
Implementation of MapReduce parallel
computing framework based on multi‑data
fusion sensors and GPU cluster
Dajun Chang1,2, Li Li1*, Ying Chang3 and Zhangquan Qiao1 

1  Introduction
With the rapid development of the Internet, network resources contain more and more
various types of data and information, and people’s needs for big data processing are
becoming more and more urgent. With the rapid expansion of data volume, whether in
storage space, access speed, network transmission, etc., relying on ordinary database sys-
tems to complete all data processing tasks can no longer meet the increasing real-time

Abstract 

Nowadays, with the rapid growth of data volume, massive data has become one of the
factors that plague the development of enterprises. How to effectively process data
and reduce the concurrency pressure of data access has become the driving force
for the continuous development of big data solutions. This article mainly studies the
MapReduce parallel computing framework based on multiple data fusion sensors and
GPU clusters. This experimental environment uses a Hadoop fully distributed cluster
environment, and the entire programming of the single-source shortest path algorithm
based on MapReduce is implemented in Java language. 8 ordinary physical machines
are used to build a fully distributed cluster, and the configuration environment of each
node is basically the same. The MapReduce framework divides the request job into sev-
eral mapping tasks and assigns them to different computing nodes. After the mapping
process, a certain intermediate file that is consistent with the final file format is gener-
ated. At this time, the system will generate several reduction tasks and distribute these
files to different cluster nodes for execution. This experiment will verify the changes in
the running time of the PSON algorithm when the size of the test data set gradually
increases while keeping the hardware level and software configuration of the Hadoop
platform unchanged. When the number of computing nodes increases from 2 to 4, the
running time is significantly reduced. When the number of computing nodes contin-
ues to increase, the reduction in running time will become less and less significant. The
results show that NESTOR can complete the basic workflow of MapReduce, and simpli-
fies the process of user development of GPU positive tree order, which has a significant
speedup for applications with large amounts of calculations.

Keywords:  Multi-data fusion sensor, GPU cluster, MapReduce parallel computing,
Load balancing, Data scheduling

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77
https://doi.org/10.1186/s13634-021-00787-7

EURASIP Journal on Advances
in Signal Processing

*Correspondence:
cdjllcy@163.com
1 College of Computer
Science and Technology,
Changchun University
of Science and Technology,
Changchun 130022, Jilin,
China
Full list of author information
is available at the end of the
article

RETRACTED A
RTIC

LE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-021-00787-7&domain=pdf

Page 2 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

processing of massive data by people. Therefore, in the face of the application require-
ments of such a huge amount of data, how to effectively manage these data and how to
achieve efficient access to these data have become key issues to be solved urgently.

This paper improves the collaborative filtering algorithm so that it can run on the
MapReduce platform. Then the users are grouped by clustering method, and users in the
same group are defined as neighbors. When grouping, the central users of all groups are
marked, through the collaborative filtering algorithm based on users, the recommended
value in the group is calculated with the user in the group defined as the neighbor, and
the recommended value between the groups is calculated with the central user as the
nearest neighbor.

With the rapid improvement of GPU programmability, GPUs are no longer limited to
graphics rendering work. The general-purpose computing GPGPU technology developed
on the basis of GPUs has been greatly developed, making GPUs more and more important
in high-performance computing effect. Shan believes that in actual industrial applications,
the health monitoring and fault diagnosis of ball screw pairs still face many challenges. In
response to this problem, he proposed a new method for fault diagnosis of the ball screw
pair. First, he proposed a new data segmentation algorithm to obtain uniform data of vibra-
tion signals. Secondly, he established a selection criterion for sensitive sensor data based
on the failure mechanism of the ball screw, and obtained the importance factor of the sen-
sor. Finally, he uses a convolutional neural network to classify the weighted data. Although
his algorithm has certain validity, his research lacks specific experimental steps [1]. Hu JW
believes that with the development of sensor fusion technology, people have conducted a
lot of research on intelligent ground vehicles, and obstacle detection is one of the key links
in vehicle driving. Obstacle detection is a complex task, which involves the diversity of
obstacles, sensor characteristics and environmental conditions. Due to the limitations of
sensors in detection range, signal characteristics and working conditions, it is difficult for a
single type of sensor to meet the needs of obstacle detection. This has prompted research-
ers and engineers to develop multi-sensor fusion and system integration methods. He aims
to summarize the main considerations of the on-board multi-sensor configuration of smart
ground vehicles in off-road environments, and provide guidance for users to select sen-
sors according to performance requirements and application environments. He reviewed
the current latest multi-sensor fusion methods and system prototypes and correlated them
with corresponding heterogeneous sensor configurations. Finally, he discussed the emerg-
ing technologies and challenges. Although his research is relatively comprehensive, he lacks
specific experimental data [2]. Pan D believes that falls are a common phenomenon in the
lives of the elderly and one of the top ten major causes of serious health injuries and deaths
in the elderly. In order to prevent the elderly from falling, a real-time fall prediction sys-
tem is installed on wearable smart devices, which can trigger an alarm in time and reduce
accidental injuries caused by falls. He designed a fall detection system based on multi-sen-
sor data fusion, using 100 volunteers to simulate falls and daily activity data, and analyzed
the four stages of falls. He used the data fusion method to extract the three characteristic
parameters of human acceleration and posture changes, and verified the effectiveness of
the multi-sensor data fusion algorithm. In order to compare the applicability of random
forest and support vector machine in the development of wearable smart devices, he estab-
lished two fall gesture recognition models, and compared the training time and recognition

