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Abstract 

Feather weight (FeW) cipher is a lightweight block cipher proposed by Kumar et al. in 2019, which takes 64 bits 
plaintext as input and produces 64 bits ciphertext. As Kumar et al. said, FeW is a software oriented design with the aim 
of achieving high efficiency in software based environments. It seems that FeW is immune to many cryptographic 
attacks, like linear, impossible differential, differential and zero correlation attacks. However, in recent work, Xie et al. 
reassessed the security of FeW. More precisely, they proved that under the differential fault analysis (DFA) on the 
encryption states, an attacker can completely recover the master secret key. In this paper, we revisit the block cipher 
FeW and consider the DFA on its key schedule algorithm, which is rather popular cryptanalysis for kinds of block 
ciphers. In particular, by respectively injected faults into the 30th and 29th round subkeys, one can recover about 
55/80 ≈ 69% bits of master key. Then the brute force searching remaining bits, one can obtain the full master secret 
key. The simulations and experiment results show that our analysis is practical.
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Introduction
Modern cryptographic techniques, including encryption 
(Wang et  al. 2022) and digital signature schemes (Bru-
inderink and Pessl 2018), are often needed in modern 
computer networks to guarantee the confidentiality of 
transmitted messages and authenticity of communication 
parties. However, many computational efforts caused by 
the algorithms in cryptographic schemes may be pro-
hibitive for many practical resource-constrained devices 
(Sadhukhan et al. 2017). For example, in smart transport 
system, internet of medical things, etc., many devices 
only have battery life and thus are sensitive to energy 
consumption. In these cases, the design of cryptographic 
algorithms should be lightweight. This is also the rea-
son why lightweight cryptography has emerged as a vast 
research direction. In fact, when the famous Rijndael 
was selected as Advanced Encryption Standard (AES), 

there was also a need for lightweight ciphers for specific 
applications (Zhang et al. 2019). Since then, many light-
weight cryptographic algorithms, such as LBlock (Wang 
et al. 2019), PRESENT (Cnudde and Nikova 2017), GIFT 
(Xie et  al. 2021), Espresso (Bathe et  al. 2021), KLEIN 
(Xiao and Wang 2022), et al., were successively proposed. 
Inspired by these block ciphers, many researchers intend 
to design new and more efficient schemes.

FeW cipher, which is a software-oriented design with 
the aim of achieving high efficiency in software-based 
environments, was proposed by Kumar et  al. (2019). In 
FeW, the plaintext and ciphertext lengths are both 64 
bits, but the key size is 80 or 128 bits. Hence, we call 
them FeW-80 and FeW-128, respectively. In fact, in FeW, 
Kumar et  al. used a mix Feistel and generalized Feistel 
structures to enhance its security against several basic 
cryptographic attacks like differential, linear, impossible 
differential as well as zero correlation attacks. In addi-
tion, the key schedule of FeW is designed in a similar way 
as PRESENT, which has been chosen as the lightweight 
encryption standard by International Organisation of 
Standardisation (ISO).
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In fact, after designing FeW, Kumar et  al. evaluated 
its security against differential cryptanalysis, impossi-
ble differential cryptanalysis, linear cryptanalysis, zero 
correlation cryptanalysis, and related key cryptanaly-
sis. However, they ignored the differential fault analysis 
(DFA), which is a quite effective attack to lightweight 
block ciphers. In fact, DFA is a kind of side-channel 
attacks, which uses some induced errors to disturb the 
actual implementation of devices when they are running 
the encryption or decryption algorithms. The classical 
ways of inducing faults includes voltage variation, glitch, 
lazer, etc. (Kim 2012). How to physically induce faults is 
out of scope of this paper. By analyzing the input–output 
differentials of S-box as well as the correct/faulty cipher-
texts, one can greatly reduce the size of key space. Then 
the brute force searching can help to find out the true key. 
Many facts show that DFA is not only effective to block 
ciphers, but also fatal to many public key cryptographic 
systems and stream ciphers (Deng and Luo 2021).

