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Abstract 

Background:  Identifying gene interactions is a topic of great importance in genom-
ics, and approaches based on network models provide a powerful tool for studying 
these. Assuming a Gaussian graphical model, a gene association network may be 
estimated from multiomic data based on the non-zero entries of the inverse covari-
ance matrix. Inferring such biological networks is challenging because of the high 
dimensionality of the problem, making traditional estimators unsuitable. The graphical 
lasso is constructed for the estimation of sparse inverse covariance matrices in such 
situations, using L1-penalization on the matrix entries. The weighted graphical lasso is 
an extension in which prior biological information from other sources is integrated into 
the model. There are however issues with this approach, as it naïvely forces the prior 
information into the network estimation, even if it is misleading or does not agree with 
the data at hand. Further, if an associated network based on other data is used as the 
prior, the method often fails to utilize the information effectively.

Results:  We propose a novel graphical lasso approach, the tailored graphical lasso, 
that aims to handle prior information of unknown accuracy more effectively. We 
provide an R package implementing the method, tailoredGlasso. Applying the 
method to both simulated and real multiomic data sets, we find that it outperforms 
the unweighted and weighted graphical lasso in terms of all performance measures 
we consider. In fact, the graphical lasso and weighted graphical lasso can be consid-
ered special cases of the tailored graphical lasso, and a parameter determined by the 
data measures the usefulness of the prior information. We also find that among a larger 
set of methods, the tailored graphical is the most suitable for network inference from 
high-dimensional data with prior information of unknown accuracy. With our method, 
mRNA data are demonstrated to provide highly useful prior information for protein–
protein interaction networks.

Conclusions:  The method we introduce utilizes useful prior information more effec-
tively without involving any risk of loss of accuracy should the prior information be 
misleading.

Keywords:  Graphical lasso, Weighted graphical lasso, High-dimensional inference, 
Network models, Genomics, Multiomics, Gene networks, Protein–protein interaction 
networks, Cancer genomics, Integrative analysis
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Background
In the area of statistical multiomics, network models provide an increasingly popular 
tool for modelling complex multiomic associations and assessing pathway activity. With 
such models, the interactions between genes, proteins or other multiomics data can be 
captured and studied, and provide valuable insight into their functional relationships. 
The resulting hubs (i.e. genes or proteins with a high number of interactions) may again 
be used to identify central genes, functionally important proteins or pathway initiators, 
and thus potential drug targets [1].

Networks may be constructed from data found by high-throughput gene expression 
profiling technologies, such as microarray or RNA-seq [2]. With the development of 
high-throughput multiomic technologies, large, genome-wide data sets have been made 
available. This enables the development of complex models integrating a variety of bio-
logical resources [3, 4]. By integrating several sources of multiomic data into a model, 
we can increase statistical power while providing further insight into complex biological 
mechanisms.

One setting where integrative network analysis has a lot of potential is when there are 
two types of data, e.g. measured mRNA and protein, associated with the same genes. A 
specific mRNA molecule is transcribed from each gene, which then can be translated 
into a specific protein. Thus, each gene is associated with a specific mRNA sequence and 
protein. With a proper model formulation, we could use information about the inferred 
network of one data type to improve graph inference on the other.

In this paper, we propose a novel approach to data integration in network models. The 
paper is organized as follows. In the remaining parts of this section, we discuss existing 
methodologies and the challenges we wish to address. In “Results and discussion”, we 
describe our proposed methodology, and demonstrate its performance with both simu-
lated and real multiomic data sets. We highlight our main findings in “Conclusions”, and 
finally give the details of our data analyses in the “Methods” section.

Gaussian graphical network models

In a gene network model, each gene is represented by a node and an edge between two 
nodes represents an association between the corresponding genes. Letting each gene be 
associated with some measurable molecular unit (e.g. the mRNA or protein it encodes), 
a graph may be constructed from observed values of these node attributes. The attrib-
utes, each corresponding to one of p genes, are represented by the multivariate random 
vector (X1, . . . ,Xp)

T , and a graph may be inferred from observed values of it by assum-
ing an appropriate model.

By assuming that the vector of node attributes is multivariate Gaussian, with an 
unknown mean vector µ and an unknown covariance matrix � , a partial correlation net-
work may be inferred by estimating the inverse covariance matrix, or precision matrix, 
� = �−1 . Given the entries θij of � , the partial correlation between nodes, or variables, 
i and j conditioned upon all others is given by

(1)ρij|V \{i,j} = −
θij√
θiiθjj
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where V is the set of all node pairs [5]. Since correlation equal to zero is equivalent to 
independence for Gaussian variables, a conditional independence graph may be con-
structed by determining the non-zero entries of the precision matrix � and assigning 
edges to the corresponding node pairs. The resulting model is a Gaussian graphical 
model, with the edges representing conditional dependence.

In the Gaussian graphical model framework, the edges are assumed to be undi-
rected and unweighted. Under these assumptions, the likelihood of the data may be 
derived [6]. We let X  be the n× p matrix of observed data, with each row correspond-
ing to one of n observations of the multivariate random vector of attributes. Letting 
S be the empirical covariance matrix, � then has the following profile log-likelihood:

where tr denotes the trace and det the determinant. The maximum likelihood estimate 
for � is then the solution to the problem

where � ≻ 0 is the requirement that � is positive definite.
In the graphical lasso, the graph is also assumed to be sparse. This means that it has 

a small edge-to-node ratio, or that the precision matrix has mostly zero elements. The 
sparsity of a graph can be measured by the number of edges Ne relative to the number 
of possible edges, given by 2Ne

(p2−p)
.

We can not expect estimated precision matrix elements to be exactly equal to zero 
for real data. Further, in high-dimensional settings where the number of observations 
is much smaller than the number of elements to estimate, the empirical covariance 
matrix is not of full rank and so its inverse is not even possible to estimate directly. 
Thus, dimension reduction is necessary to achieve sparsity, and to estimate the preci-
sion matrix.

