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Abstract 

Background:  The study of drug–target interactions (DTIs) affinity plays an important 
role in safety assessment and pharmacology. Currently, quantitative structure–activ‑
ity relationship (QSAR) and molecular docking (MD) are most common methods in 
research of DTIs affinity. However, they often built for a specific target or several targets, 
and most QSAR and MD methods were based either on structure of drug molecules 
or on structure of receptors with low accuracy and small scope of application. How to 
construct quantitative prediction models with high accuracy and wide applicability 
remains a challenge. To this end, this paper screened molecular descriptors based on 
molecular vibrations and took molecule-target as a whole system to construct predic‑
tion models with high accuracy-wide applicability based on dissociation constant 
(Kd) and concentration for 50% of maximal effect (EC50), and to provide reference for 
quantifying affinity of DTIs.

Results:  After comprehensive comparison, the results showed that RF models are 
optimal models to analyze and predict DTIs affinity with coefficients of determina‑
tion (R2) are all greater than 0.94. Compared to the quantitative models reported in 
literatures, the RF models developed in this paper have higher accuracy and wide 
applicability. In addition, E-state molecular descriptors associated with molecular vibra‑
tions and normalized Moreau-Broto autocorrelation (G3), Moran autocorrelation (G4), 
transition-distribution (G7) protein descriptors are of higher importance in the quantifi‑
cation of DTIs.

Conclusion:  Through screening molecular descriptors based on molecular vibrations 
and taking molecule-target as whole system, we obtained optimal models based on 
RF with more accurate-widely applicable, which indicated that selection of molecular 
descriptors associated with molecular vibrations and the use of molecular-target as 
whole system are reliable methods for improving performance of models. It can pro‑
vide reference for quantifying affinity of DTIs.

Keywords:  Molecular vibrations, Random forest, Drug–target affinity, Chemical 
composition, Drug–target interactions
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Background
The rapid development of systems biology has proposed a new view that a single drug 
molecule acts on multiple targets or that multiple drug molecules act on a common tar-
get [1, 2]. That is to say, there are multiple interactions between targets and drug mol-
ecules-DTIs. DTIs plays an important role in pharmacology, biology and mechanism 
[3–6]. For example, on the basic of DTIs research, the off-target toxicity of appetite 
suppressant Fen-Phen that can cause death is due to the activation of 5-HT2B recep-
tor by one of its metabolites-Norfenfluramine, leading to proliferative valvular heart 
disease [7]. In study of repositioning salicylanilide anthelmintic drugs to treat adenovi-
rus infections, the results showed that Niclosanide and Rafoxanide target transport of 
HAdV particle from endosome to nuclear envelope, whilst oxyclozanide specifically tar-
gets adenovirus immediately early gene E1A transcription [8]. Therefore, the research of 
DTIs will help to understand mechanisms or toxic side effects of drugs and repositioning 
of drugs [9–12].

Currently, the research on DTIs focused on two directions, one is traditional exper-
imental analysis and the other is DTIs predictive analysis based on existing databases 
[13]. Traditional experimental analysis of DTIs is expensive and inefficient, and faces 
many challenges such as financial, technical and time aspects. It is almost impossible 
for researchers to carry out experiments to identify mechanisms or toxic side effects for 
all drug compounds. In comparison, the prediction of DTIs that is efficient and low cost 
can make up for shortcomings of traditional trials [14]. In prediction of DTIs, prediction 
of drug–target affinity is becoming increasingly important. This is because prediction 
of affinity not only predicts weather there is an interaction between molecules and tar-
gets, but also obtains strength of interaction, which is useful for drug discovery, effect 
and toxic evaluation, etc. Computational approaches for DTIs affinity in most of current 
research mainly include two categories: ligand-based and receptor-based methods [15, 
16]. In above methods, quantitative structure–activity relationship (QSAR) and molec-
ular docking (MD) are most common methods. Such as Simeon S, et  al., constructed 
QSAR models of Janus kinase 2 inhibitors based on machine learning algorithms to 
predict inhibitory potency [17]. Luo M, et al., used random forests (RF), support vec-
tor machine (SVM), and K Nearest Neighbors (KNN) to construct QSAR models of 
5‑HT1A Receptor, in which Ki value characterized affinity of receptor-ligand [18]. Van 
Den Driessche G and Fourches D used 3D molecular docking to reveal common HLA-
B*57:01 variants that trigger adverse drug reactions [19]. In addition, there is also a 
similarity search-based approach, which utilizes chemical structure similarity to predict 
DTIs and DTIs affinity [20, 21].

