
Li et al. Cybersecurity (2024) 7:17
https://doi.org/10.1186/s42400-024-00207-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

A circuit area optimization of MK‑3 S‑box
Yanjun Li1,2, Weiguo Zhang3, Yiping Lin3*   , Jian Zou4 and Jian Liu1 

Abstract 

In MILCOM 2015, Kelly et al. proposed the authentication encryption algorithm MK-3, which applied the 16-bit
S-box. This paper aims to implement the 16-bit S-box with less circuit area. First, we classified the irreducible poly-
nomials over F2n into three kinds. Then we compared the logic gates required for multiplication over the finite field
constructed by the three types of irreducible polynomials. According to the comparison result, we constructed
the composite fields, F(24)2 and F(28)2 . Based on the isomorphism of finite fields, the operations over F216 can be
conducted over F(28)2 . Similarly, elements over F28 can be mapped to the corresponding elements over F(24)2 . Next,
the SAT solver was used to optimize the operations over smaller field F24 . At last, the architecture of the optimized
MK-3 S-box was worked out. Compared with the implementation proposed by the original designer, the circuit area
of the MK-3 S-box in this paper is reduced by at least 55.9%.

Introduction
In 2015, Wood et al. proposed a 16-bit S-box (Wood
et al. 2015), based on which Kelly et al. designed the
MK-3 algorithm (Kelly et al. 2015). The MK-3 S-box has
excellent cryptographic security criteria and less hard-
ware implementation cost. Its construction idea was
firstly proposed in the 8-bit S-box (Daemen and Rijmen
1998) of the Advanced Encryption Standard (AES) (NIST
2001). In order to cut down the hardware resources for
calculating multiplicative inverses in AES, Rijmen et al.
applied the composite field arithmetic (Paar 1995; Itoh
and Tsujii 1988) to map elements of field F28 to the com-
posite field F(24)2 based on polynomial basis (Rijmen
2000). In this way, the arithmetic in F28 can be reduce
to the operation in the smaller subfield F24 . However,

Rijmen (2000) did not offer detailed implementation
results. The optimization results of the AES S-box based
on polynomial basis were presented by Satoh et al. in
ASIACRYPT 2001 (Satoh et al. 2001). Next, normal basis
was introduced to optimize the AES S-box by Canright
et al. in CHES2005 (Canright 2005). Then, in CHES 2018
and CHES 2019, Arash and Alexander et al. presented
the optimization results of the AES S-box based on the
redundant normal basis (Reyhani-Masoleh et al. 2018;
Maximov and Ekdahl 2019).

In order to refine the realization of S-box, there are two
points that need to be focused on: optimizing the linear
components and reducing the multiplicative complex-
ity (Boyar and Peralta 2010). The optimization of linear
components is just the Shortest Linear Program (SLP). In
2008, Boyar et al. proved that the SLP problem is NP-hard
(Boyar et al. 2008), so optimization of the linear compo-
nents is generally considered using heuristic algorithms.
The two classical algorithms for solving SLP, namely
Parr’s algorithm (Paar 1997) and BP algorithm (Boyar
and Peralta 2010; Boyar et al. 2013), are both essentially
based on the greedy strategy. Reducing the multiplication
complexity means minimizing the AND gates in the non-
linear component, where the non-linear components,
i.e., the inverters and the multipliers. The optimization of
inverters can be traced back to Itoh’s work (Itoh and Tsu-
jii 1988). In 2000, Itoh et al. proposed a recursive method

*Correspondence:
Yiping Lin
linyiping2225@163.com
1 Information Industry Information Security Evaluation Center, The 15th
Research Institute of China Electronic Technology Group Corporation,
Beijing 100083, China
2 Henan Key Laboratory of Network Cryptography Technology,
Zhengzhou 450001, China
3 Beijing Electronic Science and Technology Institute, No.7 Fufeng Road,
Fengtai Distric, Beijing 100083, China
4 College of Computer and Data Science, Fuzhou University,
Fuzhou 350108, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00207-x&domain=pdf
http://orcid.org/0009-0002-6332-3731

Page 2 of 11Li et al. Cybersecurity (2024) 7:17

for calculating the inverse in F(2m)n , given a circuit for
calculating the inverse in F2m . And for the optimization
of multipliers, a common approach is to search for imple-
mentation using SAT solver (Stoffelen 2016). However,
under the restriction of the actual calculation condition,
the SAT solver can only search for the logic expressions
of small-scale multipliers, and it is difficult to work out
the desired results for large-scale multipliers.