The graphical lasso

The graphical lasso performs sparse precision matrix estimation by imposing an L1 
penalty on the matrix entries [6]. It is constructed to solve a penalized version of the 
log-likelihood problem (3),

where � · �1 is the L1 norm and � a penalty parameter that must be tuned [7]. Due to the 
L1 penalty, the method sets many elements of �̂ to zero. � controls the sparsity, and a 
larger value of it results in fewer included edges. Utilizing the fact that solving problem 
(4) is equivalent to iteratively solving and updating a lasso least-squares problem [7, 8], 
the graphical lasso algorithm is both exact and computationally efficient [6]. The method 
is implemented in the R packages glasso [9] and huge [10], with the latter providing 
several routines for penalty parameter selection.

(2)lp(�) = −
np

2
log (2π)+

n

2
log (det�)−

n

2
tr(S�)

(3)�̂ = arg max
�≻0

{
log(det�)− tr(S�)

}

(4)�̂ = arg max
�≻0

{
log(det�)− tr(S�)− ����1

}
,
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Penalty parameter selection

There are several penalty parameter selection methods available, and we have used 
two of the more common ones in our analyses.

StARS

Stability Approach to Regularization Selection (StARS) is a selection method based 
on model stability [11]. The method starts with a large penalty � corresponding to an 
empty graph, i.e. a graph with no edges, and decreases it stepwise. For each value of � 
many random subsamples are drawn from the data, and the graphical lasso is used to 
fit a graph for each sample. As a measure of the instability of each edge under the sub-
sampling, the average number of times any two graphs disagree on the edge is found. 
By averaging this instability measure for all edges, the total instability is found.

Given a cut point β for the instability we are willing to accept, the corresponding 
� is selected as the optimal penalty parameter. β may be interpreted as the fraction 
of edges we are willing to accept as possibly wrong, and it is normally set to 0.05. 
This way, StARS aims to choose the least amount of regularization that makes graphs 
sparse as well as reproducible under random sampling. It should be noted that since 
the method constructs a graphical lasso graph for every subsample, it is computation-
ally costly for large graphs.

The extended BIC

The extended BIC (eBIC) is a modified version of the Bayesian Information Criterion 
constructed for selection in high-dimensional graph settings [12]. For a given edge set 
E, it is given by

where |E| is the number of edges in the edge set and γ ∈ [0, 1] . If γ = 0 we get the ordi-
nary BIC, while positive values give stronger penalization of large graphs. The parameter 
γ can only be tuned by experience, and should be large enough to get a low false discov-
ery rate, but small enough to get a satisfactorily high positive discovery rate [12].

Like for the ordinary BIC, the penalty corresponding to the model that minimizes 
the eBIC is chosen. This selection criterion is computationally efficient, and has been 
shown to outperform both the ordinary BIC and cross validation when the sizes of p 
and |E| are comparable to n. However, when used for sparsity selection, eBIC can lead 
to severe over- or under-selection of edges [11]. The criterion is therefore most suit-
able for comparing graphs of similar sparsity.

In our applications, we are comparing relatively small graphs where the extra penal-
ization due to high-dimensionality is not that necessary. We are comparing graphs 
of similar sparsity, which also means that the extra penalization of edges is not that 
important. In our simulations we are therefore simply choosing γ = 0 so that we 
get the ordinary BIC, but for generality we propose to use the eBIC criterion in our 
method.

(5)BICγ (E) = −2lp(�̂(E))+ |E| log n+ 4|E|γ log p
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The weighted graphical lasso

The weighted graphical lasso is an extension of the graphical lasso which allows the 
incorporation of additional information through a p× p weight matrix W  with entries 
in [0, 1]. The method was proposed in [13] and was further studied in [14].

Theoretically, weighted graphical lasso can be justified by the Bayesian interpretation 
of the graphical lasso, and W  can be regarded as a prior weight matrix representing prior 
information about the existence of edges [13, 14]. Using the penalty matrix P = 1−W  , 
the estimated precision matrix must now satisfy

where ◦ denotes component-wise matrix multiplication. (6) can be regarded as the prob-
lem (4) with prior information incorporated into the expression. It is clear that while 
an edge with prior weight equal to zero is not penalized at all, no edge is penalized by a 
factor larger than � . Thus, edges with the minimal penalty are almost guaranteed to be 
included while edges with the maximum penalty are not necessarily guaranteed to be 
excluded, unless � is infinitely large.

Similarly to the original problem, optimization of the problem (6) may be done using 
the graphical lasso algorithm. The modification can easily be incorporated into the algo-
rithm by replacing � by individual penalties �pij , j  = i , where pij is the ijth element in P.

If the prior information is informative, the weighted graphical lasso is found to out-
perform the graphical lasso in simulations [13, 14]. However, there are several potential 
issues with the weighted graphical lasso. Firstly, it does not take the possibility of the 
prior information being partly or totally misleading into account. If an excess amount of 
prior information is incorrect, it can be harmful to the final estimates [13]. For example, 
edges corresponding to zero entries in P are not penalized and therefore almost guaran-
teed to be included in the final model, even if this is not supported by the data.

Secondly, the weighted graphical lasso might not be able to differentiate enough 
between weights. The range and distribution of the weights, and thus the penalties, are 
not necessarily purposeful, often leading to limited effect of otherwise valuable prior 
information. In such a case it could be sensible to use a nonlinear transformation of the 
weights. This is especially important if the prior weights do not have a linear interpreta-
tion where having twice the weight indicates having twice the confidence in an edge, 
which could be the case if the prior weight matrix is found from the estimated precision 
matrix of another, related data set [13]. On the other hand, it could be that the prior 
information is partly informative in that it is only useful to include it to a limited degree. 
It is altogether clear that the prior weights should be given more consideration, and not 
just used naïvely in the weighted graphical lasso procedure as in [13].

Before we introduce our new weighted graphical lasso method, we would like to point 
out that the situation we consider differs from the one that is handled by conditional and 
partial Gaussian graphical models [15–17]. Also for the situations where these models 
are used, one has information in addition to the observed values of the node attributes. 
However, this information is treated as covariates that affect the conditional means of 
the observations, while the additional information considered in this paper informs us 
about possible conditional dependencies among them.

