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Abstract 

In MILCOM 2015, Kelly et al. proposed the authentication encryption algorithm MK-3, which applied the 16-bit 
S-box. This paper aims to implement the 16-bit S-box with less circuit area. First, we classified the irreducible poly-
nomials over F2n into three kinds. Then we compared the logic gates required for multiplication over the finite field 
constructed by the three types of irreducible polynomials. According to the comparison result, we constructed 
the composite fields, F(24)2 and F(28)2 . Based on the isomorphism of finite fields, the operations over F216 can be 
conducted over F(28)2 . Similarly, elements over F28 can be mapped to the corresponding elements over F(24)2 . Next, 
the SAT solver was used to optimize the operations over smaller field F24 . At last, the architecture of the optimized 
MK-3 S-box was worked out. Compared with the implementation proposed by the original designer, the circuit area 
of the MK-3 S-box in this paper is reduced by at least 55.9%.

Introduction
In 2015, Wood et  al. proposed a 16-bit S-box (Wood 
et  al. 2015), based on which Kelly et  al. designed the 
MK-3 algorithm (Kelly et al. 2015). The MK-3 S-box has 
excellent cryptographic security criteria and less hard-
ware implementation cost. Its construction idea was 
firstly proposed in the 8-bit S-box (Daemen and Rijmen 
1998) of the Advanced Encryption Standard (AES) (NIST 
2001). In order to cut down the hardware resources for 
calculating multiplicative inverses in AES, Rijmen et  al. 
applied the composite field arithmetic (Paar 1995; Itoh 
and Tsujii 1988) to map elements of field F28 to the com-
posite field F(24)2 based on polynomial basis (Rijmen 
2000). In this way, the arithmetic in F28 can be reduce 
to the operation in the smaller subfield F24 . However, 

Rijmen (2000) did not offer detailed implementation 
results. The optimization results of the AES S-box based 
on polynomial basis were presented by Satoh et  al. in 
ASIACRYPT 2001 (Satoh et al. 2001). Next, normal basis 
was introduced to optimize the AES S-box by Canright 
et al. in CHES2005 (Canright 2005). Then, in CHES 2018 
and CHES 2019, Arash and Alexander et  al. presented 
the optimization results of the AES S-box based on the 
redundant normal basis (Reyhani-Masoleh et  al. 2018; 
Maximov and Ekdahl 2019).

In order to refine the realization of S-box, there are two 
points that need to be focused on: optimizing the linear 
components and reducing the multiplicative complex-
ity (Boyar and Peralta 2010). The optimization of linear 
components is just the Shortest Linear Program (SLP). In 
2008, Boyar et al. proved that the SLP problem is NP-hard 
(Boyar et al. 2008), so optimization of the linear compo-
nents is generally considered using heuristic algorithms. 
The two classical algorithms for solving SLP, namely 
Parr’s algorithm (Paar 1997) and BP algorithm (Boyar 
and Peralta 2010; Boyar et al. 2013), are both essentially 
based on the greedy strategy. Reducing the multiplication 
complexity means minimizing the AND gates in the non-
linear component, where the non-linear components, 
i.e., the inverters and the multipliers. The optimization of 
inverters can be traced back to Itoh’s work (Itoh and Tsu-
jii 1988). In 2000, Itoh et al. proposed a recursive method 
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for calculating the inverse in F(2m)n , given a circuit for 
calculating the inverse in F2m . And for the optimization 
of multipliers, a common approach is to search for imple-
mentation using SAT solver (Stoffelen 2016). However, 
under the restriction of the actual calculation condition, 
the SAT solver can only search for the logic expressions 
of small-scale multipliers, and it is difficult to work out 
the desired results for large-scale multipliers.

At present, there are few design schemes for 16-bit 
S-box because the cryptographic algorithms based on 
4-bit S-box or 8-bit S-box are enough to resist various 
attacks under traditional computational models. But 
with the emergence of quantum computers, the secu-
rity of existing algorithms is increasingly threatened. In 
2010, Hidenori et  al. proposed a quantum 3-round dis-
tinguisher of Feistel construction (Kuwakado and Morii 
2010) based on Simon’s algorithm (Simon 1997), which 
reduces the time complexity of key-recovery from O(2n) 
to O(n). Later, more and more structures were analyzed, 
such as Even-Mansour cipher (Kuwakado and Morii 
2012), CBC-like MACs (Kaplan et  al. 2016), AEZ (Shi 
et  al. 2018), AES-COPA (Xu et  al. 2021), Feistel con-
structions (Dong et al. 2020) et al. So, in order to resist 
quantum attacks, large-scale S-box with better security 
criteria will become a trend.

