
Xiao et al. Cybersecurity (2022) 5:28
https://doi.org/10.1186/s42400-022-00130-z

RESEARCH

The differential fault analysis on block cipher
FeW
Haiyan Xiao1,2, Lifang Wang1 and Jinyong Chang3,4* 

Abstract 

Feather weight (FeW) cipher is a lightweight block cipher proposed by Kumar et al. in 2019, which takes 64 bits
plaintext as input and produces 64 bits ciphertext. As Kumar et al. said, FeW is a software oriented design with the aim
of achieving high efficiency in software based environments. It seems that FeW is immune to many cryptographic
attacks, like linear, impossible differential, differential and zero correlation attacks. However, in recent work, Xie et al.
reassessed the security of FeW. More precisely, they proved that under the differential fault analysis (DFA) on the
encryption states, an attacker can completely recover the master secret key. In this paper, we revisit the block cipher
FeW and consider the DFA on its key schedule algorithm, which is rather popular cryptanalysis for kinds of block
ciphers. In particular, by respectively injected faults into the 30th and 29th round subkeys, one can recover about
55/80 ≈ 69% bits of master key. Then the brute force searching remaining bits, one can obtain the full master secret
key. The simulations and experiment results show that our analysis is practical.

Keywords:  Differential fault analysis, Block cipher, FeW, Side channel attack

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Modern cryptographic techniques, including encryption
(Wang et al. 2022) and digital signature schemes (Bru-
inderink and Pessl 2018), are often needed in modern
computer networks to guarantee the confidentiality of
transmitted messages and authenticity of communication
parties. However, many computational efforts caused by
the algorithms in cryptographic schemes may be pro-
hibitive for many practical resource-constrained devices
(Sadhukhan et al. 2017). For example, in smart transport
system, internet of medical things, etc., many devices
only have battery life and thus are sensitive to energy
consumption. In these cases, the design of cryptographic
algorithms should be lightweight. This is also the rea-
son why lightweight cryptography has emerged as a vast
research direction. In fact, when the famous Rijndael
was selected as Advanced Encryption Standard (AES),

there was also a need for lightweight ciphers for specific
applications (Zhang et al. 2019). Since then, many light-
weight cryptographic algorithms, such as LBlock (Wang
et al. 2019), PRESENT (Cnudde and Nikova 2017), GIFT
(Xie et al. 2021), Espresso (Bathe et al. 2021), KLEIN
(Xiao and Wang 2022), et al., were successively proposed.
Inspired by these block ciphers, many researchers intend
to design new and more efficient schemes.

FeW cipher, which is a software-oriented design with
the aim of achieving high efficiency in software-based
environments, was proposed by Kumar et al. (2019). In
FeW, the plaintext and ciphertext lengths are both 64
bits, but the key size is 80 or 128 bits. Hence, we call
them FeW-80 and FeW-128, respectively. In fact, in FeW,
Kumar et al. used a mix Feistel and generalized Feistel
structures to enhance its security against several basic
cryptographic attacks like differential, linear, impossible
differential as well as zero correlation attacks. In addi-
tion, the key schedule of FeW is designed in a similar way
as PRESENT, which has been chosen as the lightweight
encryption standard by International Organisation of
Standardisation (ISO).

Open Access

Cybersecurity

*Correspondence: changjinyong@xauat.edu.cn

3 School of Information and Control Engineering, Xi’An University
of Architecture and Technology, Xi’An 710055, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00130-z&domain=pdf

Page 2 of 13Xiao et al. Cybersecurity (2022) 5:28

In fact, after designing FeW, Kumar et al. evaluated
its security against differential cryptanalysis, impossi-
ble differential cryptanalysis, linear cryptanalysis, zero
correlation cryptanalysis, and related key cryptanaly-
sis. However, they ignored the differential fault analysis
(DFA), which is a quite effective attack to lightweight
block ciphers. In fact, DFA is a kind of side-channel
attacks, which uses some induced errors to disturb the
actual implementation of devices when they are running
the encryption or decryption algorithms. The classical
ways of inducing faults includes voltage variation, glitch,
lazer, etc. (Kim 2012). How to physically induce faults is
out of scope of this paper. By analyzing the input–output
differentials of S-box as well as the correct/faulty cipher-
texts, one can greatly reduce the size of key space. Then
the brute force searching can help to find out the true key.
Many facts show that DFA is not only effective to block
ciphers, but also fatal to many public key cryptographic
systems and stream ciphers (Deng and Luo 2021).

In 2020, Xie et al. discussed the DFA security of FeW
in the single byte random fault model (Xie et al. 2020).
More specifically, they introduced the single byte random
fault on the encryption state of FeW and then analyzed
the key recovery based on the input–output differentials
as well as statistical characteristics of S-box. From their
experiment results, one can know that the complete
recoveries of master secret keys need an average 47 and
79 fault injections for the two versions of FeW. Moreover,
if 210 exhaustive searching is considered for their attack,
then the needed numbers of fault injections can be fur-
ther reduced to 24 and 41, respectively, which shows that
the DFA on encryption states of FeW is very effective.

