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Abstract 

Despite the rapid global movement towards electronic health records, clinical letters written in unstructured natu-
ral languages are still the preferred form of inter-practitioner communication about patients. These letters, when 
archived over a long period of time, provide invaluable longitudinal clinical details on individual and populations of 
patients. In this paper we present three unsupervised approaches, sequential pattern mining (PrefixSpan); frequency 
linguistic based C-Value; and keyphrase extraction from co-occurrence graphs (TextRank), to automatically extract 
single and multi-word medical terms without domain-specific knowledge. Because each of the three approaches 
focuses on different aspects of the language feature space, we propose a genetic algorithm to learn the best param-
eters of linearly integrating the three extractors for optimal performance against domain expert annotations. Around 
30,000 clinical letters sent over the past decade from ophthalmology specialists to general practitioners at an eye 
clinic are anonymised as the corpus to evaluate the effectiveness of the ensemble against individual extractors. With 
minimal annotation, the ensemble achieves an average F-measure of 65.65 % when considering only complex medi-
cal terms, and a F-measure of 72.47 % if we take single word terms (i.e. unigrams) into consideration, markedly better 
than the three term extraction techniques when used alone.
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Background
The amount of electronic descriptive clinical documents 
generated by medical practitioners at various levels of 
expertise is enormous, easily reaching zettabytes [1]. It is 
expected to grow even more as computing devices’ pro-
cessing power and storage become increasingly accom-
modating. These clinical documents may include texts 
such as patient records, clinical notes, discharge sum-
maries, doctors’ referral letters and so forth. Accom-
panying this exponential growth of electronic medical 
documents is the very urgent need of techniques to pro-
cess them into meaningful information that can support 
the advancement of medical science and practice.

Unsurprisingly, clinical documentation today is still 
mostly written in unstructured natural language formats 
as opposed to structured database records. Looking into 
the foreseeable future, unstructured natural language text 
will likely remain the preferred form of clinical commu-
nication due to its flexibility and much reduced disrup-
tions to doctors’ daily routines. In fact, a study carried 
out by IBM  [2] in 2013 predicted that nearly 80  % of 
medical data will be in unstructured textual format by 
2015. These documents contribute a rich resource to sup-
port research such as epidemiological studies, treatment 
effectiveness analysis, and medical decision making, just 
to name a few. Natural Language Processing (NLP), with 
its recent success in information and entity extraction, 
provides a promising solution space for annotating and 
structuring text-based clinical information into databases 
thus making them readily retrievable and analysable for 
health professionals. In doing so, the costs of producing 
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structured medical records can be reduced, along with 
improved overall quality and accuracy [3].

Most of the work on biomedical natural language pro-
cessing  [4–6], focus on medical entity extraction and 
assertion classification. Take the sentence No active 
bleeding was observed for example, active 
bleeding would be extracted as a medical entity, and 
Absent would be the class label for the entity asser-
tion. The problem we are interested in is medical entity 
extraction or more precisely medical term extraction, 
which identifies the medical terms or concepts occurring 
in clinical documents without the identification of meta-
level entity types.

The medical term extraction task alone already is a 
challenging one, because most of the state-of-the-art 
clinical term recognition systems are based on super-
vised machine learning techniques, requiring a signifi-
cant amount of manual effort for producing the training 
dataset. In general, a supervised technique involve three 
tasks, feature collection, training dataset labelling, and 
classifier model development. The most common fea-
tures used are dictionary lookup, bag of words, Part Of 
Speech (POS) tags, window size, orientation, distance 
and capitalisation. After feature collection, the non-triv-
ial and often the bottleneck task is to manually label the 
datasets into pre-defined categories or classes, which is 
not only time-consuming but also error-prone. As an 
example of supervised approaches, Wang et al. [7] com-
bined rule-based techniques with Conditional Random 
Fields (CRF) to annotate clinical notes containing infor-
mal clinical terminologies.