(6)�̂ = arg max
�≻0

{
log(det�)− tr(S�)− ��P ◦��1

}
,
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Results and discussion
The tailored graphical lasso

To deal with the shortcomings of the weighted graphical lasso, we propose a novel 
approach that aims to handle prior information of unknown accuracy and to utilize 
it more effectively. The idea is to use a nonlinear transformation gk(w) of the weights, 
where the behavior of the function gk(w) is controlled by a parameter k with param-
eter space � . We may then choose the best transformation in the function space 
G = {gk(·)|k ∈ �} by considering the precision matrix estimates we obtain for vari-
ous values of k in a suitable partition of � . The optimal value kopt is chosen using some 
selection criterion. Ideally both the identity function gk(w) = w and the zero function 
gk(w) = 0 should be contained in G so that both the ordinary weighted graphical lasso 
and the ordinary graphical lasso is considered. This way, we attempt to avoid transfor-
mations that may result in worse estimates than these two standard methods.

Inspired by the ideas of [4], we propose a logistic function for the weight transforma-
tion. Figure 1 shows the logistic function gk(w) = 1

1+exp (−k(w−w0))
 , where w0 is the sig-

moid midpoint and k the steepness parameter. Evidently, for k = 0 the function maps all 
weights to the same value, and we just get the ordinary unweighted graphical lasso. As k 
grows, the sigmoid function becomes more step-like. For k = 40 it is very near being a 
step function and for k = 200 it essentially is one. The transformed weights will always 
be mapped into [0, 1], as required for the weights in the weighted graphical lasso. The 
logistic function never becomes exactly the identity function gk(w) = w that would map 
all weights to themselves corresponding to the ordinary weighted graphical lasso. As 
seen from Fig. 1, it does however approximate the identity function well for k = 4.

Thus, by appropriate data-driven tuning of the parameter k we may interpret a small 
selected k as an exclusion of the prior information and a large one as an inclusion and 
enhancement of it, giving the edges weights close to 0 or 1 depending on whether their 
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Fig. 1  The logistic function for w0 = 0.5 and various values of the steepness parameter k 
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prior weights are below or above the threshold w0 . This interpretability is convenient, as 
the optimal value of k found by some selection criterion then tells us how useful the prior 
weights are and whether increasing their differences even more improves the model.

Using the logistic weight transformation, we propose a method we call the tailored 
graphical lasso. In the algorithm, we begin by selecting the total amount of penalization. 
We do this with StARS, using the unweighted graphical lasso to find a common penalty 
parameter � . We use StARS since it is very reliable for sparsity selection [11]. Since we 
only apply it once, we find that the benefits outweigh the computational loss.

For each k, we find the matrix W k of weights transformed with the logistic function 
with this steepness parameter, which gives us the penalty matrix Pk = 1−W k . We 
then choose the penalty parameter �k in the tailored graphical lasso that preserves the 
amount of penalization selected for the unweighted graph, i.e. so that �k�Pk�1 = �p2 . By 
preserving the amount of penalty, we achieve similar sparsity for each k without having 
to repeatedly perform StARS, which is computationally exhaustive.

As a criterion for choosing k, we use the eBIC as it is computationally efficient. The 
choice of this criterion is justified because we are comparing graphs of similar sparsity, 
hence severe over- or under-selection is not a concern. In the criterion, we choose a 
value of γ ∈ [0, 1] that reflects how concerned one is with false discoveries. The larger it 
is, the more we penalize larger graphs.

In many applications, including our simulations and applications, the prior weight 
matrix is found from the graphical lasso precision matrix estimate of another, related 
data set [13]. In such applications we let the sigmoid midpoint w0 be equal to the lower 
β-quantile of the non-zero prior weights, where β is the variability threshold used in the 
StARS tuning of the ordinary graphical lasso graph for the prior data. This is usually 
set to a default value of 0.05. This way, we avoid having to tune a second parameter. We 
motivate our choice of w0 by the fact that β is the upper limit set in the StARS selection 
for the estimated probability of an inferred edge being wrong. This means that we can 
expect up to a fraction β of the inferred edges of the graph of the prior data as tuned by 
StARS to be incorrect. If the prior weights are obtained in another way, the β-quantile of 
the weights could still be selected to reflect how confident we are in their accuracy.

The algorithm is shown in Table  1. After using the method, the common penalty 
parameter �kopt might be adjusted slightly to achieve the exact sparsity found to be 

Table 1  The tailored graphical lasso algorithm

1 Select the optimal penalty � for the ordinary graphical lasso problem by StARS with the desired value of 
β (we propose β = 0.05 ). Let the sigmoid midpoint w0 be equal to the lower β-quantile of the non-zero 
weights. Choose a maximum value kmax to consider, such as 80. Choose a value of the edge penalizing 
parameter γ in eBIC ( BICγ ) selection criterion

2 For a grid of k ∈ [0, kmax]:

 • Let Pk = 1− gk(W)

 • Find �k =
�p2

�Pk�1

 • Find the estimated precision matrix �̂k and the corresponding set Ek of inferred edges, with the weighted 
graphical lasso using the penalty matrix �kPk

 • Find BIC(k)γ (Ek) = −2l(�̂k(Ek))+ |Ek | log n+ 4|Ek |γ log p

3
Let 

kopt = argmin
k

{
BIC(k)γ (Ek)

}

 . The penalty matrix to be used is then Pkopt , and the common penalty 
parameter is �kopt
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optimal for the unweighted graphical lasso graph by StARS in step 1. The maximum 
value kmax must also be chosen, and as visible from Fig. 1 it is sufficient to choose it to be 
80, as the logistic function basically is a step function at that point.

We have implemented the tailored graphical lasso in the R package tailoredGl-
asso (https://​github.​com/​Camil​ing/​tailo​redGl​asso).

Simulated data

To evaluate the performance of the tailored graphical lasso, we have done comprehen-
sive simulation studies in R [18]. The details are given in Methods. We have used our R 
package tailoredGlasso to perform the tailored graphical lasso, and the code for 
the data analysis is available on Github (https://​github.​com/​Camil​ing/​tailo​redGl​assoA​
nalys​is).

To make our simulations as relevant to our multiomic application of interest as pos-
sible, we have generated data with the scale-free property, which is a known trait in mul-
tiomic data [5]. We have simulated various sets of data with the same “true” underlying 
graph structure, with a sparsity of 0.02 and p = 100 nodes. We let the sizes of the non-
zero partial correlations take one of the values 0.1 or 0.2. The data sets are generated from 
the corresponding multivariate Gaussian distributions. Letting there be n = 80 obser-
vations in each data set, we have a high-dimensional problem with (p2 − p)/2 = 4950 
potential edges. The graph structure is shown in Fig. 2 with nodes colored according to 
their degree, the number of adjacent edges, where darker color indicates higher degree.

