
RESEARCH Open Access

Intelligent cloud workflow management
and scheduling method for big data
applications
Yannian Hu1, Hui Wang2* and Wenge Ma3

Abstract

With the application and comprehensive development of big data technology, the need for effective research on
cloud workflow management and scheduling is becoming increasingly urgent. However, there are currently
suitable methods for effective analysis. To determine how to effectively manage and schedule smart cloud
workflows, this article studies big data from various aspects and draws the following conclusions: Compared with
the original JStorm system, the response time is shortened by a maximum of 58.26% and an average of 23.18%,
CPU resource utilization is increased by a maximum of 17.96% and an average of 11.39%, and memory utilization
increased by a maximum of 88.7% and an average of 71.16%. In terms of optimizing the dynamic combination of
web services, the overall performance of both the MOACO and CCA algorithms is better than that of the GA
algorithm, and the average performance of the MOACO algorithm is better than that of the CCA algorithm. This
paper also proposes a cloud workflow scheduling strategy based on an intelligent algorithm and realizes the two-
tier scheduling of cloud workflow tasks by adjusting the combination strategy for cloud service resources. We have
studied three representative intelligent algorithms (ACO, PSO and GA) and improved them for scheduling
optimization. It can be clearly seen that in the same scenario, the optimal values of the different algorithms vary
greatly for different test cases. However, the optimal solution curve is substantially consistent with the trend of the
mean curve.

Keywords: Big data, Cloud workflow, Cloud service resource combination, Scheduling optimization

Introduction
Cloud workflow technology is an effective way to achieve
process integration in a cloud computing environment.
Cloud workflow management can improve and optimize
business processes, improve business efficiency, achieve
better business process control, improve business
process flexibility, and improve customer service quality.
Cloud workflows make it easy to build, execute, manage,
and monitor cloud computing applications, enabling
cloud computing applications to be automated and effi-
cient. Due to the dynamic, distributed, heterogeneous
and scalable nature of cloud computing, some methods

and techniques for traditional workflows cannot effect-
ively address related problems in cloud computing envi-
ronments; instead, corresponding methods should be
developed based on the characteristics of cloud comput-
ing resources and cloud computing applications. To this
end, the cloud computing workflow architecture, the dy-
namic process model, the resource management model
and dynamic scheduling algorithms for cloud computing
workflows should be studied.
Recently, many research teams at home and abroad

have begun to explore opportunities to use molecular
data in cloud computing environments. In [1], the au-
thors quantified the transcriptional expression levels of
12,307 RNA sequencing samples from the Cancer Cell
Encyclopedia and the cancer genome map. The author

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: conglinwh@wfu.edu.cn
2Weifang University, Weifang 261061, Shandong, China
Full list of author information is available at the end of the article

Journal of Cloud Computing:
Advances, Systems and Applications

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications
 (2020) 9:39
https://doi.org/10.1186/s13677-020-00177-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00177-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:conglinwh@wfu.edu.cn

used two cloud-based configurations and examined the
performance and cost profiles for each configuration. In
[2], the authors found that a cloud infrastructure enables
a rich set of management tasks for manipulating com-
puting, storage, and network resources in the cloud. The
authors adopted a lightweight, non-intrusive approach
that is applicable only to interlaced logs, which are
widely available in a cloud infrastructure. The differ-
ences found during inspection indicate potential execu-
tion issues that may or may not be accompanied by
error log messages. In [3], the authors proposed an im-
proved particle swarm optimization (IPSO) algorithm
for scheduling applications to cloud resources. The IPSO
algorithm minimizes the total cost of placing tasks on
available resources. The results showed that the im-
proved algorithm is effective compared to the standard
particle swarm algorithm. In [4], the author introduced a
process model and resource model for energy-aware
workflow scheduling in a cloud computing environment.
Numerical examples and simulation experiments showed
the feasibility and effectiveness of the proposed method.
In [5], the authors proposed an alternative architecture
that is designed to be suitable for cloud computing and
uses a pure software approach to deploy a dynamic soft-
ware infrastructure. The authors introduced this archi-
tecture to overcome certain limitations while providing
ways to handle security and scalability. In [6], the author
designed a conceptual model for the overall manage-
ment of all resources to improve energy efficiency and
reduce the carbon footprint of a cloud data centre
(CDC). The author discussed the interrelationship be-
tween energy and reliability for sustainable cloud com-
puting and laid the foundation for further practical
development. In [7, 8], the authors proposed a new
cloud computing architecture known as Model as a Ser-
vice (MaaS). This study presented a flexible and effective
method for analysing the uncertainty and time-varying
characteristics of parameters. Group data sharing in
cloud environments has become a topic of great interest
in recent decades. With the increasing popularity of
cloud computing, the question of how to achieve secure
and efficient data sharing in the cloud environment has
become an urgent problem to be solved [9]. In [10], the
author developed a method based on an ant colony sys-
tem (ACS) to achieve the goal of virtual machine place-
ment (VMP). The results showed that the performance
of OEMACS is generally better than that of traditional
algorithms.
The most important part of a cloud workflow engine

is the cloud workflow scheduling strategy. In the cloud
computing environment, a workflow management sys-
tem needs to find a suitable service provider to run the
tasks of a workflow in accordance with the user’s quality
of service constraints in its trusted domain, and the

service provider needs to reasonably allocate the virtual
computing resources in its data centre to perform the
workflow tasks. In the first stage, a cloud service re-
source selection model can be used to select an appro-
priate service provider for the execution of a cloud
workflow and map the sub-workflows that can be exe-
cuted in parallel to the corresponding web services; in
the second stage, various algorithms can be used to map
the sub-workflows to the corresponding virtual comput-
ing resources and optimize them.
The greatest difference between the cloud computing

