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Background: MicroRNAs (miRNAs) play important roles in a variety of biological processes by regulating gene
expression at the post-transcriptional level. So, the discovery of new miRNAs has become a popular task in
biological research. Since the experimental identification of miRNAs is time-consuming, many computational tools
have been developed to identify miRNA precursor (pre-miRNA). Most of these computation methods are based on
traditional machine learning methods and their performance depends heavily on the selected features which are
usually determined by domain experts. To develop easily implemented methods with better performance, we
investigated different deep learning architectures for the pre-miRNAs identification.

Results: In this work, we applied convolution neural networks (CNN) and recurrent neural networks (RNN) to
predict human pre-miRNAs. We combined the sequences with the predicted secondary structures of pre-miRNAs as
input features of our models, avoiding the feature extraction and selection process by hand. The models were
easily trained on the training dataset with low generalization error, and therefore had satisfactory performance on
the test dataset. The prediction results on the same benchmark dataset showed that our models outperformed or
were highly comparable to other state-of-the-art methods in this area. Furthermore, our CNN model trained on
human dataset had high prediction accuracy on data from other species.

Conclusions: Deep neural networks (DNN) could be utilized for the human pre-miRNAs detection with high
performance. Complex features of RNA sequences could be automatically extracted by CNN and RNN, which were
used for the pre-miRNAs prediction. Through proper regularization, our deep learing models, although trained on
comparatively small dataset, had strong generalization ability.

Background

MiRNAs play import roles in gene expression and regu-
lation and are considered to be important factors in-
volved in many human diseases, e.g. cancer, vascular
diseases or inflammation [1-3]. The biogenesis of miR-
NAs starts with the transcription of miRNA genes which
forms primary miRNA hairpins (pri-miRNA). Then the
pri-miRNAs were cleaved in the nucleus by RNase III
enzyme Drosha, producing pre-miRNAs [4]. In an alter-
native pathway for miRNAs biogenesis, the pre-miRNA
is from branched introns which are cleaved by debranch-
ing enzyme DBRI1 [5, 6]. After transportation to cytosol
by Exportin-5, pre-miRNAs are further processed into
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small RNAs duplexes by another RNase III enzyme
Dicer [7, 8]. Finally, the duplex loads into the silencing
complex, wherein most cases one strand is preferentially
retained (mature miRNA), while the other strand is de-
graded [9].

MiRNAs can be detected using experimental methods
such as quantitative real-time PCR (qPCR), microarray
and deep sequencing technologies [10-12]. All the ex-
perimental methods suffer from low specificity which
needs extensive normalization. Furthermore, both qPCR
and microarray can only detect known miRNAs since
the primers for qPCR and the short sequences on micro-
array need to be predesigned [13].

Due to the difficulty of discovery of new miRNAs from
a genome by existing experiment techniques, many ab
initio computational methods have been developed [11].
Most of these classifiers which utilize machine learning
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algorithms such as support vector machines (SVM), are
based on the carefully selected characteristics of pre-
miRNAs [14-18]. The hand-crafted features of pre-
miRNAs are the most important factors for the perform-
ance of the classifiers and therefore are generally devel-
oped by domain experts [19].

CNN and RNN, the two main types of DNN architec-
tures, have shown great success in image recognition
and natural language processing [20-22]. CNN is a kind
of feedforward neural networks which contains both
convolution and activation computations. It is one of the
representative algorithms of deep learning, which can
automatically learn features from raw input features
[23]. The convolution layer, consisting of a combination
of linear convolution operation and nonlinear activation
function, is usually followed by a pooling layer which
provides a typical down-sampling operation such as max
pooling [24]. Through using multiple convolution and
pooling layers, CNN models can learn patterns from low
to high level in the training dataset [25].

Much as CNN is born for processing a grid of values
such as image, RNN is specialized for processing se-
quential data [22]. One of the most popular RNN layers
used in practical applications is called long short-term
memory (LSTM) layer [26]. In a common LSTM unit,
there are three gates (an input gate, an output gate and
a forget gate) controlling the flow of information along
the sequence. Thus, LSTM networks can identify pat-
terns, which may be separated by large gaps, along a se-
quence [27].