However, quantitative structure–activity relationship (QSAR) and molecular docking 
(MD) have some limitations. QSAR or MD is often built for a specific target or several 
targets, making it difficult to achieve quantitative prediction for multiple targets at the 
same time, which leads to a small range of applications. Moreover, molecular dock-
ing and its evaluation methods are limited to 3D structure of target proteins [22–24]. 
Molecular docking is inaccurate when those proteins whose 3D structure is unknown, 
especially for membrane proteins whose 3D structure is difficult to crystallize [25, 26]. 
These limitations are severe because most useful drug targets are membrane proteins, 
such as ion channels and G protein-coupled receptors (GPCRs) [27, 28]. This leads to 
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low accuracy and low applicability of most DTIs prediction models, not to mention 
prediction of affinity for DTIs. The more serious fact is that most QSAR and MD were 
based either only on structure of ligands or on structure of receptors. By considering 
only structure of receptor or ligand, similarity-based analysis inevitably leads to inac-
curate results that are inconsistent with experimental results. This fragmented approach 
ignores holistic nature of receptor-ligand interactions, which leads to low prediction 
accuracy and excessive bias. In addition, in constructing quantitative prediction models, 
researchers mostly used molecular descriptors to solve problem of quantifying abstract 
molecules, and solved mapping problem of best-described function by optimizing algo-
rithm and parameters. However, researchers ignore problem of feature characterization. 
This can also lead to low accuracy and excessive bias for prediction of DTIs affinity [29, 
30].

In this paper, with above limitations in mind, we took molecule-target as a whole sys-
tem from systems biology perspective to construct prediction models for DTIs affinity 
with high accuracy and wide applicability, in which simultaneously considering both 
receptors and ligands. Molecular descriptors associated with molecular vibrations were 
combined with protein sequence descriptors to construct whole system of molecule-
target, in which Kd and EC50 were used as quantitative indicators. On the premise of 
feature selection, combining machine-learning algorithms to predict DTIs affinity effi-
ciently and accurately. These models consisted of internal cross-validation and external 
tests, which provided a predicted performance with high accuracy and wide applicabil-
ity. In addition, optimal models were selected for application evaluation and comprehen-
sive comparison. The new quantitative models will provide reference for prediction of 
DTIs affinity.

Results and discussions
As shown in Fig. 1, this paper was completed under that research methodology. In the 
following section, we presented and discussed the data collection, results of descriptor 
calculation, optimal prediction models, the importance of descriptors and so on.

Data collection

Based on open source database: PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/), Drug-
bank (https://​go.​drugb​ank.​com/), ChEMBL (https://​www.​ebi.​ac.​uk/​chembl/) and 
Uniprot database (https://​www.​unipr​ot.​org/), we performed data collection of drug mol-
ecules, target protein sequences, and Kd and EC50 values characterizing drug molecule-
target affinity. Taking drug molecule and target as a whole system, we obtained the EC50 
dataset-quantifying DTIs affinity by EC50 and the Kd dataset-quantifying drug mole-
cule-target affinity by Kd, respectively. The EC50 dataset contains 8147 ligands and 544 
targets, and 11,076 ligand-target-EC50 pairs. At the same time, The Kd dataset contains 
1870 ligands and 778 targets, and 10,923 ligand-target-Kd pairs. The two datasets with-
out redundancy were used as benchmark datasets.

In process of data collection, we kept to the following two criteria: (1) maintain entries 
as many as possible; (2) exclude redundant data as many as possible. Therefore, some 
drug molecules and targets were removed due to Kd, EC50 has no definite value, or their 
activity values are inconsistent. These redundant data may strongly affect the accuracy of 

https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://www.uniprot.org/
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prediction models for DTIs affinity. It is worth noting that EC50 refers to the concentra-
tion of a drug, antibody or toxicant that achieves 50% of the maximum biological effect 
after a specified exposure time. It was commonly used as a measure of a drug’s potency 
[31]. Kd is often used to describe degree of binding of a compound to a particular target 
[32]. The smaller dissociation constant, the higher affinity between compounds and pro-
teins. Considering the practical significances of Kd and EC50, we finally chose both as 
quantitative indexes of DTIs affinity.

Results of descriptor calculation

Calculation of drug molecule descriptors

After calculation by online platform-PaDEL, we obtained the molecular descriptors. The 
descriptors calculated in this article were shown in Table 1. There were 1874 descrip-
tors for drug molecules and drug molecular descriptors can be divided into 16 catego-
ries, among which E-state descriptors, Autocorrelation descriptors and Topological 
type descriptors account for a relatively large number. Even though many descriptors in 
Table 1 are of the same type, each descriptor has its own specific meaning. However not 
all molecular descriptors are suitable for the construction of predictive models for DTIs 
affinity.