In 2020, Xie et al. discussed the DFA security of FeW 
in the single byte random fault model (Xie et  al. 2020). 
More specifically, they introduced the single byte random 
fault on the encryption state of FeW and then analyzed 
the key recovery based on the input–output differentials 
as well as statistical characteristics of S-box. From their 
experiment results, one can know that the complete 
recoveries of master secret keys need an average 47 and 
79 fault injections for the two versions of FeW. Moreover, 
if 210 exhaustive searching is considered for their attack, 
then the needed numbers of fault injections can be fur-
ther reduced to 24 and 41, respectively, which shows that 
the DFA on encryption states of FeW is very effective.

Note that, the encryption algorithm and the key 
schedule algorithm are both embedded into the hard-
ware devices. Then the random fault injection (of side 
channel attack) may also occur in the key schedule part. 
Therefore, considering the DFA on key schedule of block 
cipher is also necessary. In fact, many important works 
just discussed this for many famous block ciphers, like 
AES (Takahashi and Fukunaga 2007), ITUbee (Fu et  al. 
2017), LBlock (Wei et al. 2018), KLEIN (Gong et al. 2011) 
et  al. Generally speaking, the induced faults can affect 
the current and subsequent round subkeys, which will 
further change the encryption states. Hence, the study 
of DFA on key schedule becomes more complicated than 
that of encryption state. Then a natural and interesting 
question arises: If the DFA occurs in the process of key 
schedule of FeW, then what will happen? In other words, 
whether FeW is still secure when the attacker launches 
the fault injections into the key schedule of FeW?

In this paper, we give a positive answer to this question. 
In particular, for the first time, we consider the DFA on 
the key schedule of the block cipher FeW. According to 

the key schedule of FeW, the faulty bits of the previous 
round subkey will quickly spread to the following keys 
and encryption states. Thus, we can only analyze the 
short-key version of FeW: FeW-80, in which we can mix 
the differential analysis and brute force searching tech-
niques to recover the master secret key. But for Few-128, 
we do not know how to obtain the master key because 
the exhaustive searching is still infeasible after the dif-
ferential analysis. Here, we leave it as an interesting open 
problem. Hence, we only focus on the discussions about 
the DFA on the key schedule of FeW-80. Our contribu-
tions can be concluded as follows.

•	 For the first time, we discuss the DFA security of 
FeW-80 when the random nibble faults are injected 
into the process of key schedule. In other words, our 
analysis is in the random nibble model and each fault 
is induced by half-byte.

•	 Our differential analysis combines the partial recov-
ery of the master key with brute force searching. 
More concretely, after injecting faults into the 30th 
and 29th round subkeys, one can easily recover 55 
bits of master secret key. For the remaining 25 bits (of 
master secret key), we can find out them by exhaus-
tive searching all the possible values.

•	 Finally, we simulate the encryption, decryption and 
key schedule processes. The experiment results show 
that our DFA on FeW’s key schedule is practical.

Related works In EUROCRYPT’97, Boneh et  al. first 
considered the faulty analysis on the famous RSA sig-
nature (Boneh et  al. 1997). At the same time, Biham 
and Shamir proposed the notion of DFA (Biham and 
Shamir 1997), which combines fault analysis with differ-
ential attack simultaneously, and applied it to DES (Data 
Encryption Standard). In addition, they also suggested 
that, in general, the DFA may occur in any process of 
encryption devices, which naturally includes encryption 
states as well as the generation of round subkeys. In the 
following work, Ali et al. discussed the DFA on AES’ key 
schedule algorithm and also showed that their attack is 
the most efficient (Ali et  al. 2013). In 2018, Shibayama 
et al. analyzed the security of 12 rounds FeW, which has 
the complexity of 263 (Shibayama et al. 2018). Aayush and 
Girish also presented the security analysis of FeW based 
on machine learning approach, which involves using arti-
ficial neural network to find the inherited biases present 
in the design of FeW (Aayush and Girish 2018).

Organizations The rest of this paper is organized as fol-
lows. First,  we present the symbols and explanations for 
next parts in Table 1, and in "Review of FeW" section, we 
review the algorithms of the lightweight cipher FeW. In 
"Proposed DFA on the key schedule of FeW" section, we 
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propose our DFA on FeW, which introduces the basic 
principle of DFA on key schedule, the recoveries of round 
subkeys and master secret key. In "Simulations and discus-
sions" section, we will give the simulations and discussions 
on the practical FeW block cipher. Finally, conclusions of 
this paper are given in "Conclusions" section.