environment and the traditional computing environment
is that computing services can be obtained on demand
and their use can be paid for at any time. At the same
time, due to the dynamic, distributed, heterogeneous
and autonomous nature of cloud computing, traditional
workflow methods and technologies cannot effectively
address the problems that arise in cloud workflow
management.
Currently, massive-scale data processing technology is

a highly active area of research, and much meaningful
research has been carried out at home and abroad. In
[11], the authors found that big data technology is in-
creasingly used in biomedical and health informatics re-
search. Next-generation sequencing technology can be
used to process billions of DNA sequences per day, and
the use of electronic health records (EHRs) is resulting
in the recording of large amounts of patient data. The
application of big data in healthcare is a fast-growing
field, and many new discoveries and new methods have
been reported in the past 5 years. In [12], the authors
found that the operational cost of streaming media ap-
plication providers can be greatly reduced through flex-
ible resource allocation and centralized cloud
management. In the article, the authors considered the
optimal deployment problem (ODP) based on the local
memory of each viewer. In [13], the authors developed
an innovative method of extracting valuable pixel cat-
egories with similar evolution for specific parameters of
interest over a long period of time to obtain valuable
comprehensive information. Unsupervised classification
was performed using an original custom method suitable
for execution on such an enormous data set. In [14], the
authors found that big data applications (such as medical
imaging and genetics) typically generate data sets that
consist of n observations with p variables, where p is lar-
ger than n. The authors considered the classification
problem for such p > > n data and proposed a classifica-
tion method based on linear discriminant analysis
(LDA). In [15], the authors found that the increase in
the size and complexity of big data available via the
Internet has provided unprecedented opportunities for
cyber-physical systems (CPSs). To address the related
problems, the authors proposed the Cyber-Physical

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 2 of 13

Space Event Model (CPSEM) to analyse the impact of
events on multiple viewers. In addition, the authors pro-
posed the Event Influence Scope Detection Algorithm
(EISDA) to detect the impact range of events in cyber-
space and physical space. In [16], the author proposed
an innovative incremental processing technology named
Stream Cube, which can process large-scale data and
streaming data. The system is based on real-time acqui-
sition, real-time processing, real-time analysis and real-
time decision-making. In [17, 18], based on the theory of
fluid mechanics, the author established the filter cake
layer model and proposed a modified method of calcu-
lating the filter cake layer porosity. The results showed
that the calculated values were in good agreement with
the experimental data, and the relative error was less
than 10%. In [19], the author developed a method suit-
able for probe management and data processing. This
method is based on an evaluation of laboratory perform-
ance and adaptive field protocols for calibration, data
processing and validation. In [20], the author developed
an open source tool called DRomics, which can be used
as an R-package or a web-based service; it has no con-
centration dependence or high variability and can iden-
tify the best model for describing a concentration
response curve. In [21, 22], the author improved the re-
source utilization ratio in terms of the number of CPU
cores and the memory size of virtual machines (VMs)
and physical machines (PMs) and minimized the num-
ber of virtual machines and active PMs instantiated in
the cloud environment. In [23], the author proposed a
framework that supports mobile applications with a
context-aware computing offloading function and pro-
posed an estimation model to automatically select the
cloud resources to be offloaded.
To find an effective method for intelligent cloud

workflow management and scheduling, this article
studies big data from various aspects. Based on the
existing open source platform JStorm for real-time
big data processing, a dynamic resource scheduling
system named D-JStorm is designed and imple-
mented. This paper proposes a cloud workflow sched-
uling strategy based on intelligent algorithms and a
strategy for adjusting the combination of perceived
cloud service resources to achieve two-tier scheduling
of cloud workflow tasks. Three representative intelli-
gent algorithms are studied and improved for sched-
uling optimization. Compared with the original
JStorm system, the response time is shortened by a
maximum of 58.26% and an average of 23.18%, the
CPU resource utilization is increased by a maximum
of 17.96% and an average of 11.39%, and the memory
utilization is increased by a maximum of 88.7% and
an average of 71.16%. In terms of optimizing the dy-
namic composition of web services, the overall

performance of both the MOACO and CCA algo-
rithms is better than that of the GA algorithm, and
the average performance of the MOACO algorithm is
also better than that of the CCA algorithm.

Method
Combination model for resource management based on
the ant Colony algorithm
QoS assessment of the management portfolio
Let WS= {WSi| i= 1, 2,…, n} be a set of n types of subtasks
that need to be completed, and let wsj = {wsij| j= (1, 2,…,
m1)} be a candidate web service class in the UDDI specifica-
tion that can complete subtask WSi, where mi is the number
of services in the service class. Let Ii = {ti, ci, ri,…} be the set
of QoS evaluation indicators for service class wsi, where ti is
the time index, ci is the price index, ri is the reliability index,
and the ellipsis represents scalable quality indicators. Each
service class indicator set is different, and ti, ci, and ri for a
web service can be dynamically combined to calculate public
evaluation indicators for each service class, that is, QoS =
execution time, execution cost, and reliability.
Definition 1 Execution time. Let T(wsi) be the execu-

tion time of service subtask wsi; then, d WSTinxQoS ¼ Pn
i¼1

Tð
wsiÞ is the execution time of the discovery process.
When a subtask is executed sequentially for several ser-

vice components, TðwiÞ ¼
Pk
j¼1

wsj ; when the subtask is

executed in parallel for several service components,
T(wsi) = max(T(wsj)) j = 1, 2, …, k.
Definition 2 Execution cost. Let C(wsi) be the execu-

tion cost of web service subtask wsi; then, WSCostQ0S
¼ Pn

i¼1

CðwsiÞ is the execution cost of the web discovery
process.
Definition 3 Service reliability. Let R(wsi) be the ser-

vice reliability of service subtask wsi; then, WSreliablityQaS

¼ Qn
l¼1

RðwsiÞ is the reliability of the discovery process.