Therefore, how to measure importance of descriptors and filter out meaningful ones is 
the key to improve accuracy of prediction models. Some researchers used kernel func-
tions, thresholds, and other methods to filter descriptors to improve accuracy of models 
[33, 34]. It is worth considering that these methods don’t take into account properties of 
drug molecules and that may not be applicable in quantitative prediction of DTIs.

After comprehensive consideration, in this paper, based on properties of drug mol-
ecules, we screened characteristic descriptors of drug molecules from the perspective 

Fig. 1  The specific research methodology
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of molecular vibrations. This is because molecular vibrations are caused by vibrations of 
chemical bonds within molecules and they are macroscopic representation of drug mol-
ecules properties [35, 36]. Moreover, molecular vibrations are affected by various factors 
such as conjugation effect, induction effect, spatial effect, hydrogen bonding, vibrational 
coupling effect, etc. Therefore, molecular vibrations can reflect drug molecular structure 
and physicochemical properties of drugs to a certain extent [37]. It should be remem-
bered that seven physicochemical properties are particularly relevant to molecular 
vibrations, including electronegativity, π-atomic charge, total charge, and bond polar-
ity [38]. Therefore, we choose molecular descriptors related to molecular vibrations 
based on above physicochemical properties. For instance, Mpe-Constitution Descriptor-
mean Atomic Pauling Electronegativity (scaled on carbon atom) was selected as feature 
descriptor to construct prediction models for DTIs affinity due to its relation to atomic 
electronegativity. Finally, 813 descriptors associated with molecular vibrations were 
selected from 1874 descriptors in Table 1 to represent the feature characteristics of drug 
molecules. In addition, 813 molecular descriptors associated with molecular vibrations 
and their specific meanings were given in Additional file 3: Table S1.

Calculation of target protein descriptors

As was known to all, 3D structures of many proteins are unknown, especially for mem-
branous proteins [27, 28]. Thus, the analysis based on protein sequences rather than 3D 
structures of proteins can ensure a wide range of applicability of models and accuracy 
[39]. The target protein descriptors were shown in Table 2.

As shown in Table 2, there are 1437 descriptors for each protein and the descriptors 
can be divided into 9 categories, among which Dipeptide composition, Moran autocor-
relation as well as Normalized Moreau-Broto autocorrelation account for a relatively 
large number.

Table 1  Type and number of drug molecule descriptors

Serial number Descriptor type Number of 
descriptors

1 Constitutional descriptors 120

2 Autocorrelation descriptors 346

3 Basak descriptors 42

4 BCUT descriptors 6

5 Burden descriptors 96

6 Connectivity descriptors 56

7 E-state descriptors 489

8 Kappa descriptors 3

9 Molecular property descriptors 15

10 Quantum chemical descriptors 5

11 Topological descriptors 265

12 CPSA descriptors 29

13 RDF descriptors 210

14 Geometrical descriptors 21

15 WHIM descriptors 91

16 3D Autocorrelation descriptors 80
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813 drug molecule descriptors were integrated with 1437 protein descriptors and Kd, 
EC50 datasets to obtain the integrated Kd, EC50 datasets.

Results of feature screening

The Boruta algorithm was used for feature filtering [58]. As shown in Fig.  2, for inte-
grated EC50 dataset, 1259 descriptors were marked as “Confirmed” and 683 descrip-
tors were marked as “Rejected”, with 308 descriptors being marked as “Tentative”. That 
is, after feature selection, each DTI in the integrated EC50 dataset was characterized 
by 1259 feature attributes. Similarly, as shown in Fig. 3, for the integrated Kd dataset, 
827 descriptors were marked as “Confirmed” and 1191 descriptors were marked as 
“Rejected” with 232 descriptors being marked as “Tentative”. Each DTI in integrated Kd 
dataset was characterized by 827 feature attributes. The feature subsets of EC50 and Kd 
were obtained by feature screening for construction of quantitative prediction models 
for DTIs affinity.