Review of FeW
In this section, we review the construction of FeW, 
including the algorithms of encryption and decryption as 
well as key schedule. In FeW, the plaintext length equals 
to 64-bit, and the ciphertext with the same size is gen-
erated based on 80/128 bits key. The total encryption 
round is 32. The design of FeW is based on the general 
Feistel structure, which needs fewer computations than 
SPN structure (used in AES), since only half of the input 
block is processed through round function in each round.

Encryption algorithm
First, the encryption algorithm parses the 64-bit plaintext 
P into two 32-bit strings P0 and P1. For the right-hand 
string P1, it will first become the left-hand one in the 
next round. Then its XOR with the round key RK0 will 
be given to the F-function, whose output is XORed with 
the left-hand string P0. The result is set as the right-hand 
string of the next round. After 32 round transformations, 

the output of encryption algorithm is just the ciphertext 
of P, which has the same length (i.e. 64 bits) with P. The 
overall structure of FeW is presented in Fig. 1.

The round function F takes 32-bit string XR
i  and round 

key RKi as inputs, and outputs a 32-bit string. That is

Now, we describe its inner structure in detail. In fact, 
it includes a permutation P , 8 parallel S-box and two lin-
early diffuse function L1 and L2 . The permutation P and 
S-box S are given as follows (see Table 2 and 3).

The remaining linear functions L1 and L2 are from {0, 
1}16 to {0, 1}16, and given by the following two equations.

For 32-bit input Y, the calculation of F is presented in Fig. 2.

Decryption algorithm
Since FeW is a balance design with Feistel structure, the 
decryption algorithm does not need the inversion of 
round function. In fact, each round subkey is used in the 
reverse order to obtain the last plaintext. More precisely, 
for a given 64-bit ciphertext C, which contains two halves 
C0 and C1. Perform the following steps.

1.	 First apply the round function on the right half C1 
and the round key RK31, and XOR it with C0 to set 
the string C2. That is

2.	 Circularly perform step (1) (using the corresponding 
round key RKi) to get the last string C32 and C33.

3.	 Finally, swap the two strings C32, C33 to obtain the 
64-bit plaintext P0||P1 = C33||C32.

The correctness of the decryption process can be eas-
ily checked.

Key schedule algorithm
This algorithm is used to generate round subkeys for each 
round from the 80-bit master secret key MK. Parse MK as 
80 bits:

Then the round subkey RKi is computed according to 
the following Algorithm 1.

F : {0, 1}32 × {0, 1}32 → {0, 1}32.

L1(x) =x ⊕ (x <<< 1)⊕ (x <<< 5)⊕ (x <<< 9)

⊕ (x <<< 12),

L2(x) =x ⊕ (x <<< 4)⊕ (x <<< 7)⊕ (x <<< 11)

⊕ (x <<< 15).

C2 = C0 ⊕ F(C1 ⊕ RK31).

MK = k0k1k2 . . . k78k79.

Table 1  Symbols and explanations

Symbols Descriptions

DFA Differential fault analysis

FeW Feather weight cipher

CPA Chosen ciphertext attack

MK 80-bit master secret key

MKi The i-th intermediate state of MK

Ki The leftmost 16 bits of MKi

RKi The i-th round subkey

RK
j
i

The j-th nibble of RKi

C Correctly generated ciphertext

C∗ The faulty ciphertext

 <  <  < m Left cyclic shift m bits

[i]2 Binary form of i

 ⊕  Bitwise exclusive-OR operation

|| The concatenation of two strings

S The S-Box of FeW

P The permutation of FeW

F The round function

L1, L2 The linear functions of FeW

XLi The left part of i-th encryption state

XRi The right part of i-th encryption state

XLi,j The j-th Nibble of XLi
XRi,j The j-th Nibble of XRi
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Hence, we have

MK59 =S[k13k14k15k16]k17k18

. . . k76S[k77k78k79k0]([k1k2k3k4k5k6k7k8]

⊕ [59]2)S[k9k10k11k12].