Lots of CNN and RNN architectures have been devel-
oped to address biological problems and shown to be
successful especially in biomedical imaging processing
[28-31]. Here we designed, trained and evaluated the
CNN and RNN models to identify human pre-miRNAs.
The results showed that our proposed models outper-
formed or were highly comparable with other state-of-
the-art classification models and also had good
generalization ability on the data from other species.
Furthermore, the only information used in our models is
the sequence combined with the secondary structure of
pre-miRNAs. Our methods can learn automatically the
patterns in the sequences avoiding the hand-crafted se-
lection of features by domain experts, and therefore can

Table 1 Performance of the proposed models
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be easily implemented and generalized to a wide range
of similar problems. To the best of our knowledge, we
are the first to apply CNN and RNN to identify human
pre-miRNAs without the need for feature engineering.

Results

Model’s performance

The CNN and RNN architectures for the pre-miRNAs
prediction were proposed in this study. The detailed ar-
chitectures and training methods of our deep learning
models were shown in the methods section. For the
training/evaluation/test ~ splitting, the models were
trained on the training dataset with enough epochs, eval-
uated on the evaluation dataset and finally the perform-
ance on the test dataset was shown as indicated in
Table 1. In the 10-fold Cross Validation (CV), the per-
formance was tested on each of the 10-folds, while the
remaining 9-folds were used for training. For concise-
ness, we showed that the average performance along
with standard error (SE) for the 10-fold CV experiments
(Table 1).

As shown in Table 1, we got similar values of sensi-
tivity (column 2), specificity (column 3), Fl-score
(column 4), Mathews Correlation Coefficients (MCC)
(column 5) and accuracy (column 6) for these two
kinds of dataset splitting strategies in each model. For
both of the models, the values of sensitivity, specifi-
city, Fl-score and accuracy were mostly in the range
of 80-90%, while that of MCC in 70-80%. In the
CNN and RNN models, the prediction accuracy
reached nearly 90%. The RNN model showed better
specificity, which exceeded 90%, and poorer sensitivity
(about 85%).

For further comparisons, we plotted the Receiver-
Operating Characteristic Curves (ROC) and the
precision-recall curves (PRC) of different models for
the training/evaluation/test splitting. All the parame-
ters were trained on the training dataset and all the
curves were drawn based on the test dataset. As
shown in Fig. 1, the CNN model performed better
reaching an area under the ROC curve (AUC) of
95.37%, while the RNN model with an AUC of
94.45%. The PRC also showed similar results.

Model (Data set partition) Sen.(%) Spe.(%) F1(%) MCC(%) Acc.(%)
CNN (Training/Evalu./Test) 88.83 88.28 88.83 77.11 88.56

CNN (10-fold CV) 89.58+4.72 84.90 +4.84 8753+1.38 74.72+3.52 87.24+1.80
RNN (Training/Evalu./Test) 85.71 91.28 88.35 77.03 8843

RNN (10-fold CV) 85.89+3.29 91.14+2.75 88.09+ 203 77.04 £3.66 8844 +1.80

Note: Classification performance of different models on the testing dataset was shown as sensitivity (column 2), specificity (column 3), F1-Score (column 4), MCC
(column 5) and accuracy (column 6) respectively. For the 10-fold CV, the performance was shown as mean + standard error
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Performance comparison with other machine leaning
methods

For comparison, we referred to a newly published work
done by Sacar Demirci et al. [19]. In their study, they
assessed 13 ab initio pre-miRNA detection approaches
thoroughly and the average classification performance
for decision trees (DT), SVM and naive Bayes (NB) was
reported to be 0.82, 0.82 and 0.80 respectively. Following
the same dataset splitting strategy, our models were
retrained on stratified and randomly sampled training
dataset (70% of the merged dataset) and validated on the
remaining 30% dataset. Here, we showed that the predic-
tion results of some representative classifiers and our
deep learning methods trained on the same positive and