To overcome the difficulties in manual labelling such 
large amounts of document sets, in this paper, we investi-
gate unsupervised approaches in medical term extraction. 
The most basic unsupervised approach is dictionary 
look-up. For example, the MetaMap Transfer (MMTx) 
software tool1, offered by National Institutes of Health 
(U.S.), makes use of a medical term thesaurus ULMS2 for 
recognising medical concepts in text. Advanced unsuper-
vised approaches would mostly rely upon pre-defined 
rules for noun phrase chunking  [8] or different ways of 
combining statistical and linguistic cues (i.e. C-Value and 
its extension NC-Value) [9–11].

Applying sequential data mining techniques on medical 
entity extraction has only recently attracted the attention 
of the NLP community thanks to the very recent work of 
Liu et al. [12] and Ren et al. [13]. Our work is conducted 
in parallel with this thread of work on applying frequent 
sequence mining algorithms for phrase extraction. In this 
paper, the PrefixSpan algorithm [14] is adapted as the first 

1  http://metamap.nlm.nih.gov.
2  https://uts.nlm.nih.gov/home.html.

unsupervised approach for medical concept extraction. 
The second unsupervised approach is C-Value [9], where 
both statistical and linguistic information are taken into 
account. In the third approach, we consider the medical 
term extraction as a keyphrase extraction or document 
summarisation task, through analysing co-occurrence 
graph using the popular TextRank algorithm [15].

We hypothesise that the three techniques are comple-
mentary, as each focuses on different aspects of the lan-
guage feature space. Sequence mining relies on the fact 
that words in complex medical terms often occur in 
order, which is at the lexical level. C-Value requires syn-
tactical level part of speech filtering to identify noun 
phrases and their frequency and sub-term frequency, 
whereas TextRank pays more attention to graph based 
structural level co-occurrence relations. To make best use 
of all three ranking scores, we developed a Genetic Algo-
rithm (GA) to learn the weights for a linear combination 
of the scores generated from each of the three algorithms. 
Our approach has general applicability to other term 
extraction algorithms so long as they are able to produce 
ranking scores. For evaluation we collected and pro-
cessed 29,232 clinical letters from Western Eye Special-
ists Clinic3. All three algorithms and the GA-enabled 
ensemble were tested and evaluated on this corpus. With 
minimal annotation, the ensemble achieve an average 
F-measure of 65.65  % when considering only complex 
medical terms, and a F-measure of 72.47 % if we take sin-
gle word terms (i.e. unigrams) into consideration. This 
represents marked improvement on the performance of 
individual algorithm alone.

The paper is organised as follows. The “Related work” 
section provides an overview on the related work in 
unsupervised automatic medical term extraction. The 
“Methodology” section explains the three different medi-
cal concept extraction techniques used in this research, 
and how an ophthalmology dictionary can be built from 
online resources for verification and filtering purposes. 
After that, the “Genetic algorithm enabled ensemble” 
section describes the process of designing a genetic algo-
rithm to combine the ranking scores from the three term 
extraction algorithms. The "Experiments" section pro-
vides information about the parameter settings of differ-
ent algorithms while results are reported in the “Results 
and discussion” section. The paper concludes with an 
outlook to future work in the “Conclusion” section.

Related work
Automated Term Extraction is the process of using 
computer software to automatically identify and extract 
strings that are potential domain-specific terms from a 

3  Mosman Park, Western Australia, Australia.

http://metamap.nlm.nih.gov
https://uts.nlm.nih.gov/home.html
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collection of documents [16]. Many different approaches 
have been developed for automated term extraction, 
including linguistic approaches  [17, 18], statistical 
approaches [19, 20], or a combination of both [21]. Two 
major steps are involved, namely candidate term genera-
tion and statistical analysis to rank the candidates.

Candidate term generation
Two main approaches often adopted for candidate term 
generation include:

• • Linguistic Filters This requires tagging the words in 
a document with part of speeches (e.g. nouns, verbs, 
adjectives, etc.). The terms are then extracted using a 
regular expression pattern filter, which specifies the 
sequences of part of speech that are considered pos-
sible terms. For example, the filter might specify that 
only noun phrases (sequence of nouns) are consid-
ered possible candidate terms and thus all other non-
noun words are filtered out.