RK29 =K58 K59 = k0k1k2 . . . k15

S[k13k14k15k16]k17k18 . . . k28.

Fig. 1  The overall structure of FeW encryption process

Table 2  The permutation P appeared in encryption process of FeW

x 0 1 2 3 4 5 6 7

P(x) 0 1 6 7 4 5 2 3

S S S S S SS S

L2L1

Y (32-bit)

P

Z (32-bit)
Fig. 2  The F-function of FeW

Next, we take the last three round subkeys as exam-
ples to show the relationship of their bits. More precisely, 
assume that

Then it naturally holds that

and

MK58 = k0k1k2 . . . k79.

K58 = k0k1k2 . . . k15,
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Similarly, we can calculate the round subkeys RK30 and 
RK31, which equal to

and

respectively.
Obviously, the two round subkeys RK30 and RK31 con-

tain 55 bits of master secret key. Hence, there are at least 
25 bits (of master secret key) that cannot be recovered by 
computing RK30 and RK31.

Proposed DFA on the key schedule of FeW
In this section, we describe the DFA on the key schedule 
of FeW. First, we would like to give the basic principle of 
DFA on block cipher. Then, present how to apply it to the 
concrete process of FeW and how to recover the master 
secret key based on the induced differential faults.

Basic principle of DFA
Since the S-box is the non-linear part of block cipher, 
the input–output differentials can be used to recover the 
secret key if the input contains its information. The basic 
principle is as follows. Let S be an S-box of some block 
cipher, whose input is the XOR of previous round out-
put and the round key. Figure 3 shows one such example. 
More concretely, assume that in is the output of previous 
round and RK is the round subkey. If one fault is injected 
into the state in or key RK, which causes an input-differ-
ence α , then the output of S-box will also have a differ-
ence β . Now, if the value in⊕ RK  is replaced by X, then 
we can easily obtain the following equation.

S(k26k27k28k29)k30k31 . . . k41||S(k39k40k41k42)k43k44 . . . k54,

S(k52k53k54k55)k56k57 . . . k67||

S(k65k66k67k68)k69k70 . . . k76S(k77k78k79k0),

According to the property of S-box of FeW (see 
Table  3), we know that, for a pair fix and known value 
(α,β) , the above Eq.  (1) has 0, 2 or 4 possible solutions 
for X. Since X is the XOR of in and RK, one can easily 
get the possible solutions for round key RK if in is known. 
Finally, other induced faults can be used to find out the 
true round subkey RK, which is further to be used to 
recover the master secret key.

Recovery of the last round subkey
In this subsection, we first discuss the recovery of the last 
round subkey RK31 by inducing fault on the generation of 
RK30 in the key schedule algorithm. In fact, we have the 
following two basic assumptions on the fault model.

Assumption 1  The attacker is allowed to choose any 
plaintext and get the correct/faulty ciphertexts. That is, 
this attack is the so-called chosen plaintext attack (CPA).

Assumption 2  The adversary is allowed to induce nib-
ble fault(s) in the process of generating the round keys. 
But the fault-value induced in some position is unknown.

Now, we first assume that the fault is injected into first 
nibble of RK30, which causes the differential p. The pro-
cess of fault propagation is presented in Fig. 4. More spe-
cifically, after going through the S-box and L1-function, 
the fault will become four “new” ones p1, p2, p3, p4, which 
will affect the left half of XR

31. Then the four differentials 
are reserved to the left half XL

32 and affect all the nibbles 
of the right half XR

32 the final ciphertext.
Next, we introduce how to obtain partial round subkey 

based on these differentials. In fact, this analysis mainly 
focuses on the final round of encryption process. For the 
ith S-box Si, denote by ini and in∗i  its correct and faulty 
input, respectively. Then its correct/faulty output (of the 
S-box) is denoted by outi/out∗i  . Define

Moreover, we can easily know that

(1)S(X ⊕ α)⊕ S(X) = β .

outi ⊕ out∗i = y4iy4i+1y4i+2y4i+3.