For each data set, we have also generated various prior weight matrices in order to 
investigate the performance of the method in different settings. Specifically, we have cre-
ated prior precision matrices of various similarities to the precision matrices of inter-
est, generated prior data from the corresponding multivariate Gaussian distributions 
and used the ordinary graphical lasso tuned by StARS to estimate the prior precision 

Fig. 2  Graph structure of simulated data, with nodes colored according to their degree with darker color 
indicating higher degree

https://github.com/Camiling/tailoredGlasso
https://github.com/Camiling/tailoredGlassoAnalysis
https://github.com/Camiling/tailoredGlassoAnalysis
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matrices. Prior weight matrices are then created by taking the absolute values of the cor-
responding partial correlation estimates using the formula (1). The prior matrices are 
constructed this way to mimic real applications where we have two related data sets, 
both with unknown precision matrices, and we want to use information from one to 
improve the precision matrix estimate of the other. The precision matrix of the data used 
as the prior then needs to be estimated, and a prior weight matrix is constructed from it 
[13]. These are the prior matrices we use in the weighted graphical lasso and the tailored 
graphical lasso. The whole data simulation procedure is illustrated in Fig. 3.

It is important to distinguish between the accuracy of the prior precision matrix �prior 
and the accuracy of the resulting prior weight matrix. As the prior partial correlations 
are of very small magnitude (equal to either 0.1 or 0.2), the signal is not very strong and 
so the inferred prior precision matrix �̂prior (and corresponding prior weight matrix) 
will be much less accurate than �prior.

In our simulations, we have considered 7 different combinations of partial correla-
tions in the network of interest and the prior, and the fraction of edges that the network 
of interest and the prior network disagree on. This way, we get several prior precision 
matrices of various accuracy and various strength of the partial correlations. For each 
of these cases, after the data has been generated, we have used both the unweighted 
and the weighted graphical lasso in addition to our proposed tailored graphical lasso to 
estimate the precision matrix and reconstruct the underlying graph structure. Like for 
the tailored graphical lasso, we selected the penalty parameter in the weighted graphi-
cal lasso so that the total amount of penalty selected for the unweighted graphical lasso 
graph is preserved. We have for each modified prior simulated N = 100 corresponding 
data sets, and averaged the results when the above methods were applied.

The estimated graphs are assessed by the precision, which is the fraction of the inferred 
edges that are actually present in the true graph, and recall, which is the fraction of the 
edges in the true graph that are present in the inferred one. While both measures are 
important in understanding how well a graph reconstruction method has estimated a 

Fig. 3  Illustration of data generation and analysis procedure in simulations. For each precision matrix � 
we consider, we modify it to create a prior precision matrix �prior . A prior data set Xprior is generated from 
the resulting multivariate Gaussian distribution. The graphical lasso tuned by StARS is then used on this 
data to obtain a prior precision matrix estimate �̂prior , and the absolute values of the corresponding partial 
correlation estimates are used as weights in the tailored and weighted graphical lasso to get a precision 
matrix estimate �̂q for the data X  of interest
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graph, we put more emphasis on the precision as we are more concerned about false 
positives than false negatives. In a multiomic setting, we would not want to identify 
many inaccurate interactions, but rather identify fewer but more trustworthy ones. As 
opposed to the precision, the recall will necessarily grow as more edges are included, 
and does not tell us how accurate the estimated edges that are present are.

Table 2 shows the averaged results for the different cases, where we have abbreviated 
the graphical lasso and weighted graphical lasso as glasso and wglasso, respectively. As 
expected, we see that the selected k, i.e. kopt , increases with the accuracy of the prior 
weights.

For the most accurate prior network (case 1), k is selected to be as large as 49.64, and 
we see that the precision of the tailored graphical lasso is 37% higher than for the graphi-
cal lasso and 25% higher than for the weighted graphical lasso. In this case the recall 
is also 23% higher than for the graphical lasso and 20% higher than for the weighted 
graphical lasso. We note that the ordinary weighted graphical lasso does not perform 
much better than the unweighted graphical lasso. The reason is that the absolute values 
of partial correlations for the prior data are between 0 and 0.2, so the inclusion of these 
as prior weights in the ordinary weighted graphical lasso does not affect the resulting 
estimates too much. But by using a logistic transformation, we are able to enhance the 

Table 2  Performance of different graph reconstruction methods in simulations

The performance of the different graph reconstruction methods in simulations. The edge disagreement between the graph 
of interest and its prior, as well as the size of the partial correlations in them, is shown as well. The results are averaged over 
N = 100 simulations. The best values of the different performance measures are marked in bold, and kopt is the mean 
value of the k chosen by the eBIC selection criterion in the tailored graphical lasso (TailoredGlasso). The graphical lasso and 
weighted graphical lasso are abbreviated as Glasso and Wglasso, respectively

Case Edge 
disagreement 
%

Partial cor Prior partial cor Method kopt Sparsity Precision Recall

1 0 0.2 0.2 Glasso – 0.035 0.283 0.493

Wglasso – 0.032 0.312 0.503

TailoredGlasso 49.64 0.031 0.389 0.606
2 0 0.2 0.1 Glasso – 0.035 0.285 0.499

Wglasso – 0.034 0.293 0.493

TailoredGlasso 13.39 0.034 0.295 0.496

3 0 0.1 0.2 Glasso – 0.022 0.079 0.085

Wglasso – 0.021 0.096 0.099

TailoredGlasso 3.34 0.021 0.100 0.103
4 0 0.1 0.1 Glasso – 0.022 0.079 0.085

Wglasso – 0.020 0.082 0.083

TailoredGlasso 5.63 0.020 0.083 0.084

5 10 0.2 0.2 Glasso – 0.035 0.283 0.493

Wglasso – 0.033 0.305 0.493

TailoredGlasso 41.2 0.032 0.335 0.532
6 20 0.2 0.2 Glasso – 0.035 0.283 0.493

Wglasso – 0.034 0.291 0.491

TailoredGlasso 4.31 0.034 0.291 0.493
7 100 0.2 0.2 Glasso – 0.035 0.283 0.493

Wglasso – 0.034 0.289 0.485

TailoredGlasso 2.94 0.034 0.290 0.485
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difference of the prior weights, and this results in a much improved performance of the 
tailored graphical lasso

On the other hand, for completely misleading prior weights (case 7), k is small for the 
tailored graphical lasso and we get results similar to the ordinary graphical lasso. The 
fact that the optimal k is not chosen to be exactly zero can be due to randomness, where 
the weak inclusion of the prior information actually improves the inference.