Table 2 Comparison of model performance on the same
benchmark datasets

Model hsa Pseudo
This workenn 96 88
This workgnn 90 92
Averagepr 97 93
Consensusyg 86 86
Consensuspt 99 90
DingNB 88 84
Averageng 83 89
Ngpr 89 89
Consensus 97 96
Batuwitang 86 83
Bentwichyg 92 71
NgNB 86 81

Note: Prediction results (percentage) of this work (rows 2-3) and the top ten
models (rows 4-13) of the izMiR framework [19]. The values presented were
true prediction rates (%) (TPR) achieved for each model and dataset. Pseudo:
negative data, from the coding region of human RefSeq genes, 8492 hairpins;
hsa: positive data, Homo sapiens miRNAs, 1881 sequences

negative datasets (Table 2). As shown in the table, our
models had outperformed all the best individual
methods (Dingnp, Ngpr, Bentwichyg, Batuwitayg and
Ngns), and yet were not as good as most of the ensem-
ble methods (Averagept, Consensuspt and Consensus).

Classification performance on other species

Since our models were trained and tested on human
dataset, we wanted to know whether the trained classi-
fiers could be applied to other species. We fed the well-
trained CNN model with the pre-miRNAs sequences
from Macaca mulatta, Mus musculus and Rattus norve-
gicus to perform classification. The pre-miRNAs of these
species were downloaded from miRBase (http://www.
mirbase.org/) and MirGeneDB [32] (http://mirgenedb.
org/). For all these three species, more than 87% pre-
miRNAs from miRBase were predicted to be true, while
more 99% pre-miRNAs from MirGeneDB were correctly
predicted (Table 3). The relatively higher prediction

Table 3 Prediction accuracy on pre-RNAs datasets from other
species using the CNN model trained with human data

Database Species # of pre- # of correct Accuracy
mMiRNAs prediction (%)
miRBase Macaca 617 564 9141
release 22 mulatta
Mus 1234 1081 87.60
musculus
Rattus 495 436 88.08
norvegicus
MirGeneDB Macaca 499 498 99.80
mulatta
Mus 449 446 99.33
musculus
Rattus 414 411 99.28
norvegicus
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accuracy of Macaca mulatta might result from its closer
evolutionary relationship with human.

The results showed that the proposed methods had
good generalization ability on all the tested species. As
we know, the quality of data is critical for deep learning.
The high prediction accuracy might owe to the stricter
standard for pre-miRNAs selection in MirGeneDB com-
pared with those from miRBase.

Discussion
In this study, we showed that both CNN and RNN could
automatically learn features from RNA sequences, which
could be used for computational detection of human
pre-miRNAs. Because of the small size of the dataset,
the data quality and the vectorization method of input
sequences would have great impact on the performance
of the classifier. In the initial trial of this work, we only
used the sequence of RNA to perform prediction. The
results showed that although our DNN models could be
successfully trained on the training dataset, there were
high prediction error rates in the validation dataset, indi-
cating low generalization ability. Although we tried dif-
ferent model structures and regularization methods, the
big generalization error could not be reduced. This
problem might result from the small sample size which
couldn’t be avoided. So, we combined the sequence and
the secondary structure information as the input in our
DNN  models, which greatly minimized the
generalization error. Good representations of data were
essential for models’ performance, although deep learn-
ing models could learn features automatically from data.
As we know, there are lots of hyperparameters for
deep learning models, which needs to be determined be-
fore training. How to tune the hyperparameters to solve
specific biological problems needs to be intensely stud-
ied in the future. So, we believe that great improvement
could be made to identify pre-miRNAs in the future, al-
though the models we proposed here performed very
well.

Conclusions

In this work, we showed that both CNN and RNN can
be applied to identify pre-miRNAs. Compared to other
traditional machine learning methods, which heavily de-
pend on the hand-crafted selection of features, CNN and
RNN can extract features hierarchically from raw inputs
automatically. In our deep learning models, we only used
the sequence and the secondary structure of RNA se-
quences, which made it easy to implement. Furthermore,
our models showed better performance than most SVM,
NB and DT classifiers which were based on the hand-
crafted features. To investigate the performance on other
species, we tested our CNN model with pre-miRNAs se-
quences from other species. The results showed that our
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methods had good generalization ability on all the tested
species especially on the datasets from MirGengDB.