Table 3  The S-box S appeared in encryption process of FeW

x 0 1 2 3 4 5 6 7

S(x) 0 1 6 7 4 5 2 3

x 8 9 A B C D E F

S(x) B 4 6 B 0 7 3 D

S S S

Fig. 3  Difference across S-box of block cipher
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p

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p2 p3 p4p1

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p2 p3 p4p1

p2 p3 p4p1 p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

Fig. 4  The fault propagation process on RK030
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From Fig. 4, we know that

For 1 ≤ i ≤ 4, define p′i as the bit-form: 
p′i,1||p

′
i,2||p

′
i,3||p

′
i,4. Then from Eq.  (4), we obtain the fol-

lowing equations.

(2)p1 = in0 ⊕ in∗0 = XL
32,0 ⊕ XL,∗

32,0,

(3)p2 = in1 ⊕ in∗1 = XL
32,1 ⊕ XL,∗

32,1.

(4)

p′1||p
′
2||p

′
3||p

′
4 = L1(out0||out1||out2||out3)

⊕ L1(out
∗
0 ||out

∗
1 ||out2||out3)

= L1(out0 ⊕ out∗0 ||out1 ⊕ out∗1 ||00000000)

= L1(y0y1y2y3y4y5y6y700000000)

= (y0y1y2y3y4y5y6y700000000)

⊕ (y1y2y3y4y5y6y700000000y0)

⊕ (y5y6y700000000y0y1y2y3y4)

⊕ (0000000y0y1y2y3y4y5y6y70)

⊕ 0000y0y1y2y3y4y5y6y70000)

= (y0 ⊕ y1 ⊕ y5)||(y1 ⊕ y2 ⊕ y6)|| · · · ||(y0 ⊕ y4).

As a result, we can compute and obtain the eight bits 
y0, y1, . . . , y7, which are just the bits in out0 ⊕ out∗0 and 
out1 ⊕ out∗1 . Therefore, we can get the output differen-
tials of the two S-boxes S0 and S1.

Finally, according to the correspondences of the input–
output differentials (i.e. Table 4), we can obtain the can-
didate values for the inputs in0 and in1 , which can be 
used to recover the 1st byte of RK31 (i.e. RK 0

31||RK
1
31 ). 

Similar analysis on the S-boxes S6 and S7 can be made 
to get the candidate value of the 2nd byte in the round 
key RK31 (i.e.RK 2

31||RK
3
31 ). The pseudorandom code of 

recovering the tuple (RK 0
31,RK

1
31) is given in the following 

Algorithm 2.











































y0 = p′1,4 ⊕ p′4,3 ⊕ p′3,4,

y1 = p′3,1 ⊕ p′1,4 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y2 = p′4,2 ⊕ p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y3 = p′4,3 ⊕ p′4,4 ⊕ p′3,4,
y4 = p′1,4 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y5 = p′3,2 ⊕ p′4,2 ⊕ p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y6 = p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y7 = p′4,4 ⊕ p′3,4.

Table 4  The correspondences of input–output differentials for S-Box of FeW

(α,β) (1, 3) (1, 7) (1, A) (1, C) (1, D) (1, E) (1, F) (2, 3) (2, 5) (2, A) (2, B) (2, C) (2, D)

X 6, 7 C, D 2, 3 0, 1 4, 5 A, B, E, F 8, 9 C, E 4, 6 D, F 1, 3, 5, 7 9, B 0, 2, 8, A

(α,β) (3, 1) (3, 2) (3, 3) (3, 4) (3, 6) (3, 8) (3, D) (4, 3) (4, 5) (4, 6) (4, B) (4, E) (4, F)

X 1, 2 9, A 8, B D, E 4, 7 5, 6 C, F 9, D A, E, B, F 2, 6 8, C 0, 4 1, 3, 5, 7

(α,β) (5, 2) (5, 3) (5, 4) (5, 5) (5, B) (5, C) (6, 3) (6, 4) (6, 6) (6, 8) (6, 9) (6, B) (6, C)

X 1, 4 0, 5 9, C 2, 7 A, B, E, F 3, 6, 8, D 2, 4 3, 5, 7, 8 A, C 1, E 9, F 0, 6 B, D

(α,β) (7, 1) (7, 6) (7, 7) (7, 8) (7, 9) (7, E) (8, 6) (8, 7 (8, 9) (8, A) (8, C) (8, D) (9, 1)