In the other cases, the optimal k is larger and the tailored graphical lasso either out-
performs or performs as well as the two other methods in terms of the precision.

We have also conducted a more extensive simulation study, comparing the tailored 
graphical lasso to five additional methods for gene network reconstruction. The methods 
considered are SPACE [19], ESPACE [20], neighbourhood selection (NS) [8], GeneNet 
[21] and CMI2NI [22]. These methods are chosen because they have been included in 
several similar comparative studies [20, 23]. A description of the extended simulation 
study, along with a discussion of the results is given in Additional file 1. A table similar to 
Table 2, showing the results for all methods, is given in Additional file 2.

In the extended simulation study, we find that the high dimensionality of the problem 
leads to problems for some of the methods, particularly the ones where the edge selec-
tion is based on false discovery rate control. With so few data points compared to the 
number of unknown variables, no or very few edges can be included without exceeding 
the FDR threshold. Thus, in the networks inferred by NS and GeneNet there are almost 
no edges included.

Similarly, when the signal in the data was weak with partial correlations as small as 0.1 
(cases 3 and 4), the SPACE and ESPACE networks include very few edges. This means 
that the proposed selection criterion [12, 20] does not find the model fit of less sparse 
graphs to be good enough to justify the inclusion of more non-zero parameters. On the 
other hand, CMI2NI over-selected edges in all cases and performs worse than the tai-
lored graphical lasso in terms of both precision and recall.

While most of the above mentioned methods tend to suffer from under-selection of 
edges in high-dimensional settings with weak signal in the data, the tailored graphical 
lasso does not have this issue. This could in part be due to its robust sparsity selection 
routine. Thus, in our simulated settings, where we have high-dimensional data with 
additional information of unknown relevance available, the tailored graphical lasso gives 
the overall most accurate network inference.

Multiomic data

To illustrate possible biological applications, we have applied the tailored graphical 
lasso to two real multiomic data sets. Comparing the results to those from the ordinary 
weighted graphical lasso, we wanted to see if the tailored lasso better fits the data and 
can identify more multiomic interactions for which there is evidence in the literature.

We have used two data sets, the first one containing n = 743 breast cancer tumor sam-
ples from the well-known TCGA BRCA database [24]. We considered gene expression 
measured by RNA-seq for p = 165 genes, as well as their associated protein measured 
by Reverse Phase Protein Array (RPPA). We have only considered the genes known to 
encode the proteins present in the RPPA data panel. The second data set (Oslo 2) con-
sists of n = 280 breast cancer samples collected from hospitals in Oslo [25]. We have 
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considered gene expression measured by microarray for p = 100 genes, as well as their 
associated protein measured by RPPA.

While the research done on genomic networks using mRNA measures already is quite 
substantial, the field of protein–protein interaction networks is newer. It is therefore 
interesting to see if the large knowledge learned by gene expression analysis can be used 
in the construction of a protein network. Thus, we will for each of the two data sets infer 
protein–protein interaction networks from the RPPA data, treating the mRNA data as 
prior information.

The prior weights are constructed by using the graphical lasso tuned by StARS to esti-
mate the precision matrices of the mRNA data, and letting the weights be the absolute 
values of the corresponding partial correlations. The partial correlation between two 
genes gives us the correlation between their expressions when conditioning upon all 
other genes. This approach results in less penalization of edges between proteins whose 
associated genes are found to have a strong relationship in the corresponding mRNA 
network. The resulting partial correlation weights are in the range [0, 0.2], just as for our 
simulated data. It should be noted that for genomic data, partial correlations will indeed 
tend to lie in this range so a partial correlation of 0.2 can be considered large (see for 
example [26–28]).

The distributions of the prior weights of the simulated and real multiomic data are also 
very similar, which also indicates that our simulations were close to the application of 
interest (see Additional file 3).

After the precision matrices of the RPPA data are estimated using the different meth-
ods, we assess how well they fit the data by computing the corresponding multivari-
ate Gaussian log likelihoods (2). Since this log likelihood will depend on the sparsity of 
the estimated graph, and generally increases with the number of included parameters 
(edges), we have forced the graphs estimated by the different methods to have the same 
sparsity as was found optimal by StARS on the unweighted graph. This way, direct com-
parison is possible.

Table 3 shows the results for the TCGA data. As we see, the log likelihood of the esti-
mated precision matrix is indeed largest for the tailored graphical lasso estimate. The 
results for the Oslo 2 data set are shown in Table 4, and also here the tailored graphical 

Table 3  Comparison of results for the TCGA data set, with the highest log-likelihood value in bold

Method kopt Sparsity lp(�̂)

Glasso – 0.034 − 162226.8

Wglasso – 0.034 − 161928.4

TailoredGlasso 127.00 0.034 − 160697.1

Table 4  Comparison of results for the Oslo 2 data set, with the highest log-likelihood value in bold

Method kopt Sparsity lp(�̂)

Glasso – 0.026 − 38489.65

Wglasso – 0.026 − 38419.44

TailoredGlasso 149.0 0.026 − 38132.04
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lasso estimate has the largest log likelihood. For both data sets, the increase in the log 
likelihood when comparing the tailored graphical lasso to the weighted graphical lasso is 
much larger than when comparing the weighted graphical lasso to the ordinary graphi-
cal lasso.

The optimal k selected by the tailored graphical lasso is very large in both cases, mean-
ing the method finds that the information from the mRNA networks improves the infer-
ence on the protein networks. For such large values of k, prior weights are mapped to 
values close to either 0 or 1, depending on whether they are above or below the sigmoid 
midpoint w0 . This is an interesting result, as it means that the mRNA networks are found 
to provide very useful information about the protein networks.

The resulting tailored graphical lasso graphs are shown in Additional files 4 and 5 for 
the TCGA and Oslo 2 data sets respectively. The corresponding edge lists are given in 
Additional files 6 and 7.