Note that, the encryption algorithm and the key
schedule algorithm are both embedded into the hard-
ware devices. Then the random fault injection (of side
channel attack) may also occur in the key schedule part.
Therefore, considering the DFA on key schedule of block
cipher is also necessary. In fact, many important works
just discussed this for many famous block ciphers, like
AES (Takahashi and Fukunaga 2007), ITUbee (Fu et al.
2017), LBlock (Wei et al. 2018), KLEIN (Gong et al. 2011)
et al. Generally speaking, the induced faults can affect
the current and subsequent round subkeys, which will
further change the encryption states. Hence, the study
of DFA on key schedule becomes more complicated than
that of encryption state. Then a natural and interesting
question arises: If the DFA occurs in the process of key
schedule of FeW, then what will happen? In other words,
whether FeW is still secure when the attacker launches
the fault injections into the key schedule of FeW?

In this paper, we give a positive answer to this question.
In particular, for the first time, we consider the DFA on
the key schedule of the block cipher FeW. According to

the key schedule of FeW, the faulty bits of the previous
round subkey will quickly spread to the following keys
and encryption states. Thus, we can only analyze the
short-key version of FeW: FeW-80, in which we can mix
the differential analysis and brute force searching tech-
niques to recover the master secret key. But for Few-128,
we do not know how to obtain the master key because
the exhaustive searching is still infeasible after the dif-
ferential analysis. Here, we leave it as an interesting open
problem. Hence, we only focus on the discussions about
the DFA on the key schedule of FeW-80. Our contribu-
tions can be concluded as follows.

•	 For the first time, we discuss the DFA security of
FeW-80 when the random nibble faults are injected
into the process of key schedule. In other words, our
analysis is in the random nibble model and each fault
is induced by half-byte.

•	 Our differential analysis combines the partial recov-
ery of the master key with brute force searching.
More concretely, after injecting faults into the 30th
and 29th round subkeys, one can easily recover 55
bits of master secret key. For the remaining 25 bits (of
master secret key), we can find out them by exhaus-
tive searching all the possible values.

•	 Finally, we simulate the encryption, decryption and
key schedule processes. The experiment results show
that our DFA on FeW’s key schedule is practical.

Related works In EUROCRYPT’97, Boneh et al. first
considered the faulty analysis on the famous RSA sig-
nature (Boneh et al. 1997). At the same time, Biham
and Shamir proposed the notion of DFA (Biham and
Shamir 1997), which combines fault analysis with differ-
ential attack simultaneously, and applied it to DES (Data
Encryption Standard). In addition, they also suggested
that, in general, the DFA may occur in any process of
encryption devices, which naturally includes encryption
states as well as the generation of round subkeys. In the
following work, Ali et al. discussed the DFA on AES’ key
schedule algorithm and also showed that their attack is
the most efficient (Ali et al. 2013). In 2018, Shibayama
et al. analyzed the security of 12 rounds FeW, which has
the complexity of 263 (Shibayama et al. 2018). Aayush and
Girish also presented the security analysis of FeW based
on machine learning approach, which involves using arti-
ficial neural network to find the inherited biases present
in the design of FeW (Aayush and Girish 2018).

Organizations The rest of this paper is organized as fol-
lows. First, we present the symbols and explanations for
next parts in Table 1, and in "Review of FeW" section, we
review the algorithms of the lightweight cipher FeW. In
"Proposed DFA on the key schedule of FeW" section, we

Page 3 of 13Xiao et al. Cybersecurity (2022) 5:28 	

propose our DFA on FeW, which introduces the basic
principle of DFA on key schedule, the recoveries of round
subkeys and master secret key. In "Simulations and discus-
sions" section, we will give the simulations and discussions
on the practical FeW block cipher. Finally, conclusions of
this paper are given in "Conclusions" section.

Review of FeW
In this section, we review the construction of FeW,
including the algorithms of encryption and decryption as
well as key schedule. In FeW, the plaintext length equals
to 64-bit, and the ciphertext with the same size is gen-
erated based on 80/128 bits key. The total encryption
round is 32. The design of FeW is based on the general
Feistel structure, which needs fewer computations than
SPN structure (used in AES), since only half of the input
block is processed through round function in each round.

Encryption algorithm
First, the encryption algorithm parses the 64-bit plaintext
P into two 32-bit strings P0 and P1. For the right-hand
string P1, it will first become the left-hand one in the
next round. Then its XOR with the round key RK0 will
be given to the F-function, whose output is XORed with
the left-hand string P0. The result is set as the right-hand
string of the next round. After 32 round transformations,

the output of encryption algorithm is just the ciphertext
of P, which has the same length (i.e. 64 bits) with P. The
overall structure of FeW is presented in Fig. 1.