In this paper, we first classified irreducible polynomi-
als into three classes and gave the implementation cost of 
the multiplication operation for each. Then we selected 
the lowest cost irreducible polynomials to construct the 
corresponding composite fields. At last, we applied the 
scheme to refine the MK-3 S-box. Our scheme reduced 
the circuit size by at least 55.9% compared with the 
original.

The rest of this paper is organized as follows. Section  
is the pre-knowledge, and in Sect.   we give the opti-
mization scheme for the multiplier over finite fields. 
Section   is about the optimized implementation of the 
16-bit S-box. The proposed scheme is compared with 
the original scheme in Sects. , and provides conclusions 
and prospects.

Pre‑knowledge
MK-3 is an authenticated encryption algorithm based 
on a simplified duplex sponge structure (Kelly et  al. 
2015). The algorithm supports two versions of symmet-
ric keys recommended by NIST. Moreover, the algo-
rithm can be customized according to the guidelines 
provided by the designer (Wood et al. 2015). The cus-
tomization guidelines include initial state and bijective 
function F. The inner architecture of the bijective func-
tion F is shown in Fig. 1.

Substitution Layer(S) It is the only nonlinear com-
ponent in the F function. It is consisted of 32 16-bit 
S-boxes, and the 16-bit S-box is inspired by the con-
struction of the S-box in AES (Kelly et al. 2015). First, 
multiplicative inversion over finite field F216 (based on 
irreducible polynomials with degree 16) is performed 
on the input bits, then for the output make affine trans-
formation over finite field F2 . The irreducible polyno-
mial, namely

is chosen for the inversion operation, and the affine 
transformation for the S-box is as follows:

(1)p(x) = x16 + x5 + x3 + x + 1

Fig. 1  internal structure of F function
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The S-box proposed in Wood et al. (2015) requires 1238 
XOR gates and 144 AND gates for hardware implemen-
tation, which is more efficient than using look-up table 
since less hardware cost is needed. However, it still does 
not achieve the desired effect. In this paper, the isomor-
phism of finite fields is exploited to get a further reduc-
tion in the hardware cost of this 16-bit S-box.

The relevant algebraic theories required for this paper 
are introduced below.

Theorem  1  Every element of the finite field F2n can be 
represented as a first degree polynomial bx + c and multi-
plication is performed modulo an irreducible polynomial 
with degree two, denoted as x2 + αx + β , where b, c,α,β ∈ 
F2(n/2) ( n is even) (Satoh et al. 2001).

Theorem  2  Each field F2 can be extended to a finite 
field F2n with an irreducible polynomial of degree n (Can-
right 2005).

The multiplication of arbitrary polynomials modulo 
x2 + αx + β is as follows:

The multiplicative inverse of arbitrary polynomial bx + c 
modulo x2 + αx + β is as follows:

(2)

S(x) =

0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0

1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0

1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1

1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1

0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1

0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0

1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1

0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1

1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0

1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0

1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1

1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1

0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1

1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0

1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0

·

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

−1

⊕

0

1

0

0
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0
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0

1

1

0
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1

1

(3)

(bx + c)(dx + e)/x2 + αx + β = (be + cd + bdα)x + (bdβ + ce)

b, c, d, e,α,β ∈ F2(n/2)

(4)

(bx + c)−1 = bhx + (c + bα)h; h = (b2β + bcα + c2)−1

b, c,α,β , h ∈ F2(n/2)

The optimization scheme proposed in Satoh et  al. 
(2001) is composed of the following four steps: 

1.	 Select parameters: First, choose T1(x) with degree 
n and T2(x) with degree (n/2) over F2 , with which 
extend F2 to get the two finite fields, F2n and F2(n/2) . 
Next, choose T3(x) with degree two over F2(n/2) to 
extend F2(n/2) and get the composite field F(2(n/2))2 , 
namely the quadratic extension of F2(n/2) . The above 
construction is detailed in Table 1.

2.	 Find the coefficient matrix for isomorphism trans-
formation: According to the theory of abstract alge-
bra, There definitely exists a transformation relation 
between two isomorphic fields. The mapping rela-
tions between isomorphic fields can be linear or non-
linear. In terms of reducing the computational cost, 
searching for linear relations is helpful to our work. 
In the following, the linear relations will be described 
as the multiplication with a coefficient matrix. After 
defining T1(x) and the parameters in Table  1, we 
search for the matrices that represent the isomor-
phisms between field F2n and composite field F(2(n/2))2 
(Satoh et  al. 2001). By using the matrix operation, 
the element in the field F2n can be mapped to that in 
F(2(n/2))2.

