamic

Libert et al. (2016) Õ(�2 · L) Õ(�) Õ(� · L) No Partially Dynamic

Ling et al. (2018) Õ(�2 · L) Õ(� · L) Õ(� · L) No Partially Dynamic

Ling et al. (2019) Õ(�2 + � · L) Õ(�+ L) Õ(� · L) No Fully Dynamic

Kansal et al. (2020) Õ(�2 · L) Õ(�) Õ(�3 · L) Yes Fully Dynamic

Ours Õ(�2 · d + � · L) Õ(� · d3) Õ(�2 · (L+ d)) Yes Fully Dynamic

Page 13 of 14Liao et al. Cybersecurity (2022) 5:20 	

scheme to work over ideal lattice or NTRU lattice and
apply the zero-knowledge argument as Esgin et al. (2020),
Lyubashevsky et al. (2020), Attema et al. (2020). In addi-
tion, we will consider whether there is another approach
to design a fully dynamic forward-secure group signature
from lattice in our further research.

Acknowledgements
Not applicable.

Authors’ contributions
The first author constructed the scheme with careful security proofs and
wrote the manuscript. The second author reviewed the manuscript and
checked the validity of the scheme and the security proofs. He also proofread
the manuscript and corrected the grammar mistakes. The third author joined
the discussion of the work and designed the whole figures and tables of the
manuscript. All authors read and approved the final manuscript.

Funding
This work is supported by the Major Program of Guangdong Basic and
Applied Research (2019B030302008), National Natural Science Foundation
of China (61872152), and Science and Technology Program of Guangzhou
(201902010081).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Mathematics and Informatics, South China Agricultural University,
483 Wushan Road, Guangzhou 510642, China. 2 Guangzhou Key Laboratory
of Intelligent Agriculture, 483 Wushan Road, Guangzhou 510642, China.

Received: 18 January 2022 Accepted: 24 March 2022

References
Ajtai M (1996) Generating hard instances of lattice problems. In: Proceedings

of the twenty-eighth annual ACM symposium on theory of computing,
pp 99–108

Alwen J, Peikert C (2009) Generating shorter bases for hard random lattices.
In: 26th International symposium on theoretical aspects of computer
science STACS 2009. IBFI Schloss Dagstuhl, pp 75–86

Ateniese G, Camenisch J, Joye M, Tsudik G (2000) A practical and provably
secure coalition-resistant group signature scheme. In: Annual interna-
tional cryptology conference. Springer, pp 255–270

Attema T, Lyubashevsky V, Seiler G (2020) Practical product proofs for lattice
commitments. In: Annual international cryptology conference. Springer,
pp 470–499

Bellare M, Micciancio D, Warinschi B (2003) Foundations of group signatures:
formal definitions, simplified requirements, and a construction based
on general assumptions. In: International conference on the theory and
applications of cryptographic techniques. Springer, Berlin, pp 614–629

Bellare M, Shi H, Zhang C(2005) Foundations of group signatures: the case
of dynamic groups. In: Cryptographers’ Track at the RSA conference.
Springer, pp 136–153

Boneh D, Boyen X, Shacham H (2004) Short group signatures. In: Annual inter-
national cryptology conference. Springer, pp 41–55

Boneh D, Shacham H (2004) Group signatures with verifier-local revocation. In:
Proceedings of the 11th ACM conference on computer and communica-
tions security, pp 168–177

Boyen X, Shacham H, Shen E, Waters B (2006) Forward-secure signatures
with untrusted update. In: Proceedings of the 13th ACM conference on
computer and communications security, pp 191–200

Boyen X, Waters B (2007) Full-domain subgroup hiding and constant-size
group signatures. In: International workshop on public key cryptography.
Springer, pp 1–15

Boyen X, Waters B(2006) Compact group signatures without random oracles.
In: Annual international conference on the theory and applications of
cryptographic techniques. Springer, pp 427–444

Brickell E, Pointcheval D, Vaudenay S, Yung M (2000) Design validations for
discrete logarithm based signature schemes. In: International workshop
on public key cryptography. Springer, pp 276–292

Camenisch J, Lysyanskaya A (2002) Dynamic accumulators and application to
efficient revocation of anonymous credentials. In: Annual international
cryptology conference. Springer, pp 61–76

Cash D, Hofheinz D, Kiltz E, Peikert C (2010) Bonsai trees, or how to delegate
a lattice basis. In: Annual international conference on the theory and
applications of cryptographic techniques. Springer, pp 523–552

Chaum D, Van Heyst E (1991) Group signatures. In: Workshop on the theory
and application of of cryptographic techniques. Springer, Berlin, pp
257–265

Esgin MF, Nguyen NK, Seiler G (2020) Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. In: International conference
on the theory and application of cryptology and information security.
Springer, pp 259–288

Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices and
new cryptographic constructions. In: Proceedings of the fortieth annual
ACM symposium on theory of computing, pp 197–206