Multi-objective ant colony algorithm
Since the goal of the dynamic combination problem for
a web service is to select a suitable service instance from
among the candidate services for each discovered sub-
task, the pheromone of ksij is selected to be τij for sub-
task tki, and the heuristic information nij of ksij is
selected for subtask tki. When the algorithm is initial-
ized, initial values τij = τ0, 1 ≤ i ≤ n, 1 ≤ j ≤m, are set for
the pheromones. Multiple QoS parameters with different
characteristics are considered in the model. To perform
multi-objective optimization, different types of heuristic
information need to be defined.

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 3 of 13

Reliability-prioritized heuristic information The RP
heuristic information guides ants to select highly reliable
web service instances. If an ant’s heuristic type is RP, the
heuristic information for selecting ksij for subtask tki can
be expressed as:

ηij ¼ RPij

¼ ks j � r− min−reliabilityi þ 1
max−reliabilityi− min−reliabilityi þ 1

ð1Þ

Here, minreliabilityt ¼ min1≤ 5:5m1fks ji ; rg; maxreliabilityt
¼ max1s;sm1fks ji ; rg. This formula ensures that the heur-
istic information is normalized to the interval (0,1) and
that the higher the reliability of a web service instance is,
the greater the value of its heuristic information.

Time-prioritized heuristic information The TP heur-
istic information guides ants to select a web service in-
stance with a short execution time. If an ant’s heuristic
type is TP, the heuristic information for selecting ksij for
subtask tki can be expressed as:

ηij ¼ TPij ¼ max−timei−ks
j
i � t þ 1

max−timei− min−timei þ 1
ð2Þ

Here, min−timei ¼ min1≤ j≤mifks ji � tgi; max−timei
¼ max1⩽ j≤m1fks ji � tg . This formula ensures that the
heuristic information is normalized to the interval (0, 1)
and that the shorter the execution time of a web service
instance is, the greater its heuristic information value.

Cost-prioritized heuristic information The CP heuris-
tic information guides ants to select a web service in-
stance with a low execution cost. If an ant’s heuristic
type is CP, the heuristic information for selecting ksij for
subtask tki can be expressed as:

ηij ¼ CPij ¼ max−costi−ks
j
i � t þ 1

max−costi− min−costi þ 1
ð3Þ

Here, min− costi ¼ min1≤ j≤mifks ji cg; max−casti
¼ max1≤ j≤m1fks ji � cg . This formula ensures that the
heuristic information is normalized to the interval (0, 1)
and that the lower the execution cost of a web service
instance is, the greater the value of its heuristic
information.

Resource scheduling model for big data processing
Parameter definitions
Definition 1 Assume that the limited set of physical
clusters in the current streaming big data processing
platform is N = {N1,N2,…,Nd}, where the resource con-
figuration of each physical machine is Nd ¼< totalcpud ;

totalmem
d >. To determine the quantitative indicators for

the combined scheduling strategy, it is necessary to
quantify the resource utilization of each node. In this
paper, the different computing resources of the CPU
and memory are considered separately to perform
scheduling and quantify the resource utilization rate on
each node.
Definition 2 The node resource utilization Ud is cal-

culated as the ratio of the actual amount of resources
occupied on each node to the total amount of resources
available at that node during operation. The CPU and
memory resource utilization on a node are calculated
using the following formulas:

Ucpu
d ¼

Xn
j¼1

Rcpu
dj

totalcpud

Umem
d ¼

Xn
j¼1

Rmem
dj

totalmem
d

ð4Þ

Here, Ucpu
d and Umem

d represent the CPU and mem-
ory resource utilization, respectively, of the physical

node Nd and
Pn
j¼1

Rcpu
dj and

Pn
j¼1

Rmem
dj represent the sums of

the memory and CPU resource usage, respectively, of
the computing containers running on the physical node
Nd.

Scheduling operation timing
For a given computing container, one can first deter-
mine whether the computing container requires re-
source rescheduling. The judgement rule for this
purpose is:

PRcpu
i nþ1ð Þ≠AR

φu
in

PRmem
i nþ1ð Þ≠AR

mem
in

ð5Þ

where PRcpu
iðnþ1Þ and PRmem

iðnþ1Þ represent the predicted CPU
and memory resources, respectively, needed for the i-th
computing container in the (n + 1)-th time window and
ARcpu

in and ARmem
in represent the CPU and memory re-

sources, respectively, actually assigned to the i-th com-
puting container in the n-th time window That is, as
long as the actual allocated resource amount is different
from the predicted amount, resource rescheduling must
be performed on the computing container, and the com-
puting container is added to the resource rescheduling
queue (RSQ).

Calculation of resource increase and decrease
First, the predicted resource value PRiðnþ1Þ ¼ ðPRcpu

iðnþ1Þ;
PRmem

iðnþ1ÞÞ for the i-th computing container and the actual

configured resource amount ARin ¼ ðARcpu
in ;ARmem

in Þ for

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 4 of 13

the i-th computing container in the (n + 1)-th time win-
dow are obtained; then, the resource adjustment ΔRi(n +

1) for container i in the (n + 1)-th time window can be
calculated.

ΔTRi nþ1ð Þ ¼< ΔRcpu
i nþ1ð Þ;ΔR

mem
i nþ1ð Þ >

ΔTR puð Þ
i nþ1ð Þ ¼ PRcpw

i nþ1ð Þ−AR
cpu
in

ΔTRmem
i nþ1ð Þ ¼ PRmem

i nþ1ð Þ−AR
mem
in

ð6Þ

Note that the predicted resource values in terms of
CPU and memory for each computing container may be
either smaller or greater than the current actual config-
ured resource amount. Accordingly, when ΔTRcpu

iðnþ1Þ or

ΔTRmem
iðnþ1Þ is greater than 0, this indicates a resource

addition to the CPU or memory. When ΔTRcpu
iðnþ1Þ;Δ

TRmem
iðnþ1Þ is less than 0, this means that the CPU or mem-

ory resources are reduced.