At present, there are few design schemes for 16-bit
S-box because the cryptographic algorithms based on
4-bit S-box or 8-bit S-box are enough to resist various
attacks under traditional computational models. But
with the emergence of quantum computers, the secu-
rity of existing algorithms is increasingly threatened. In
2010, Hidenori et al. proposed a quantum 3-round dis-
tinguisher of Feistel construction (Kuwakado and Morii
2010) based on Simon’s algorithm (Simon 1997), which
reduces the time complexity of key-recovery from O(2n)
to O(n). Later, more and more structures were analyzed,
such as Even-Mansour cipher (Kuwakado and Morii
2012), CBC-like MACs (Kaplan et al. 2016), AEZ (Shi
et al. 2018), AES-COPA (Xu et al. 2021), Feistel con-
structions (Dong et al. 2020) et al. So, in order to resist
quantum attacks, large-scale S-box with better security
criteria will become a trend.

In this paper, we first classified irreducible polynomi-
als into three classes and gave the implementation cost of
the multiplication operation for each. Then we selected
the lowest cost irreducible polynomials to construct the
corresponding composite fields. At last, we applied the
scheme to refine the MK-3 S-box. Our scheme reduced
the circuit size by at least 55.9% compared with the
original.

The rest of this paper is organized as follows. Section
is the pre-knowledge, and in Sect. we give the opti-
mization scheme for the multiplier over finite fields.
Section is about the optimized implementation of the
16-bit S-box. The proposed scheme is compared with
the original scheme in Sects. , and provides conclusions
and prospects.

Pre‑knowledge
MK-3 is an authenticated encryption algorithm based
on a simplified duplex sponge structure (Kelly et al.
2015). The algorithm supports two versions of symmet-
ric keys recommended by NIST. Moreover, the algo-
rithm can be customized according to the guidelines
provided by the designer (Wood et al. 2015). The cus-
tomization guidelines include initial state and bijective
function F. The inner architecture of the bijective func-
tion F is shown in Fig. 1.

Substitution Layer(S) It is the only nonlinear com-
ponent in the F function. It is consisted of 32 16-bit
S-boxes, and the 16-bit S-box is inspired by the con-
struction of the S-box in AES (Kelly et al. 2015). First,
multiplicative inversion over finite field F216 (based on
irreducible polynomials with degree 16) is performed
on the input bits, then for the output make affine trans-
formation over finite field F2 . The irreducible polyno-
mial, namely

is chosen for the inversion operation, and the affine
transformation for the S-box is as follows:

(1)p(x) = x16 + x5 + x3 + x + 1

Fig. 1  internal structure of F function

Page 3 of 11Li et al. Cybersecurity (2024) 7:17 	

The S-box proposed in Wood et al. (2015) requires 1238
XOR gates and 144 AND gates for hardware implemen-
tation, which is more efficient than using look-up table
since less hardware cost is needed. However, it still does
not achieve the desired effect. In this paper, the isomor-
phism of finite fields is exploited to get a further reduc-
tion in the hardware cost of this 16-bit S-box.

The relevant algebraic theories required for this paper
are introduced below.

Theorem 1  Every element of the finite field F2n can be
represented as a first degree polynomial bx + c and multi-
plication is performed modulo an irreducible polynomial
with degree two, denoted as x2 + αx + β , where b, c,α,β ∈
F2(n/2) (n is even) (Satoh et al. 2001).

Theorem 2  Each field F2 can be extended to a finite
field F2n with an irreducible polynomial of degree n (Can-
right 2005).

The multiplication of arbitrary polynomials modulo
x2 + αx + β is as follows:

The multiplicative inverse of arbitrary polynomial bx + c
modulo x2 + αx + β is as follows:

(2)

S(x) =

0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0

1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0

1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1

1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1

0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1

0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0

1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1

0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1

1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0

1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0

1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1

1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1

0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1

1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0

1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0

·

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

−1

⊕

0

1

0

0

0

1

0

1

1

0

1

1

0

1

1

1

(3)

(bx + c)(dx + e)/x2 + αx + β = (be + cd + bdα)x + (bdβ + ce)

b, c, d, e,α,β ∈ F2(n/2)

(4)

(bx + c)−1 = bhx + (c + bα)h; h = (b2β + bcα + c2)−1

b, c,α,β , h ∈ F2(n/2)

The optimization scheme proposed in Satoh et al.
(2001) is composed of the following four steps:

1.	 Select parameters: First, choose T1(x) with degree
n and T2(x) with degree (n/2) over F2 , with which
extend F2 to get the two finite fields, F2n and F2(n/2) .
Next, choose T3(x) with degree two over F2(n/2) to
extend F2(n/2) and get the composite field F(2(n/2))2 ,
namely the quadratic extension of F2(n/2) . The above
construction is detailed in Table 1.

2.	 Find the coefficient matrix for isomorphism trans-
formation: According to the theory of abstract alge-
bra, There definitely exists a transformation relation
between two isomorphic fields. The mapping rela-
tions between isomorphic fields can be linear or non-
linear. In terms of reducing the computational cost,
searching for linear relations is helpful to our work.
In the following, the linear relations will be described
as the multiplication with a coefficient matrix. After
defining T1(x) and the parameters in Table 1, we
search for the matrices that represent the isomor-
phisms between field F2n and composite field F(2(n/2))2
(Satoh et al. 2001). By using the matrix operation,
the element in the field F2n can be mapped to that in
F(2(n/2))2.