• • N-gram An n-gram is defined as a continuous 
sequence of n words from a text. The candidate terms 
are then extracted by generating all n-grams from the 
text for n = 1,2,..., k , where k denotes the maximum 
length of a term. For example, if the text is “Dog 
chase cat” and the maximum length of a term is two, 
then the n-gram approach will generate the terms 
“dog chase”, “chase cat”, “dog”, “chase” and “cat” as pos-
sible candidate terms.

Statistical analysis
After the list of candidate terms are generated, statistical 
analysis is performed to rank the candidate terms accord-
ing to certain measures such that higher scoring terms are 
more likely to be actual terms than lower scoring ones. 
An empirical threshold is commonly used to specify the 
cut-off point. Frequency is one of the most widely used 
measures due to its reliability in identifying terms [22]. 
The basic assumption is that if a candidate term appears 
frequently enough in a corpus, then it is more likely to be 
an actual valid term. For example, if the candidate term 
“visual acuity” appears in a corpus 50 times and the mini-
mum frequency threshold is 10, then “visual acuity” will be 
selected and returned by the term extractor as final terms.

However, frequency alone is often not enough. There-
fore, more advanced measures such as t-score, log-likeli-
hood, mutual information and χ2 (Chi-squared), which 
we describe below.

Before that, we need to describe a contingency table, 
shown in Table  1, which will be used in all the meas-
ures mentioned above. The table shows that observed 
frequencies of any word pair (or collocation) between 
individual words a and b. a represents any word that is 

not a and b represents any word that is not b. However, 
in order to extract terms, an ordering between a and b 
must be enforced. Thus ab represents a term where b is 
immediately preceded by a and not the occurrence of a 
and b together without any ordering. Thus in the exam-
ples below, ab is not equivalent to ba. The frequency for 
ab is represented by n11 while npp is the total number of 
word pairs in the corpus, calculated by npp = n1p + n2p 
+ np1 + np2. Marginal and expected frequencies can also 
be calculated from the table. For example, the marginal 
frequency n1p is the frequency of all word pairs that start 
with a while the expected frequency m11 of ab is given by 
np1·n1p
npp

 [16].

T‑score
 t-score does not measure the statistical strength of asso-
ciation between a and b in the word pair ab, but it pro-
vides the confidence for which we can assert whether a 
and b can actually co-occur together as a term. The for-
mula for calculating t-score is given below [16]:

The null hypothesis that a and b does not have any sig-
nificant association and are independent of one another 
is commonly used in the t-score technique. Thus, if the 
t-score is greater than the critical value α for a given con-
fidence interval, we can reject the null hypothesis and 
conclude that there exists an association between a and 
b and that both words together reasonably form a valid 
term.

Mutual information
 Mutual information (MI) measures the mutual depend-
ence or the information shared between the two words a 
and b. The formula for calculating mutual information is 
given below [23]:

In the context of the contingency table, p(x, y) is equiva-
lent to n11, the observed frequency of the word pair ab 
while p(a) and p(b) refers to the marginal frequency of a 
and b respectively, n1p and np1. Intuitively, mutual infor-
mation compares the frequency of the word pair ab 

t-score(a, b) =
n11 −m11√

n11

MI(a, b) = log2
p(a, b)

p(a)p(b)

Table 1  Contingency table for word pair ab

a a

b n11 n21 np1

b n12 n22 np2

n1p n2p npp
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against the frequency of the individual component words 
a and b. Thus if a word pair has a high frequency com-
pared to its component words, then by mutual informa-
tion, it is very likely that ab is a valid term.