Theory related to cloud workflows
Scenario model
The core business process analysis of the platform is as
follows:

First, a service requester logs into the system using a
legal user name and password and starts a service
application in accordance with the workflow rules of
the company. The application process mainly includes
entering the application data, submitting the
application, and waiting for the application to be
accepted.
Second, the acceptor at the acceptance centre accepts
the service application data information, checks the
business data, accepts the service application, issues an
acceptance opinion, and reviews the workflow.
Then, the dispatcher at the dispatching centre reviews
the business data information, reviews the acceptance
result, and distributes the event.
Finally, the dispatcher feeds the audit opinion back to
the acceptor. The dispatcher distributes the event to
the squad leader in accordance with the business
demand. The squad leader calculates the allocation and
waits for the decision-maker to issue the order, and the
implementation department begins the business imple-
mentation process after receiving the instruction. After
that, the result of the workflow computation is fed back
to the acceptor, the acceptor summarizes the informa-
tion, and the processing result is fed back to the service
requester. The service requester performs the next
event flow, generates a workflow information table, per-
forms the warehousing process, and completes the
workflow by sending a workflow message, which allows
the information maintainer and workflow supervisor to

maintain and monitor the workflow information at any
time.

Role models
The roles of the entities performing a workflow can be
abstracted in accordance with their functions during
event processing: application requester, service re-
quester, acceptor, dispatcher, squad leader, decision-
maker and implementation department. Acceptor func-
tions include information collection, task distribution,
acceptance confirmation, programming, emergency
monitoring, incident reporting and comprehensive co-
ordination. Service requester functions include service
application, information retrieval and alarm issuance.
Implementation department functions include informa-
tion feedback, information retrieval and command re-
ception. Squad leader functions include information
collection, information reporting, task distribution, log
management, command reception, and event monitor-
ing. Decision-maker functions include situation monitor-
ing, program validation, and event monitoring.
Scheduler functions include task signing, duty manage-
ment, situation monitoring, and service auditing. Work-
flow monitor functions include situation monitoring and
message monitoring. Business manager functions in-
clude business management, user management and per-
sonal information management. Information maintainer
functions include information maintenance, backup
maintenance and communication management. Applica-
tion requester functions include workflow template se-
lection, workflow template configuration, application
configuration and data configuration.

Dynamic resource prediction model for big data
processing
Parameter definitions
This paper introduces a sliding window function. For
each application, the predicted resource usage value for
the i-th computing container in the (n + 1)-th time win-
dow, Wn+ 1, can be expressed as:

PRi nþ1ð Þ ¼ g Rið Þ ð7Þ

where g(Ri) represents a resource usage prediction
model. For all computing containers CC = {CCl, CC2,⋯,
CCm} in the streaming big data processing platform, the
historical resource usage data of each computing con-
tainer CCi are obtained by monitoring each time window
to form a data stream Ri with temporal properties, as de-
fined below.
Definition 1 Physical resource usage sequence
For the i-th computing container, CCi (i ≤m), the cor-

responding resource usage in the n-th time window is
Rin, and the resource usage sequence Ri = {Ri1, Ri2,⋯,

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 5 of 13

Rin} of computing container CCi is obtained as a
complete time series, where n is the number of time
windows and Rin is the amount of resources used by the
application’s i-th computing container in the n-th time
window. Since the resource usage includes both CPU re-
source usage and memory resource usage, Rin can be
expressed as Rin ¼ fRcpu

in ;Rcpu
in g.

Definition 2 Sequence of changes in resource usage
For the i-th computing container CCi, the difference

between the adjacent n-th time window and the (n-1)-th
time window is expressed as the change in resource
usage ΔRin = Rin − Ri(n − 1), from which the sequence of
changes in resource usage ΔRi = {ΔRi1,ΔRi2,…,ΔRin} can
be obtained for the computing container. Since Ri in-
cludes both CPU and memory resources, the sequence
of changes in resource usage includes the sequence of
changes in CPU usage ΔRcpu

in and the sequence of
changes in memory usage ΔRmem

in ;ΔRin ¼ fΔRcpu
in ;ΔRmem

in

g, where ΔRcpu
in ;ΔRmem

in are calculated as follows:

ΔRcpu
in ¼ Rcpu

in −Rcpu
i n−1ð Þ

ΔRmem
in ¼ Rmem

in −Rmem
i n−1ð Þ

ð8Þ

Resource prediction model based on the changes in
resource usage
The predicted resource usage value for the i-th comput-
ing container in the (n + 1)-th time window is calculated
from the historical CPU and memory usage sequences,
as expressed below:

g Rið Þ ¼ f Rcpu
i ;Rmem

i

� � ð9Þ

where, as shown in Definition 1, Rcpu
i is the sequence of

CPU resource usage from the start time of the i-th com-
puting container to the n-th time window and Rmem

i is
the corresponding sequence of memory resource usage.
The resource usage sequence is volatile and continuous,
so the CPU and memory resource usage of the i-th com-
puting container in the n-th time window can either in-
crease or decrease depending on the change in usage.
To predict the resource usage value in the (n + 1)-th
time window, the problem is converted into the follow-
ing formula:

f Rcpu
i ;Rmem

i

� � ¼ Rcpu
i þ ΔRcpu

0

i nþ1ð Þ;R
mem
i þ ΔRmem

0

i nþ1ð Þ
n o

ð10Þ

Since the CPU resource usage Rcpu
in and the memory

resource usage Rmem
in in the n-th time window are

known, the problem translates into one of finding the

changes in resource usage, ΔRcpu
0

iðnþ1Þ and ΔRmem
0

iðnþ1Þ , in the

next time window.

Experiment
Test environment
The test environment for the system implemented in
this paper consists of 6 physical nodes configured as
shown in Table 1, one of which is the master node,
four of which are compute nodes, and one of which
serves as the client to simulate changing user re-
quests. A change law in the form of a Poisson prob-
ability density is continuously sent to the Kafka
application over time.

