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Abstract 

Background:  Quantification of gene expression from RNA-seq data is a prerequisite 
for transcriptome analysis such as differential gene expression analysis and gene co-
expression network construction. Individual RNA-seq experiments are larger and com-
bining multiple experiments from sequence repositories can result in datasets with 
thousands of samples. Processing hundreds to thousands of RNA-seq data can result in 
challenges related to data management, access to sufficient computational resources, 
navigation of high-performance computing (HPC) systems, installation of required 
software dependencies, and reproducibility. Processing of larger and deeper RNA-seq 
experiments will become more common as sequencing technology matures.

Results:  GEMmaker, is a nf-core compliant, Nextflow workflow, that quantifies gene 
expression from small to massive RNA-seq datasets. GEMmaker ensures results are 
highly reproducible through the use of versioned containerized software that can be 
executed on a single workstation, institutional compute cluster, Kubernetes platform 
or the cloud. GEMmaker supports popular alignment and quantification tools provid-
ing results in raw and normalized formats. GEMmaker is unique in that it can scale to 
process thousands of local or remote stored samples without exceeding available data 
storage.

Conclusions:  Workflows that quantify gene expression are not new, and many already 
address issues of portability, reusability, and scale in terms of access to CPUs. GEM-
maker provides these benefits and adds the ability to scale despite low data storage 
infrastructure. This allows users to process hundreds to thousands of RNA-seq samples 
even when data storage resources are limited. GEMmaker is freely available and fully 
documented with step-by-step setup and execution instructions.
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Background
Transcriptome sequencing (RNA-seq) is used in the life sciences to explore gene–
gene and gene-trait relationships [37]. The full workflow for an RNA-seq experiment 
consists of several steps including experimental design, RNA collection, cDNA library 
construction sequencing, read cleaning, transcript mapping and gene expression 
quantification. Downstream computational analyses vary depending on the research 
goal, and can include differential gene expression (DGE) [20, 29], gene regulatory net-
work construction [6, 23], eQTL analysis [32, 41], and gene co-expression network 
(GCN) analysis [18, 30].

Individual RNA-seq experiment increasingly include hundreds to thousands of 
samples. These experiments are often made available on public repositories–such as 
the National Center for Biotechnology Information (NCBI) [25]–allowing them to be 
mined for new knowledge. To prepare RNA-seq data for downstream computational 
analysis, expression levels must first be quantified, which is the process of converting 
raw RNA-seq reads to count data. Count data is stored as a gene expression matrix 
(GEM) which is an n x m matrix of n genes and m samples with values representing 
gene expression levels. Quantification of gene expression levels is performed using 
popular tools such as HISAT2 [14], Salmon [26], kallisto [4], or STAR [8]. Examples 
of ancillary tools include the SRAToolkit [24] for data retrieval from the NCBI SRA, 
Trimmomatic [3] for contaminant and quality trimming (HISAT2/STAR workflows), 
SAMtools [19] for storing alignments, Stringtie [27]) for read counting (HISAT2/
STAR workflow) and quality analysis reports such as FastQC [2] and MultiQC [9].

Several automated RNA-seq workflows have been created to ease the burden of 
managing the steps of RNA-seq processing. These include Pipelines in Genomics 
(PiGx) [40], Visualization Pipeline for RNA sequencing analysis (VIPER) [5], handy 
parameter-free pipeline for RNA-Seq analysis (hppRNA) [36], Closha [15], the Trans-
parent Reproducible and Automated PipeLINE (TRAPLINE) [39] and the nf-core/
rnaseq workflow (Phil [28].