RETRACTED A
RTIC

LE

Page 3 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

time of the models. Although support vector machines are more suitable for the develop-
ment of wearable smart devices, there is a lack of discussion on experimental results [3].
Zhou believes that train operation status identification is used for safety analysis to identify
whether the train is operating according to a predetermined operating mechanism. When
the train deviates from the scheduled operation mechanism, there is a potential operation
risk between the trains. He proposed a train movement situation recognition mechanism
based on multi-sensor data fusion under rolling horizon. The recognition process includes
the definition of the framework of recognition (FOD), likelihood and confidence calcula-
tion, probability calculation and decision-making, and it is applied to dynamic process
reasoning. He uses rolling horizon TBM for multi-sensor data fusion. He uses multiple
positioning facilities, namely track circuits, transponders and global positioning systems,
to verify risk prevention performance through train accidents. Although his recognition
mechanism can correctly perceive the running status of the train, it lacks the necessary
innovation [4].

In this paper, multi-sensor is used to observe the attributes that affect the state, and the
observation results are integrated into the observation value of the global sensor. In addi-
tion, the random set theory is used to uniformly describe the multi-source heterogeneous
information, so that the sensor detection data and the fuzzy information of expert opinions
can be fused with the sensor data under the random set framework. This paper designs a
parallel computing model that combines GPU and MapReduce, which is of great signifi-
cance for further improving the computing speed of high-performance computing.

2 � MapReduce parallel computing framework
2.1 � Multiple data fusion sensors

The target system equation/model and measurement equation/model are as follows:

where X(k) is the state vector at time k; Z(k) is the observation vector at time k; �(k)
is the state transition matrix; H(k) is the observation matrix; W(k) is the mean value is
zero, and the covariance the matrix is the white noise of Q(k), which is the system noise;
V(k) is the white noise with the mean value of zero and the covariance matrix is R(k),
which is the observation noise [5, 6].

In the correlation gate of the i-th track, define the difference vector between the obser-
vation j and the track i as the difference between the measured value and the predicted
value, that is, the filter residual:

Among them, X̂i(k/k − 1) is the predicted value of track i at time k [7]. Let Sij(k) be
the covariance matrix of eij(k) . Then the statistical distance is:

Remember that the feasible event corresponding to the feasible matrix obtained after
splitting is θi, i = 1, 2, . . . , L , then:

(1)
{

X(k + 1) = �(k)X(k)+W (k)
Z(k) = H(k)X(k)+ V (k)

(2)eij(k) = Zj(k)−H(k)X̂i(k/k − 1)

(3)dij(k) =
√

eij(k)S
−1
ij (k)eTij (k)

RETRACTED A
RTIC

LE

Page 4 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

Among them, P{θi/Zk} is the conditional probability of the joint event θi , and ω̂jt(θi) is
the element in the feasible matrix [8].

After minimization, the best membership degree and the best fuzzy clustering center
are as follows:

In the parallel filtering of multi-sensor systems, information fusion is divided into two
levels: first, at each subsystem level, information fusion is performed based on the sub-
system state prediction information and the local sensor measurement information to
obtain the subsystem state estimation information; then in the system at the level, the
system filter combines the subsystem state estimation information, the subsystem state
prediction information and the system state prediction information according to the
principle of addition of the amount of information. Since parallel filtering does not use
the subsystem state prediction information, it is only "borrowed". Therefore, when per-
forming information fusion in the system filter, it is necessary to extract the subsystem
state prediction information from the subsystem state estimation information [9].