Table 1  F(2(n/2))2 construction parameters

Composite field Composite field Irreducible polynomial

F2(n/2) F2[x]/T2(x) T2(x)

F(2(n/2))2 F2(n/2) [x]/T3(x) T3(x) = x
2 + αx + β

α,β ∈ F2(n/2)

Page 4 of 11Li et al. Cybersecurity (2024) 7:17

3.	 Compute the multiplicative inverse over the compos-
ite fields: After step 2, we can get the corresponding
element over the composite field F(2(n/2))2 . According
to the formula (4), we can obtian the corresponding
multiplicative inverse over the composite field.

4.	 Remap the element of composite field F(2(n/2))2 to
field F2n : Isomorphism inverse matrix is the inverse
of coefficient matrix mentioned in step 2. For the
output of step 3, we transform it by isomorphism
inverse matrix to finally obtain the multiplicative
inverse in the field F2n.

The Optimization of Multiplier
Multiplication over finite fields is a costly operation, and
its efficient hardware implementation has always been a
research hotspot. In this section, we will classify multipli-
cation operations into three classes according to the dif-
ferent kinds of irreducible polynomials and provide their
hardware costs over the corresponding F2n.

Type 1: The first type of irreducible polynomial
denoted as p1(x) is proposed by Paar et al., and the mul-
tiplication over F2n extended based on such irreducible
polynomials has the smallest circuit size (Paar 1996). This
special irreducible polynomial p1(x) has only 3 terms,
which are described as follows:

The operation above needs 4 AND gates and 3 XOR
gates.

Type 2: p2(x) can be called all-terms irreducible poly-
nomial, just as follows:

For multiplication modulo such polynomials, the num-
ber of AND gates is n2 , and the number of XOR gates is
n2 − 1 . Actually, the number of AND gates required for
all the multiplication operation over F2n is n2 , since two
n-bit binary numbers are input and one bit is selected
from each of the two sets of data for the multiplication
operation. Details about the number of AND gates are as
follows:

For the XOR gates, we first consider the ordinary polyno-
mial multiplication (excluding modulo operation):

From the above calculation, we can see that the construc-
tion of vector c requires (n− 1)2 XOR gates. If the modulo
operation is required, vector c needs to be further con-
structed as vector d, and vector d needs 2n− 2 XOR gates:

input : a(a1, a0), b(b1, b0)

output : c((a1 · b1)⊕ (a0 · b1)⊕ (a1 · b0), (a1 · b1)⊕ (a0 · b0))

(6)p2(x) = xn + xn−1 + · · · + x + 1

input : a(an−1, an−2, . . . , a0), b(bn−1, bn−2, . . . , b0)

multiplication :

n−1
∑

i=0

(ai ·

n−1
∑

j=0

bj)

input : a(an−1, an−2, . . . , a0), b(bn−1, bn−2, . . . , b0)

output : c(c2n−2, c2n−3, . . . , cn, . . . , c0)

(an−1x
n−1 + an−2x

n−2 + · · · + a0) · (bn−1x
n−1 + bn−2x

n−2 + · · · + b0) = c

c = (c2n−2x
2n−2 + c2n−3x

2n−3 ++c0)

c2n−2 = an−1 · bn−1

c2n−3 = (an−1 · bn−2)⊕ (an−2 · bn−1)

· · · · · ·

· · · · · ·

c0 = a0 · b0

dn−1 = cn−1 ⊕ cn;

dn−2 = cn−2 ⊕ cn;

dn−3 = cn−3 ⊕ c2n−2 ⊕ cn;

dn−4 = cn−4 ⊕ c2n−3 ⊕ cn;

· · · · ··;

d0 = c0 ⊕ cn+1 ⊕ cn;

Parr et al. specified that when n = 2, 3, 4, 6, 7, 9, 10, 11, 15
(when n is one of these numbers, the polynomials could
be guaranteed to be irreducible), n2 AND gates and
n2 − 1 XOR gates are needed for the hardware imple-
mentation of multiplication over F2n . For example, when
p1(x) = x2 + x + 1 , the multiplication operation over
GF(22) can be described as follows:

(5)p1(x) = xn + x + 1

Page 5 of 11Li et al. Cybersecurity (2024) 7:17 	

So the number of XOR gates required for multipli-
cation modulo all-terms irreducible polynomials is
n2 − 1 = (n− 1)2 + 2n− 2 . By now, we get the number
of logic gates required for the second type of irreduc-
ible polynomial multiplication. We give following a rel-
evant example whose multiplication operation is based
on p2(x) = x4 + x3 + x2 + x + 1 , which needs 16 AND
gates and 15 XOR gates.