A popular advancement in workflow construction is the use of framework software 
to construct and then manage execution of the workflow. Popular examples include 
Galaxy [1], Kepler [21], Nextflow [7] and Snakemake [16]. Workflow managers sim-
plify workflow construction and ensure automation with reproducible results, and 
often provide automatic execution on a variety of computing platforms. For example, 
Nextflow can manage execution of workflows on desktop computers or HPC systems 
such as Grid Engine [12], Portable Batch System (PBS) [11], HTCondor [33], SLURM 
[13], Kubernetes [35], popular commercial cloud platforms, and others. Nextflow also 
uses containers, such as Docker [22] and Singularity [17] to encapsulate dependent 
software for the workflow, eliminating the need for installation of software and man-
aging interdependencies. Containerization ensures that software versions are consist-
ent, ensuring reproducible results even when the workflow is executed on different 
computing platforms. One benefit of workflow frameworks is when larger datasets 
are used, researchers are not required to rewrite a workflow when moving to a dif-
ferent computing platform. Additionally, workflows built with containerized software 
can run simultaneously on multiple platforms.
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To assist bioinformaticians in the development of portable, standards-based repro-
ducible workflows, the nf-core framework [10] was developed which provides workflow 
construction standards, peer-review and best-practice recommendations for workflows 
constructed using Nextflow. The nf-core provides an interactive community of devel-
opers accessible via online communication tools to assist others in development of 
workflows. It consists of many released workflows and a variety of others that are under 
construction. These include the RNA-seq workflow: nf-core/rnaseq.

Here we introduce an RNA-seq workflow named GEMmaker. Despite the existence 
of other workflows, it grew from the need to process 26,055 SRA runs from 17,018 SRA 
experiments. Unfortunately, the nf-core/rnaseq workflow was not able to scale to this 
large dataset as it would exhaust available storage. When thousands of RNA-seq samples 
are used, intermediate files can exceed available compute storage as is the case of the 
HISAT2 tool which can quickly consume terabytes of storage when hundreds or thou-
sands of samples require processing. Other gene quantification tools such as Salmon 
[26] and kallisto [4] require less data storage but can also exhaust storage depending on 
the number of samples.

The inability to scale without overrunning user data storage is a limitation of Nextflow 
rather than the nf-core/rnaseq workflow, which could overrun user storage—especially 
for large datasets. There are two key factors inhibiting scaling. First, Nextflow does not 
currently support cleanup of intermediate files. Second, Nextflow tends to execute all 
instances of the same step (e.g., downloading of SRAs from NCBI) before moving to the 
next step (e.g., quantification with kallisto) compounding the challenge of cleanup of 
intermediate files since cleanup cannot occur until later steps are completed.

Until the time that Nextflow supports a file cleanup strategy, a solution is needed to 
support RNA-seq workflows that need to scale without overrunning storage. Ideally, 
the solution would be to contribute code to the nf-core/rnaseq workflow to support file 
cleanup, but the nf-core standards require that workflows only support native Nextflow 
functionality. GEMmaker, therefore, exists to provide a workflow that supports massive 
scaling of RNA-seq processing when storage is limited. GEMmaker v2.1 is fully nf-core 
compatible and can be used in the same manner as any nf-core workflow. It provides 
much of the functionality of the nf-core/rnaseq workflow as well as the portability and 
reproducibility benefits inherit with Nextflow and nf-core workflows. GEMmaker is not 
better than other workflows in terms of accuracy of results or improved computational 
time, so we do not compare it to other workflows. Rather, it is meant to process increas-
ingly large datasets without overrunning storage using the same steps that are common 
in other RNA-seq workflows. The following describes the implementation of GEM-
maker and provides storage performance results.

Implementation
GEMmaker uses Nextflow and is a combination of Groovy scripts for interfacing with 
Nextflow, Python scripts for wrangling intermediate data, and Bash scripts for execution 
of each software tool in the workflow. Nextflow was selected as the framework because 
it is widely used, is well supported, has a robust community of workflow creators in the 
life sciences, supports multiple computing platforms and supports containerization sys-
tems such as Docker and Singularity. Nextflow allows for execution of workflows from 
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a command-line interface, which is common with most HPC platforms. These attrib-
utes make GEMmaker relatively easy to use. The following is an example command-line 
for execution of GEMmaker on a local machine using Singularity (for containerization), 
quantification using Salmon, and a file containing a list of SRA run IDs for Arabidopsis 
thaliana Illumina datasets:

GEMmaker adopts the nf-core recommendations and standards to provide consist-
ency in functionality with other popular nf-core workflows.