Table 1  F(2(n/2))2 construction parameters

Composite field Composite field Irreducible polynomial

F2(n/2) F2[x]/T2(x) T2(x)

F(2(n/2))2 F2(n/2) [x]/T3(x) T3(x) = x
2 + αx + β

α,β ∈ F2(n/2)
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3.	 Compute the multiplicative inverse over the compos-
ite fields: After step 2, we can get the corresponding 
element over the composite field F(2(n/2))2 . According 
to the formula (4), we can obtian the corresponding 
multiplicative inverse over the composite field.

4.	 Remap the element of composite field F(2(n/2))2 to 
field F2n : Isomorphism inverse matrix is the inverse 
of coefficient matrix mentioned in step 2. For the 
output of step 3, we transform it by isomorphism 
inverse matrix to finally obtain the multiplicative 
inverse in the field F2n.

The Optimization of Multiplier
Multiplication over finite fields is a costly operation, and 
its efficient hardware implementation has always been a 
research hotspot. In this section, we will classify multipli-
cation operations into three classes according to the dif-
ferent kinds of irreducible polynomials and provide their 
hardware costs over the corresponding F2n.

Type 1: The first type of irreducible polynomial 
denoted as p1(x) is proposed by Paar et al., and the mul-
tiplication over F2n extended based on such irreducible 
polynomials has the smallest circuit size (Paar 1996). This 
special irreducible polynomial p1(x) has only 3 terms, 
which are described as follows:

The operation above needs 4 AND gates and 3 XOR 
gates.

Type 2: p2(x) can be called all-terms irreducible poly-
nomial, just as follows:

For multiplication modulo such polynomials, the num-
ber of AND gates is n2 , and the number of XOR gates is 
n2 − 1 . Actually, the number of AND gates required for 
all the multiplication operation over F2n is n2 , since two 
n-bit binary numbers are input and one bit is selected 
from each of the two sets of data for the multiplication 
operation. Details about the number of AND gates are as 
follows:

For the XOR gates, we first consider the ordinary polyno-
mial multiplication (excluding modulo operation):

From the above calculation, we can see that the construc-
tion of vector c requires (n− 1)2 XOR gates. If the modulo 
operation is required, vector c needs to be further con-
structed as vector d, and vector d needs 2n− 2 XOR gates:

input : a(a1, a0), b(b1, b0)

output : c((a1 · b1)⊕ (a0 · b1)⊕ (a1 · b0), (a1 · b1)⊕ (a0 · b0))

(6)p2(x) = xn + xn−1 + · · · + x + 1

input : a(an−1, an−2, . . . , a0), b(bn−1, bn−2, . . . , b0)

multiplication :

n−1
∑

i=0

(ai ·

n−1
∑

j=0

bj)

input : a(an−1, an−2, . . . , a0), b(bn−1, bn−2, . . . , b0)

output : c(c2n−2, c2n−3, . . . , cn, . . . , c0)

(an−1x
n−1 + an−2x

n−2 + · · · + a0) · (bn−1x
n−1 + bn−2x

n−2 + · · · + b0) = c

c = (c2n−2x
2n−2 + c2n−3x

2n−3 ++c0)

c2n−2 = an−1 · bn−1

c2n−3 = (an−1 · bn−2)⊕ (an−2 · bn−1)

· · · · · ·

· · · · · ·

c0 = a0 · b0

dn−1 = cn−1 ⊕ cn;

dn−2 = cn−2 ⊕ cn;

dn−3 = cn−3 ⊕ c2n−2 ⊕ cn;

dn−4 = cn−4 ⊕ c2n−3 ⊕ cn;

· · · · ··;

d0 = c0 ⊕ cn+1 ⊕ cn;

Parr et al. specified that when n = 2, 3, 4, 6, 7, 9, 10, 11, 15 
(when n is one of these numbers, the polynomials could 
be guaranteed to be irreducible), n2 AND gates and 
n2 − 1 XOR gates are needed for the hardware imple-
mentation of multiplication over F2n . For example, when 
p1(x) = x2 + x + 1 , the multiplication operation over 
GF(22) can be described as follows:

(5)p1(x) = xn + x + 1
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So the number of XOR gates required for multipli-
cation modulo all-terms irreducible polynomials is 
n2 − 1 = (n− 1)2 + 2n− 2 . By now, we get the number 
of logic gates required for the second type of irreduc-
ible polynomial multiplication. We give following a rel-
evant example whose multiplication operation is based 
on p2(x) = x4 + x3 + x2 + x + 1 , which needs 16 AND 
gates and 15 XOR gates.

Type 3: The irreducible polynomials that do not satisfy 
the definition of type 1 and type 2 are referred to as irre-
ducible polynomials of type 3. Compared with the first 
two types of irreducible polynomials, multiplication 
based on the third always consumes more XOR gates.