Type 3: The irreducible polynomials that do not satisfy
the definition of type 1 and type 2 are referred to as irre-
ducible polynomials of type 3. Compared with the first
two types of irreducible polynomials, multiplication
based on the third always consumes more XOR gates.

Above all, this paper chose irreducible polynomials
p1(x) and p2(x) to construct the composite field F(28)2 ,
The construction optimized the hardware implementa-
tion of multiplication operation over F(28)2 which would
be applied to the hardware optimization of the 16-bit
S-Box. The details were given in “Appendix A”.

S‑box Optimization
This section is about the optimized circuit implementa-
tion of MK-3 S-box. The irreducible polynomial in MK-3
is T1(x) = x16 + x5 + x3 + x + 1 and the corresponding
finite field is F216 = F2[x]/T1(x) . The composite field of
F216 should be constructed first.

Firstly we choose the first irreducible polynomial
T2(x) with degree eight to get F28 , which is F2/T2(x) . In

input : a(a3, a2, a1, a0), b(b3, b2, b1, b0)

Multiplication :

(a3 · b3); (a3 · b2); (a3 · b1); (a3 · b0); (a2 · b3); (a2 · b2); (a2 · b1); (a2 · b0)

(a1 · b3); (a1 · b2); (a1 · b1); (a1 · b0); (a0 · b3); (a0 · b2); (a0 · b1); (a0 · b0)

Middle :

c6 = (a3 · b3); c5 = (a3 · b2)⊕ (a2 · b3); c4 = (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2); c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1); c0 = (a0 · b0);

output : d3 = c3 ⊕ c4; d2 = c2 ⊕ c4; d1 = c1 ⊕ c6 ⊕ c4; d0 = c0 ⊕ c5 ⊕ c4;

Table 2  Construction parameters of the composite fields F(28)2

Composite field The structure of
the composite
field

Irreducible polynomial

F28 F2[x]/T2(x) x
8 + x

7 + x
4 + x

3 + x
2 + x + 1

F(28)2 F28 [x]/T3(x) x
2 + 00000001x + 00000010

addtion, we choose the second irreducible polynomial
T3(x) with degree 2, the coefficients of which are in finite
field F28 . T3(x) is the irreducible polynomial with the
least costly multiplication implementation. Its first-order
coefficient is chosen to be one in order to save a multi-
plication operation with the constant. Based on T3(x),
we extend F28 to get the composite field F28 [x]/T3(x) ,
denoted as F(28)2 . The above parameters are given in
Table 2.

Table 3  Construction parameters of the composite fields F(28)2

Composite field The structure of the composite field

F24 F2[x]/x
4 + x

3 + x
2 + x + 1

F(24)2 F24 [x]/x
2 + 0001x + 0010

After the above parameters are determined, we search
for the linear map (coefficient matrix) between the finite
field F216 and the composite field F(28)2 where there are 16
kinds of mapping relationships. Since this S-box is con-
structed by affine transformation, as in Rijmen (2000),
the coefficient matrix of the affine transformation and
the coefficient matrix of isomorphism can be merged in
order to achieve a reduction in hardware cost. Therefore,
the optimization results presented later only include the
merged matrix and the inverse of the coefficient matrix
of isomorphism.

The following components are needed for optimization
of the MK-3 S-box:

Component 1: The compound linear transforma-
tion. The composite coefficient matrix is denoted as
R = M × T  , where T is the coefficient matrix of isomor-
phism between F216 and F(28)2 and M is the coefficient
matrix of affine transformation.

Component 2: Multiplier. It is for the multiplication
over F28.

Page 6 of 11Li et al. Cybersecurity (2024) 7:17

Fig. 2  16-bit S-box design process

Table 4  Area of frequently-used logic gates in three different manufacturing processes

Logic gate NOT AND NAND OR NOR XOR/XNOR

SMIC 130nm 0.67 1.33 1.00 1.33 1.00 2.33

SMIC 65nm 0.75 1.2 1 1.5 1 2.25

Nangate 45nm 0.67 1.33 1 1.33 1 2

Table 5  Comparison of implementation schemes of the MK-3 S-box

Logic gate NOT AND XOR XNOR OR SMIC130nm SMIC65nm Nangate 45nm

Reference (Wood
et al. 2015)

0 144 1238 0 0 3076.06 3001.50 2667.52

This paper 0 245 411 9 6 1312.43 1321.50 1173.83

Page 7 of 11Li et al. Cybersecurity (2024) 7:17 	

Component 3: Square-scale operation. It is for the
combined operation of squaring then scaling by a con-
stant over F28.

Component 4: Multiplicative inverter. It is for calculating
the inverse of multiplication over F28 . Since it is an inversion
operation in finite fields, we can also convert the element in
F28 to its composite fields representation in F(24)2.

Component 5: The isomorphism transformation from
F216 to F(28)2 . The coefficient matrix of it is denoted as
T−1 . For component 4, the parameters for the conversion
from finite fields to composite fields are shown in Table 3.