Methods

Datasets preparation and partition

The positive human pre-miRNA dataset (Additional file
1) containing 1881 sequences was retrieved from miR-
Base [33, 34]. The negative pseudo hairpins dataset
(Additional file 2) was from the coding region of human
RefSeq genes [35], which contained 8492 sequences. The
secondary structures of the RNA sequences were pre-
dicted using RNAFolds software [36] and shown in the
RNAFolds column of the datasets. Both the positive and
the negative datasets were widely used for training other
classifiers based mostly on SVM [19]. For the balance of
datasets, we randomly selected the same number of
negative sequences with that of positive ones. The se-
lected negative and positive datasets were merged to-
gether and separated randomly into training (2408
sequences), validation (602 sequences) and test (752 se-
quences) datasets. In thelO-fold CV experiments, the
merged dataset was divided into 10 segments with about
the same number of sequences (376 sequences). In each
experiment, nine segments were used for training while
the remaining one was used for evaluating the perform-
ance of the model.

One-hot encoding and zero padding

In the RNAFolds column of the supplementary datasets,
the secondary structures were predicted by RNAfolds
[33] and indicated by three symbols. The left bracket “(”
means that the paired nucleotide/base at the 5'-end and
can be paired with complimentary nucleotide/base at the
3’-end, which is indicated by a right bracket®)”, and the
“” means unpaired bases. In our deep neural networks,
we only needed the sequences and the paring informa-
tion. So, we merged the base (“A”, “U”, “G”, “C”) and the
corresponding structure indicator (“(”, “”, “)”) into a
dimer. Since there were four bases and three secondary
structure indicators, we got twelve types of dimers. The
newly generated features together with the labels were
stored in the new files (Additional file 3 and Additional
file 4). Next, we encoded the dimers with “one-hot” en-
coding (twelve dimension) and padding each sequence
with the zero vector to the max length of all the se-
quences (180). So, each sequence could be represented
by a vector with the shape of 180 x 12 x 1, which was
used in our supervised deep learning method (Fig. 2).

Proposed deep neural network architecture

The CNN architecture for the pre-miRNAs prediction

The designed architecture of CNN was shown in Fig. 3a.
In this model, the input sequences were first convolved
by sixteen kernels with the size of four over a single
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sequence:

second structure:

seq_struc: U(G(U(C(G(G( G( U( A G( C( U( U( A(U(C(

vecotorization:

(dimension:180 x 12)

U| G|UCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA
(COCCCCCCCCCCCC CCOCC- COCCC- COCC-CC-+43)3)3)3)3))-)))))))))))))))))))))

[10,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0,0,0,0,0]....,[0,0,0,0,0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,0,1,0,0,0]....,[0,0,0,0,0,0,0,0,0,0,0,0]]

Fig. 2 One-hot encoding and vectorization of pre-miRNA sequence. The seq_struc is the combination of nucleotide/base and the corresponding
secondary structure indicated with different symbols. The left bracket “(“means paired base at 5-end. The right bracket”)” means paired base at 3'-
end. The dot “." means unpaired base. The encoded sequence is padded with zero vectors to the length of 180

A)U)G)G) G)C)U)G)U) C) U) G) A) C) A)

1 §
padding with zero vectors

spatial dimension (filters: 16, kernel size: 4), followed by
the max pooling operation. Then the output tensors flo-
wed through the second convolution layer (filters: 32,
kernel size: 5) and max pooling layers, followed by the
third convolution layer (filters: 64, kernel size: 6) and
max pooling layers. All the max-pooling layers took the
maximum value with the size of 2. After convolution
and max pooling layers, all the extracted features were
concatenated and passed to a fully-connected layer with
0.5 dropout (randomly ignoring 50% of inputs) for
regularization in the training process. The dropout, a
popular regularization method in deep learning, can im-
prove the performance of our CNN model by reducing

overfitting [37]. The last was the softmax layer whose
output was the probability distribution over labels.