GEMmaker uses a variety of software tools for gene expression-level quantification 
and quality control that can be selected by the user. These software are listed in Table 1 
and the step-by-step flow of the workflow using these tools is shown in Fig.  1. There 
are four primary paths for gene expression quantification within GEMmaker: STAR, 
HISAT2, Salmon and kallisto. The STAR and HISAT2 paths include read trimming via 
Trimmomatic, SAMtools for storing alignments and Stringtie for quantification. Salmon 
and kallisto do not require those steps. All paths provide a MultiQC report to help end-
users explore the quality of results from the workflow.

As mentioned previously, GEMmaker is designed to scale. It can scale to process 
increasingly larger experiments (or large numbers of samples from public repositories) 
that can include hundreds to thousands of RNA-seq samples without intermediate 
files overrunning available compute storage. It supports execution on a large variety of 
computational platforms such that researchers can take full advantage of the compute 
facilities available to them including local desktop workstations, institutional clusters, 
national-funded resources such as XSEDE [34], the Pacific Research Platform [31], and 
commercial clouds.

To ensure storage requirements are not exceeded, GEMmaker moves input FASTQ 
files between three folders: “stage”, “processing” and “done”. Initially all samples are 

Table 1  Containerized software tools used in release v2.0 of GEMmaker

Tool Version Notes

nf-core/base 1.13.3 The base operating system for all nf-core compatible workflows

Python3 3.9.2 Used by a variety of custom data wrangling tools

Aspera 3.8.1 Downloads SRA files from NCBI SRA using provided run IDs

SRAToolkit 2.10.0 Downloads SRA files from NCBI using provided SRA Run IDs

FastQC 0.11.9 Generates read quality statistics for FASTQ files

Trimmomatic 0.39 Removes low-quality bases and removes adapter sequences

STAR​ 2.7.9a Aligns cleaned reads to the reference

HISAT2 2.2.0 Aligns cleaned reads to the reference

Salmon 1.5.2 Performs quasi-alignment of reads and quantities

kallisto 0.46.2 Performs pseudo-alignment of reads and quantities

SAMTools 1.14 Used for indexing and sorting of BAM files created by HISAT2

StringTie 2.1.7 Performs gene expression quantification

MultiQC 1.11 Generate a full summary report for the entire workflow
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placed in the “stage” folder and GEMmaker will move into the “processing” folder as 
many samples as there are CPUs available. The user sets the number of CPUs that the 
workflow can use with the –max_cpus argument. On a compute cluster, this could be 
tens to hundreds. Nextflow is then instructed to automatically begin processing any 
samples that appear in the “processing” folder. As usual, Nextflow will process samples 
in parallel, using all CPUs, by first executing the first step for all samples, then the sec-
ond for all samples, and so forth. However, because GEMmaker limits the number of 
samples to the number of CPUs, when a sample completes a step, it will move to the 
next step because Nextflow does not see any samples waiting. When a sample fully com-
pletes all steps, GEMmaker will then move the sample from the “processing” folder into 
the “done” folder and will move one sample from the “stage” folder into the “processing” 
folder. Nextflow sees this new sample in the “processing” folder and immediately begins 
processing that sample through each step. There is no lag between the time one sample 

Fig. 1  GEMmaker workflow diagram. GEMmaker supports the inclusion of both local and remote RNA-seq 
data files and offers four different alignment tools for gene expression quantification: Hisat2, STAR, Kallisto, 
and Salmon
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finishes, and another begins and Nextflow should keep all CPUs consistently busy pro-
cessing samples in parallel. As the workflow progresses for each sample, GEMmaker will 
cleanup unwanted intermediate files. This ensures space is cleaned before more sam-
ples begin processing. If the user specifies a –max_cpu size that does not exceed the 
resources of the computational platform, then GEMmaker can successfully process hun-
dreds to thousands of samples.

While GEMmaker, by default, cleans all intermediate files, there are arguments that 
can be provided, as described in the online documentation, to control which interme-
diate files are removed. Users can keep downloaded SRA and FASTQ files, trimmed 
FASTQ files, SAM and BAM alignment files, and kallisto and Salmon pseudoalignment 
files. If any of these files are needed for downstream analyses they can be retained.