Workflow selection
For the experiments presented this paper, five work-
flows, which are representative examples from the field
of workflow research, are selected, namely, SIPHT,
LIGO, Epigenomics, Montage and CyberShake. Among
these five workflows, each has a different structure, dif-
ferent data sources and different computational
characteristics.
The SIPHT workflow is derived from the Harvard

Bioinformatics Project. It represents an automated
search for the sRNA-encoding genes of all bacteria
in the database of the International Bioinformatics
Center. The tasks in this workflow have high CPU
processing power and I/O requirements. The LIGO
workflow comes from the field of physics. The goal
is to analyse and detect gravitational wave data,
which is a CPU-intensive task that consumes consid-
erable memory. The Epigenomics workflow is used
to automate various operations in genome sequence
processing and requires strong CPU processing
power. The Montage workflow comes from NASA/
IPAC and is an astronomical application for generat-
ing specific mosaics based on input images. Most of
this workflow consists of I/O-intensive tasks that do
not require much CPU processing power. Cyber-
Shake is a data-intensive workflow created by the
Southern California Earthquake Center to analyse
seismic hazards. It also requires considerable mem-
ory and CPU support. These five workflows are used
to represent five different applications in the experi-
ments presented in this paper. In each application,
the workflow consists of 50, 100, 200, 300, 400, 500,
600, 700, 800, 900 or 1000 tasks. The parameters
and run time of each workflow are determined based
on real workflow logs.

Performance evaluation indicators
Forecast performance evaluation index
This paper uses the absolute error (AE) as a measure.
The AE is used to measure the difference between the
predicted CPU or memory resource usage and the actual
usage within a single time window, as calculated by the
following formula:

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 6 of 13

AE ¼ Xobserve;n−Xpredict;n ð11Þ

In this formula, Xoberve,n represents the observed CPU
or memory resource usage of the computing container
in the n-th time window, and Xpredict,n represents the
predicted CPU or memory resource usage of the com-
puting container in the n-th time window.

Overall performance evaluation index
The time-sensitive demand satisfaction rate is expressed
as the ratio of the number of requests successfully proc-
essed within the deadline to the total number of requests
sent during a certain period of time. The calculation
method is shown below:

Pqos ¼ K Tð Þ
N Tð Þ ð12Þ

where N(T) represents the total amount of data arriving
within time window T and K(T) represents the amount
of data successfully processed within the deadline in
time window T.
The application processing response time is expressed

as the average time spent successfully processing each
data point per unit time. The total amount of data proc-
essed per unit time can be expressed as the number of
tuples processed per unit time. This indicator represents
the difference between the time the data are sent from
the application to the time they are fully processed by
the application and a result is returned:

L Tkð Þ ¼

Xn Tkð Þ

i¼0

Li

n Tkð Þ ð13Þ

where Tk represents the current k-th time window,
n(Tk) represents the total amount of data processed in
time window Tk, and Li represents the processing delay
of the i-th data point in time window Tk.
The application resource utilization is expressed as the

ratio of the amount of CPU or memory resources Rallo-

cate allocated to the application to the actual resource

usage Ruse in a unit time window. The resource usage of
the application over the entire steady-state time period
T is used. The resource usage is then averaged to repre-
sent the average resource utilization of the application.
The calculation formula is shown below:

R Tð Þ ¼ 1
n

Xn
w¼1

Ruse;w

Ralbcate
ð14Þ

This formula calculates the value of the resource usage
within a time window w.

Results and discussion
Performance analysis under different data arrival
intensities
In these experiments, the SequenceTest program was
used for testing. The data arrival rate was divided into
three groups in order from low to high. In Table 1, the
horizontal header indicates the number of the parameter
value test group, and the value in each column repre-
sents the data arrival rate in the corresponding group,
where tps/s represents the average number of tuples sent
per second. The default initial resource allocation is < 1
core, 2 GB > for each computing container. This value is
the default resource configuration for the JStorm cluster.
The time guarantee requirement is 400 ms, which is the
average data arrival rate in the default configuration
(Table 2).
In terms of the timeliness requirements, as shown in

Fig. 1, compared with the JStorm system, the maximum
increase is 15.26%, the lowest increase is 11.35%, and the
average increase is 13.38%.
Ensuring timeliness is the primary goal of a streaming

big data processing platform, and the response time is a
direct indicator of whether time-sensitive requirements
can be satisfied. The improvements in timeliness achieved

Table 1 Test environment configuration

Resource Type Resource Name Resource Configuration

Hardware CPU Intel(R) Core(TM) i5–3470 CPU @ 3.20 GHz * 4

Software RAM 8 GB

External storage 1 TB

Internet Gigabit Ethernet

Operating system Centos 6.5

JVM jdk 1.7.0_65

Middleware Zookeeper3.4.5

Compiler environment Maven 3.2.2

Table 2 Groupings in terms of data arrival intensity

Value group Bin 1 Bin 2 Bin 3

Average arrival rate 420 tps/s 1120 tps/s 2160 tps/s

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 7 of 13

in this paper are mainly reflected in the fact that when the
application load reaches a peak, the proposed platform
can dynamically allocate sufficient CPU and memory re-
sources for each computing container in advance, ensur-
ing that all computing containers have sufficient
calculation and storage capacity at the peak of the re-
source demand. Moreover, when the load decreases, due
to the reduced demand for resources, the arriving data

requests can be processed in sufficient time. Based on
these two factors, the timeliness of data processing is max-
imized due to resource pre-feeding at peak times and re-
source demand satisfaction at load trough times.
In terms of response time, as shown in Fig. 2, com-

pared with the JStorm system, the minimum reduction
is 15.69%, the maximum reduction is 35.1%, and the
average reduction is 26.76%.