X A, D 8, F 1, 6, 9, E 0, 7, B, C 3, 4 2, 5 5, D 7, F 0, 2, 8, A 1, 6, 9, E 4, C 3, B 5, C

(α,β) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 9) (9, B) (A, 1) (A, 4) (A, 6) (A, 9) (A, C) (A, D)

X 3, A 6, F 1, 8 0, 9 2, B 7, E 4, D 3, 9 0, 2, 8, A 1, B 6, C 5, F 7, D

(α,β) (A, F) (B, 1) (B, 2) (B, 8) (B, A) (B, B) (B, E) (C, 2) (C, 5) (C, 7) (C, 8) (C, 9) (C, C)

X 4, E 4, F 5, E 1, A 0, 7, B, C 2, 9 3, 6, 8, D 0, 7, B, C 5, 9 4, 8 3, F 1, D 2, E

(α,β) (C, F) (D, 1) (D, 2) (D, 5) (D, 6) (D, 8) (D, A) (D, C) (D, E) (E, 1) (E, 2) (E, 3) (E, 9)

X 6, A 6, B 2, F 0, D 3, E 4, 9 5, 8 7, A 1, C 0, E 3, D, 6, 8 1, F 5, B

(α,β) (E, A) (E, E) (E, F) (F, 1) (F, 4) (F, 7) (F, 8) (F, D) (F, F) (3, 7) –

X 4, A 7, 9 2, C 7, 8 4, B 5, A 2, D 1, 6, 9, E 0, F 0, 3
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subkey RK29 in the key schedule. More precisely, for the 8 
nibbles in RK29, we consider the differentials induced by 
the faults and their propagations. A typical case on the 
fault propagation is described in Fig. 6, in which the fault 
is induced into the round subkey RK 1

29 . Here, we remark 
that the induced fault does not affect the next two round 
subkeys RK30 and RK31.

Now, based on the recovered round subkey RK31, we 
can decrypt the correct and faulty ciphertexts to obtain 
the states X31, X∗

31 after the 31 rounds encryptions. Per-
forming similar analysis as in "Recovery of the last round 
subkey" section, one can easily get the candidate val-
ues of the nibbles RK 0

30,RK
1
30,RK

2
30,RK

3
30 in RK30. If the 

faults are induced into other nibbles (of RK29), such as 
RK 2

29,RK
3
29, . . . ,RK

7
29 , then the analysis process is also 

similar.
Next, we further analyze the remaining case. That is, 

the injected fault occurs in the first nibble of RK29. Still 
assume that the induced differential is p, which is parsed 
into p = b||p . Here, b is its first bit. According to the two 
possible values of b, we divide our analysis into the fol-
lowing two cases.

In addition, we can also similarly analyze the process of 
fault propagation if the fault is injected into other nibbles 
of the round subkey RK30 . In fact, the analysis processes 
on the nibbles RK 0

30,RK
1
30, . . . ,RK

6
30 are same, which are 

different from that of the last nibble RK 7
30 . The reason is 

as follows. If the fault occurs on RK 7
30 , then it will affect 

the “correctness” of last round subkey RK 0
31 . That is, the 

induced differential p on RK 7
30 leads to the new differ-

ential p′ on RK 0
31 (see Fig.  5). As a result, the input dif-

ferential of the S-box S0 becomes p1 + p′ , which makes 
the analysis on the L1 function more difficulty. Neverthe-
less, it does not affect the analysis on the last two S-boxes 
S6, S7 , and thus we can still get the candidate values for 
the two nibbles RK 2

31,RK
3
31 by analyzing their input–out-

put differentials.
The above discusses on the recovery of the last round 

subkey are listed in the following Table 5.

Recovery of the round subkey RK30
In this subsection, we discuss how to further recover the 
round subkey RK30 based on the above recovery of RK31. 
Now, we need to induce fault into the generation of round 
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p

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p2 p3 p4p1

p'

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p2 p3 p4p1

p2 p3 p4p1 p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

Fig. 5  The fault propagation process on RK730
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Case 0. If b = 0, then decrypt the final ciphertexts 
with the help of the recovered last round subkey 
RK31.
Case 1. If b = 1, then define the last nibble of RK31 as 
S(k77k78k79(k0 ⊕ 1)) and decrypt the final cipher-
texts by using the updated round subkey RK31.