The speed at which the samples are processed depends on the number of processors 
and available memory of the compute nodes. Users with limited CPUs or RAM may 
need more time to process all samples. If users set the –max_cpus setting higher than 
storage will support, then GEMmaker may not be able to cleanup intermediate files 
before overrunning storage. It is difficult to recommend a value which maximizes the 
trade-off between the number of CPUs and storage requirements because RNA-seq 
samples and genomic reference sequences can be dramatically different in size, result-
ing in different sized intermediate files. However, using averaged values from the sample 
data reported here, we provide a rough recommendation that users have about 30 times 
the storage of an average sample size, times the number of CPUs when using HISAT2. 
For an average sample size of 2.5GBs this would require 75 GB per CPU. For kallisto and 
Salmon we recommend 7 times the storage of an average sample per CPU (17GBs).

To ensure portability between HPC systems, GEMmaker makes use of containerized 
software. This alleviate the burden of installing the same software versions on every 
computational system on which it is run. All GEMmaker dependent software are pro-
vided in the GEMmaker docker image and their versions are listed in Table  1. GEM-
maker retrieves this Docker image from Docker Hub the first time it is run—users need 
not install any software other than Nextflow and a containerization software (Singularity 
or Docker). Thus, a GEMmaker workflow can be performed on any computational sys-
tem and results will be reproducible and consistent.

Results
We tested GEMmaker on WSU’s Kamiak cluster which uses the SLURM scheduler 
[13], Clemson University’s Palmetto cluster which uses the PBS scheduler [11], the 
Rodeo Kubernetes cluster at the Texas Advanced Computing Center (TACC) which 
contains homogenous set of compute nodes, and the Pacific Research Platform’s Nau-
tilus cluster which contains a heterogenous set of compute nodes. In all platforms 
GEMmaker successfully completed. Because data storage usage is of most importance, 
GEMmaker was tested using two different datasets: a publicly available 475-sample 
Oryza sativa (rice) RNA-seq dataset (NCBI SRA accession PRJNA301554) [38], and 
the Arabidopsis thaliana 26,055-runs from NCBI.

The 475 rice dataset consists of samples from two subspecies of rice, subdivided into 
4 genotypes, grown in a hydroponic environment that underwent treatments of heat 
stress, drought stress and control. Measurements were taken every 15 min for several 
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hours with 2 replicates. We selected this dataset to demonstrate execution of a large sin-
gle experiment on a typical stand-alone workstation that researchers may have available 
to them. The Arabidopsis 26,055 dataset was selected using all Illumina RNA-seq data-
sets available at the time the list was collected. An SRA experiment can contain mul-
tiple runs which resulted in 17,018 SRA experiments. This included both paired and 
non-paired RNA-seq runs for Arabidopsis thaliana sequenced using the Illumina plat-
form. The list of SRA run IDs is provided as Additional file 1: Data 1. We selected all 
RNA-seq data to test massive scale processing on a typical institutional HPC cluster. The 
475 rice dataset was tested on Washington State University’s HPC cluster, Kamiak. To 
simulate execution on a stand-alone workstation, the job was limited to 16 CPUs and 
6 GB of RAM (a reasonable set of resources for a performant workstation). The compute 
node contained Intel(R) Xeon(R) Gold 6138 CPU @ 2.00 GHz processors, had 256 GB of 
RAM (although, only 6 GB were requested) with access to 650 TB of network attached 
storage to allow for as much expansion of storage as needed (although, this large storge 
size is not required as shown in Fig. 2). GEMmaker was executed twice for each quantifi-
cation tool (STAR, HISAT2, kallisto and Salmon) once with cleanup of intermediate files 
turned on and again turned off. Because the primary performance metric of concern is 
storage usage, a monitoring script tracked the storage space consumed. Results of the 
test are found in Fig. 2.