The RNN architecture for the pre-miRNAs prediction
In the recurrent neural networks (RNN) model, three
LSTM layers with 128, 64 and 2 units respectively were
used to remember or ignore old information passed
along RNA sequences. Each LSTM unit is comprised of
the following operations, where W and U are parameter
matrices and b is a bias vector [27].

input gate: i, = sigmoid (Wix; + Uihy; + by).

forget gate: f, = sigmoid (W, + Ugh1 + by).

A
pre-miRNA convolution  max pooling convolution ~ max pooling  convolution max pooling FC layer output
180x12x1 180x1x16 180x1x16 180x1x32 180x1x32 180x1x64 180x1x64
//
///
B L] //'/
e, /
B output
LSTM layer3 D iy e
t 1 1
LSTM layer2 D——D* **************** ‘g
4 1
LSTM layer1 l I - | ‘_’ ””””””””” _':J
1 f
premiRNA[ [ [T TTTTTTIICITIIIOTIITTITT] - (CTTTTTTTTTT]
Fig. 3 The proposed CNN and RNN architectures for pre-miRNAs prediction. a. CNN model. The pre-miRNA sequence is treated as a 180 x 12 X 1
vector. There are three cascades of convolution and max-pooling layers followed by two fully connected layers. The shapes of the tensors in the
model are indicated by height x width x channels. FC: fully connected layer with 32 units. b. RNN model. Three LSTM layers with 128, 64 and 2
units respectively are shown in the RNN. The final output is passed through a softmax function with the output of probability distribution over
labels. In each time step along the pre-miRNA sequence, the LSTM cells remembered or ignored old information passed along the arrows. The
output was the probability distribution over the true or false labels.
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transformation of input: c_in, =tanh(W.x, + Uche; +
b).

state update: ¢, =i; - c_ing +f; - i1

h; = o, - tanh(cy).

output gate: o, = sigmoid (Wox; + Ughy.1 + Voc, + by).

For avoiding overfitting, the LSTM layers were regu-
larized with randomly ignoring 20% of the inputs. The
output tensors of the last LSTM layer were then passed
through the softmax layer which gave the predicted
probability over each label (Fig. 3b).

Model training

The loss function we used is the cross entropy between
the predicted distribution over labels and the actual clas-
sification [38]. The formula is as follows.

Cross—entropy = — Z y; logs; (1)

i=1

(n: the number of labels, y;: the actual probability for
label i, s;: predicted probability for label i).

The aim of our machine learning was to minimize the
mean loss by updating the parameters of the models.
The models were fed by the training dataset and opti-
mized by Adam algorithm [39]. The training processes
were not stopped until the loss did not decrease any
more. During the training process, the generalization
error was also monitored using validation dataset. Fi-
nally, the learned parameters as well as the structures
were stored.

Methodology evaluation

After training, we calculated the classifier performance

on the test dataset in terms of sensitivity, specificity, F1-

Score, MCC and accuracy. (TP: true positive, TN: true

negative, FP: false positive, FN: false negative).
Sensitivity:

TP
Sen. = TP EN @)
Specificity:
TN
SPe- = TN 1 Fp )
F1-Score:
2xTP
1= o (4)
2%xTP + FP 4+ FN
MCC:
MCC — TP+TN-FP*FN ( )

/(TP + EN)*(TN + FP)*(TN + FN)«(TP + FP)

Accuracy:
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TP + TN
Acc. =
TP+ TN + FP + EN

(6)

Also, we plotted the ROC with the AUC and PRC for
the training/evaluation/test splitting. With decreasing
thresholds on the decision function used, corresponding
false positive rates (FPR), TPR and precisions, recalls
were computed. ROC curves were drawn based on a
series of FPR and TPR, while PRC were based on preci-
sions and recalls.

Implementation and availability

The implemented dnnMiRPre was well trained on the
models using the training dataset and can be used to
predict whether the input RNA sequence is a pre-
miRNA. The dnnMiRPre’s source code, which was writ-
ten in Python with Keras library, is freely available
through GitHub  (https://github.com/zhengxueming/
dnnPreMiR).
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1186/512859-020-3339-7.
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