The decrypted states (under the round subkey RK31) 
will be used to further analyze the recovery of the round 
subkey RK30 by using previous steps.

Finally, we explain why our above analysis will give cor-
rect recovery of the round subkey RK30. According to 
the key schedule of FeW, the last nibble of RK31 equals 
to S(k77k78k79k0) if the first nibble of RK29 is k0k1k2k3. If 
b = 0, then the induced differential p does not affect the 
last round subkey RK31, which can be used to correctly 
decrypt the final ciphertexts to obtain the states of the 31 
round encryptions. If b = 1, then the induce differential 
p changes the bit k0 into k0 ⊕ 1 , which will also appear 
in the last round subkey RK31. Thus, the last round sub-
key, which will be used to recover the inner states of 
encryption process, needs to be updated according to the 
induced differential.

The above discusses on the recovery of the round sub-
key RK30 are listed in the following Table 6.

Recovery of the master key
According to the key schedule, we can easily know that 
the master key can be recovered from any intermediate 
key state MKi, which consists of 29 bits of RK31, 26 bits 
of RK30, and 25 bits of RK29. If we can recover all the bits 
of RK31 and RK30 from the above discussions, then the 
remaining 25 bits can be obtained by brute force search-
ing, whose time complexity is 225. In addition, we remark 
that, in the process of recovering the round subkey RK30, 
the two cases on the first bit of induced differential p 
increases the total complexity from 225 to 226. Therefore, 
by inducing several nibble faults into the key schedule of 
FeW, one can finally recover the master key based on the 
differential analysis on RK31 and RK30, as well as the brute 

force searching. The total time complexity equals to 226, 
which is much lower than the original 280.

Simulations and discussions
In this section, we present the simulations and discus-
sions on the differential fault attack on FeW. Specifically, 
we will choose a fix plaintext “0×1234567890ABCDEF” 
and several randomly master secret keys, and compute 
the ciphertexts under these keys. Then by simulating the 
fault-injections into the 29th and 30th round subkeys, we 
get the corresponding faulty ciphertexts. Based on the 
correct and faulty ciphertext, one can recover the round 
subkeys RK31 and RK30, respectively. Finally, the remain-
ing unknown bits of master secret key is found out by 
brute force searching. The concrete simulation process is 
given as follows.

Step 1. Randomly choose a master secret key and 
compute the round subkeys according to key sched-
ule.
Step 2. Generate the correct ciphertexts under the 
master secret key.
Step 3. Simulate the fault-injection into RK30 and 
obtain faulty ciphertexts.
Step 4. Search the candidate values for the nibbles 
of RK31.
Step 5. Simulate the fault-injection into RK29 and 
obtain faulty ciphertexts.
Step 6. Search the candidate values for the nibbles 
of RK30.
Step 7. Exhaustive search the remaining bits (of 
MK29) by re-encrypting and decrypting.
Step 8. Compute the master secret key by reversing 
the key schedule of FeW.

Simulations
The whole simulation of FeW, including the encryption 
and decryption algorithms, is in the C programming 
language and based on a desktop with the configura-
tion of Intel(R) Core (TM) i5-10210U CPU @1.60  GHz 
and 16 GB RAM. We simulate the DFA process 10 times 
to get significant data. Since their final results are simi-
lar, we only show five typical examples in the following 
Table  7, which presents the number of needed faults 
and their running time of recovering master secret key. 
Here, we remark that the factors including the positions 
of induced faults, the input–output differentials of S-box, 
and the particular master secret key, can affect the simu-
lation results. Therefore, in each simulation, the needed 
number of faults may be different from other ones.