The basic model of data fusion is shown in Fig. 1. The data preprocessing part obtains
the data to be processed from the data source, and these data often come from multiple
sources. The main function of data preprocessing is to preprocess multi-sensor data. The
main work is to calibrate, standardize, format, and normalize data. Target state estima-
tion, including target position estimation and identity estimation, etc. The main work of
target position estimation is target positioning and target tracking, and target identity
estimation is target recognition. After a proper estimation of the target state, in fact,
there will be a preliminary understanding of the entire battlefield situation. It is possi-
ble to know the current military configuration of the enemy and us in the battlefield,
and there will also be a preliminary estimate of the threat to the enemy [10]. Situation
estimation is mainly divided into two aspects: one is static situation estimation, which

(4)βjt =

L
∑

i=1

P{θi/Zk}ω̂jt(θi)

(5)
uik =

1
[

∑T
j=1

(

dik
djk

)2/(m−1)
]∀i, k

(6)Vi =

∑mk

k=1
(uik)

mXk
∑mk

k=1
(uik)m

∀i

Data
source

Data
preprocessing Information feedback and correction

Human computer
interaction interface

Target state
estimation

Situation
assessment

Threat
assessment Database

Fig. 1  Basic model of data fusion

RETRACTED A
RTIC

LE

Page 5 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

includes the estimation of the forces, deployment and comprehensive combat effective-
ness of both sides. Threat estimation requires a quantitative assessment of the threat
that the enemy may pose to us on the basis of the situation assessment [11]. Information
feedback and correction are a relatively important part of the entire data fusion model.
The feedback results are helpful to the adjustment of the previous three-level fusion pro-
cessing functions; this part allows proper manual intervention in the entire data fusion
process, which helps Reduce the error and delay caused by data fusion [12].

According to the data sampling model sequence Yt , if the difference between si and sj is
large, it indicates that the mutual support between the two data is low, and the authen-
ticity of the data is not high; if the difference between si and sj is small, it means The
mutual support between the two data is relatively high, and the authenticity of the data
is relatively high [13]. Then the credibility of si and sj at time t can be expressed as [14]:

Then the credibility matrix can be expressed as [15]:

The i-th row of the credibility matrix indicates the degree of mutual support between
the measured value si of the sensor Si and the measured value of each other sensor. Then
the mean value of the i-th row of the credibility matrix represents the average mutual
support degree of si and other data [16]. The larger the mean value of credibility in the i-
th row, the higher the credibility of si , and the smaller the deviation from the true value.
In order to reduce the influence of the credibility of oneself and oneself on the average
credibility, the average credibility of the i-th row is expressed as follows [17]:

The variance of the i-th row of the credibility matrix represents the degree of deviation
between si and other measured values. The smaller the variance, the higher the cred-
ibility of si ; on the contrary, the lower the credibility [18]. The variance of the i-th line of
credibility is expressed as follows:

2.2 � GPU cluster

The basic structure of GPU is shown in Fig. 2. There are a total of 8 groups of 16 stream
multiprocessors in the figure, and each stream multiprocessor contains 8 stream pro-
cessing units, so there are a total of 128 stream processing units in the entire GPU. The
stream multiprocessor uses the SIMD hardware instruction set. At the same time, all
stream processing units in a stream multiprocessing execute the same instructions

(7)sij(t) = min{si, sj}/max{si, sj}(1 ≤ i, j ≤ n)

(8)Sn(t) =















s11(t) s12(t) · · · s1n(t)
s21(t) s22(t) · · · s2n(t)

.

.

.
.
.
.

.

.

.
.
.
.

sn1(t) sn2(t) · · · snn(t)

· · ·















(9)ri(t) =

n
∑

j=1

sij − sii/(n− 1)

(10)σ 2
i (t) =

n
∑

j=1

(
∑n

j=1 sij

n
− sij

)

/n

RETRACTED A
RTIC

LE

Page 6 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

(programs). The only difference is that the data processed by each stream processing
unit is different, that is, “Single Instruction Multiple Data (SIMD)”. Each stream process-
ing unit constitutes a hardware thread at runtime. These threads are managed by the
thread control unit inside the stream multiprocessor without program intervention. This
is the realization principle of hardware multithreading [19].

After the Hadoop system receives a job, it first divides all the input data of the job into
several data blocks of equal size, and each Map task is responsible for processing a data
block. All Map tasks are executed at the same time, forming parallel processing of data.
After that, sort the output intermediate data of the Map task. Then the system sends the
intermediate data to the Reduce task for further protocol processing. Job Tracker will
manage all tasks during the whole process of MapReduce execution of the job, such as
repeatedly executing failed tasks, changing the execution status of the job, etc. Task is
the basic unit of Hadoop MapReduce framework for parallel computing [20, 21].