The purpose of feature selection in machine learning is to filter out features set that 
minimize the cost function of currently selected model. However, Boruta algorithm 
can use a random forest approach to select the set of all features that are relevant to 
the dependent variable, rather than selecting the set of features that minimizes penalty 

Table 2  Type and number of target protein descriptors

Serial number Descriptor type Number of 
descriptors

G1 Amino acid composition 20

G2 Dipeptide composition 400

G3 Normalized Moreau-Broto autocorrelation 240

G4 Moran autocorrelation 240

G5 Geary autocorrelation 240

G6 Composition 21

G7 Transition, distribution 126

G8 Sequence-order-coupling number 60

G9 Quasi-sequence-order descriptors 100
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Fig. 2  Feature filtering results for EC50 dataset
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factor only for a specific model such as SVM. It can also disrupt the order of features and 
calculate the importance of features. Boruta algorithm can help us to understand the 
factors influencing dependent variable more fully and make feature selection better and 
more efficient. Therefore, when it’s not known upfront which algorithm is optimal, we 
chose Boruta algorithm for feature filtering.

Results of quantitative prediction model for DTIs affinity

Parameter optimization

In the RF model, there are important parameters need to be considered, such as ntree 
and max depth. After comparison and optimization of several parameters, we finalized 
RF algorithm parameters: ntree = 500, max depth = no limitation, min samples split = 2, 
min samples leaf = 1, max leaf nodes = none. For SVM model, we used “Tune” function 
to determine the optimal parameters of SVM algorithm, with the following algorithm 
parameters: cost = 1000, gamma = 0.0001 [40]. In same optimization way, ANN algo-
rithm parameters were determined: size = 2, decay = 0.1, linout = T (non-linear func-
tion), maxit = 1000, max nwts = 10,000.

Optimal prediction model for DTIs affinity

Before attempting to construct prediction models for DTIs affinity, EC50 feature subsets 
were preprocessed to facilitate calculation. Then combined with SVM, RF and ANN to 
construct quantitative prediction models respectively. The results of tenfold cross valida-
tion for EC50 feature subset were shown in Table 3.
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Fig. 3  Feature filtering results for Kd dataset

Table 3  Tenfold cross validation of three kinds of algorithms for EC50 feature subset

Model (EC50) R2 MSE RMSE MAE SSE

Train Test Train Test Train Test Train Test Train Test

SVM 0.9317 0.5759 0.1270 0.8356 0.3564 0.9146 0.1960 0.5801 1249 8216

RF 0.9611 0.9641 0.0891 0.0817 0.2985 0.2858 0.1976 0.1989 876 803.3

ANN 0.7350 0.5211 0.4867 0.9590 0.6976 0.9793 0.5023 0.6792 4785 9429



Page 8 of 18Wang et al. BMC Bioinformatics          (2021) 22:497 

As shown in Table 3 and Fig. 4, In RF model, R2 of training and test sets are 0.9611, 
0.9641 respectively indicated a good fit of RF model to data. MSE of training and test 
sets were both less than 0.09 and were in same order of magnitude, which indicated 
that there is no overfitting problem existing, and demonstrated that RF model showed 
satisfactory predictive performance (Fig. 4a). As for SVM model, R2 of training and 
test sets are 0.9317, 0.5759 respectively. SVM model exhibited some differences 
between training and test sets, but order of magnitude is the same and no greatly 
obvious overfitting can be observed from SVM model (Fig. 4b). However, predictive 
performance of the SVM model was worse than that of the RF model. For training 
and test sets in ANN model, no obvious overfitting can be observed (Fig. 4c), but the 
performance of ANN model in training and test set were lower than both RF model 
and SVM model. By comparing predictive performance of three models based on 
evaluation indicators, it can be observed that the performance of RF model is best 
selection for EC50 data.

The same analysis was appropriate for Kd dataset, on the basic of data in Table 4 and 
scatter plot in Fig. 5, we completed selection of optimal model: RF model showed sat-
isfactory predictive performance with R2 of test set being 0.9485 (Fig. 5a). The SVM 
model suffered from overfitting and its predictive performance was worse than that 
of RF model (Fig. 5b). ANN model was the least effective model (Fig. 5c). The results 
indicated that RF model is the optimal quantitative prediction model for KD dataset.
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Fig. 4  Scatter plot of experimental and predicted EC50 values for three prediction models (a: EC50 
scatterplot based on random forest model, b: EC50 scatterplot based on support vector machine model, c: 
EC50 scatterplot based on K Nearest Neighbors model.)