Table 5  The discussions on the recovery of the last round 
subkey

Fault on RK30 RK030 RK130 RK230 RK330

Recovery of RK31 RK031, RK
1
31

RK231, RK
3
31

RK031, RK
1
31

RK231, RK
3
31

RK431, RK
5
31

RK631, RK
7
31

RK431, RK
5
31

RK631, RK
7
31

Fault on RK30 RK430 RK530 RK630 RK730

Recovery of RK31 RK431, RK
5
31

RK631, RK
7
31

RK431, RK
5
31

RK631, RK
7
31

RK031, RK
1
31

RK231, RK
3
31

RK231, RK
3
31
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Fig. 6  The fault propagation process on RK129



Page 12 of 13Xiao et al. Cybersecurity            (2022) 5:28 

From the above simulation, one can easily know that 
our proposed differential fault attack, which reduces the 
key space from 280 to 226, is a rather practical attack for 
the block cipher FeW. In average, the recoveries of the 
two round subkeys RK31 and RK30 need 12.6 induced 
faults, and the exhaustive searching time for the remain-
ing bits needs 5.3 min.

Finally, we remark that the value 226 is the lower bound 
of our proposed DFA on FeW. We explain it as follows. 
According to our attack, the two models of induced faults 
can only be used to recover the last two round subkeys, 
which contain 55 bits of master secret key, although the 
faults also affect the round subkey RK29. But we do not 
know how to recover the remaining bits based on the 
existing differentials. A natural idea is to induced addi-
tional faults into the previous round subkey RK28, which 
may descend the lower bound by recovering additional 
bits of RK29. However, this will make the analysis much 
complicated. The reason is as follows. The induced differ-
entials on RK28 will also affect the bits of RK31. But the 
quantitative differentials on RK31 cannot be calculated. 
As a result, only from correct/faulty ciphertexts, one 

cannot decrypt them with the help of “faulty” round sub-
key RK31.

Discussions
In this subsection, we present the comparison with Xie 
et  al.’s work (Xie et  al. 2020) since it also consider the 
DFA on the same FeW algorithm. As we discussed in 
Introduction, the main difference between them lies in 
that Xie et al.’s work induces single byte random faults on 
the encryption state while our paper considers the ran-
dom nibble faults on the key schedule. The concrete com-
parisons are listed in the following Table 8.

Here, we remark that this table only gives the average 
numbers of needed faults for both works.

Conclusions
Differential fault analysis is a popular side channel attack 
to block cipher. In this paper, we apply the DFA to the 
lightweight block cipher FeW. More specifically, in the 
nibble model, we consider the DFA to the key schedule of 
FeW-80. By inducing faults into the 30th and 29th round 
subkeys, and analyzing the input–output differentials 
of S-box, one can easily obtain the candidate values for 
the nibbles of RK31 and RK30. Then brute force searching 
the remaining bits can finally recover the original mas-
ter secret key. However, it seems that this technique only 
works for 80 bits FeW. For FeW-128, the only recover-
ies of last round subkeys seem to be not enough because 
its key space is too large. Thus, it may be an interesting 
work to investigate the DFA on key schedule of FeW-128. 
Finally, the proposed simulations show that our proposed 
attack is rather practical for FeW-80.

Table 6  The discussions on the recovery of round subkey RK30

Fault on RK29 RK029 RK129 RK229 RK329

Recovery of RK30 RK030, RK
1
30

RK230, RK
3
30

RK030, RK
1
30

RK230, RK
3
30

RK430, RK
5
30

RK630, RK
7
30

RK430, RK
5
30

RK630, RK
7
30

Fault on RK29 RK429 RK529 RK629 RK729

Recovery of RK30 RK430, RK
5
30

RK630, RK
7
30

RK430, RK
5
30

RK630, RK
7
30

RK030, RK
1
30

RK230, RK
3
30

RK230, RK
3
30

Table 7  Five typical examples

Random 80 bits master secret key 28b073e9
d9d55414

116394d0
d827379d

d3f2a25
f9084a2e

a618c845
62b40c9c

9f13f86d
24cbdeb3

Number of faults on RK30 5 7 8 5 6

Number of faults on RK29 7 6 6 6 7

Time of exhaustive searching (Min) 5.21 5.33 5.42 5.17 5.36

Table 8  The comparisons with Xie et al.’s work

Position of faults Fault model Round(s) of fault 
injection

Number of needed faults

Xie et al.’s work Encryption state Random byte fault 29, 30, 31 24.9 with 210 exhaustive searching

Our work Key schedule Random nibble fault 29, 30 12.6 with 226 exhaustive searching
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