2.3 � MapReduce parallel computing

The MapReduce framework is a distributed processing framework. If task scheduling is
processed in a centralized scheduling manner, this will cause the JobTracker’s load to be
too high. Therefore, MapReduce uses a de-centralized method (De-Central) or a pas-
sive task scheduling method [22]. By adopting a decentralized approach, JobTracker will
not actively analyze which task should be assigned to which node, but TaskTracker will
decide whether to accept a task based on its own computing power. If TaskTracker has
enough redundant computing power, then through the Heartbeat mechanism, Task-
Tracker will submit a task application to Job Tracker. At this time, JobTracker will select
a suitable task for TaskTracker according to the principle of data localization. In this
process, JobTracker only needs to assign a task to a certain node, instead of tracking the
task, assign the task to a non-determined node, which greatly improves the operating
efficiency of JobTracker [23].

Fig. 2  Basic structure of GPU

RETRACTED A
RTIC

LE

Page 7 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

The distributed file system is the basis of the strategy of “data localization” and “com-
puting closer to data” in the MapReduce computing model. There are also two types of
nodes in Hadoop’s MapReduce framework, one is called “Jobtracker” and the other is
called “Tasktracker”. Jobtracker is the scheduler of MapReduce jobs on the entire cluster.
It is responsible for monitoring the running progress and exceptions of each task, as well
as the assignment of tasks. Tasktracker nodes are the units of MapReduce tasks [24, 25].
Tasktracker proposes data from the distributed file system and performs calculations
according to the requirements of the map or reduce function. This is the data localiza-
tion strategy. Because it only communicates the running status instead of transferring a
large amount of data, it also achieves the goal of “computing closer to the data” [26, 27].

3 � MapReduce parallel computing framework design experiment
3.1 � Experimental environment

This experimental environment uses a Hadoop fully distributed cluster environment,
and the entire programming of the single-source shortest path algorithm based on
MapReduce is implemented in Java language. 8 ordinary physical machines are used to
build a fully distributed cluster, and the configuration environment of each node is basi-
cally the same. The configuration environment of each node is shown in Table 1. Hard-
ware environment: Intel(R)Pentium(R)4 CPU, main frequency is 3.0 GHz, 1 GB RAM
and 80 GB available hard disk space. Software environment: The operating system is
WindowsXP, Cygwin and the distributed system cluster architecture platform Hadoop
that simulates the Linux environment under the Windows platform, and the program-
ming tools JDK and Eclipse, the programming language is JAVA.

3.2 � Parallel computing

The MapReduce framework performs two steps for each job requested: The first step is
to divide the requested job into several mapping tasks and assign them to different com-
puting nodes. The original input processing data of the mapping task is the input file.
After the mapping process, it generates an intermediate file that is consistent with the
final required file format. After all the mapping tasks are completed, it will enter the next
reduction stage to merge these intermediate files. By adding an intermediate file genera-
tion process, the distributed algorithm greatly improves its flexibility and guarantees its
distributed scalability. These characteristics make it have unlimited potential in the mas-
sive data processing in the era of big data.

3.3 � Data scheduling

In the NESTOR framework, the places where I/O data is read are distributed in two
places. One is to provide key value key-value pairs to the map() function on the mapper

Table 1  Configuration environment of each node

Operating system Windows XP

Machine configuration CPU RAM Hard disk

Intel(R)Pentium(R)4 1 GB 80 G

Application Cygwin, JDK, Eclipse, Hadoop

RETRACTED A
RTIC

LE

Page 8 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

side, and the file reading module will read from the local disk according to the task
requirements. Data and generate key value key-value pairs, and pass them as param-
eters to the map() function; the other is on the reducer side. Similarly, the system reads
the data from the disk according to the calculation task and generates the parameters
required by the reduce() function. The key and the value list corresponding to the key.
Through this realization method, we can make multiple processing tasks can be in the
working state at the same time. In fact, in the NESTOR framework, we also use such an
implementation method to enable DealDataJob and WriteFileJob to be on standby at the
same time after Collector is started.

3.4 � Data scalability experiment

This experiment will verify the changes in the running time of the PSON algorithm
when the size of the test data set gradually increases while keeping the hardware level
and software configuration of the Hadoop platform unchanged. In this experiment, we
need to use multiple data sets of different sizes for testing, so 10 different test data sets
are generated, and the number of transactions included ranges from 1 million to 50 bil-
lion, and the corresponding test data set size it grew from 4 to 450 GB.