The component 4 can be divided into another 5 parts as
follows.

Component 4-1: The coefficient matrix of isomorphism
from F28 to F(24)2 denoted as δ.

Component 4-2: Multiplication over F24.
Component 4-3: Square-scale operation. There are

square operation and scaling by the constant 2 over
F24.

T :



















































1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0

0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0

1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0

1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0

1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0

1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0

1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0

1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0

1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0

1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1



















































T−1 :



















































0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0

1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0

1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0

1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0

0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0

1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0

0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0

0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0

0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1



















































Component 4-4: Inverse of multiplication over F24 . This
section uses SAT solver to search for results.

Component 4-5: The isomorphism transformation
from F(24)2 to F28 . The coefficient matrix is denoted as
δ−1.

The components shown in Fig. 2 are described in the
following:

δ =























0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0

1 0 0 0 1 1 0 0

1 0 1 1 0 1 1 0

1 0 0 0 1 1 1 0

0 0 1 0 1 1 1 0

1 0 0 1 1 1 1 0

0 0 0 0 1 1 0 1























δ−1 =























1 0 1 0 0 1 0 0

0 1 0 0 1 0 1 0

1 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 1 1 1 1 0

0 0 1 0 1 0 0 0

1 0 0 0 0 1 0 1























Page 8 of 11Li et al. Cybersecurity (2024) 7:17

component1 :
{

x : {0, 1}16 → y : {0, 1}16
}

m0 = x15 ⊕ x14;m1 = x6 ⊕ x1;m2 = m0 ⊕m1;m3 = x13 ⊕ x12;

m4 = m1 ⊕m3;m5 = m2 ⊕m3;m6 = x10 ⊕ x7;m7 = m6 ⊕m0;

m8 = x12 ⊕ x0;m9 = x9 ⊕ x2;m10 = m2 ⊕m9;m11 = x4 ⊕ x5;

m12 = x15 ⊕ x11;m13 = m3 ⊕m12;m14 = x3 ⊕ x1;m15 = x4 ⊕ x0;

m16 = m5 ⊕ x8;m17 = m11 ⊕ x10;m18 = m10 ⊕ x11;m19 = m4 ⊕ x15;

y15 = m0 ⊕m9 ⊕ x10 ⊕ x13; y14 = m6 ⊕m16 ⊕ x2 ⊕ x5;

y13 = m8 ⊕m9 ⊕m14; y12 = m19; y11 = m17 ⊕m19 ⊕ x0 ⊕ x2;

y10 = m7 ⊕m15 ⊕ x8; y9 = m13 ⊕ x5 ⊕ x7; y7 = m1 ⊕m6 ⊕m8;

y8 = m2 ⊕m8 ⊕ x3 ⊕ x7 ⊕ x11; y6 = m11 ⊕m16 ⊕ x7;

y5 = m7 ⊕m11 ⊕ x1; y4 = m18 ⊕ x0 ⊕ x8; y3 = m6 ⊕m15 ⊕ x9 ⊕ x13;

y2 = m7 ⊕m8 ⊕ x5; y1 = m18 ⊕ x13; y0 = m13 ⊕m14 ⊕m17 ⊕ x8;

component2 :

F28/x
8 + x7 + x6 + x5 + x4 + x3 + 1 :

({

a : {0, 1}8 × b : {0, 1}8 → d : {0, 1}8
})

(

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

)

·

(

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0

)

= c

c =
(

c14x
14 + c13x

13 + · · · · · · +c0

)

c14 = a7 · b7;

c13 = (a7 · b6)⊕ (a6 · b7);

c12 = (a7 · b5)⊕ (a5 · b7)⊕ (a6 · b6);

c11 = (a7 · b4)⊕ (a4 · b7)⊕ (a6 · b5)⊕ (a5 · b6);

c10 = (a7 · b3)⊕ (a3 · b7)⊕ (a6 · b4)⊕ (a4 · b6)⊕ (a5 · b5);

c9 = (a7 · b2)⊕ (a2 · b7)⊕ (a6 · b3)⊕ (a3 · b6)⊕ (a5 · b4)⊕ (a4 · b5);

c8 = (a7 · b1)⊕ (a1 · b7)⊕ (a6 · b2)⊕ (a2 · b6)⊕ (a5 · b3)⊕ (a3 · b5)⊕ (a4 · b4);

c7 = (a7 · b0)⊕ (a0 · b7)⊕ (a6 · b1)⊕ (a1 · b6)⊕ (a5 · b2)⊕ (a2 · b5)⊕ (a4 · b3)⊕ (a3 · b4);

c6 = (a6 · b0)⊕ (a0 · b6)⊕ (a5 · b1)⊕ (a1 · b5)⊕ (a4 · b2)⊕ (a2 · b4)⊕ (a3 · b3);

c5 = (a5 · b0)⊕ (a0 · b5)⊕ (a4 · b1)⊕ (a1 · b4)⊕ (a3 · b2)⊕ (a2 · b3);

c4 = (a4 · b0)⊕ (a0 · b4)⊕ (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2);

c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1);

c0 = (a0 · b0);