Above all, this paper chose irreducible polynomials 
p1(x) and p2(x) to construct the composite field F(28)2 , 
The construction optimized the hardware implementa-
tion of multiplication operation over F(28)2 which would 
be applied to the hardware optimization of the 16-bit 
S-Box. The details were given in “Appendix A”.

S‑box Optimization
This section is about the optimized circuit implementa-
tion of MK-3 S-box. The irreducible polynomial in MK-3 
is T1(x) = x16 + x5 + x3 + x + 1 and the corresponding 
finite field is F216 = F2[x]/T1(x) . The composite field of 
F216 should be constructed first.

Firstly we choose the first irreducible polynomial 
T2(x) with degree eight to get F28 , which is F2/T2(x) . In 

input : a(a3, a2, a1, a0), b(b3, b2, b1, b0)

Multiplication :

(a3 · b3); (a3 · b2); (a3 · b1); (a3 · b0); (a2 · b3); (a2 · b2); (a2 · b1); (a2 · b0)

(a1 · b3); (a1 · b2); (a1 · b1); (a1 · b0); (a0 · b3); (a0 · b2); (a0 · b1); (a0 · b0)

Middle :

c6 = (a3 · b3); c5 = (a3 · b2)⊕ (a2 · b3); c4 = (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2); c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1); c0 = (a0 · b0);

output : d3 = c3 ⊕ c4; d2 = c2 ⊕ c4; d1 = c1 ⊕ c6 ⊕ c4; d0 = c0 ⊕ c5 ⊕ c4;

Table 2  Construction parameters of the composite fields F(28)2

Composite field The structure of 
the composite 
field

Irreducible polynomial

F28 F2[x]/T2(x) x
8 + x

7 + x
4 + x

3 + x
2 + x + 1

F(28)2 F28 [x]/T3(x) x
2 + 00000001x + 00000010

addtion, we choose the second irreducible polynomial 
T3(x) with degree 2, the coefficients of which are in finite 
field F28 . T3(x) is the irreducible polynomial with the 
least costly multiplication implementation. Its first-order 
coefficient is chosen to be one in order to save a multi-
plication operation with the constant. Based on T3(x), 
we extend F28 to get the composite field F28 [x]/T3(x) , 
denoted as F(28)2 . The above parameters are given in 
Table 2.

Table 3  Construction parameters of the composite fields F(28)2

Composite field The structure of the composite field

F24 F2[x]/x
4 + x

3 + x
2 + x + 1

F(24)2 F24 [x]/x
2 + 0001x + 0010

After the above parameters are determined, we search 
for the linear map (coefficient matrix) between the finite 
field F216 and the composite field F(28)2 where there are 16 
kinds of mapping relationships. Since this S-box is con-
structed by affine transformation, as in Rijmen (2000), 
the coefficient matrix of the affine transformation and 
the coefficient matrix of isomorphism can be merged in 
order to achieve a reduction in hardware cost. Therefore, 
the optimization results presented later only include the 
merged matrix and the inverse of the coefficient matrix 
of isomorphism.

The following components are needed for optimization 
of the MK-3 S-box:

Component 1: The compound linear transforma-
tion. The composite coefficient matrix is denoted as 
R = M × T  , where T is the coefficient matrix of isomor-
phism between F216 and F(28)2 and M is the coefficient 
matrix of affine transformation.

Component 2: Multiplier. It is for the multiplication 
over F28.
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Fig. 2  16-bit S-box design process

Table 4  Area of frequently-used logic gates in three different manufacturing processes

Logic gate NOT AND NAND OR NOR XOR/XNOR

SMIC 130nm 0.67 1.33 1.00 1.33 1.00 2.33

SMIC 65nm 0.75 1.2 1 1.5 1 2.25

Nangate 45nm 0.67 1.33 1 1.33 1 2

Table 5  Comparison of implementation schemes of the MK-3 S-box

Logic gate NOT AND XOR XNOR OR SMIC130nm SMIC65nm Nangate 45nm

Reference (Wood 
et al. 2015)

0 144 1238 0 0 3076.06 3001.50 2667.52

This paper 0 245 411 9 6 1312.43 1321.50 1173.83
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Component 3: Square-scale operation. It is for the 
combined operation of squaring then scaling by a con-
stant over F28.

Component 4: Multiplicative inverter. It is for calculating 
the inverse of multiplication over F28 . Since it is an inversion 
operation in finite fields, we can also convert the element in 
F28 to its composite fields representation in F(24)2.

Component 5: The isomorphism transformation from 
F216 to F(28)2 . The coefficient matrix of it is denoted as 
T−1 . For component 4, the parameters for the conversion 
from finite fields to composite fields are shown in Table 3.

The component 4 can be divided into another 5 parts as 
follows.

Component 4-1: The coefficient matrix of isomorphism 
from F28 to F(24)2 denoted as δ.