Fig. 1 Comparison of the satisfaction of time-dependent demand under different data arrival strengths

Fig. 2 Comparison of average response time under different data arrival intensities. a Average response time curves for the Bin 1 group. b
Average response time curves for the Bin 2 group. c Average response time curves for the Bin 3 group

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 8 of 13

The improvements in the response time compared
with the original JStorm system are mainly reflected in
the peak load time. In this experiment, each node was
individually selected to run a computing container to
avoid interactions among the computing resource and
storage resources of multiple computing containers. Dy-
namic allocation allows a single computing container to
obtain more resources for calculation at peak load times
while reducing the data dwell time in the cache queue;
thus, the amount of data queued in each component is
reduced. The processing time is also greatly reduced,
which, in turn, leads to a reduction in the overall time
elapsed between when the data flow into the system and
when they are completely processed.

Performance analysis under different initial resource
configurations
To analyse the impact of the initial resource allocation
in the D-JStorm system, the initial resource allocation
configurations for different computing containers were
divided into three groups, representing resource short-
age, the default resource configuration and resource af-
fluence, as shown in Table 3.
In terms of the timeliness requirements, as shown in

Fig. 3, compared with the JStorm system, although the
Bin 1 group shows a decrease of 4.17%, the Bin 2 and
Bin 3 groups show increases of 13.5% and 11.16%, re-
spectively, corresponding to an average increase of
6.83%.
For the Bin 1 group, the initial resource configuration

<CPU, memory> corresponds to < 0.5 cores, 2 GB>, and
the CPU demand is resource-intensive. Since the predic-
tion method selected in this paper is based on the his-
torical time window sequence, a certain level of
guaranteed time-sensitive resource allocation is required
among the historical values; however, the configuration
of 0.5 cores keeps the resources in a state of tension,
preventing the predictive component from having suffi-
cient historical low-latency response values to determine
how many resources should be allocated to achieve a
given time-sensitive requirement. As a result, the system
cannot obtain sufficient resources to process the data at
load peaks, leading to excessive data accumulation, in-
creased latency, and a reduced timeliness guarantee. By
contrast, in the Bin 2 and Bin 3 groups, sufficient CPU
resources are allocated such that sufficient historical ex-
perience can be obtained at the start of the program to

guide the resource prediction process. At peak load
times, it can be ensured that there are sufficient re-
sources to process the data and reduce the amount of
data waiting, thereby improving the timeliness
guarantee.
In terms of the response time, as shown in Fig. 4, com-

pared with the JStorm system, except for the Bin 1
group, the response time is improved by a maximum of
58.26% and an average of 27.68%.
An increase in response time directly leads to a reduc-

tion in the timeliness guarantee. A decrease in response
time compared to the JStorm system occurs when the
resource configuration is < 0.5 cores, 2 GB>. According
to the data analysis, memory resources are not the
bottleneck of this system. Therefore, at peak load times,
due to the failure to provide a timely resource supply,
the tight allocation of CPU resources causes a large
amount of data to accumulate in the cache queue. The
processing rate of data in the computing containers is
also greatly reduced, which, in turn, leads to an increase
in the response time for all data. As seen from the Bin 2
and Bin 3 groups, as the initial resource allocation in-
creases, the average response time of the system also
gradually increases. This is because the sufficient initial
resource configuration enables the prediction algorithm
to make accurate predictions of resource requirements
and response time. The historical data are used as the
basis for prediction, so as the prediction accuracy grad-
ually improves, more resources can be adjusted in time
to better support more computing containers; conse-
quently, the processing rate of the data is increased,
thereby reducing the response time.

Analysis of combined resource management based on
the ant Colony algorithm
Figure 5 shows the results obtained with a population
size of 1000 as the number of web service candidates per
service class varies from 1 to 50. The coincidence rate
between the MOACO algorithm’s optimal fitness and
the actual optimal fitness (the proportion of instances
with the same fitness value) is 97%. The optimal fitness
curve of the algorithm basically coincides with the actual
optimal fitness curve. The average number of genera-
tions before termination is 80.5, and the best fitness is
0.868. The coincidence rate between the optimal fitness
and the actual optimal fitness for the CCA algorithm is
87%, the average number of generations before termin-
ation is 90.56, and the optimal fitness is 0.8006. The co-
incidence rate between the optimal fitness and the
actual optimal fitness for the GA algorithm is 79%, the
average number of generations before termination is
110.43, and the optimal fitness is 0.647. The experimen-
tal results show that with an increase in the number of
web service candidates per service class, the maximum

Table 3 Test load configuration groupings for each compute
unit

Value group Bin 1 Bin 2 Bin 3

CPU cores 0.5 1 4

Memory (GB) 2 2 8

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 9 of 13

fitness generally increases, reflecting the dynamic com-
bination of web services. As the number of web services
published by the service provider increases, the WS core
process can better select the optimal services.
An adaptation-aware policy can improve the execution

success rate of cloud workflows. Due to the dynamic na-
ture of the cloud computing environment, web services
that execute cloud workflow tasks may fail to run, which

will affect the execution success rate of the entire cloud
workflow. In this experiment, six cloud workflow in-
stances with 50, 100, 150, 200, 250, and 300 tasks were
established; each group of cloud workflows was run 50
times, and the average execution success rate was taken.
From the experimental results in Fig. 6, we can see that
the adaptation-aware strategy can significantly improve
the execution success rate of a cloud workflow. When

Fig. 3 Comparison of time-based demand satisfaction degree under different initial resource configurations

Fig. 4 Average response time curve in different initial configurations. a Average response time curves for the Bin 1 group. b Average response
time curves for the Bin 2 group. c Average response time curves for the Bin 3 group

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 10 of 13

the number of tasks is 50, the execution success rate
with the non-adaptation-aware strategy is 92%, and the
execution success rate with the adaptation-aware strat-
egy is 98%. When the number of tasks is 150, the execu-
tion success rate with the non-adaptation-aware strategy
is 89%, and the execution success rate with the
adaptation-aware strategy is 95%. When the number of
tasks is 300, the execution success rate with the non-
adaptation-aware strategy is 82%, and the execution suc-
cess rate with the adaptation-aware strategy is 88%. As
the number of tasks increases, the execution success rate
decreases for both strategies. This is because the more
tasks there are, the more web services are needed, and
the greater the interaction among services, hindering
successful execution.