The round function F takes 32-bit string XR
i and round

key RKi as inputs, and outputs a 32-bit string. That is

Now, we describe its inner structure in detail. In fact,
it includes a permutation P , 8 parallel S-box and two lin-
early diffuse function L1 and L2 . The permutation P and
S-box S are given as follows (see Table 2 and 3).

The remaining linear functions L1 and L2 are from {0,
1}16 to {0, 1}16, and given by the following two equations.

For 32-bit input Y, the calculation of F is presented in Fig. 2.

Decryption algorithm
Since FeW is a balance design with Feistel structure, the
decryption algorithm does not need the inversion of
round function. In fact, each round subkey is used in the
reverse order to obtain the last plaintext. More precisely,
for a given 64-bit ciphertext C, which contains two halves
C0 and C1. Perform the following steps.

1.	 First apply the round function on the right half C1
and the round key RK31, and XOR it with C0 to set
the string C2. That is

2.	 Circularly perform step (1) (using the corresponding
round key RKi) to get the last string C32 and C33.

3.	 Finally, swap the two strings C32, C33 to obtain the
64-bit plaintext P0||P1 = C33||C32.

The correctness of the decryption process can be eas-
ily checked.

Key schedule algorithm
This algorithm is used to generate round subkeys for each
round from the 80-bit master secret key MK. Parse MK as
80 bits:

Then the round subkey RKi is computed according to
the following Algorithm 1.

F : {0, 1}32 × {0, 1}32 → {0, 1}32.

L1(x) =x ⊕ (x <<< 1)⊕ (x <<< 5)⊕ (x <<< 9)

⊕ (x <<< 12),

L2(x) =x ⊕ (x <<< 4)⊕ (x <<< 7)⊕ (x <<< 11)

⊕ (x <<< 15).

C2 = C0 ⊕ F(C1 ⊕ RK31).

MK = k0k1k2 . . . k78k79.

Table 1  Symbols and explanations

Symbols Descriptions

DFA Differential fault analysis

FeW Feather weight cipher

CPA Chosen ciphertext attack

MK 80-bit master secret key

MKi The i-th intermediate state of MK

Ki The leftmost 16 bits of MKi

RKi The i-th round subkey

RK
j
i

The j-th nibble of RKi

C Correctly generated ciphertext

C∗ The faulty ciphertext

 <  <  < m Left cyclic shift m bits

[i]2 Binary form of i

 ⊕  Bitwise exclusive-OR operation

|| The concatenation of two strings

S The S-Box of FeW

P The permutation of FeW

F The round function

L1, L2 The linear functions of FeW

XLi The left part of i-th encryption state

XRi The right part of i-th encryption state

XLi,j The j-th Nibble of XLi
XRi,j The j-th Nibble of XRi

Page 4 of 13Xiao et al. Cybersecurity (2022) 5:28

Hence, we have

MK59 =S[k13k14k15k16]k17k18

. . . k76S[k77k78k79k0]([k1k2k3k4k5k6k7k8]

⊕ [59]2)S[k9k10k11k12].

RK29 =K58 K59 = k0k1k2 . . . k15

S[k13k14k15k16]k17k18 . . . k28.

Fig. 1  The overall structure of FeW encryption process

Table 2  The permutation P appeared in encryption process of FeW

x 0 1 2 3 4 5 6 7

P(x) 0 1 6 7 4 5 2 3

S S S S S SS S

L2L1

Y (32-bit)

P

Z (32-bit)
Fig. 2  The F-function of FeW

Next, we take the last three round subkeys as exam-
ples to show the relationship of their bits. More precisely,
assume that

Then it naturally holds that

and

MK58 = k0k1k2 . . . k79.

K58 = k0k1k2 . . . k15,

Page 5 of 13Xiao et al. Cybersecurity (2022) 5:28 	

Similarly, we can calculate the round subkeys RK30 and
RK31, which equal to

and

respectively.
Obviously, the two round subkeys RK30 and RK31 con-

tain 55 bits of master secret key. Hence, there are at least
25 bits (of master secret key) that cannot be recovered by
computing RK30 and RK31.

Proposed DFA on the key schedule of FeW
In this section, we describe the DFA on the key schedule
of FeW. First, we would like to give the basic principle of
DFA on block cipher. Then, present how to apply it to the
concrete process of FeW and how to recover the master
secret key based on the induced differential faults.

Basic principle of DFA
Since the S-box is the non-linear part of block cipher,
the input–output differentials can be used to recover the
secret key if the input contains its information. The basic
principle is as follows. Let S be an S-box of some block
cipher, whose input is the XOR of previous round out-
put and the round key. Figure 3 shows one such example.
More concretely, assume that in is the output of previous
round and RK is the round subkey. If one fault is injected
into the state in or key RK, which causes an input-differ-
ence α , then the output of S-box will also have a differ-
ence β . Now, if the value in⊕ RK is replaced by X, then
we can easily obtain the following equation.