Biological validation and interpretation

To investigate whether the edges in the graphs found by the tailored graphical lasso have 
more evidence in the literature than the ones found by the ordinary weighted graphical 
lasso, we have also performed data mining using the STRING database, which contains 
known and predicted protein–protein interactions [29]. Because predicted interactions 
are not suitable for validation purposes, we only considered the experimentally validated 
interactions in STRING as evidence [29].

For both tailored and weighted graphical lasso, we calculated the fraction of edges 
with proof in the STRING database. To highlight the differences between the methods 
we only focused on the edges that the two methods disagreed on, which constituted 
289 out of 456 edges in the TCGA data, and 103 edges out of 131 in the Oslo 2 data. 
Table 5 shows the percentage of the edges unique to the different graphs that have evi-
dence in the STRING database. For both data sets there was far more evidence for the 
edges unique to the tailored graphical lasso graphs than those unique to the weighted 
graphical lasso graphs. Lists of the protein–protein interactions that the tailored graphi-
cal lasso was able to find, but not the weighted graphical lasso, are given in Additional 
files 8 and 9.

We show here that our tailored graphical lasso method effectively identified proteins 
encoded by key breast cancer genes as hubs in the resulting networks from both breast 
cancer cohorts, such as Cellular Communication Network Factor 1 (CCN1), Estrogen 
Receptor 1 (ESR1) and Checkpoint Kinase 1 (CHEK1). It is also reassuring that many 
hubs and edges overlapped between Oslo2 and TCGA even though the two models 

Table 5  Comparison of evidence for edges unique to each graph

Comparison of evidence for edges unique to each graph, using experimentally determined interactions in the STRING 
database. The highest percentage of edges with evidence is in bold

Data set Edge evidence %

Wglasso (%) TailoredGlasso 
(%)

TCGA​ 3.8 6.6
Oslo 2 5.8 15.5
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included non-overlapping protein lists. For instance, in both cohorts, the model identi-
fied interaction between Cyclin B1 (CCNB1) and Cyclin Dependent Kinase 1 (CDK1) 
which are known to form Maturation-promoting factor (MPF) promoting entrance 
into mitosis, leading to increased proliferation of cancer cells [30, 31]. Interaction was 
also identified between MutS Homolog 2 (MSH2) and MutS Homolog 6 (MSH6) which 
dimerize to create the MutSα mismatch repair complex involved in DNA mismatch 
repair [32]. Up-regulation of mismatch repair proteins commonly occurs in cancer as a 
response to increased DNA damage.

In breast cancer cohorts consisting of all molecular subtypes (such as both Oslo2 and 
TCGA), it is expected that hubs and edges that separate basal and luminal subtypes will 
dominate, which the mentioned interactions are examples of, as both cell proliferation 
and DNA mismatch repair differ between the subtypes [33]. An even more obvious sub-
type specific interaction which we found in both Oslo2 and TCGA is the one between 
ESR1 and GATA binding protein 3 (GATA3). This interaction is typical for luminal 
breast tumors while not in basal since these are generally not dependent on estrogen 
[33].

We have shown that the tailored graphical lasso is able to identify multiple experi-
mentally validated interactions present in the STRING database. However, using only 
experimentally validated interactions as evidence will inevitably produce a bias between 
proteins that have previously been explored in-depth and proteins that have not received 
as much attention. For instance, in our results we identify the transcription factor Y-Box 
Binding Protein 1 (YBX1) as a central hub in both Oslo2 and TCGA. This interaction is 
not experimentally validated in the STRING database, however YBX1 has been shown 
in observational studies to be relevant in breast cancer [34]. Further, it is reasonable that 
transcription factors are found to be hubs because of their role in controlling the rate of 
transcription of other genes. These findings illustrate the potential tailored lasso has for 
hypothesis generation.

Extensions

In a genomic setting, prior information on pairs of genes (nodes) can be derived from 
a wide range of data types. In addition to the examples presented in our two biological 
applications, another approach is to use genome-wide association studies to gain infor-
mation about so called epistatic interaction. Such interaction occurs when one muta-
tion alters another gene’s mutation. The importance of a specific mutation pair can for 
instance be quantified using the number of times they are described in the literature 
[35], or by statistical testing [36].

As illustrated by our applications, the precision matrix of the prior data must have the 
same dimension as the matrix of interest, which is a limitation of the weighted graphi-
cal lasso inherited to the tailored graphical lasso. If there is a mapping between the data 
types, such as when we want to incorporate information from regulatory variants such 
as methylation or microRNA when constructing a gene expression network, this prob-
lem may however be solved by collapsing the values associated with the same gene in the 
prior weight matrix. This way, we get a one-to-one correspondence between the prior 
weight matrix and the precision matrix of interest. Collapsing the values can be done in 
several ways, but a simple option is to just use the mean value.
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Further, the output from the tailored graphical lasso is an optimized graph which may 
be used as input in other methods and biological applications, for instance NegSig [37] 
which combines mutation data for a gene and its neighbors in a given graph.

Conclusions
In this paper, we introduce the tailored graphical lasso as an extension to the weighted 
graphical lasso for graph reconstruction. The objective is to get better utilisation of the 
available prior information, while ensuring that the introduction of prior information 
may not decrease the accuracy of the resulting inferred graph. The method is imple-
mented in the R package tailoredGlasso.

The method is developed with multiomic applications in mind, and to illustrate the 
performance of the method in such settings we have simulated data similar to this appli-
cation. We have considered different scenarios in which the strength of the partial cor-
relations varies both in the network of interest and the prior network, and in which the 
edge agreement between these networks varies. We found that if the prior information is 
completely useless and its inclusion in the weighted graphical lasso only results in a less 
accurate graph estimate, the tailored graphical lasso will give results similar to the ordi-
nary graphical lasso and weighted graphical lasso.

On the other hand, if the prior information is informative, the tailored graphical 
lasso will outperform the graphical lasso and perform either as well as or better than 
the weighted graphical lasso. For less useful prior information the two methods will 
perform very similarly, and as the usefulness of the prior information increases the tai-
lored graphical lasso will have better results as it utilizes the prior information more 
effectively.

Additionally, through a more extensive simulation study we find that among a larger 
set of methods, the tailored graphical is the most suitable for network inference from 
high-dimensional data with additional information of unknown accuracy available.