With the option to clean intermediate files enabled, all the quantification tools con-
sumed less than 1  Tb of storage. At maximum, HISAT2 consumed 680  GB, kallisto 
322 GB, Salmon 342 GB, and STAR 701 GB. When intermediate files were not cleaned, 

Fig. 2  Storage usage comparison. Storage sizes for processing the 475-sample time-series rice dataset is 
shown. Dashed lines indicate tests in which GEMmaker was configured to not cleanup of intermediate files 
between batches, while solid lines indicate that a cleanup was performed
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both Salmon and kallisto consumed approximately 12 TB of storage, HISAT2 38 TB and 
Star 41 TB. Salmon and kallisto took less time (~ 3 days) than STAR (4 days), or HISAT2 
(~ 5.5 days) to run. Compute time is strongly dependent on each computer’s hardware 
and the queue size. Therefore, this test could have run quicker if the number of CPUs 
were increased. The range of storage space (between 322 and 680 GB) required to exe-
cute GEMmaker on this set of 475 samples, with intermediate file cleaning enabled, is 
commonly available on stand-alone workstations.

To demonstrate processing of tens of thousands of RNA-seq datasets, the 26 K SRA 
runs were processed on WSU’s Kamiak HPC cluster with a –max_cpus setting of 120 
(i.e., 120 currently running jobs in parallel). We used the kallisto pipeline, and GEM-
maker completed processing the 26 K runs over 28 days. We designed GEMmaker so 
that if a dataset is corrupted, or if information was incorrectly entered into NCBI that 
it would report these and then continue with other samples. This reduces downtime 
and allows the user to look at these files manually. GEMmaker reported that of the 26 K 
runs, 19 SRA files had no metadata available via NCBI web services and could not be 
retrieved; 179 had missing download URLs; 3 samples were corrupted after download; 
and 1 failed to download due to a network timeout. Just as with the rice data, GEM-
maker was instructed to clean intermediate files (SRA files, FASTQ files, kallisto index 
files, etc.) and keep only raw and TPM count files, but actual storage usage was not 
measured during runtime. The results folder consumed 48 GB of storage.

Limitations
Despite the advantages that GEMmaker affords, it has limitations. First, we could not 
include every quantification tool made to date; users who need other tools are encour-
aged to request features on the GEMmaker GitHub issue queue. Second, if GEMmaker 
is preempted before it completes, as was the case with the 26  K Arabidopsis dataset, 
then there may be working directories that do not get cleaned. Because GEMmaker is 
a Nextflow workflow, it can resume execution where it left off. However, Nextflow cre-
ates new working directories for each step of the workflow for each sample and when it 
is resumed it creates new working folders—the folders with failed steps remain. When 
a sample completes a step, then GEMmaker can clean up the working directories that 
were successful but there is not a mechanism in Nextflow to know about the directories 
with failed results so that they can be cleaned. As a result, if a high –max_cpus is used 
(e.g., 120) and Nextflow is preempted this may result in higher storage usage from direc-
tories with failed jobs. Third, related to usability, GEMmaker does not have a graphical 
user interface (GUI). Users familiar with the UNIX command line will not see this as an 
issue, but those who have limited experience may find this difficult. Finally, GEMmaker 
was not designed for data security. Users with sensitive data will need to coordinate with 
data security experts to ensure processing is executed in a secure facility.

Conclusion
GEMmaker addresses issues of scale for processing massive RNA-seq experiments 
with hundreds to thousands of samples (although it can be used for small datasets as 
well). While automated RNA-seq workflows already exist, GEMmaker is unique in that 
it does not overrun data storage facilities yet provides similar functionality to that of 
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gold-standard RNA-seq workflows. GEMmaker allows researchers to take advantage 
of existing smaller computing infrastructure which can be beneficial if there is limited 
access to larger facilities. GEMmaker returns count data in various formats (e.g., raw 
and normalized) so that results can be used in downstream transcriptome analyses such 
as differential gene expression, regulatory network construction and gene co-expression 
analysis.

Availability and requirements

Project name: GEMmaker
Project home page: https://​github.​com/​Syste​msGen​etics/​GEMma​ker
Operating systems(s): Platform independent
Programming language: Nextflow Groovy, Python and bash
Other requirements: Nextflow and Java. Docker or singularity are optional but suggested
Any restrictions to use by non-academics: GPL v2.0 license.

Abbreviations
HPC: High performance computing; RNA-seq: RNA sequencing; SRA: Sequence read archive.
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