Table 4  Tenfold cross validation of three kinds of algorithms for Kd feature subset

Model (Kd) R2 MSE RMSE MAE SSE

Train Test Train Test Train Test Train Test Train Test

SVM 0.9099 0.5083 0.1254 0.7290 0.3541 0.8538 0.2116 0.6406 1230 808.4

RF 0.9425 0.9485 0.1208 0.1191 0.3476 0.3451 0.2640 0.2594 1204 132.1

ANN 0.5857 0.2961 0.5612 1.0190 0.7491 1.0095 0.5792 0.7390 5593 1130
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In summary, whether based on EC50 dataset or Kd dataset, the performance of RF 
models are the best. Therefore, in this paper, random forest (RF) models are more suit-
able for quantitative prediction of biological activities for DTIs affinity.

Evaluation of application for optimal models

By comparing analysis in 2.4, we obtained RF optimal models. To demonstrate the reli-
ability and applicability of RF models further, we used RF models for analysis of DTIs in 
Binding DB database, in which Kd and EC50 quantified affinity of DTIs.

Using same data collection methods and eliminating duplicate data, we collected 1045 
ligand-receptor-EC50 pairs and 89 ligand-receptor-Kd pairs from Binding DB database 
for quantitative analysis of DTIs affinity. Quantitative analysis of new dataset was carried 
out using RF models based on Kd and EC50. Calculating absolute value of the difference 
between true value and predicted value (referred as ’|d|’ from now) and dividing |d| into 
5 parts in which each part was divided on a scale of 0.5.

Therefore, we obtained the distribution histogram of |d| (Fig. 6) in new EC50 and Kd 
datasets, reflecting prediction capability of RF models.

The predictive values of RF models were all greater than zero, suggesting that drug 
molecule-target interactions do exist, which is consistent with data information gath-
ered from datasets. This indicated that optimal models constructed in this paper could 
be accurately used for qualitative prediction of DTIs. However, as shown in Fig. 6, eighty 
percent of |d| distribution was 1.5–2.0. The range of differences was within 2.0 for 
98.95% (EC50) 96.63% (Kd) of |d| respectively. This indicated that there is error between 
predicted value and experimental value. The above demonstrated that quantitative RF 
prediction model developed in this paper can predict affinity of DTIs to a certain extent 
based on Kd and EC50.

Comprehensive comparisons of models

Besides evaluation of application of RF models, comprehensive comparisons were made 
with predictive models for DTIs previously reported. In recent years, there have been 
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many reports for predicting DTIs, such as Xie L, et al., that integrated transcriptomic 
data by a deep-learning algorithm to predict the potential DTIs [41]. Olyan R S, et al., 
developed a novel method based on RF model to improve DTIs prediction accuracy [42]. 
Chen N, et al., carried out a quantitative analysis of antioxidant activity of antioxidant 
tripeptides in free radical systems based on QSAR [43]. In above analysis, there are only 
analysis based on structure of ligand or receptor, rather than taking ligand-receptor as a 
whole system for DTIs analysis. These methods of analysis, with separated ligands from 
receptors, can be limited by their own structure and produce non-reciprocal results, 
leading to poor accuracy. Conversely, in this paper, the models were constructed to take 
full account of ligands and receptors. From perspective of taking molecule-target as a 
whole system, we integrated molecule-target descriptors to construct predictive models 
for DTIs affinity, which is able to avoid unequal results based on receptors or ligands 
only, thus increasing accuracy of prediction models. At the same time, based on whole 
system of ligand-receptor, we can collect a large amount of molecule-target data rather 
than building for a specific target or several targets, expanding scope of application.

There were related reports on quantitative prediction of DTIs affinity. Based on 9948 
DTIs quantified by Ki, 1589 molecular descriptors and 1080 protein descriptors, Shar P 
A, et al., constructed quantitative prediction models for DTIs using RF and SVM model, 
respectively [44]. However, the Coefficient of Determination-R2 of RF and SVM models 
in training set are 0.88 and 0.86, at the same time that of RF and SVM models in test 
set are 0.63 and 0.61, which showed that there exists over-fitting. That is to say, pre-
dictive models have low accuracy. The main reasons for that would be improper char-
acterization of drug molecules-targets and lack of feature screening. Considering this 
situation, in this paper, we screened characteristic descriptors of drug molecules from 
the perspective of molecular vibrations [35, 38]. Moreover, the analysis based on protein 
sequences rather than 3D structure of protein can ensure a wide range of applicability of 
models and its accuracy [39]. Therefore, the SVM and RF models in this paper had good 
results better than above research. In addition, the two datasets in this paper involved 
544 and 778 targets respectively, which guaranteed that the models had some broad 
applicability. Likewise, Hakime Öztürk, et  al., constructed DeepDTA to quantify the 
affinity of ligands-receptors, in which the results were not ideal. In process of building 
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model, more attention was paid to amount of data and neglecting molecular feature 
representation. The R2 of Convolutional Neural Network (CNN) model was less than 
0.70, which was lower than optimal RF models in this paper. The MSE of CNN model 
was high than 0.194, which was high than that of RF models in this paper (0.119) [45]. 
Abbasi W A, et al., proposed a sequence-based novel protein binding affinity predictor 
called ISLAND, in which the SVR model for LA kernel was the best model with R = 0.44, 
MSE = 6.55 [46]. Above comparative results showed that RF models developed based on 
Kd and EC50 in this paper can perform quantitative prediction of DTIs affinity more 
accurately with certain applicability and reliability. Moreover, literature already reported 
has not characterized drug molecules from the perspective of molecular vibrations. 
Based on the methods and good results of this paper, it was also shown that parametric 
characterization based on molecular vibrations is crucial for construction of prediction 
models for DTIs affinity with more accurately.