The method also has a nice interpretability through the estimated value of k, giving us 
a “usefulness score” for the prior information, where k close to zero indicates that the 
prior information does not provide any useful information while larger k indicates that 
it does. k > 0 means that inclusion of the prior information to some degree is found to 
be useful, and k > 4 means that enhancing the differences in the prior weights is found 
to be beneficial. Both for the TCGA and the Oslo 2 data set, k was found to be very large 
(127 and 149, respectively), meaning that the mRNA data was indeed found to be an 
informative prior for the less studied protein data.

We have applied the method to multiomic data from two studies on breast cancer, 
TCGA BRCA and Oslo 2, showing that mRNA data can be useful as prior information 
for protein–protein interaction networks. The estimated precision matrices found by 
the tailored graphical lasso had higher log likelihoods than the ones found by the ordi-
nary weighted and unweighted graphical lasso. Further, through data mining with the 
STRING database we found that there is indeed more evidence for the graph structures 
found by the tailored graphical lasso than the two other methods, in particular evidence 
in the form of co-occurrence in literature and co-expression in large-scale analyses.

Altogether, we have seen that the tailored graphical lasso performs either as well as 
the ordinary weighted and unweighted graphical lasso, or better, depending on the 
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usefulness of the prior information. This means that there is much to gain yet little to 
lose from using the tailored graphical lasso, as it allows us to use priors of unknown 
accuracy without taking risks.

Methods
Data simulations

Generating Gaussian graphs and data

In our multiomic application, the weighted graphical lasso is performed by first using 
the graphical lasso tuned by StARS on the mRNA data sets and RPPA data sets sepa-
rately, and then using the estimated mRNA network as a prior network for the RPPA 
one. This is done by letting the prior weights be the absolute values of the resulting esti-
mated partial correlations of the mRNA networks. Those estimates are found from the 
estimated precision matrix of the mRNA data, using formula (1). In our simulations we 
aim to mimic this setting, and so we will for each simulated set of data create a similar, 
but not identical, set of prior data.

We have done our simulations in R using the package huge. In particular, we have 
used the function huge.generator(), which allows us to generate data with the 
scale-free property as is a known trait in multiomic data [5]. We let all networks consist 
of p = 100 vertices, and let there be n = 80 observations of the corresponding multivari-
ate data. The final graph has p edges and thus a sparsity of approximately 0.02. As for the 
values of the non-zero partial correlations, we let them all be equal to either 0.1 or 0.2.

Once a precision matrix � is constructed, huge generates the multivariate Gaussian 
data of the vertices from the distribution with covariance matrix � = �−1 and expecta-
tion vector 0.

Generating prior data

For a set of simulated data, we have modified its precision matrix and generated data 
from the resulting distribution. This way, we get sets of prior data from distributions of 
various similarity.

Specifically, for an initial precision matrix we have created, we have permuted a cer-
tain fraction of the edges by randomly redirecting all the edges of some nodes to others. 
We then consider each of those permuted precision matrices with all partial correlations 
being either 0.1 or 0.2, resulting in precision matrices of various accuracy and various 
strength of the partial correlations.

For each prior precision matrix �prior , a prior data set Xprior is generated from the 
resulting multivariate Gaussian distribution. The graphical lasso tuned by StARS is then 
used on this data to obtain a prior precision matrix estimate �̂prior , which is used to con-
struct a prior weight matrix by finding the absolute values of the corresponding partial 
correlation estimates.

Data analysis

For each combination of precision matrix and prior data, a precision matrix estimate �̂q 
for the data X of interest is found for each of the weight-based procedures of the tailored 
graphical lasso and the weighted graphical lasso. An ordinary unweighted graphical 
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lasso estimate �̂ of the data is also found for comparison. The whole data simulation 
procedure is shown in Fig. 3.

The ordinary graphical lasso was performed using the R function huge, while the 
weighted graphical lasso was performed using the glasso function in R as it allows 
for the use of a prior matrix in the penalty. We have tuned the graphical lasso graphs by 
StARS with instability threshold β = 0.05 , and selected the common penalty parameter 
in the weighted graphical lasso with the same weight preservation principle as in the 
tailored graphical lasso. According to our proposed algorithm we choose the sigmoid 
midpoint w0 as the lower 0.05-quantile of the non-zero prior weights in the tailored 
graphical lasso. For simplicity, in the tailored graphical lasso we have used the eBIC 
with parameter γ = 0 as our selection criterion. This is justifiable as we are comparing 
graphs of very similar sparsity, and so the extra penalization of the number of edges in 
the graphs is not necessary.

The results are averaged over N = 100 simulations for all cases. The quantities we 
report are the precision and recall, as well as the sparsity of the estimates and the chosen 
k in the tailored graphical lasso. The details of the additional graph reconstruction meth-
ods included in the extended simulation study are given in Additional file 1.

Multiomic data

Below we give a description of the preprossessing of the two data sets we have used, 
before describing the analysis we have done.

TCGA BRCA​

The breast cancer tumor data from the TCGA BRCA database was downloaded from 
the UCSC Xena Browser [38]. We have used n = 743 breast cancer tumor samples, 
considering gene expression measured by RNA-seq for p = 165 genes as well as their 
associated protein measured by Reverse Phase Protein Array (RPPA). The RPPA data is 
log2(x) transformed and median centered, while the RNA-seq data has been normalized 
by upper quartile FPKM and log2(x + 1) transformed [24]. The full data set is larger than 
the subset we have used, but to make the data applicable to our methods a reduction was 
necessary. First, we have disregarded “control” samples in the data set, since our inter-
est is in the samples linked to breast cancer. We have also disregarded phosphorylated 
proteins in the RPPA data set, as they are only a subgroup of the fully measured proteins.

Some proteins have been measured by antibodies taken from different animals, mean-
ing some protein measures in the data set are actually for the same protein. They are 
complimentary in their missingness in the sense that samples only have a measurement 
for one of them, and to get the complete protein profiles we therefore need to merge 
these values. This is done by taking their mean values after missing ones are removed. 
Further, there are 137 samples with many missing RPPA measurements that we discard. 
There are also 4 proteins whose values are missing in almost all samples, and these have 
been removed from the data set as well.