Page 9 of 11Li et al. Cybersecurity (2024) 7:17 	

m0 = c12 ⊕ c10;m1 = c14 ⊕ c8;m2 = c13 ⊕ c10;m3 = c11 ⊕ c9;m4 = m1 ⊕m2;

d7 = c7 ⊕m4 ⊕ c9; d6 = c6 ⊕m0; d5 = c5 ⊕m3 ⊕ c14; d4 = c4 ⊕m4;

d3 = c3 ⊕m0 ⊕ c8; d2 = c2 ⊕m4 ⊕ c11; d1 = c1 ⊕m1 ⊕ c12; d0 = c0 ⊕m1 ⊕m3 ⊕ c10;

component3 :
�

x : {0, 1}8 → y : {0, 1}8
�

m0 = x4 ⊕ x7;m1 = x3 ⊕ x6;m2 = x2 ⊕ x5;m3 = x6 ⊕ x7;m4 = x5 ⊕ x6;

y7 = m0 ⊕m1; y6 = x7; y5 = m0 ⊕m2; y4 = m3; y3 = x1; y2 = m4; y1 = x0; y0 = m0 ⊕ x5;

component4 − 1 :
�

x : {0, 1}8 → y : {0, 1}8
�

m0 = x3 ⊕ x2;m1 = x5 ⊕ x1;m2 = x7 ⊕ x1;

y7 = m1; y6 = x4 ⊕ x6; y5 = m0 ⊕ x7; y4 = m2 ⊕ x2 ⊕ x4 ⊕ x5; y3 = m2 ⊕m0;

y2 = m1 ⊕m0; y1 = y3 ⊕ x4; y0 = m0 ⊕ x0;

component4 − 2 :
�

a : {0, 1}4 × b : {0, 1}4 → d : {0, 1}4
�











(a3 · b3); (a3 · b2); (a3 · b1); (a3 · b0)
(a2 · b3); (a2 · b2); (a2 · b1); (a2 · b0)
(a1 · b3); (a1 · b2); (a1 · b1); (a1 · b0)
(a0 · b3); (a0 · b2); (a0 · b1); (a0 · b0)

c6 = (a3 · b3); c5 = (a3 · b2)⊕ (a2 · b3); c4 = (a3 · b1)⊕ (a1 · b3)⊕ (a2 · b2);

c3 = (a3 · b0)⊕ (a0 · b3)⊕ (a2 · b1)⊕ (a1 · b2); c2 = (a2 · b0)⊕ (a0 · b2)⊕ (a1 · b1);

c1 = (a1 · b0)⊕ (a0 · b1); c0 = (a0 · b0);

d3 = c3 ⊕ c4; d2 = c2 ⊕ c4; d1 = c1 ⊕ c6 ⊕ c4; d0 = c0 ⊕ c5 ⊕ c4;

component4 − 3 :
�

x : {0, 1}4 → y : {0, 1}4
�

y3 = x1; y2 = x3; y1 = x0; y0 = x2;

component4 − 4 :
�

x : {0, 1}4 → y : {0, 1}4
�

m0 = x3 ⊕ x2;m1 = m0 + x1;m2 = x3 · x1;m3 = m1 · x0;m4 = x2 ⊕m3;

m5 = m3 ·m4;m6 = x2 ·m1;m7 = m3 +m0;m8 = x1 ⊕m4;m9 = m4 + x3;

m10 = m2 +m5;m11 = m3 ⊕m5;m12 = m8 ·m9;m13 = m2 + x0;

x0
−1 = m8 ⊕m10; x1

−1 = m6 ⊕m13; x2
−1 = m11 +m12; x3

−1 = m7 ⊕m2;

component4 − 5 :
{

x : {0, 1}8 → y : {0, 1}8
}

m0 = x3 ⊕ x1;m1 = x7 ⊕ x2;m2 = x5 ⊕ x3;m3 = x5 ⊕ x4;m4 = m0 ⊕m3;

y7 = x5 ⊕m1; y6 = m0 ⊕ x6; y5 = m2 ⊕ x7; y4 = m0; y3 = x7 ⊕m4;

y2 = x2 ⊕m4; y1 = m2; y0 = x0 ⊕m1;

Page 10 of 11Li et al. Cybersecurity (2024) 7:17

Comparison
The hardware cost of S-box is not only related to the num-
ber of logic gates but also related to the manufacturing pro-
cess of logic gates. Circuit area of logic gates in different
manufacturing processes is listed in Table 4. Compared with
the cost of the MK-3 S-box in previous literature (Wood
et al. 2015), our results proposed in this paper can reduce
the circuit size by at least 55.9%, which is shown in Table 5.