Component 4-2: Multiplication over F24.
Component 4-3: Square-scale operation. There are 

square operation and scaling by the constant 2 over 
F24.

T :



















































1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0

0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0

1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0

1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0

1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0

1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0

1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0

1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0

1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0

1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1



















































T−1 :



















































0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0

1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0

1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0

1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0

0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0

1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0

0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0

0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0

0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1



















































Component 4-4: Inverse of multiplication over F24 . This 
section uses SAT solver to search for results.

Component 4-5: The isomorphism transformation 
from F(24)2 to F28 . The coefficient matrix is denoted as 
δ−1.

The components shown in Fig.  2 are described in the 
following:

δ =























0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0

1 0 0 0 1 1 0 0

1 0 1 1 0 1 1 0

1 0 0 0 1 1 1 0

0 0 1 0 1 1 1 0

1 0 0 1 1 1 1 0

0 0 0 0 1 1 0 1























δ−1 =























1 0 1 0 0 1 0 0

0 1 0 0 1 0 1 0

1 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 1 1 1 1 0

0 0 1 0 1 0 0 0

1 0 0 0 0 1 0 1






















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component1 :
{

x : {0, 1}16 → y : {0, 1}16
}

m0 = x15 ⊕ x14;m1 = x6 ⊕ x1;m2 = m0 ⊕m1;m3 = x13 ⊕ x12;

m4 = m1 ⊕m3;m5 = m2 ⊕m3;m6 = x10 ⊕ x7;m7 = m6 ⊕m0;

m8 = x12 ⊕ x0;m9 = x9 ⊕ x2;m10 = m2 ⊕m9;m11 = x4 ⊕ x5;

m12 = x15 ⊕ x11;m13 = m3 ⊕m12;m14 = x3 ⊕ x1;m15 = x4 ⊕ x0;

m16 = m5 ⊕ x8;m17 = m11 ⊕ x10;m18 = m10 ⊕ x11;m19 = m4 ⊕ x15;

y15 = m0 ⊕m9 ⊕ x10 ⊕ x13; y14 = m6 ⊕m16 ⊕ x2 ⊕ x5;

y13 = m8 ⊕m9 ⊕m14; y12 = m19; y11 = m17 ⊕m19 ⊕ x0 ⊕ x2;

y10 = m7 ⊕m15 ⊕ x8; y9 = m13 ⊕ x5 ⊕ x7; y7 = m1 ⊕m6 ⊕m8;

y8 = m2 ⊕m8 ⊕ x3 ⊕ x7 ⊕ x11; y6 = m11 ⊕m16 ⊕ x7;

y5 = m7 ⊕m11 ⊕ x1; y4 = m18 ⊕ x0 ⊕ x8; y3 = m6 ⊕m15 ⊕ x9 ⊕ x13;

y2 = m7 ⊕m8 ⊕ x5; y1 = m18 ⊕ x13; y0 = m13 ⊕m14 ⊕m17 ⊕ x8;

component2 :

F28/x
8 + x7 + x6 + x5 + x4 + x3 + 1 :

({

a : {0, 1}8 × b : {0, 1}8 → d : {0, 1}8
})

(

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

)

·

(

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0

)

= c

c =
(

c14x
14 + c13x

13 + · · · · · · +c0

)

c14 = a7 · b7;

c13 = (a7 · b6)⊕ (a6 · b7);

c12 = (a7 · b5)⊕ (a5 · b7)⊕ (a6 · b6);

c11 = (a7 · b4)⊕ (a4 · b7)⊕ (a6 · b5)⊕ (a5 · b6);

c10 = (a7 · b3)⊕ (a3 · b7)⊕ (a6 · b4)⊕ (a4 · b6)⊕ (a5 · b5);

c9 = (a7 · b2)⊕ (a2 · b7)⊕ (a6 · b3)⊕ (a3 · b6)⊕ (a5 · b4)⊕ (a4 · b5);

c8 = (a7 · b1)⊕ (a1 · b7)⊕ (a6 · b2)⊕ (a2 · b6)⊕ (a5 · b3)⊕ (a3 · b5)⊕ (a4 · b4);

c7 = (a7 · b0)⊕ (a0 · b7)⊕ (a6 · b1)⊕ (a1 · b6)⊕ (a5 · b2)⊕ (a2 · b5)⊕ (a4 · b3)⊕ (a3 · b4);

c6 = (a6 · b0)⊕ (a0 · b6)⊕ (a5 · b1)⊕ (a1 · b5)⊕ (a4 · b2)⊕ (a2 · b4)⊕ (a3 · b3);

c5 = (a5 · b0)⊕ (a0 · b5)⊕ (a4 · b1)⊕ (a1 · b4)⊕ (a3 · b2)⊕ (a2 · b3);