The full RNA-seq data set includes gene expression measurements for 60,483 genes, 
but we have only considered the genes known to encode the proteins present in the 
RPPA data set. Some samples have been split into several vials, and for those we have 
chosen to use vial A. Finally, the gene XBP1 was found to have all RNA-seq values equal 
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to zero, and so we have removed this gene and its corresponding protein from the data 
set. This is necessary as the graphical lasso does not allow zero-variance variables.

To get a complete one-to-one correspondence between the two data types we chose 
to only look at the samples that were present in both data sets. Before the final analysis, 
the variables in the data sets were scaled and centered across samples to ensure scale-
invariant penalization in the graphical lasso-based methods.

Finally, the mapping between the proteins and the associated genes that encode them 
was found mainly from the UCSC Xena Browser, however, not all proteins aliases were 
represented there. Therefore, mappings from the Stanford-Cancer Genome Atlas data-
base [39] and the GeneCards database [40] were also used.

Oslo 2

The Oslo 2 data we have used includes n = 280 breast cancer samples collected from 
hospitals in Oslo [25]. The gene expression for p = 100 genes has been quantified by 
measuring mRNA with microarray-technology, and their associated proteins have been 
measured by RPPA technology. The data set containing the mRNA measurements was 
downloaded from the GEOquery database using the Bioconductor package in R [41], 
while the protein measurements are downloaded from the eprint version of the paper 
“Integrated analysis reveals microRNA networks coordinately expressed with key pro-
teins in breast cancer” [25]. The microarrays are by default log2(x) transformed, quantile 
normalized and hospital adjusted by subtracting from each microarray probe value the 
mean probe value among samples from the same hospital. This transformation and nor-
malization is commonly done on multiomic data to get approximately normal data, as is 
required for the graphical lasso to work properly.

Like for the TCGA BRCA data set, some modifications of the Oslo 2 data set were 
necessary. First, we have only included genes in the mRNA data set that encode proteins 
present in the RPPA data set. To avoid violation of the independence assumption, in the 
case of a patient having several tumor samples from different pathological areas we have 
only considered the first one. Further, the measurements for two of the antibodies in the 
RPPA data were removed as they are known to bind to several proteins.

We have also merged some mRNA measures in the cases where there are several 
probes known to bind to the same gene. These are highly correlated, and so merging 
them is plausible. This is done by taking the mean of the scaled and centered measure-
ments. The scaling ensures that the result is independent of the scale of the different 
antibodies.

Finally, the final data sets are scaled and centered, so that each gene or protein expres-
sion measurement has mean 0 and standard deviation 1 across samples.

Analysis

For both the TCGA BRCA and the Oslo 2 data set, we have inferred protein–protein 
interaction networks using both the weighted graphical lasso and the tailored graphical 
lasso. For each data set, the mRNA data is treated as prior information, letting the prior 
weights be the absolute values of its estimated partial correlations. The estimated partial 
correlations for the mRNA data are found from the graphical lasso estimate for the pre-
cision matrix using the formula (1).
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The graphical lasso on the mRNA data was performed using the huge package in R, 
using StARS with instability threshold β = 0.05 to select the penalty parameter. Accord-
ing to our tailored graphical lasso algorithm, we then choose the sigmoid midpoint w0 
as the lower 0.05-quantile of the non-zero prior weights in the tailored graphical lasso. 
We have used the eBIC with parameter γ = 0.6 as our selection criterion in the tailored 
graphical lasso. We chose this larger value to reflect that we are more concerned about 
false positives than false negatives, as we will interpret the genomic implications of the 
results. However, as previously discussed we are comparing graphs of very similar spar-
sity, and so the choice of extra penalization of the number of edges in the graphs will not 
make a big impact.

As for the parameter k, we find it sufficient to consider a grid of values in [0, 150] as k 
necessarily is non negative, and since the logistic function essentially has the same step-
function shape for all k larger than 100 as shown in Fig. 1. The weighted graphical lasso 
was performed using the glasso function in R, as it allows for the use of a prior matrix 
in the penalty.

After the precision matrices of the protein data of each data set is estimated using the 
different methods, we assess how well they fit the data by computing the correspond-
ing multivariate Gaussian log likelihoods (2). Since this log likelihood will depend on 
the sparsity of the estimated graph, and generally increases with the number of included 
parameters (edges), we have forced the graphs estimated by the different methods to the 
sparsity found optimal by StARS on the unweighted graph. This way, direct comparison 
is possible.

The STRING database

While the fact that the tailored graphical lasso estimates have a higher log likelihood 
value than the weighted graphical lasso ones implies that the resulting graph explains the 
data better, it might be interesting to investigate the results even further. One possible 
way to check whether the new edges are more plausible is to check whether there are 
other sources supporting the existence of the gene relationships the edges represent. For 
this purpose, we have used the STRING database, which contains known and predicted 
protein–protein interactions [29]. As described on the STRING website, the interactions 
include direct (physical) and indirect (functional) associations and are derived from five 
main sources, namely genomic context predictions, high-throughput lab experiments, 
co-expression, automated text-mining and previous knowledge from other databases.

Because predicted interactions are not suitable for validation purposes, we only con-
sidered the experimentally validated interactions in STRING as evidence. The STRING 
database gives each interaction it identifies a score for each type of evidence it considers. 
The scores lie in [0, 1] and are indicators of confidence, i.e. how likely STRING judges 
an interaction to be true, given the available evidence [42]. In STRING, a score ≥ 0.4 
is considered “medium confidence”, and this threshold is proposed for determining rel-
evant interactions [29]. We therefore only consider interactions with edge score ≥ 0.4 in 
STRING as evidence.

The way we check the database for evidence of the existence of a set of edges is to 
feed a list of all genes involved to the STRING search engine. STRING then provides 
a graph where an edge between two nodes means that the database has evidence for 
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the existence of an interaction between the two genes the nodes represent. A list of the 
edges in the resulting graph may then be downloaded as a .tsv file, and we can check 
how many of the edges in our original edge set that are present in this list. Focusing on 
the edges the tailored graphical lasso and the weighted graphical lasso disagree on, we 
may then find the fraction of edges present only in the tailored graphical lasso graph that 
have proof in the STRING database, and compare it to the fraction for the ones present 
only in the weighted graphical lasso graph. If the latter fraction is lower, the edges found 
by the tailored graphical lasso method have more support in the database.
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