4 � Results and discussion
The MAE values on the 100 K, 1 m and 10 m data sets are shown in Fig. 3. In the result
of mixing on a 100 K data set, the results of each algorithm fluctuate relatively large. The
reason is that the number of data in the training set is relatively small. When the three
results were mixed, the mixed results were generally better than the first three results,
and the MAE dropped by 0.01–0.1. When the data set is 1 m, the MAE of the three
results before mixing is mainly concentrated between 0.79 and 0.82, and the fluctua-
tion is not very large. When the results are mixed, the MAE value is between 0.72 and
0.76, compared to before the mixing, the MAE value is reduced by about 0.06. When the
amount of data increases to 10 m, the result of the item-based algorithm is slightly bet-
ter than that on the 1 m data set, and the floating situation is not very obvious. Based on
the two results of users, there is no significant decline. When the three results are mixed,
MAE has a significant decrease, but compared with the item-based results, the decrease
is not obvious in the 1 m data set, and the decrease is only about 0.04.

Figure 4 shows the running time of the three main steps after the parallel transfor-
mation of the QUBIC algorithm based on the MapReduce parallel computing model
when the number of computing nodes changes. It can be seen from the figure that when
the number of computing nodes increases from 2 to 4, the running time is significantly
reduced. When the number of computing nodes continues to increase, the reduction
in running time will become less and less significant. In other words, as the number of
computing nodes increases, the downward trend of the running time curve will gradu-
ally become flat. This is because, as the number of computing nodes increases, not only
the amount of communication between nodes in the Hadoop system is increasing, but
also the synchronization and control operations among all nodes. Moreover, because the
Reducer node must wait for all Mapper nodes to complete the calculation before starting
the calculation, the increase in the number of calculation nodes also directly causes the

RETRACTED A
RTIC

LE

Page 9 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

start time of the Reduce phase to be delayed. These factors will increase the load of the
entire system and affect the overall running time.

Figure 5 shows the distribution of data blocks under the scoring value strategy. As the
number of data blocks increases, the number of data blocks obtained by each node is
increasing, and the growth rate is stable. Since the performance of the DataNode1 node
is better than that of DataNode2 and DataNode3, the score value of this node is higher
than that of the other two nodes. When the data block is placed, the node will be given
priority, so the number of data blocks obtained by this node is significantly more than
other nodes. In the case of 100, 200, 300 data blocks, DataNode1 gets 13, 25, 44 more
data blocks than DataNode2, and 7, 15, 27 more data blocks than DataNode3. The data

Fig. 3  MAE values on 100 K, 1 m and 10 m datasets

0
100
200
300
400
500
600
700
800
900

1000
1100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pe

ra
tio

n
ho

ur
s

Number of computing nodes

QAG time QAG connected component time Query-URL time

Fig. 4  Running timeRETRACTED A
RTIC

LE

Page 10 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

blocks obtained by DataNode1 account for 40%, 40% and 42.3% respectively, which are
more than 27%, 27.5%, 27.6% of DataNode2 and 33%, 32.5% and 33.3% of DataNode3.
Losing the probability of being selected first, other nodes will replace DataNode1 as the
node that preferentially stores data blocks. The consequence of this trend is to make each
node get the number of data blocks close to a certain average value as evenly as possible,
without causing unbalanced load due to the performance difference of the nodes, which
affects the subsequent task execution.

The sort job in static and dynamic network environment is shown in Table 2. On aver-
age, the time of Sort jobs running under a dynamic network is twice as long as that
under a static network. At this time, MapReduce’s data localization mechanism also
loses its meaning. Unlike the Wordcount job, the Sort job requires both processor and
memory. When the processor is 1, the memory changes from 1 to 2 G, the job running
time is reduced by 23%. When the memory is 1 and the processor 1 becomes 2, the job
running time is reduced by 28%. However, when the processor is 2 or the memory is 2
G, the increase of the processor or memory has no obvious effect on the reduction of
the operating time. So the Sort job is both computationally intensive and data-intensive.
When the processor is 3, the adjustment of the memory has little effect on the job event,
which is the same as the Wordcount type, which is caused by the static Slot mechanism
of MapReduce. When the processor is running, the virtual machine should be set to 2
processors and 2 GB of memory. At this time, the performance of the virtual machine
Sort job reaches the best, and the running time of the job is the shortest.