Cloud workflow task scheduling analysis
Figure 7 shows the optimization rates for the overall
completion time in 10 different experimental scenarios.
As can be seen from Fig. 7, when the workflow size is
small, the completion time optimization rates of GA,
ACO, and PSO are similar, but they are all low. For ex-
ample, in the first set of experiments involving a 50-task
cloud workflow, the completion time optimization rate
was approximately 5% for ACO, approximately 5.6% for
PSO, and approximately 5.8% for GA. As the scale of the
workflow increases, the GA performance remains rela-
tively stable, with a slight downward trend, and the PSO
performance initially shows an upward trend and then
falls sharply, whereas the ACO performance generally
increases with the workflow scale. For example, in the

Fig. 5 Optimal fitness at different service scales

Fig. 6 Effect of adjusting the perception policy on execution success rate

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 11 of 13

last set of experiments involving a 300-task workflow,
the completion time optimization rate of the ACO algo-
rithm was 24.4%, while that of GA was 11.8% and that
of PSO was only 3.88%. It is worth noting that PSO
achieved better performance than the other two algo-
rithms as the workflow scale increased from 150 to 200
tasks. For example, when the number of tasks was 180,
the completion time optimization rate of the PSO algo-
rithm was 22.2%, while that of GA was 13.8% and that
of ACO was 15.4%.
A unique phenomenon observed here is that the

ACO algorithm performs better when the number of
tasks is greater than 200. This shows that the ACO
algorithm is more effective in solving large-scale
discrete multi-constrained optimization problems.
This is likely because the ACO algorithm constructs
an efficient solution in a task-by-task manner,
whereas the PSO algorithm and the GA algorithm
randomly search for solutions in the solution space of
the problem. Therefore, the solutions generated by
the ACO algorithm can satisfy all constraints, whereas
the GA algorithm and the PSO algorithm cannot
guarantee that the generated solutions are feasible.
Because of this, the ACO algorithm can maintain
higher performance as the workflow size increases,
whereas the GA algorithm and the PSO algorithm ex-
hibit premature convergence due to the limited repre-
sentation space.

Conclusions
To find ways to effectively manage and schedule intelli-
gent cloud workflows, this article has studied big data
processing from various aspects and reached the follow-
ing conclusions:

(1) Based on the existing open source platform JStorm
for real-time big data processing, a dynamic re-
source scheduling system called D-JStorm is de-
signed and implemented in this paper. The
performance analysis of the D-JStorm system shows
that compared with the original JStorm system, the
response time is reduced by a maximum of 58.26%
and an average of 23.18%, the CPU resource
utilization rate is increased by a maximum of
17.96% and an average of 11.39%, and the memory
resource utilization rate is increased by a maximum
of 88.7% and an average of 71.16%.

(2) The average number of generations before
termination is 116.46 for GA, 103.9 for CCA, and
89.62 for MOACO. It can be seen that the
convergence of the GA algorithm is the worst,
while the convergence of the MOACO algorithm is
the best, whereas the convergence of the CCA
algorithm lies between the other two. When the
number of web services exceeds 43, the growth in
the number of generations before termination is
significantly accelerated for the GA and CCA
algorithms, with the growth rate for the GA
algorithm being the largest. By contrast, the
number of generations of the MOACO algorithm is
slow to grow. This shows that the MOACO
algorithm is more suitable for optimizing large-scale
dynamic web service discovery processes. Overall,
the overall performance of the MOACO and CCA
algorithms in optimizing the dynamic combination
of web services is better than that of the GA algo-
rithm, and the average performance of the
MOACO algorithm is better than that of the CCA
algorithm.

Fig. 7 Optimization rate of overall completion time

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 12 of 13

(3) A cloud workflow scheduling strategy based on an
intelligent algorithm and an adaptive cloud service
resource combination strategy is proposed to realize
two-layer scheduling of cloud workflow tasks. We
have studied three representative intelligent algo-
rithms (ACO, PSO and GA) and improved them
for scheduling optimization. Based on the nature of
these three algorithms, we tested the performance
for different numbers of workflow tasks based on
these intelligent algorithms. It can be clearly seen
that although the optimal values of the different al-
gorithms vary greatly among different test cases in
the same scenario, the optimal solution curves are
substantially consistent with the trend of the mean
curve.

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful
comments and valuable suggestions. I would like to acknowledge all our
team members.

Authors’ contributions
All authors take part in the discussion of the work described in this paper.
The authors read and approved the final manuscript.

Authors’ information
Yannian Hu was born in Gaomi, Shandong P.R. China, in 1976. He received
the bachelor‘s degree from Qigndao University. Now, he works in Big Data
Buro of Weifang. His research interests include computational intelligence,
information security and big data analysis etc..
E-mail: hu_yannian@163.com
Hui Wang was born in Gaomi, Shandong P.R. China, in 1978. She received a
master’s degree from Guangxi Normal University. Now, she works in Weifang
University. Her research interests include big data analysis, ideological and
political educationand and communication theory etc..
E-mail: conglinwh@wfu.edu.cn
Wenge Ma was born in Yuncheng County, Shandong Province, China in
1987. He received a master’s degree from Beijing Technology and Business
University. Now he works in Shandong Modern Education Science Research
Institute Science. Research interests are AI education and big data
technology.
E-mail: sdjkyb@126.com

Availability of data and materials
All the data and materials in this article are real and available.

Ethics approval and consent to participate
Approved.

Consent for publication
Approved.