Conclusion
In this paper, we first focused on the hardware implemen-
tation of multiplication over finite fields based on three
classes of irreducible polynomials. On this basis, the irre-
ducible polynomial with the lowest cost of multiplication

component5 :
{

x : {0, 1}16 → y : {0, 1}16
}

m0 = x9 ⊕ x8;m1 = x13 ⊕ x12;m2 = m0 ⊕m1;m3 = x5 ⊕ x2;

m4 = m2 ⊕m3;m5 = x11 ⊕ x4;m6 = m3 ⊕m5;m7 = x14 ⊕ x6;

m8 = m6 ⊕m7;m9 = x10 ⊕ x7;m10 = m0 ⊕m9;m11 = x15 ⊕ x3;

m12 = m5 ⊕m11;m13 = x10 ⊕ x12;m14 = x5 ⊕ x4;m15 = x15 ⊕ x1;

m16 = m7 ⊕ x1;m17 = m4 ⊕ x3;m18 = m2 ⊕ x6;m19 = m3 ⊕ x11;

y15 = m17 ⊕ x10 ⊕ x14; y14 = m14 ⊕m15 ⊕m18;

y13 = m12 ⊕m13 ⊕ x8 ⊕ x2; y12 = m2 ⊕m12 ⊕ x14; y11 = m13 ⊕m14;

y10 = m18; y9 = m1 ⊕m7; y8 = m10 ⊕m11 ⊕m16 ⊕m19;

y7 = m10 ⊕ x5 ⊕ x13 ⊕ x14; y6 = m6 ⊕m9 ⊕m15; y5 = m8;

y4 = m1 ⊕m8 ⊕ x1 ⊕ x3; y3 = m19 ⊕ x7 ⊕ x12; y2 = m5 ⊕m17 ⊕ x6;

y1 = m10; y0 = m16 ⊕ x0 ⊕ x4 ⊕ x10 ⊕ x13;

implementation was used to construct the composite
fields, F(24)2 and F(28)2 . The SAT solver was further used
for the optimization of the small-scale nonlinear com-
ponent. At last, the hardware implementation costs of
16 groups of isomorphism mappings were compared to
obtain the least costly circuit implementation scheme for
the MK-3 S-box.

Compared with the scheme proposed by the original
designer, the results of the implementation proposed in
this paper can reduce the hardware resource occupied
circuit area by at least 55.9%. In the future, we are com-
mitted to discovering a better optimized S-box imple-
mentation scheme, considering the circuit depth and
circuit area together.

Appendix A Number of gates for multiplication over finite field F28

Irreducible polynomial Number of
XOR gates

Number of AND
gates

Irreducible polynomial Number of XOR
gates

Number of AND
gates

x
8 + x

7 + x
5 + x

4 + 1 71 64 x
8 + x

4 + x
3 + x + 1 72 64

x
8 + x

6 + x
5 + x

4 + 1 73 64 x
8 + x

7 + x
2 + x + 1 71 64

x
8 + x

7 + x
5 + x

3 + 1 71 64 x
8 + x

7 + x
6 + x

5 + x
4 + x

3 + 1 69 64

x
8 + x

6 + x
5 + x

3 + 1 74 64 x
8 + x

7 + x
6 + x

5 + x
4 + x

2 + 1 69 64

x
8 + x

5 + x
4 + x

3 + 1 73 64 x
8 + x

7 + x
6 + x

4 + x
3 + x

2 + 1 71 64

x
8 + x

6 + x
5 + x

2 + 1 73 64 x
8 + x

7 + x
5 + x

4 + x
3 + x

2 + 1 72 64

x
8 + x

7 + x
3 + x

2 + 1 70 64 x
8 + x

7 + x
6 + x

5 + x
4 + x + 1 69 64

x
8 + x

6 + x
3 + x

2 + 1 73 64 x
8 + x

6 + x
5 + x

4 + x
3 + x + 1 74 64

x
8 + x

5 + x
3 + x

2 + 1 71 64 x
8 + x

7 + x
6 + x

5 + x
2 + x + 1 70 64

x
8 + x

4 + x
3 + x

2 + 1 72 64 x
8 + x

7 + x
6 + x

4 + x
2 + x + 1 73 64

x
8 + x

7 + x
6 + x + 1 70 64 x

8 + x
6 + x

5 + x
4 + x

2 + x + 1 69 64

x
8 + x

6 + x
5 + x + 1 73 64 x

8 + x
7 + x

6 + x
3 + x

2 + x + 1 72 64

Page 11 of 11Li et al. Cybersecurity (2024) 7:17 	

Irreducible polynomial Number of
XOR gates

Number of AND
gates

Irreducible polynomial Number of XOR
gates

Number of AND
gates

x
8 + x

7 + x
5 + x + 1 71 64 x

8 + x
7 + x

4 + x
3 + x

2 + x + 1 69 64

x
8 + x

7 + x
3 + x + 1 72 64 x

8 + x
6 + x

4 + x
3 + x

2 + x + 1 69 64

x
8 + x

5 + x
3 + x + 1 71 64 x

8 + x
5 + x

4 + x
3 + x

2 + x + 1 74 64

Authors’ contributions
The author(s) read and approved the final manuscript.