S(k26k27k28k29)k30k31 . . . k41||S(k39k40k41k42)k43k44 . . . k54,

S(k52k53k54k55)k56k57 . . . k67||

S(k65k66k67k68)k69k70 . . . k76S(k77k78k79k0),

According to the property of S-box of FeW (see
Table 3), we know that, for a pair fix and known value
(α,β) , the above Eq. (1) has 0, 2 or 4 possible solutions
for X. Since X is the XOR of in and RK, one can easily
get the possible solutions for round key RK if in is known.
Finally, other induced faults can be used to find out the
true round subkey RK, which is further to be used to
recover the master secret key.

Recovery of the last round subkey
In this subsection, we first discuss the recovery of the last
round subkey RK31 by inducing fault on the generation of
RK30 in the key schedule algorithm. In fact, we have the
following two basic assumptions on the fault model.

Assumption 1  The attacker is allowed to choose any
plaintext and get the correct/faulty ciphertexts. That is,
this attack is the so-called chosen plaintext attack (CPA).

Assumption 2  The adversary is allowed to induce nib-
ble fault(s) in the process of generating the round keys.
But the fault-value induced in some position is unknown.

Now, we first assume that the fault is injected into first
nibble of RK30, which causes the differential p. The pro-
cess of fault propagation is presented in Fig. 4. More spe-
cifically, after going through the S-box and L1-function,
the fault will become four “new” ones p1, p2, p3, p4, which
will affect the left half of XR

31. Then the four differentials
are reserved to the left half XL

32 and affect all the nibbles
of the right half XR

32 the final ciphertext.
Next, we introduce how to obtain partial round subkey

based on these differentials. In fact, this analysis mainly
focuses on the final round of encryption process. For the
ith S-box Si, denote by ini and in∗i its correct and faulty
input, respectively. Then its correct/faulty output (of the
S-box) is denoted by outi/out∗i  . Define

Moreover, we can easily know that

(1)S(X ⊕ α)⊕ S(X) = β .

outi ⊕ out∗i = y4iy4i+1y4i+2y4i+3.

Table 3  The S-box S appeared in encryption process of FeW

x 0 1 2 3 4 5 6 7

S(x) 0 1 6 7 4 5 2 3

x 8 9 A B C D E F

S(x) B 4 6 B 0 7 3 D

S S S

Fig. 3  Difference across S-box of block cipher

Page 6 of 13Xiao et al. Cybersecurity (2022) 5:28

p

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p2 p3 p4p1

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p2 p3 p4p1

p2 p3 p4p1 p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

Fig. 4  The fault propagation process on RK030

Page 7 of 13Xiao et al. Cybersecurity (2022) 5:28 	

From Fig. 4, we know that

For 1 ≤ i ≤ 4, define p′i as the bit-form:
p′i,1||p

′
i,2||p

′
i,3||p

′
i,4. Then from Eq. (4), we obtain the fol-

lowing equations.

(2)p1 = in0 ⊕ in∗0 = XL
32,0 ⊕ XL,∗

32,0,

(3)p2 = in1 ⊕ in∗1 = XL
32,1 ⊕ XL,∗

32,1.

(4)

p′1||p
′
2||p

′
3||p

′
4 = L1(out0||out1||out2||out3)

⊕ L1(out
∗
0 ||out

∗
1 ||out2||out3)

= L1(out0 ⊕ out∗0 ||out1 ⊕ out∗1 ||00000000)

= L1(y0y1y2y3y4y5y6y700000000)

= (y0y1y2y3y4y5y6y700000000)

⊕ (y1y2y3y4y5y6y700000000y0)

⊕ (y5y6y700000000y0y1y2y3y4)

⊕ (0000000y0y1y2y3y4y5y6y70)

⊕ 0000y0y1y2y3y4y5y6y70000)

= (y0 ⊕ y1 ⊕ y5)||(y1 ⊕ y2 ⊕ y6)|| · · · ||(y0 ⊕ y4).

As a result, we can compute and obtain the eight bits
y0, y1, . . . , y7, which are just the bits in out0 ⊕ out∗0 and
out1 ⊕ out∗1 . Therefore, we can get the output differen-
tials of the two S-boxes S0 and S1.

Finally, according to the correspondences of the input–
output differentials (i.e. Table 4), we can obtain the can-
didate values for the inputs in0 and in1 , which can be
used to recover the 1st byte of RK31 (i.e. RK 0

31||RK
1
31 ).

Similar analysis on the S-boxes S6 and S7 can be made
to get the candidate value of the 2nd byte in the round
key RK31 (i.e.RK 2

31||RK
3
31 ). The pseudorandom code of

recovering the tuple (RK 0
31,RK

1
31) is given in the following

Algorithm 2.











































y0 = p′1,4 ⊕ p′4,3 ⊕ p′3,4,

y1 = p′3,1 ⊕ p′1,4 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y2 = p′4,2 ⊕ p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y3 = p′4,3 ⊕ p′4,4 ⊕ p′3,4,
y4 = p′1,4 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y5 = p′3,2 ⊕ p′4,2 ⊕ p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y6 = p′3,3 ⊕ p′4,3 ⊕ p′4,4 ⊕ p′3,4,

y7 = p′4,4 ⊕ p′3,4.