Log‑likelihood
 The log-likelihood (LL) approach uses a ratio test to 
determine the statistical significance of association 
between a and b. The approach computes the likelihood 
of the observed frequencies under two hypotheses, the 
null hypothesis H0 that states a and b are independent 
and the alternative hypothesis H1 that states there is an 
association between a and b [24]. The two hypotheses’ 
likelihoods are then compared and combined into a sin-
gle ratio, which gives a larger value if there is a strong 
association between a and b. The formula for the log-
likelihood ratio is given below [16]:

where i ranges over the rows and j over the columns of 
the contingency table in Table 1.
χ2 (Chi-squared) The Chi-squared technique compares 

the observed frequency of ab against its expected frequency 
to test the null hypothesis that a and b are independent. If 
the observed frequency is much greater than the expected 
frequency, the null hypothesis of independence is then 
rejected [24]. The formula for χ2 is given below:

TextRank
TextRank was introduced by Mihalcea and Tarau  [15], 
which is a graph-based ranking algorithm for keyphrase 
extraction and text summarisation. It first constructs 
an un-weighted undirected graph representing a given 
document and then uses an algorithm detailed in the 
“Methodology” to rank how likely a pair of words form 
a complex term. In our recent work, Wang et al. [25, 26] 
investigated on how the processing steps and the incor-
poration of word embedding vectors into the weighting 
schemes affect its performance on key phrase extraction.

However, there is a major limitation for all the above meth-
ods as they only work for word pairs (two words). In order 
to facilitate finding and extracting terms of more than two 
words, we need to first extract out all the valid two-word 
pairs, tag them as a single word and rerun the methods. 
Thus the new word pairs might then consist a compositional 
(multi-worded) component. This can be computationally 
intensive as several passes of the corpus need to be per-
formed in order to extract terms of longer length.

LL(a, b) = 2
∑

ij

nij log
nij

mij

χ2(a, b) =
∑

ij

(nij −mij)
2

mij

Fahmi [16], in the context of automatic medical ques-
tion answering system, evaluated and compared several 
medical term extraction techniques on a Dutch medical 
corpus, including T-Score, Log-likelihood, Chi-squared 
and C-Value. Among these, the Chi-squared is reported, 
on average, the best performing technique.

Specific to medical documents, noun phrase chunking 
is often the first step used in medical term extraction. For 
example, Conrado et al. [8] demonstrated that it is possi-
ble to extract valid medical terms from a Spanish health 
and medical corpus by applying manually designed lin-
guistic filters. A linguistic filter is a part of speech pattern 
specific to the language of interest. Three different noun 
phrase linguistic filters are designed and used. However, 
these rules are language specific and only capable of 
extracting unigram, bigram and trigram medical terms. 
For evaluation, the extracted candidate terms are com-
pared against IULA medical reference list. It is demon-
strated that the linguistic filters are able to extract terms 
not present in the list. Manually validated terms are then 
used to expand the Spanish SNOMED CT4.

C‑Value
C-Value and its extension, NC-value developed by Frantzi 
et  al.  [9], after noun phrase chunking, produces a unit-
hood score based on the length of the phrase as well as the 
phrase and sub-phrase frequency to rank the candidate 
terms. NC-Value also incorporates contextual informa-
tion surrounding the terms to improve the term extrac-
tion accuracy and quality of the term extracted. They are 
also able to arbitrarily extract terms of any length.

However there are no mathematical justifications on why 
the phrase and sub-phrase frequencies are combined in the 
proposed way. To address such issues, in our previous work, 
Wong et al. [10, 11] developed a probabilistic framework to 
combine evidence of how exclusive and prevalent a term 
occurs in a domain corpus in contrast to general corpora.

Having said that, C-Value and NC-Value are still the 
most widely used unsupervised phrase extraction tech-
niques by far as it requires domain corpora only. For 
example, in the popular downstream task of large scale 
medical document indexing, by applying C-Value and 
NC-Value as a crucial part of their AMTX system, Hliaou-
takis et al. [27] shows that AMTX outperforms MMTx in 
both precision and recall. As mentioned in the Introduc-
tion section, MMTx automatically maps biomedical docu-
ments to UMLS concepts through dictionary look-up.

Sequential pattern mining
Frequent sequence mining has only recently gain atten-
tions in entity extraction due to (1) its speed in dealing 

4  http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html.