Gordon SD, Katz J, Vaikuntanathan V (2010) A group signature scheme from
lattice assumptions. In: International conference on the theory and appli-
cation of cryptology and information security. Springer, pp 395–412

Groth J (2007) Fully anonymous group signatures without random oracles. In:
International conference on the theory and application of cryptology
and information security. Springer, pp 164–180

Groth J(2006) Simulation-sound nizk proofs for a practical language and
constant size group signatures. In: International conference on the theory
and application of cryptology and information security. Springer, pp
444–459

Kansal M, Dutta R, Mukhopadhyay S (2020) Group signature from lattices
preserving forward security in dynamic setting. Adv Math Commun
14(4):535

Kiayias A, Yung M (2006) Secure scalable group signature with dynamic joins
and separable authorities. Int J Secur Netw 1(1–2):24–45

Kiayias A, Tsiounis Y, Yung M (2004) Traceable signatures. In: International
conference on the theory and applications of cryptographic techniques.
Springer, pp 571–589

Laguillaumie F, Langlois A, Libert B, Stehlé, D(2013) Lattice-based group
signatures with logarithmic signature size. In: International conference
on the theory and application of cryptology and information security.
Springer, pp 41–61

Libert B, Ling S, Mouhartem F, Nguyen K, Wang H(2016) Signature schemes
with efficient protocols and dynamic group signatures from lattice
assumptions. In: International conference on the theory and application
of cryptology and information security. Springer, pp 373–403

Libert B, Peters T, Yung M(2012) Group signatures with almost-for-free revoca-
tion. In: Annual cryptology conference. Springer, pp 571–589

Libert B, Peters T, Yung M(2012) Scalable group signatures with revocation.
In: Annual international conference on the theory and applications of
cryptographic techniques. Springer, pp 609–627

Ling S, Nguyen K, Roux-Langlois A, Wang H (2018) A lattice-based group sig-
nature scheme with verifier-local revocation. Theor Comput Sci 730:1–20

Ling S, Nguyen K, Wang H, Xu Y (2019) Lattice-based group signatures:
achieving full dynamicity (and deniability) with ease. Theor Comput Sci
783:71–94

Ling S, Nguyen K, Wang H(2015) Group signatures from lattices: simpler,
tighter, shorter, ring-based. In: IACR international workshop on public key
cryptography. Springer, pp 427–449

Ling S, Nguyen K, Wang H, Xu Y(2017) Lattice-based group signatures: achiev-
ing full dynamicity with ease. In: International conference on applied
cryptography and network security. Springer, pp 293–312

Page 14 of 14Liao et al. Cybersecurity (2022) 5:20

Ling S, Nguyen K, Wang H, Xu Y(2019) Forward-secure group signatures from
lattices. In: International conference on post-quantum cryptography.
Springer, pp 44–64

Lyubashevsky V, Nguyen NK, Seiler G (2020) Practical lattice-based zero-
knowledge proofs for integer relations. In: Proceedings of the 2020 ACM
SIGSAC conference on computer and communications security, pp
1051–1070

Micciancio D, Peikert C(2013) Hardness of sis and lwe with small parameters.
In: Annual cryptology conference. Springer, pp 21–39

Nguyen L (2005) Accumulators from bilinear pairings and applications to
id-based ring signatures and group membership revocation. In: Topics in
cryptology-CT-RSA 2005, pp 275–292

Nguyen PQ, Zhang J, Zhang Z (2015) Simpler efficient group signatures from
lattices. In: IACR international workshop on public key cryptography.
Springer, pp 401–426

Peikert C (2015) A decade of lattice cryptography. Cryptology ePrint Archive
Regev O (2009) On lattices, learning with errors, random linear codes, and

cryptography. J ACM 56(6):1–40
Shor PW (1994) Algorithms for quantum computation: discrete logarithms

and factoring. In: Proceedings 35th annual symposium on foundations of
computer science, pp 124–134 . IEEE

Song DX (2001) Practical forward secure group signature schemes. In: Pro-
ceedings of the 8th ACM conference on computer and communications
security, pp 225–234

Yang R, Au MH, Zhang Z, Xu Q, Yu Z, Whyte W (2019) Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and
applications. In: Annual international cryptology conference. Springer, pp
147–175

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	A fully dynamic forward-secure group signature from lattice
	Abstract
	Introduction
	Group signature
	Related work
	Our contributions

	Preliminaries
	Notations
	Lattice
	Bonsai tree signature scheme and node select algorithm
	Efficient lattice-based zero-knowledge arguments
	The basic protocol
	Our zero-knowledge AoK of committed values
	Our zero-knowledge AoK of plaintext

	Dynamic forward-secure group signature
	Definition
	Security requirements

	Our dynamic forward-secure group signature from lattice
	Security analysis
	Correctness
	Full anonymity
	Forward-secure traceability

	Efficiency analysis
	Conclusion
	Acknowledgements
	References