Table 4  The correspondences of input–output differentials for S-Box of FeW

(α,β) (1, 3) (1, 7) (1, A) (1, C) (1, D) (1, E) (1, F) (2, 3) (2, 5) (2, A) (2, B) (2, C) (2, D)

X 6, 7 C, D 2, 3 0, 1 4, 5 A, B, E, F 8, 9 C, E 4, 6 D, F 1, 3, 5, 7 9, B 0, 2, 8, A

(α,β) (3, 1) (3, 2) (3, 3) (3, 4) (3, 6) (3, 8) (3, D) (4, 3) (4, 5) (4, 6) (4, B) (4, E) (4, F)

X 1, 2 9, A 8, B D, E 4, 7 5, 6 C, F 9, D A, E, B, F 2, 6 8, C 0, 4 1, 3, 5, 7

(α,β) (5, 2) (5, 3) (5, 4) (5, 5) (5, B) (5, C) (6, 3) (6, 4) (6, 6) (6, 8) (6, 9) (6, B) (6, C)

X 1, 4 0, 5 9, C 2, 7 A, B, E, F 3, 6, 8, D 2, 4 3, 5, 7, 8 A, C 1, E 9, F 0, 6 B, D

(α,β) (7, 1) (7, 6) (7, 7) (7, 8) (7, 9) (7, E) (8, 6) (8, 7 (8, 9) (8, A) (8, C) (8, D) (9, 1)

X A, D 8, F 1, 6, 9, E 0, 7, B, C 3, 4 2, 5 5, D 7, F 0, 2, 8, A 1, 6, 9, E 4, C 3, B 5, C

(α,β) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 9) (9, B) (A, 1) (A, 4) (A, 6) (A, 9) (A, C) (A, D)

X 3, A 6, F 1, 8 0, 9 2, B 7, E 4, D 3, 9 0, 2, 8, A 1, B 6, C 5, F 7, D

(α,β) (A, F) (B, 1) (B, 2) (B, 8) (B, A) (B, B) (B, E) (C, 2) (C, 5) (C, 7) (C, 8) (C, 9) (C, C)

X 4, E 4, F 5, E 1, A 0, 7, B, C 2, 9 3, 6, 8, D 0, 7, B, C 5, 9 4, 8 3, F 1, D 2, E

(α,β) (C, F) (D, 1) (D, 2) (D, 5) (D, 6) (D, 8) (D, A) (D, C) (D, E) (E, 1) (E, 2) (E, 3) (E, 9)

X 6, A 6, B 2, F 0, D 3, E 4, 9 5, 8 7, A 1, C 0, E 3, D, 6, 8 1, F 5, B

(α,β) (E, A) (E, E) (E, F) (F, 1) (F, 4) (F, 7) (F, 8) (F, D) (F, F) (3, 7) –

X 4, A 7, 9 2, C 7, 8 4, B 5, A 2, D 1, 6, 9, E 0, F 0, 3

Page 8 of 13Xiao et al. Cybersecurity (2022) 5:28

subkey RK29 in the key schedule. More precisely, for the 8
nibbles in RK29, we consider the differentials induced by
the faults and their propagations. A typical case on the
fault propagation is described in Fig. 6, in which the fault
is induced into the round subkey RK 1

29 . Here, we remark
that the induced fault does not affect the next two round
subkeys RK30 and RK31.

Now, based on the recovered round subkey RK31, we
can decrypt the correct and faulty ciphertexts to obtain
the states X31, X∗

31 after the 31 rounds encryptions. Per-
forming similar analysis as in "Recovery of the last round
subkey" section, one can easily get the candidate val-
ues of the nibbles RK 0

30,RK
1
30,RK

2
30,RK

3
30 in RK30. If the

faults are induced into other nibbles (of RK29), such as
RK 2

29,RK
3
29, . . . ,RK

7
29 , then the analysis process is also

similar.
Next, we further analyze the remaining case. That is,

the injected fault occurs in the first nibble of RK29. Still
assume that the induced differential is p, which is parsed
into p = b||p . Here, b is its first bit. According to the two
possible values of b, we divide our analysis into the fol-
lowing two cases.