Funding
This work is supported by the Open Project of Henan Key Laboratory of
Network Cryptography Technology (NO. LNCT2021-A09), and the Advanced
Discipline Construction Project of Beijing Universities (20210101Z0401).

Availability of data and materials
The datasets generated during analysed during the current study are not
publicly available but are available from the corresponding author on reason-
able request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 25 October 2023 Accepted: 15 January 2024

References
Boyar J, Matthews P, Peralta R (2008) On the shortest linear straight-line pro-

gram for computing linear forms. Math Found Comput Sci 2008:168–179
Boyar Joan, Matthews Philip, Peralta René (2013) Logic minimization tech-

niques with applications to cryptology. J Cryptol 26:280–312
Boyar J, Peralta R (2010) A new combinational logic minimization technique

with applications to cryptology. Exp Algorithm, pp 178–189
Canright D (2005) A very compact S-Box for AES. Cryptographic hardware and

embedded systems—CHES 2005, pp 441–455
Daemen J, Rijmen V (1998) The block Cipher Rijndael. Smart card research and

advanced application conference
Dong X, Dong B, Wang X (2020) Quantum attacks on some feistel block

Ciphers. Des Codes Crypt 88:1179–1203
Itoh T, Tsujii S (1988) A fast algorithm for computing multiplicative inverses in

GF (2m) using normal bases. Inf Comput 78:171–177
Kaplan M, Leurent G, Leverrier A, Naya-Plasencia M (2016) Breaking symmetric

cryptosystems using quantum period finding. Adv Cryptol 2016:207–237
Kelly M, Kaminsky A, Kurdziel MT, Lukowiak M, Radziszowski SP (2015) Cus-

tomizable sponge-based authenticated encryption using 16-bit s-boxes.
MILCOM 2015–2015 IEEE military communications conference, pp 43–48

Kuwakado H, Morii M (2010) Quantum distinguisher between the 3-round
Feistel cipher and the Random Permutation. 2010 IEEE international
symposium on information theory, pp 2682–2685

Kuwakado H, Morii M (2012) Security on the quantum-type even-Mansour
Cipher. 2012 international symposium on information theory and its
applications, pp 312–316

Maximov A, Ekdahl P (2019) New circuit minimization techniques for smaller
and faster AES SBoxes. IACR Trans Cryptograph Hardware Embedded Syst,
pp 91–125

NIST A (2001) Specification of the advanced encryption standard (AES). Federal
information processing standards publication 197

Paar C (1995) Some remarks on efficient inversion in finite fields. In: Proceed-
ings of 1995 IEEE international symposium on information theory vol 58

Paar C (1997) Optimized arithmetic for reed-solomon encoders. Proceedings
of IEEE international symposium on information theory, vol 250

Paar C (1996) A new architecture for a parallel finite field multiplier with low
complexity based on composite fields. IEEE Trans Comput 45:856–861

Reyhani-Masoleh A, Taha M, Ashmawy D (2018) Smashing the implementation
records of AES S-box. IACR transactions on cryptographic hardware and
embedded systems, pp 298–336

Rijmen V (2000) Efficient implementation of the Rijndael S-box. Katholieke
Universiteit Leuven, Dept. ESAT. Belgium

Satoh A, Morioka S, Takano K, Munetoh S (2001) A compact Rijndael hardware
architecture with S-box optimization. Advances in cryptology-ASIACRYPT
2001: Proceedings 7th international conference on the theory and
application of cryptology and information security gold coast, Australia,
December 9–13, pp 239–254

Shi T, Jin C, Guan J (2018) Collision attacks against AEZ-PRF for authenticated
encryption AEZ. China Commun 15:46–53

Simon DR (1997) On the power of quantum computation. SIAM J Comput
26:1474–1483

Stoffelen K (2016) Optimizing S-box implementations for several criteria using
SAT solvers. In: Fast software encryption: 23rd international conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers
23, pp 140–160

Wood CA, Radziszowski SP, Lukowiak M (2015) Constructing large S-boxes with
area minimized implementations. MILCOM 2015–2015 IEEE military com-
munications conference, pp 49–54

Xu Y, Liu W, Yu W (2021) Quantum forgery attacks on COPA, AES-COPA and
marble authenticated encryption algorithms. Quant Inf Process 20:1–21

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	A circuit area optimization of MK-3 S-box
	Abstract
	Introduction
	Pre-knowledge
	The Optimization of Multiplier
	S-box Optimization
	Comparison
	Conclusion
	Appendix A Number of gates for multiplication over finite field
	References