Analysis of molecular descriptors and protein descriptors

Molecular descriptors and protein descriptors are essential for construction of quan-
titative models for DTIs. Judged on the importance of descriptors, we can obtain fea-
ture descriptors that have higher importance in the quantification of DTIs affinity 
based on EC50 and Kd values, which can help us to analyze the importance of dif-
ferent molecular descriptors for quantification of DTIs and provide us with biologi-
cal insights. Therefore, in the process of feature screening, we filtered the descriptors 
according to their importance scores to obtain the important descriptors. Importance 
score of single feature is equal to (oob_accuracy - oob_accuracy_after_perputation), 
in which the oob_acc_after_perputation is the accuracy of samples on the singletree 
count after shuffling the dimensional feature with out_of_bag.

For the EC50 datasets, we obtained the top-ranking molecular descriptors and pro-
tein descriptors according to importance scores. The top-ranking protein descriptors 
and molecular descriptors were shown in Tables 5 and 6. In addition, it can be seen in 
Additional files 1 and 2 for more information on ranking the importance of molecular 
descriptions and protein descriptors.

As shown in Tables 5 and 6, we retained descriptors with importance scores greater 
than 0.85 in the feature screening process with maximum value of 1. A higher impor-
tance score means that the corresponding descriptor is more important for quantifi-
cation of DTIs.

Table 5  The top-ranking protein descriptors in EC50 datasets

Protein descriptors Important scores Protein descriptors Important 
score

[G7.1.1.66] 1.00 [G3.3.4.1.8] 0.99

[G4.1.15.1] 1.00 [G3.3.2.1.19] 0.97

[G4.1.23.3] 1.00 [G5.2.2.13] 0.94

[G4.2.8.1] 1.00 [G3.3.2.1.22] 0.90

[G4.2.11.1] 1.00 [G3.3.4.1.27] 0.93

[G7.1.1.47] 0.98 [G7.1.1.43] 0.92
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Based on Tables 2 and 5, it can be found that protein descriptors with high importance 
are concentrated in Normalized Moreau-Broto autocorrelation (G3), Moran autocorre-
lation (G4), Transition-Distribution (G7). It is well known that DTIs include a variety 
of interaction modes, such as electrostatic interaction, hydrophobic interaction, spatial 
interaction and hydrogen bond. G3 and G4 are the autocorrelation functions combin-
ing above physicochemical properties and they can reflect the action strength of DTIs 
to some extent [47, 48]. G7 represents the amino acid distribution pattern of a specific 
structural or physicochemical property along a protein or peptide sequence, which 
directly influence ligand-receptor interactions and it has been used for recognition of 
protein folds and prediction of ligand-receptor interactions [48]. To sum up, G3, G4 and 
G7 descriptors are closely related to DTIs, therefore, they have higher importance scores 
in feature screening.

As for molecular descriptors, according to Tables 1 and 6, it can be found that molecu-
lar descriptors with high importance were concentrated in E-state descriptors. E-state 
descriptors characterize both topological information of each atom and electronic rela-
tionships between atoms in the molecule [49]. The three molecular forces, dispersion, 
dipole moment and hydrogen bonding, which influence the strength of DTIs affinity, are 
closely related to the electronic relationships characterized by E-state descriptors [49, 
50]. Due to their above natures, E-state descriptors have been widely used in the analysis 
of DTIs [51]. This suggests that E-state descriptors are a good choice for analyzing and 
predicting DTIs affinity.