In addition, we can also similarly analyze the process of
fault propagation if the fault is injected into other nibbles
of the round subkey RK30 . In fact, the analysis processes
on the nibbles RK 0

30,RK
1
30, . . . ,RK

6
30 are same, which are

different from that of the last nibble RK 7
30 . The reason is

as follows. If the fault occurs on RK 7
30 , then it will affect

the “correctness” of last round subkey RK 0
31 . That is, the

induced differential p on RK 7
30 leads to the new differ-

ential p′ on RK 0
31 (see Fig. 5). As a result, the input dif-

ferential of the S-box S0 becomes p1 + p′ , which makes
the analysis on the L1 function more difficulty. Neverthe-
less, it does not affect the analysis on the last two S-boxes
S6, S7 , and thus we can still get the candidate values for
the two nibbles RK 2

31,RK
3
31 by analyzing their input–out-

put differentials.
The above discusses on the recovery of the last round

subkey are listed in the following Table 5.

Recovery of the round subkey RK30
In this subsection, we discuss how to further recover the
round subkey RK30 based on the above recovery of RK31.
Now, we need to induce fault into the generation of round

Page 9 of 13Xiao et al. Cybersecurity (2022) 5:28 	

p

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p2 p3 p4p1

p'

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p2 p3 p4p1

p2 p3 p4p1 p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

Fig. 5  The fault propagation process on RK730

Page 10 of 13Xiao et al. Cybersecurity (2022) 5:28

Case 0. If b = 0, then decrypt the final ciphertexts
with the help of the recovered last round subkey
RK31.
Case 1. If b = 1, then define the last nibble of RK31 as
S(k77k78k79(k0 ⊕ 1)) and decrypt the final cipher-
texts by using the updated round subkey RK31.

The decrypted states (under the round subkey RK31)
will be used to further analyze the recovery of the round
subkey RK30 by using previous steps.

Finally, we explain why our above analysis will give cor-
rect recovery of the round subkey RK30. According to
the key schedule of FeW, the last nibble of RK31 equals
to S(k77k78k79k0) if the first nibble of RK29 is k0k1k2k3. If
b = 0, then the induced differential p does not affect the
last round subkey RK31, which can be used to correctly
decrypt the final ciphertexts to obtain the states of the 31
round encryptions. If b = 1, then the induce differential
p changes the bit k0 into k0 ⊕ 1 , which will also appear
in the last round subkey RK31. Thus, the last round sub-
key, which will be used to recover the inner states of
encryption process, needs to be updated according to the
induced differential.

The above discusses on the recovery of the round sub-
key RK30 are listed in the following Table 6.

Recovery of the master key
According to the key schedule, we can easily know that
the master key can be recovered from any intermediate
key state MKi, which consists of 29 bits of RK31, 26 bits
of RK30, and 25 bits of RK29. If we can recover all the bits
of RK31 and RK30 from the above discussions, then the
remaining 25 bits can be obtained by brute force search-
ing, whose time complexity is 225. In addition, we remark
that, in the process of recovering the round subkey RK30,
the two cases on the first bit of induced differential p
increases the total complexity from 225 to 226. Therefore,
by inducing several nibble faults into the key schedule of
FeW, one can finally recover the master key based on the
differential analysis on RK31 and RK30, as well as the brute

force searching. The total time complexity equals to 226,
which is much lower than the original 280.

Simulations and discussions
In this section, we present the simulations and discus-
sions on the differential fault attack on FeW. Specifically,
we will choose a fix plaintext “0×1234567890ABCDEF”
and several randomly master secret keys, and compute
the ciphertexts under these keys. Then by simulating the
fault-injections into the 29th and 30th round subkeys, we
get the corresponding faulty ciphertexts. Based on the
correct and faulty ciphertext, one can recover the round
subkeys RK31 and RK30, respectively. Finally, the remain-
ing unknown bits of master secret key is found out by
brute force searching. The concrete simulation process is
given as follows.

Step 1. Randomly choose a master secret key and
compute the round subkeys according to key sched-
ule.
Step 2. Generate the correct ciphertexts under the
master secret key.
Step 3. Simulate the fault-injection into RK30 and
obtain faulty ciphertexts.
Step 4. Search the candidate values for the nibbles
of RK31.
Step 5. Simulate the fault-injection into RK29 and
obtain faulty ciphertexts.
Step 6. Search the candidate values for the nibbles
of RK30.
Step 7. Exhaustive search the remaining bits (of
MK29) by re-encrypting and decrypting.
Step 8. Compute the master secret key by reversing
the key schedule of FeW.

Simulations
The whole simulation of FeW, including the encryption
and decryption algorithms, is in the C programming
language and based on a desktop with the configura-
tion of Intel(R) Core (TM) i5-10210U CPU @1.60 GHz
and 16 GB RAM. We simulate the DFA process 10 times
to get significant data. Since their final results are simi-
lar, we only show five typical examples in the following
Table 7, which presents the number of needed faults
and their running time of recovering master secret key.
Here, we remark that the factors including the positions
of induced faults, the input–output differentials of S-box,
and the particular master secret key, can affect the simu-
lation results. Therefore, in each simulation, the needed
number of faults may be different from other ones.