c4 = (a4 · b0)⊕ (a0 · b4)⊕ (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2);

c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1);

c0 = (a0 · b0);
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m0 = c12 ⊕ c10;m1 = c14 ⊕ c8;m2 = c13 ⊕ c10;m3 = c11 ⊕ c9;m4 = m1 ⊕m2;

d7 = c7 ⊕m4 ⊕ c9; d6 = c6 ⊕m0; d5 = c5 ⊕m3 ⊕ c14; d4 = c4 ⊕m4;

d3 = c3 ⊕m0 ⊕ c8; d2 = c2 ⊕m4 ⊕ c11; d1 = c1 ⊕m1 ⊕ c12; d0 = c0 ⊕m1 ⊕m3 ⊕ c10;

component3 :
�

x : {0, 1}8 → y : {0, 1}8
�

m0 = x4 ⊕ x7;m1 = x3 ⊕ x6;m2 = x2 ⊕ x5;m3 = x6 ⊕ x7;m4 = x5 ⊕ x6;

y7 = m0 ⊕m1; y6 = x7; y5 = m0 ⊕m2; y4 = m3; y3 = x1; y2 = m4; y1 = x0; y0 = m0 ⊕ x5;

component4 − 1 :
�

x : {0, 1}8 → y : {0, 1}8
�

m0 = x3 ⊕ x2;m1 = x5 ⊕ x1;m2 = x7 ⊕ x1;

y7 = m1; y6 = x4 ⊕ x6; y5 = m0 ⊕ x7; y4 = m2 ⊕ x2 ⊕ x4 ⊕ x5; y3 = m2 ⊕m0;

y2 = m1 ⊕m0; y1 = y3 ⊕ x4; y0 = m0 ⊕ x0;

component4 − 2 :
�

a : {0, 1}4 × b : {0, 1}4 → d : {0, 1}4
�











(a3 · b3); (a3 · b2); (a3 · b1); (a3 · b0)
(a2 · b3); (a2 · b2); (a2 · b1); (a2 · b0)
(a1 · b3); (a1 · b2); (a1 · b1); (a1 · b0)
(a0 · b3); (a0 · b2); (a0 · b1); (a0 · b0)

c6 = (a3 · b3); c5 = (a3 · b2)⊕ (a2 · b3); c4 = (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2); c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1); c0 = (a0 · b0);

d3 = c3 ⊕ c4; d2 = c2 ⊕ c4; d1 = c1 ⊕ c6 ⊕ c4; d0 = c0 ⊕ c5 ⊕ c4;

component4 − 3 :
�

x : {0, 1}4 → y : {0, 1}4
�

y3 = x1; y2 = x3; y1 = x0; y0 = x2;

component4 − 4 :
�

x : {0, 1}4 → y : {0, 1}4
�

m0 = x3 ⊕ x2;m1 = m0 + x1;m2 = x3 · x1;m3 = m1 · x0;m4 = x2 ⊕m3;

m5 = m3 ·m4;m6 = x2 ·m1;m7 = m3 +m0;m8 = x1 ⊕m4;m9 = m4 + x3;

m10 = m2 +m5;m11 = m3 ⊕m5;m12 = m8 ·m9;m13 = m2 + x0;

x0
−1 = m8 ⊕m10; x1

−1 = m6 ⊕m13; x2
−1 = m11 +m12; x3

−1 = m7 ⊕m2;

component4 − 5 :
{

x : {0, 1}8 → y : {0, 1}8
}

m0 = x3 ⊕ x1;m1 = x7 ⊕ x2;m2 = x5 ⊕ x3;m3 = x5 ⊕ x4;m4 = m0 ⊕m3;

y7 = x5 ⊕m1; y6 = m0 ⊕ x6; y5 = m2 ⊕ x7; y4 = m0; y3 = x7 ⊕m4;

y2 = x2 ⊕m4; y1 = m2; y0 = x0 ⊕m1;
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Comparison
The hardware cost of S-box is not only related to the num-
ber of logic gates but also related to the manufacturing pro-
cess of logic gates. Circuit area of logic gates in different 
manufacturing processes is listed in Table 4. Compared with 
the cost of the MK-3  S-box in previous literature (Wood 
et al. 2015), our results proposed in this paper can reduce 
the circuit size by at least 55.9%, which is shown in Table 5.