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
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with massive text corpora; (2) its language-neutral prop-
erty as there is no need in formulating language-specific 
linguistic rules; (3) its minimal requirement on training 
data. Plantevit et  al.  [28] developed left-sequence-right 
(LSR) patterns to search for named entities from real data-
sets BioCreative, Genia and Abstracts, taking into account 
the surrounding context of a sequence and relaxing the 
order constraint around the sequence. The presence of 
sequential pattern mining algorithms in phrase extrac-
tion from massive text corpora by Liu et al. [12] and Ren 
et al. [13] in 2015 will certainly promote more research on 
medical term extraction to adopt such an approach.

Methodology
The three techniques implemented for this paper are: 
PrefixSpan, a n-gram frequency based extractor; C-Value, 
a linguistic and statistical term extractor; and TextRank, a 
graph based co-occurrence analysis algorithm to extract 
keyphrases. To improve the likelihood that the terms 
extracted are indeed related to the medical domain, we 
introduced a medical term filtering process to remove 
any extracted non-medical terms.

PrefixSpan
The PrefixSpan algorithm was proposed by Pei et al. [14]. 
PrefixSpan utilises prefix pattern growing, projected 
database reduction and divide and conquer techniques to 
perform sequential pattern mining.

Problem definition
Let I = {i1, i2, ..., ik} be the set of k distinct items, which 
is often referred to as the alphabet set. An itemset is a 
subset of I  and denoted by (x1, x2, ..., xn) where xm is 
an item of I . If the itemset only has a single item, the 
brackets are omitted. A sequence is an ordered list of 
items. A sequence s can be denoted by 〈s1s2...sa〉 where 
sj is considered as a single element, which is an item-
set. si is said to occur before sj for ∀i ≤ j. The length 
of s is the total number of item instances it has. For 
example, the sequence 〈ab(adc)〉 has three elements 
(a, b, and (adc)) and five items, thus it has a length 
of five. A sequence with l instances of items is called a 
l-length sequence. A sequence α = �a1a2...an� is con-
sidered a subsequence of sequence β = �b1b2...bm� 
and β a super sequence of α, denoted as α ⊑ β, if there 
exists integer 1 ≤ j1 < j2 < . . . < jn ≤ m such that 
a1 ⊆ bj1 , a2 ⊆ bj2 , ..., an ⊆ bjn. For example, α = �ab� is a 
subsequence of β = �cdabcd�.

A sequence database S can be viewed as a list of 
〈seq_id, s〉 tuples where seq_id is the Sequence ID and 
s is a sequence. A tuple 〈seq_id, s〉 is said to contain a 
sequence t if t is a subsequence of s. The support of a 
sequence t is then the number of tuples in the sequence 

database S that contains t. A sequence is considered 
frequent if its support is greater than min_sup, an user 
defined threshold.

Suppose all items of all elements in a sequence are 
ordered alphabetically. A sequence β = �b1b2...bm� is a 
prefix of the sequence α = �a1a2...an� if and only if all the 
following three conditions hold:

• • bi = ai for i ≤ m− 1

• • bm ⊆ am
• • All items in (am − bm) are alphabetically after those 

in bm

The postfix of a sequence α with respect to a prefix β 
is then the sequence in α that follows after the prefix β. 
For example, the sequences 〈a〉, 〈ab〉 and 〈aa〉 are all con-
sidered the prefix of the sequence α 〈a(ab)c〉, but not the 
sequence 〈ac〉. The postfix of α with respect to prefix 〈a〉 
is 〈(ab)c〉. The postfix of α with respect to prefix 〈ab〉 is 〈c〉. 
The postfix of α with respect to prefix 〈aa〉 is 〈(_b)c〉. In the 
last postfix, (_b) means that the last element of the prefix 
〈aa〉, which is a, when joined with b, is an element of α.

For a sequence database S and a sequential pattern α, 
the α-projected database, denoted as S|α, is the list of suf-
fixes of the sequences in S with regards to prefix α.