Table 5  The discussions on the recovery of the last round
subkey

Fault on RK30 RK030 RK130 RK230 RK330

Recovery of RK31 RK031, RK
1
31

RK231, RK
3
31

RK031, RK
1
31

RK231, RK
3
31

RK431, RK
5
31

RK631, RK
7
31

RK431, RK
5
31

RK631, RK
7
31

Fault on RK30 RK430 RK530 RK630 RK730

Recovery of RK31 RK431, RK
5
31

RK631, RK
7
31

RK431, RK
5
31

RK631, RK
7
31

RK031, RK
1
31

RK231, RK
3
31

RK231, RK
3
31

Page 11 of 13Xiao et al. Cybersecurity (2022) 5:28 	

p

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p p pp

p p pp

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p2 p3 p4p1

S1 S2 S3 S4 S5 S6S0 S7

L2L1

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

p'2 p'3 p'4 p'5 p'6 p'7p'1 p'8

Fig. 6  The fault propagation process on RK129

Page 12 of 13Xiao et al. Cybersecurity (2022) 5:28

From the above simulation, one can easily know that
our proposed differential fault attack, which reduces the
key space from 280 to 226, is a rather practical attack for
the block cipher FeW. In average, the recoveries of the
two round subkeys RK31 and RK30 need 12.6 induced
faults, and the exhaustive searching time for the remain-
ing bits needs 5.3 min.

Finally, we remark that the value 226 is the lower bound
of our proposed DFA on FeW. We explain it as follows.
According to our attack, the two models of induced faults
can only be used to recover the last two round subkeys,
which contain 55 bits of master secret key, although the
faults also affect the round subkey RK29. But we do not
know how to recover the remaining bits based on the
existing differentials. A natural idea is to induced addi-
tional faults into the previous round subkey RK28, which
may descend the lower bound by recovering additional
bits of RK29. However, this will make the analysis much
complicated. The reason is as follows. The induced differ-
entials on RK28 will also affect the bits of RK31. But the
quantitative differentials on RK31 cannot be calculated.
As a result, only from correct/faulty ciphertexts, one

cannot decrypt them with the help of “faulty” round sub-
key RK31.

Discussions
In this subsection, we present the comparison with Xie
et al.’s work (Xie et al. 2020) since it also consider the
DFA on the same FeW algorithm. As we discussed in
Introduction, the main difference between them lies in
that Xie et al.’s work induces single byte random faults on
the encryption state while our paper considers the ran-
dom nibble faults on the key schedule. The concrete com-
parisons are listed in the following Table 8.

Here, we remark that this table only gives the average
numbers of needed faults for both works.

Conclusions
Differential fault analysis is a popular side channel attack
to block cipher. In this paper, we apply the DFA to the
lightweight block cipher FeW. More specifically, in the
nibble model, we consider the DFA to the key schedule of
FeW-80. By inducing faults into the 30th and 29th round
subkeys, and analyzing the input–output differentials
of S-box, one can easily obtain the candidate values for
the nibbles of RK31 and RK30. Then brute force searching
the remaining bits can finally recover the original mas-
ter secret key. However, it seems that this technique only
works for 80 bits FeW. For FeW-128, the only recover-
ies of last round subkeys seem to be not enough because
its key space is too large. Thus, it may be an interesting
work to investigate the DFA on key schedule of FeW-128.
Finally, the proposed simulations show that our proposed
attack is rather practical for FeW-80.

Table 6  The discussions on the recovery of round subkey RK30

Fault on RK29 RK029 RK129 RK229 RK329

Recovery of RK30 RK030, RK
1
30

RK230, RK
3
30

RK030, RK
1
30

RK230, RK
3
30

RK430, RK
5
30

RK630, RK
7
30

RK430, RK
5
30

RK630, RK
7
30

Fault on RK29 RK429 RK529 RK629 RK729

Recovery of RK30 RK430, RK
5
30

RK630, RK
7
30

RK430, RK
5
30

RK630, RK
7
30

RK030, RK
1
30

RK230, RK
3
30

RK230, RK
3
30

Table 7  Five typical examples

Random 80 bits master secret key 28b073e9
d9d55414

116394d0
d827379d

d3f2a25
f9084a2e

a618c845
62b40c9c

9f13f86d
24cbdeb3

Number of faults on RK30 5 7 8 5 6

Number of faults on RK29 7 6 6 6 7

Time of exhaustive searching (Min) 5.21 5.33 5.42 5.17 5.36

Table 8  The comparisons with Xie et al.’s work

Position of faults Fault model Round(s) of fault
injection

Number of needed faults

Xie et al.’s work Encryption state Random byte fault 29, 30, 31 24.9 with 210 exhaustive searching

Our work Key schedule Random nibble fault 29, 30 12.6 with 226 exhaustive searching

Page 13 of 13Xiao et al. Cybersecurity (2022) 5:28 	

Acknowledgements
The authors would like thank the anonymous reviewers for their invaluable
suggestions and comments.