The parallel speedup test result data is shown in Table 3. It can be seen from the fig-
ure that the parallel speedup ratio will not necessarily increase when the graph scale
increases, but there is a peak. When a certain peak value is reached, the speedup ratio

0
20
40
60
80

100
120
140

100 200 300N
um

be
r

of
 d

at
a

bl
oc

ks
 p

er

no
de

Total number of data blocks

DataNode1 DataNode2 DataNode3

Fig. 5  Data block distribution under the scoring value strategy

Table 2  Sort jobs in static and dynamic network environments

File size (G) Dynamic network time (s) Static network time (s) Time increase
percentage (%)

6 2631 782 258.21

5 2193 560 291.49

4 1741 495 283.26

3 1239 436 264.56

2 783 298 236.45

1 368 143 291.61

RETRACTED A
RTIC

LE

Page 11 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

will decrease instead. This article analyzes the reason that the increase in the number
of maps and reduce will lead to an increase in communication and synchronization
between nodes.

The execution time of different stages in the execution process is compared with
Mars as shown in Fig. 6 data graph. For applications that require the Map process,
such as string matching (SM) and matrix multiplication (MM), we can see from the
figure that preprocessing in Mars can take up to 7–40% of the time. The preprocess-
ing time in MM accounts for about 7% of the entire time, while the SM takes up more
than 38% of the time because the size of the data output in the MM load can be fixed
and can be quickly obtained when calculating the output of the Map task. On the con-
trary, in SM, the output size of each Map task is variable, so it is necessary to traverse
the entire file to get the output size of each map task during preprocessing calcula-
tion. In Mars, because an array is used, after the Map is over, the key-value pairs with
the same key need to be grouped and then handed over to the Reduce process. For the
final output stage of data, due to the use of Zero-Copy Memory in the shared mem-
ory, GPU devices and CPU devices can access this space at the same time, eliminating
the need for mutual copying of data.

Table 4 shows the running time comparison of the small data set. From the experi-
mental results, it can be seen that the parallel algorithm in this paper is not suitable
for too small data sets, and its running time is longer than the serial algorithm; and
as the data set increases, the serial algorithm will not be able to run the results. This
is because the data set is too small, the MapReduce framework necessary for parallel
algorithms to create tasks, scheduling tasks, network transmission and other tasks are
relatively high in proportion to computing tasks, making the running time of parallel

Table 3  Parallel speedup test result data

Number of
nodes

2 3 4 5 6 7 8

T1 0.654 0.732 0.958 1.043 1.324 1.681 1.935

T2 1.035 1.421 1.747 2.011 2.530 2.946 3.231

T3 0.988 1.232 1.633 1.898 2.435 2.871 3.176

T4 1.011 1.399 1.783 2.565 2.983 3.321 3.955

T5 1.103 2.116 2.990 3.583 3.949 4.431 4.585

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

N
or

m
al

iz
ed

 ti
im

e

Different load

preProcessing data move reduce group map

Fig. 6  The execution time of different stages in the execution process compared with Mars

RETRACTED A
RTIC

LE

Page 12 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

algorithms longer than serial algorithms. This experiment also indirectly illustrates
the necessity of parallelizing the attribute reduction algorithm when facing large data
sets.

5 � Conclusions
GPU has been paid more and more attention in general computing due to its multi-
core, high parallelism, and high internal bandwidth. GPU-based big data processing
platforms are distributed in major data processing centers in the world. In this paper,
by combining the parallel computing features and processing mechanism of MapRe-
duce, the calculation problem of relational data is transformed into a key-value pair
form suitable for MapReduce calculation, thereby combining the high scalability of
MapReduce computing power and the characteristics of parallel computing process,
and giving full play to the cluster the computing power of the system greatly improves
the computing efficiency of aggregation operations. Hadoop is an open source parallel
computing platform that implements the functions of the MapReduce parallel com-
puting model. This paper constructs a parallel information retrieval prototype system
based on user log files based on the two parallel algorithms we proposed, and veri-
fies the correctness and effectiveness of the parallelized transformation method for
serial information retrieval algorithms proposed in this paper through comprehensive
experiments. The running results of the prototype system show that the two types of
parallel information retrieval algorithms proposed in this paper not only have ideal
scalability and speedup performance, but also achieve ideal accuracy and effective-
ness when processing large-scale user log files.

Abbreviations
GPU: Graphics processing unit; CPU: Central processing unit; RAM: Random Access Memory; MAE: Mean Absolute Error;
SM: String matching; MM: Matrix multiplication.

Acknowledgements
Thank Google for providing some relevant information for this article

Authors’ contributions
DC—editing, LL—implementation of research process, YC—data collection, ZQ—design conception. All authors read
and approved the final manuscript.