Conclusion
In this paper, we first focused on the hardware implemen-
tation of multiplication over finite fields based on three 
classes of irreducible polynomials. On this basis, the irre-
ducible polynomial with the lowest cost of multiplication 

component5 :
{

x : {0, 1}16 → y : {0, 1}16
}

m0 = x9 ⊕ x8;m1 = x13 ⊕ x12;m2 = m0 ⊕m1;m3 = x5 ⊕ x2;

m4 = m2 ⊕m3;m5 = x11 ⊕ x4;m6 = m3 ⊕m5;m7 = x14 ⊕ x6;

m8 = m6 ⊕m7;m9 = x10 ⊕ x7;m10 = m0 ⊕m9;m11 = x15 ⊕ x3;

m12 = m5 ⊕m11;m13 = x10 ⊕ x12;m14 = x5 ⊕ x4;m15 = x15 ⊕ x1;

m16 = m7 ⊕ x1;m17 = m4 ⊕ x3;m18 = m2 ⊕ x6;m19 = m3 ⊕ x11;

y15 = m17 ⊕ x10 ⊕ x14; y14 = m14 ⊕m15 ⊕m18;

y13 = m12 ⊕m13 ⊕ x8 ⊕ x2; y12 = m2 ⊕m12 ⊕ x14; y11 = m13 ⊕m14;

y10 = m18; y9 = m1 ⊕m7; y8 = m10 ⊕m11 ⊕m16 ⊕m19;

y7 = m10 ⊕ x5 ⊕ x13 ⊕ x14; y6 = m6 ⊕m9 ⊕m15; y5 = m8;

y4 = m1 ⊕m8 ⊕ x1 ⊕ x3; y3 = m19 ⊕ x7 ⊕ x12; y2 = m5 ⊕m17 ⊕ x6;

y1 = m10; y0 = m16 ⊕ x0 ⊕ x4 ⊕ x10 ⊕ x13;

implementation was used to construct the composite 
fields, F(24)2 and F(28)2 . The SAT solver was further used 
for the optimization of the small-scale nonlinear com-
ponent. At last, the hardware implementation costs of 
16 groups of isomorphism mappings were compared to 
obtain the least costly circuit implementation scheme for 
the MK-3 S-box.

Compared with the scheme proposed by the original 
designer, the results of the implementation proposed in 
this paper can reduce the hardware resource occupied 
circuit area by at least 55.9%. In the future, we are com-
mitted to discovering a better optimized S-box imple-
mentation scheme, considering the circuit depth and 
circuit area together.

Appendix A Number of gates for multiplication over finite field F28

Irreducible polynomial Number of 
XOR gates

Number of AND 
gates

Irreducible polynomial Number of XOR 
gates

Number of AND 
gates

x
8 + x

7 + x
5 + x

4 + 1 71 64 x
8 + x

4 + x
3 + x + 1 72 64

x
8 + x

6 + x
5 + x

4 + 1 73 64 x
8 + x

7 + x
2 + x + 1 71 64

x
8 + x

7 + x
5 + x

3 + 1 71 64 x
8 + x

7 + x
6 + x

5 + x
4 + x

3 + 1 69 64

x
8 + x

6 + x
5 + x

3 + 1 74 64 x
8 + x

7 + x
6 + x

5 + x
4 + x

2 + 1 69 64

x
8 + x

5 + x
4 + x

3 + 1 73 64 x
8 + x

7 + x
6 + x

4 + x
3 + x

2 + 1 71 64

x
8 + x

6 + x
5 + x

2 + 1 73 64 x
8 + x

7 + x
5 + x

4 + x
3 + x

2 + 1 72 64

x
8 + x

7 + x
3 + x

2 + 1 70 64 x
8 + x

7 + x
6 + x

5 + x
4 + x + 1 69 64

x
8 + x

6 + x
3 + x

2 + 1 73 64 x
8 + x

6 + x
5 + x

4 + x
3 + x + 1 74 64

x
8 + x

5 + x
3 + x

2 + 1 71 64 x
8 + x

7 + x
6 + x

5 + x
2 + x + 1 70 64

x
8 + x

4 + x
3 + x

2 + 1 72 64 x
8 + x

7 + x
6 + x

4 + x
2 + x + 1 73 64

x
8 + x

7 + x
6 + x + 1 70 64 x

8 + x
6 + x

5 + x
4 + x

2 + x + 1 69 64

x
8 + x

6 + x
5 + x + 1 73 64 x

8 + x
7 + x

6 + x
3 + x

2 + x + 1 72 64
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Irreducible polynomial Number of 
XOR gates

Number of AND 
gates

Irreducible polynomial Number of XOR 
gates

Number of AND 
gates

x
8 + x

7 + x
5 + x + 1 71 64 x

8 + x
7 + x

4 + x
3 + x

2 + x + 1 69 64

x
8 + x

7 + x
3 + x + 1 72 64 x

8 + x
6 + x

4 + x
3 + x

2 + x + 1 69 64

x
8 + x

5 + x
3 + x + 1 71 64 x

8 + x
5 + x

4 + x
3 + x

2 + x + 1 74 64

Authors’ contributions
The author(s) read and approved the final manuscript.