For the Kd datasets, the filtering results of descriptors were generally consistent with 
the EC50 datasets. The top-ranking molecular descriptors were concentrated in E-state 
descriptors and the top-ranking protein descriptors were concentrated in Normalized 
Moreau-Broto autocorrelation (G3), Moran autocorrelation (G4), Transition-Distribu-
tion (G7). More information can be seen in supplementary data.

In summary, E-state molecular descriptors associated with molecular vibrations and 
G3, G4 and G7 protein descriptors are of higher importance in the quantification of 
DTIs. They are important for the analysis and prediction of DTIs affinity.

All in all, in this paper, the ligand and receptor were used as a whole system to ana-
lyze and predict DTIs affinity. But the method will not be limited to the known recep-
tor-ligand interaction space and it enables the identification of new action targets of 

Table 6  The top-ranking molecular descriptors in EC50 datasets

Molecular descriptors Important scores Concrete meaning

JGI5 0.96 Mean topological charge index of order 5

minaaSe 0.94 Minimum atom-type E-State: aSea

maxaaS 0.91 Maximum atom-type E-State: aSa

minHsSH 0.91 Minimum atom-type H E-State: -SH

maxssssSn 0.88 Maximum atom-type E-State: > Sn < 

nHdsCH 0.87 Count of atom-type H E-State: = CH-

maxsNH2 0.86 Maximum atom-type E-State: -NH2

maxssPH 0.86 Maximum atom-type E-State: -PH-

ETA_Beta_s 0.86 A measure of electronegative atom count of molecule

maxddssSe 0.86 Maximum atom-type E-State: = Se = 
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chemical components and the prediction of active affinities. Although there is a margin 
of error, it can provide clues and guidance to elucidate the action mechanism of drugs. 
In addition, it is possible to identify unknown potential compounds for the treatment of 
diseases based on their relevant targets or to reposition existing drugs.

Conclusion
In this paper, from perspective of overall systematic of ligand-receptor, through screen-
ing descriptors based on molecular vibrations and protein sequences, we obtained 
optimal models based on RF with more accuracy-widely applicability. This method can 
provide a reference for DTI’s affinity prediction. It also indicated that describing molecu-
lar features based on molecular vibrations, taking drug molecule-target as whole sys-
tem were reliable approaches for construction of prediction model for DTIs affinity 
and improving its accuracy. In addition, E-state molecular descriptors associated with 
molecular vibrations and G3, G4 and G7 protein descriptors are important for the analy-
sis and prediction of DTIs affinity.

Methods and materials
In this paper, we constructed prediction models for DTIs affinity from the perspective of 
taking molecule-target as a whole system. Firstly, drug molecules and protein sequences 
as well as ligand-receptor-Kd/EC50 were screened on the basic of existing databases. 
Secondly, descriptors of drug molecules and protein sequences were calculated sepa-
rately, and descriptors associated with molecular vibrations were selected from drug 
molecule descriptors. Thirdly, based on descriptors obtained in step 2, we constructed 
Kd and EC50 quantified drug molecule-target feature datasets by taking drug mole-
cule and target as a whole system, respectively. Finally, combining above datasets with 
machine learning algorithms SVM, RF, ANN for construction of prediction models of 
DTIs affinity.

Datasets

This paper carried out construction of prediction model of DTIs affinity, which requires 
a large amount of data support. The drug molecules (ligands) were collected from open 
source database: PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/), Drugbank (https://​go.​
drugb​ank.​com/) and ChEMBL (https://​www.​ebi.​ac.​uk/​chembl/) [52–54]. The target pro-
tein sequences (receptor) were collected from open source Uniprot database (https://​
www.​unipr​ot.​org/) [55]. In addition, the Kd and EC50 values used to quantify protein–
ligand affinity were also obtained from ChEMBL database. All the data as of 10 June 
2020.

Drug molecules and protein sequence descriptors

Descriptors can effectively solve problem of parametric characterization of drug mol-
ecules and protein sequences, which facilitate the construction of predictive models for 
DTIs affinity. In this paper, using PaDEL to calculate the descriptors of drug molecules 
[56]. Each descriptor has a specific explanation and we screening descriptors of drug 
molecules from the perspective of molecular vibrations. In addition, protein sequence 

https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://www.uniprot.org/
https://www.uniprot.org/
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descriptors such as peptide composition and dipeptide composition were calculated by 
using PROFEAT web server (https://​bio.​tools/​profe​at) [48, 57].