Funding
There is no fund for this article.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Table 4  Comparison of running time of small data sets

Data set BDMR algorithm running time (s) The running time of the
algorithm in this paper
(s)

DS1 7 281

DS1_U2 22 648

DS1_U3 89 1122

DS1_U4 N/A 1356

DS1_U5 N/A 1507

DS1_U6 N/A 1621

RETRACTED A
RTIC

LE

Page 13 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77 	

Declarations

Ethics approval and consent to participate
This article is ethical, and this research has been agreed.

Consent for publication
The picture materials quoted in this article have no copyright requirements, and the source has been indicated.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022,
Jilin, China. 2 School of Electrical Information, Changchun University of Architecture and Civil Engineering, Chang-
chun 130604, Jilin, China. 3 School of Computer Science and Engineering, Jilin University of Architecture and Technology,
Changchun 130114, Jilin, China.

Received: 21 June 2021 Accepted: 25 August 2021

References
	1.	 P. Shan, H. Lv, L. Yu et al., A multisensor data fusion method for ball screw fault diagnosis based on convolutional neural

network with selected channels. IEEE Sens. J. 20(14), 7896–7905 (2020)
	2.	 J.W. Hu, B.Y. Zheng, C. Wang et al., A survey on multi-sensor fusion based obstacle detection for intelligent ground

vehicles in off-road environments. Front. Inf. Technol. Electron. Eng. 21(5), 675–692 (2020)
	3.	 D. Pan, H. Liu, D. Qu et al., Human falling detection algorithm based on multisensor data fusion with SVM. Mob. Inf. Syst.

2020(7), 1–9 (2020)
	4.	 Y. Zhou, X. Tao, Z. Yu et al., Train-movement situation recognition for safety justification using moving-horizon TBM-

based multisensor data fusion. Knowl Based Syst 177(1), 117–126 (2019)
	5.	 K.I. Shah, S. Abbas, M.A. Khan et al., Autonomous parking-lots detection with multi-sensor data fusion using machine

deep learning techniques. CMC-Tech Sci. Press 66(2), 1595–1612 (2020)
	6.	 T.G. Akshaya, S. Sreeja, Multi-sensor data fusion for aerodynamically controlled vehicle based on FGPM: ScienceDirect.

IFAC-PapersOnLine 53(1), 591–596 (2020)
	7.	 C.M.D. Farias, L. Pirmez, G. Fortino et al., A multi-sensor data fusion technique using data correlations among multiple

applications. Future Gener Comput Syst 92, 109–118 (2019)
	8.	 P. Ferrer-Cid, J.M. Barcelo-Ordinas, J. Garcia-Vidal et al., Multisensor data fusion calibration in IoT air pollution platforms.

IEEE Internet Things J. 7(4), 3124–3132 (2020)
	9.	 A. Paulino, L. Guimaraes, E.H. Shiguemori, Assessment of noise impact on hybrid adaptive computational intelligence

multisensor data fusion applied to real-time UAV autonomous navigation. IEEE Lat. Am. Trans. 18(2), 295–302 (2020)
	10.	 B. Malakar, B.K. Roy, Train localization using an adaptive multisensor data fusion technique. Transport 34(4), 508–516

(2019)
	11.	 Q. Xiao, Y. Zhao, W. Huan, Multi-sensor data fusion for sign language recognition based on dynamic Bayesian network

and convolutional neural network. Multimed. Tools Appl. 78(11), 15335–15352 (2019)
	12.	 D. Li, C. Shen, X. Dai et al., Research on data fusion of adaptive weighted multi-source sensor. Comput. Mater. Continua

61(3), 1217–1231 (2019)
	13.	 L. Wang, Y. Chen, Z. Zhao et al., A multi-modal health data fusion and analysis method based on body sensor network.

Int. J. Serv. Technol. Manag. 25(5/6), 474–491 (2019)
	14.	 K.O. Min, O.S. Kwon, B.G. Choi et al., A study on the accuracy analysis of land cover classification using fusion method of

aerial multi-sensor data in coastal area. J. Korean Soc. Geospatial Inf. Sci. 28(1), 11–24 (2020)
	15.	 X. Du, A. Zare, Multiresolution multimodal sensor fusion for remote sensing data with label uncertainty. IEEE Trans.