Funding
This work is supported by the Open Project of Henan Key Laboratory of 
Network Cryptography Technology (NO. LNCT2021-A09), and the Advanced 
Discipline Construction Project of Beijing Universities (20210101Z0401).

Availability of data and materials
The datasets generated during analysed during the current study are not 
publicly available but are available from the corresponding author on reason-
able request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 25 October 2023   Accepted: 15 January 2024

References
Boyar J, Matthews P, Peralta R (2008) On the shortest linear straight-line pro-

gram for computing linear forms. Math Found Comput Sci 2008:168–179
Boyar Joan, Matthews Philip, Peralta René (2013) Logic minimization tech-

niques with applications to cryptology. J Cryptol 26:280–312
Boyar J, Peralta R (2010) A new combinational logic minimization technique 

with applications to cryptology. Exp Algorithm, pp 178–189
Canright D (2005) A very compact S-Box for AES. Cryptographic hardware and 

embedded systems—CHES 2005, pp 441–455
Daemen J, Rijmen V (1998) The block Cipher Rijndael. Smart card research and 

advanced application conference
Dong X, Dong B, Wang X (2020) Quantum attacks on some feistel block 

Ciphers. Des Codes Crypt 88:1179–1203
Itoh T, Tsujii S (1988) A fast algorithm for computing multiplicative inverses in 

GF (2m) using normal bases. Inf Comput 78:171–177
Kaplan M, Leurent G, Leverrier A, Naya-Plasencia M (2016) Breaking symmetric 

cryptosystems using quantum period finding. Adv Cryptol 2016:207–237
Kelly M, Kaminsky A, Kurdziel MT, Lukowiak M, Radziszowski SP (2015) Cus-

tomizable sponge-based authenticated encryption using 16-bit s-boxes. 
MILCOM 2015–2015 IEEE military communications conference, pp 43–48

Kuwakado H, Morii M (2010) Quantum distinguisher between the 3-round 
Feistel cipher and the Random Permutation. 2010 IEEE international 
symposium on information theory, pp 2682–2685

Kuwakado H, Morii M (2012) Security on the quantum-type even-Mansour 
Cipher. 2012 international symposium on information theory and its 
applications, pp 312–316

Maximov A, Ekdahl P (2019) New circuit minimization techniques for smaller 
and faster AES SBoxes. IACR Trans Cryptograph Hardware Embedded Syst, 
pp 91–125

NIST A (2001) Specification of the advanced encryption standard (AES). Federal 
information processing standards publication 197

Paar C (1995) Some remarks on efficient inversion in finite fields. In: Proceed-
ings of 1995 IEEE international symposium on information theory vol 58

Paar C (1997) Optimized arithmetic for reed-solomon encoders. Proceedings 
of IEEE international symposium on information theory, vol 250

Paar C (1996) A new architecture for a parallel finite field multiplier with low 
complexity based on composite fields. IEEE Trans Comput 45:856–861

Reyhani-Masoleh A, Taha M, Ashmawy D (2018) Smashing the implementation 
records of AES S-box. IACR transactions on cryptographic hardware and 
embedded systems, pp 298–336

Rijmen V (2000) Efficient implementation of the Rijndael S-box. Katholieke 
Universiteit Leuven, Dept. ESAT. Belgium

Satoh A, Morioka S, Takano K, Munetoh S (2001) A compact Rijndael hardware 
architecture with S-box optimization. Advances in cryptology-ASIACRYPT 
2001: Proceedings 7th international conference on the theory and 
application of cryptology and information security gold coast, Australia, 
December 9–13, pp 239–254

Shi T, Jin C, Guan J (2018) Collision attacks against AEZ-PRF for authenticated 
encryption AEZ. China Commun 15:46–53

Simon DR (1997) On the power of quantum computation. SIAM J Comput 
26:1474–1483

Stoffelen K (2016) Optimizing S-box implementations for several criteria using 
SAT solvers. In: Fast software encryption: 23rd international conference, 
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers 
23, pp 140–160

Wood CA, Radziszowski SP, Lukowiak M (2015) Constructing large S-boxes with 
area minimized implementations. MILCOM 2015–2015 IEEE military com-
munications conference, pp 49–54

Xu Y, Liu W, Yu W (2021) Quantum forgery attacks on COPA, AES-COPA and 
marble authenticated encryption algorithms. Quant Inf Process 20:1–21

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A circuit area optimization of MK-3 S-box
	Abstract 
	Introduction
	Pre-knowledge
	The Optimization of Multiplier
	S-box Optimization
	Comparison
	Conclusion
	Appendix A Number of gates for multiplication over finite field 
	References