Competing interests
These no potential competing interests in our paper. And all authors have
seen the manuscript and approved to submit to your journal. We confirm
that the content of the manuscript has not been published or submitted for
publication elsewhere.

Author details
1Big Data Buro of Weifang, Weifang 261061, Shandong, China. 2Weifang
University, Weifang 261061, Shandong, China. 3Shandong Provincial Institute
of Modern Educational Science, Weifang 261061, Shandong, China.

Received: 9 December 2019 Accepted: 22 May 2020

References
1. Tatlow PJ, Piccolo SR (2016) A cloud-based workflow to quantify transcript-

expression levels in public cancer compendia. Sci Rep 6(1):39259
2. Yu X, Joshi P, Xu J, Jin G, Zhang H, Jiang G (2016) Cloudseer: workflow

monitoring of cloud infrastructures via interleaved logs. Acm Sigarch
Comput Arch News 44(2):489–502

3. Sadhasivam N, Thangaraj P (2016) Design of an improved pso algorithm for
workflow scheduling in cloud computing environment. Intell Automation
Soft Comput 23(3):1–8

4. Xie Y, Tianta HE, Qianyun NI, Hanqing WU (2017) Scheduling for improving
the energy efficiency of cloud workflow execution. Syst Eng Theory Pract
37(4):1056–1071

5. Cartwright R (2018) An internet of things architecture for cloud-fit
professional media workflow. Smpte Motion Imaging J 127(5):14–25

6. Buyya R, Gill SS (2018) Sustainable cloud computing: foundations and future
directions. Cutter IT J 21(6):1–9

7. Chen C, Chen D, Yan YN, Zhang GF, Zhou QG, Zhou R (2018) Integration of
numerical model and cloud computing. Futur Gener Comput Syst 79(3):396–407

8. Wang Y, Li J, Wang HH (2019) Cluster and cloud computing framework for
scientific metrology in flow control. Clust Comput 22(1):1–10

9. Shen J, Member IEEE, Zhou T, Chen X (2018) Anonymous and traceable group
data sharing in cloud computing. IEEE Trans Inf Forensic Secur 13(4):912–925

10. Liu X-F, Student Member, IEEE, Zhan Z-H, Member (2018) An energy
efficient ant colony system for virtual machine placement in cloud
computing. IEEE Trans Evol Comput 22(1):113–128

11. Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in biomedical
research and health care: a literature review. Biomed Inform Insights 8(8):1–10

12. Wu T, Dou W, Fan W, Tang S, Hu C, Chen J (2016) A deployment
optimization scheme over multimedia big data for large-scale media
streaming application. Acm Trans Multimedia Comput Commun Appl
12(5s):1–23

13. Cucudumitrescu C, Constantin S (2017) Extraction of regions with similar
temporal evolution using earth observation big data. Application to water
turbidity dynamics. Remote Sensing Lett 8(7):627–636

14. Ulfarsson MO, Palsson F, Sigurdsson J, Sveinsson JR (2016) Classification of
big data with application to imaging genetics. Proc IEEE 104(11):2137–2154

15. Xue Y, Xu L, Jie Y, Zhang G (2017) A hot event influence scope assessment
method in cyber-physical space for big data application. Intell Automation
Soft Comput 24(1):1–9

16. Zheng T, Chen G, Wang X, Chen C, Luo S (2019) Real-time intelligent big
data processing: technology, platform, and applications. Sci China Inf Sci
62(8):82101

17. Zheng B, Tang X, Zhang Z, Zong B (2019) Modeling of continuous cross-
flow microfiltration process in an airlift external-loop slurry reactor. China
Petroleum Process Petrochemical Technol 21(1):117–122

18. Tian W, Shao Y, Yanzhu H (2018) 3d damage identification of soil rock
mixture based on image processing technology. Iop Conference 394(5):
052003

19. Papias S, Masson M, Pelletant S, Prost-Boucle S, Boutin C (2018) In situ
continuous monitoring of nitrogen with ion-selective electrodes in a
constructed wetland receiving treated wastewater: an operating protocol to
obtain reliable data. Water Sci Technol 77(6):1706–1713

20. Larras F, Billoir E, Baillard V, Siberchicot A, Delignette-Muller ML (2018)
Dromics: a turnkey tool to support the use of the dose–response framework
for omics data in ecological risk assessment. Environ Sci Technol 52(24):
14461–14468

21. Hussein MK, Mousa MH, Alqarni MA (2019) A placement architecture
for a container as a service (caas) in a cloud environment. J Cloud
Comput 8(1):7

22. Pääkkönen P, Heikkinen A, Aihkisalo T (2019) Online architecture for
predicting live video transcoding resources. J Cloud Comput 8(1):9

23. Chen X, Chen S, Zeng X, Zheng X, Rong C (2017) Framework for
context-aware computation offloading in mobile cloud computing. J
Cloud Comput 6(1):1

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Hu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:39 Page 13 of 13

mailto:hu_yannian@163.com
mailto:conglinwh@wfu.edu.cn
mailto:sdjkyb@126.com

	Abstract
	Introduction
	Method
	Combination model for resource management based on the ant Colony algorithm
	QoS assessment of the management portfolio
	Multi-objective ant colony algorithm

	Resource scheduling model for big data processing
	Parameter definitions
	Scheduling operation timing
	Calculation of resource increase and decrease

	Theory related to cloud workflows
	Scenario model
	Role models

	Dynamic resource prediction model for big data processing
	Parameter definitions
	Resource prediction model based on the changes in resource usage

	Experiment
	Test environment
	Workflow selection
	Performance evaluation indicators
	Forecast performance evaluation index
	Overall performance evaluation index

	Results and discussion
	Performance analysis under different data arrival intensities
	Performance analysis under different initial resource configurations
	Analysis of combined resource management based on the ant Colony algorithm
	Cloud workflow task scheduling analysis

	Conclusions
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