Geosci. Remote Sens. 58(4), 2755–2769 (2020)
	16.	 Y. Wang, G. Zheng, X. Wang, Development and application of a goaf-safety monitoring system using multi-sensor infor-

mation fusion. Tunn Undergr Space Technol 94, 103112.1-103112.15 (2019)
	17.	 E. Anastasiou, A. Castrignano, K. Arvanitis et al., A multi-source data fusion approach to assess spatial-temporal variability

and delineate homogeneous zones: a use case in a table grape vineyard in Greece. Sci. Total Environ. 684, 155–163
(2019)

	18.	 M.K. Villareal, A.F. Tongco, Multi-sensor fusion workflow for accurate classification and mapping of sugarcane crops. Eng.
Technol. Appl. Sci. Res. 9(3), 4085–4091 (2019)

	19.	 I.S. Weon, S.G. Lee, Environment recognition based on multi-sensor fusion for autonomous driving vehicles. J. Inst.
Control 25(2), 125–131 (2019)

	20.	 J. Yan, Z. Xu, X. Luo et al., Feedback-based target localization in underwater sensor networks: a multisensor fusion
approach. IEEE Trans. Signal Inf. Process. Over Netw. 5(1), 168–180 (2019)

	21.	 R.P. Palanisamy, B.J. Jung, S.H. Sim et al., Quasi real-time and continuous non-stationary strain estimation in bottom-fixed
offshore structures by multimetric data fusion. Smart Struct. Syst. 23(1), 61–69 (2019)

	22.	 N. Ghoroghchian, M. Mirmohseni, M. Nasiri-Kenari, Abnormality detection and monitoring in multi-sensor molecular
communication. IEEE Trans. Mol. Biol. Multi-Scale Commun. 5(2), 68–83 (2020)

	23.	 J. Qu, C. Wu, Q. Li et al., Human fall detection algorithm design based on sensor fusion and multi-threshold comprehen-
sive judgment. Sens. Mater. 32(4), 1209–1221 (2020)

RETRACTED A
RTIC

LE

Page 14 of 14Chang et al. EURASIP J. Adv. Signal Process. (2021) 2021:77

	24.	 J.H. Aheto, X. Huang, X. Tian et al., Multi-sensor integration approach based on hyperspectral imaging and electronic
nose for quantitation of fat and peroxide value of pork meat. Anal. Bioanal. Chem. 412(5), 1169–1179 (2020)

	25.	 J. Gabela, A. Kealy, S. Li et al., The effect of linear approximation and Gaussian noise assumption in multi-sensor position-
ing through experimental evaluation. IEEE Sens. J. 19(22), 10719–10727 (2019)

	26.	 Z. Zhu, Y. Arezki, N. Cai et al., Data fusion-based method for the assessment of minimum zone for aspheric optics.
Computer-Aided Design and Applications 18(2), 309–327 (2020)

	27.	 R. Caballero-Aguila, A. Hermoso-Carazo, J. Linares-Perez, Networked distributed fusion estimation under uncertain
outputs with random transmission delays, packet losses and multi-packet processing. Signal Process 156, 71–83 (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dajun Chang  was born in Jian, Jilin, People’s Republic of China, in 1976. He received the master’s
degree from Changchun University of Science and Technology. Now, He studies for his doctorate in
Changchun University of Science and Technology. His research interests include machine learning, paral-
lel computing of GPU and big data analysis. E-mail: changdajun131@163.com.

Li Li  was born in Changchun, Jilin, People’s Republic of China, in 1963. She received the doctor’s
degree from Changchun University of Science and Technology. Now, she works in Changchun University
of Science and Technology. Her research interests include software reliability, Cloud computing technol-
ogy and Artificial intelligence. E-mail: cdjllcy@163.com.

Ying Chang  was born in Changchun, Jilin, People’s Republic of China, in 1978. She received the mas-
ter’s degree from Changchun University of Science and Technology. Now, she works in Jilin University
of Architecture and Technology. Her research interests include machine learning, parallel computing and
Cloud computing technology. E-mail: cjxychangying@163.com.

Zhangquan Qiao  was born in bozhou, Anhui, People’s Republic of China, in 1996. He is studying as
a graduate student at Changchun University of Science and Technology.His research interests include big
data processing and analysis and information security. E-mail: qiaozhangquan@yeah.net.

RETRACTED A
RTIC

LE

	Implementation of MapReduce parallel computing framework based on multi-data fusion sensors and GPU cluster
	Abstract
	1 Introduction
	2 MapReduce parallel computing framework
	2.1 Multiple data fusion sensors
	2.2 GPU cluster
	2.3 MapReduce parallel computing

	3 MapReduce parallel computing framework design experiment
	3.1 Experimental environment
	3.2 Parallel computing
	3.3 Data scheduling
	3.4 Data scalability experiment

	4 Results and discussion
	5 Conclusions
	Acknowledgements
	References