Author contributions
HX and LW proposed the DFA on FeW and implemented the algorithms pro-
posed in this paper. JC participated in problem discussions and improvements
of the manuscript. All authors read and approved the final manuscript.

Funding
This work is supported in part by the Foundation of State Key Laboratory of
Information Security under Grant 2021-MS-04, and in part by the Natural Sci-
ence Foundation of Shaanxi Province under grant 2022-JM-365.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Ethics approval was not required for this research.

Competing interests
Authors declare that they have no competing interests.

Author details
1 School of Computer Science, Northwestern Polytechnical University,
Xi’An 710055, People’s Republic of China. 2 Engineering University of PAP,
Xi’An 710055, People’s Republic of China. 3 School of Information and Control
Engineering, Xi’An University of Architecture and Technology, Xi’An 710055,
People’s Republic of China. 4 State Key Laboratory of Information Security
(SKLOIS), Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100089, People’s Republic of China.

Received: 8 June 2022 Accepted: 7 August 2022

References
Aayush J, Girish M (2018) Analysis of lightweight block cipher FeW on the basis

of neural network. In: Harmony search and nature inspired optimization
algorithms. Springer, Berlin, pp 1041–1047

Ali S, Mukhopadhyay D, Tunstall M (2013) Differential fault analysis of AES:
towards reaching its limits. J Cryptogr Eng 3:73–97

Bathe B, Tiwari S, Anand R, et al (2021) Differential fault attack on Espresso. In:
INDOCRYPT’21. Springer, Berlin, pp 271–286

Biham E, Shamir A (1997) Differential fault analysis of secret key cryptosystem.
In: Proceedings of CRYPTO, pp 513–525

Boneh D, Demillo R, Lipton R (1997) On the importance of checking crypto-
graphic protocols for faults. In: EUROCRYP’97. Springer, Berlin, pp 37–51

Bruinderink L, Pessl P (2018) Differential fault attacks on deterministic lattice
signatures. In: eprint IACR’2018, vol 335, pp 1–25

Cnudde T, Nikova S (2017) Securing the PRESENT block cipher against com-
bined side-channel analysis and fault attack. IEEE Trans Very Large Scale
Integrat Syst 25:3291–3301

Deng Y, Luo H (2021) A distributed identity authentication scheme for dif-
ferential fault attack. In: ICCT’21. IEEE, pp 731–735

Fu S, Xu G, Pan J, Wang Z, Wang A (2017) Differential fault attack on ITUbee
block cipher. ACM Trans Embedded Comput Syst 16(2):1–10

Gong Z, Nikova S, Law Y (2011) KLEIN: a new family of lightweight block
ciphers. In: RFIDSec’11. Amherst, USA, pp 1–18

Kim C (2012) Improved differential fault analysis on AES key schedule. IEEE
Trans Inf Forensics Secur 7(1):41–50

Kumar M, Pal S, Panigrahi A (2019) FeW: a lightweight block cipher. Turk J Math
Comput Sci 11(2):73–58

Sadhukhan R, Patranabis S, Ghoshal A et al (2017) An evaluation of lightweight
block ciphers for resource-constrained applications: area, performance,
and security. J Hardw Syst Secur 4:1–16

Shibayama N, Igarashi Y, Kaneko T (2018) A new higher order differential of
FeW. In: CANDARW, LoS Alamitos, pp 466–471

Takahashi J, Fukunaga T (2007) DFA mechanism on the AES key schedule. In:
FDTC’07. IEEE Computer Society, pp 62–74

Wang H, Feng L, Ji Y, Shao B, Xue R (2022) Toward usable cloud storage audit-
ing, revisited. IEEE Syst J 16(1):693–700

Wang T, Wang Y, Gao Y et al (2019) Differential fault attack on lightweight block
cipher LBlock. J Cryptol Res 6(1):18–26

Wei Y, Rong Y, Fan C (2018) Differential fault attacks on lightweight cipher
LBlock. Fundam Inform 157(1–2):125–139

Xiao H, Wang L (2022) The differential fault analysis on block cipher KLEIN-96. J
Inf Secur Appl 67:103205

Xie M, Li J, Tian F (2020) Differential fault attack on FeW. J Commun
41(4):143–149

Xie M, Tian F, Li J (2021) Differential fault attack on GIFT. Chin J Electron
30(4):669–675

Zhang J, Wu N, Li J (2019) A novel differential fault analysis using two bytes
fault model on AES key schedule. IET Circut Dev Syst 13(5):661–666

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	The differential fault analysis on block cipher FeW
	Abstract
	Introduction
	Review of FeW
	Encryption algorithm
	Decryption algorithm
	Key schedule algorithm

	Proposed DFA on the key schedule of FeW
	Basic principle of DFA
	Recovery of the last round subkey
	Recovery of the round subkey RK30
	Recovery of the master key

	Simulations and discussions
	Simulations
	Discussions

	Conclusions
	Acknowledgements
	References