Feature selection

The Kd, EC50 datasets and molecular descriptors and protein sequence descriptors were 
integrated separately to obtain the integrated Kd, EC50 datasets. The feature subsets of 
integrated Kd, EC50 datasets were obtained by using Boruta algorithm (R 3.5.2 version) 
in feature selection.

Boruta algorithm flow is as follows [58]: first, the features of feature matrix [X] are 
shuffled to obtain shadow feature [X0], and the shadow features are stitched together 
with true features to form a new feature matrix [Y]. Then, using the new feature matrix 
as input to output feature importance and calculate the “Z-score” of true and shadow 
features. Further, taking the largest “Z score” among shadow features as “Z-max”, and 
marking the real features with “Z-score” greater than “Z-max” as “Important”. At the 
same time, marking the real features with “Z-score” significantly smaller than “Z-max” 
as “Rejected”. Finally, repeating five times until we can obtain all features that are marked 
as “Important”:

Xi ∈[X], so Xi ∈[Y], feature importance [Xi] = Z-score; when Z-score > Z-max, Xi = 
“Important”; If Z-score < Z-max, Xi = “Rejected”.

X1 ~ Xn and X1 ~ Xn are the attribute indicators in the feature matrix.
In this paper, Z-score (important score) was defined as 0.6. In addition, some data was 

marked as “Tentative”, which means importance of the data is not clear. To ensure reli-
ability of feature filtering, we excluded the data marked “Tentative” and “Rejected”.

The quantitative prediction model for DTIs affinity

The feature subsets was first pre-processed, and then combined with machine learning 
algorithms for construction of quantitative prediction models for DTIs affinity.

Pre‑processing of feature subsets of descriptors

We normalized descriptors of the feature subsets in the range from -1 to 1. Meanwhile, 
the EC50 and Kd values that quantify DTIs affinity were processed in logarithmic form-
Log2 (Kd), Log2 (EC50). In other words, we obtained feature subsets in which took Log2 
(Kd) and Log2 (EC50) values characterize drug molecule-target affinity, respectively.

[X] ⊇ [X1,X2,X3, ...... ,Xn−2,Xn−1,Xn]
[

X
0
]

⊇

[

X
1,X2,X3, ...... ,Xn−2,Xn−1,Xn

]

[X] →
[

X
0

]

[Y] = [X] ∪
[

X
0

]

Feature importance[Y] = Z - score

If Xi
∈

[

X
0

]

,Max feature importance
[

X
i
]

= Z - max

https://bio.tools/profeat
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Construction of quantitative prediction model for DTIs affinity

The subsets obtained by feature selection were combined with random forest (RF) 
[59], support vector machine (SVM) [60] and artificial neural network (ANN) [61] to 
construct quantitative prediction model of DTIs affinity respectively. On the basic of 
ten-fold cross-validation, the feature subsets were randomly and equally divided into 
10 data sets, where 9 groups of data were rotated as training sets for model construc-
tion, and the remaining 1 group of data will be used as a test set for model validation.

Evaluation and application of quantitative prediction model for DTIs affinity

The train and test validation were made use to wholly assess these models. Briefly, 
(1) the feature subsets were divided into 10 subsets randomly and equally as men-
tioned previously and 9 subsets were selected as training sets for modeling while the 
remaining subset served as test set for validating models. This process was repeated 
ten times until every subset served as test set. (2) Using different test sets to exert 
ten external independent validation. The nature of quantitative prediction models for 
DTIs affinity is regression models. Therefore, we used the Error Sum of Squares (SSE), 
Mean Square Error (MSE), Mean Absolute Error (MAE), Relative Mean Square Error 
(RMSE) and Coefficient of Determination (R2) to evaluate the performance of models. 
The evaluation parameters can be expressed in the form as follows:

Y-actutal and Y-predict denoted experimental value and predicted value, respec-
tively. n is number of samples in the training sets or test sets. A higher R2 value means 
model is more reliable. A lower MSE or SSE value means that model has higher 
accuracy.

Through above parametric evaluation to select the optimal models to predict quan-
titative affinity between drug molecules and targets collected in Binding DB database 
and comprehensive comparison were made with predictive models for DTIs affinity 
previously reported.

SSE =

∑

(Y _actual − Y _predict)2

MSE =
1

n

n
∑

i−1

(Y _actual − Y _predict)2

RMSE =

√

√

√

√

1

n

n
∑

i−1

(Y _actual − Y _predict)2

MAE =
1

n

n
∑

i=1

∣

∣Y _actual − Y _predict
∣

∣

R2
= 1−

∑

(Y _actual − Y _predict)2

∑

(Y _actual − Y _mean)2
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