In the context of term extraction investigated in this 
paper, a single word is treated as a single item, and a sen-
tence is a record of a sequence, as such, a document or 
a collection of documents in our dataset becomes our 
sequence database. The term extraction task is then con-
verted to find the frequent subsequences (i.e. the single 
or multiple-word terms) in a sequence database (i.e. the 
document set).

Algorithm
The PrefixSpan algorithm takes a sequence database S 
and the minimum support min_sup as input and out-
puts the list of frequent sequential patters. The algorithm 
can be characterised by the recursive function Prefix-
Span(α, l, S|α), which takes in three parameters: 1) α is 
the sequential pattern; 2) l is the length of α; and 3) S|α 
is α-projected database. Initially PrefixSpan(〈〉, 0, S) 
is called to start the mining process. Given a function 
call, PrefixSpan(α, l, S|α), the algorithm for PrefixSpan 
works as follows:

1	 Scan S|α to find single frequent items, b, if either b or 
〈b〉 can be appended to α to form a sequential pattern.

2	 For each frequent item b found, append it to α to cre-
ate a new sequential pattern α′ and add α′ to the final 
output list of patterns.

3	 For each new α′, construct α′-projected database S|α′ 
and call PrefixSpan(α′, l + 1, S|α′)
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C‑Value
The C-Value approach [21] is proposed to recognise 
domain specific multi-word terms from a corpus. It 
incorporates both linguistic and statistical information to 
find these terms.

Linguistic component
Linguistic information is used to generate a list of pos-
sible candidate terms. This process involves POS tagging 
and linguistic filtering.

POS tagging is the process of assigning a grammatical 
tag (e.g. noun, adjective, verb, preposition etc.) to each 
word in the corpus. After all words in the corpus have 
been tagged, a linguistic filter can be applied to extract all 
the candidate terms. The linguistic filter defines the possi-
ble sequence of grammatical tags that can formulate a via-
ble term. For example, if we consider a term as a sequence 
of nouns (i.e. noun phrase), a linguistic filter can then be 
expressed as a rule (Noun+) which only permits sequence 
of nouns to be extracted as possible candidate terms. The 
choice of filters can affect the overall precision and recall 
of the candidate list. A ‘closed’ filter typically only permits 
noun phrases to be extracted as terms. This translates to 
a higher precision but lower recall. An ‘open’ filter, on the 
other hand, permits more types of strings to be accepted 
(e.g. adjectives and prepositions) as possible candidate 
terms. This then results in a lower precision but higher 
recall. For this paper, we choose to use a ‘semi-closed’ filter, 
which allows adjectives and nouns to be extracted as terms.

Statistical component
Once candidate terms are extracted, they are each evalu-
ated by statistical methods, assigned a termhood (a.k.a. 
C-Value) measure and ranked accordingly, where the 
highest ranked term being most likely to be a valid term. 
There are four characteristics of a candidate term that 
affects its C-Value. These are:

• • The frequency of the candidate term in the corpus.
• • The frequency of the candidate term as part of other 

longer candidate terms.
• • The number of such longer candidate terms.
• • The length of the candidate term (as in the number 

of words).

The C-Value of a candidate term a, denoted CV(a) 
below, depending on whether a is a unigram or not, is 
calculated as follows: 

CV (a) =

{

log2|a| · f (a) unigram

log2|a| · (f (a)− 1
P(Ta)

∑

b∈Ta

f (b)) otherwise

where f(x) is the frequency of the term x in the corpus, 
|a| is the length of term a in number of words, Ta is the 
list of extracted candidate terms containing a as a nested 
term and P(Ta) is the number of such extracted candi-
date terms.

TextRank
TextRank uses an unweighted undirected graph repre-
senting a given text, where words are vertices, and edges 
denote co-occurrence relations between two words. Two 
vertices are connected if co-occurrence relations are 
found within a defined window-size. Figure 1 illustrates 
the TextRank graph created by concatenating two clinical 
documents in our dataset.

TextRank implements the concept of ‘voting’. If a ver-
tex vi links to another vertex vj, then vi votes for vj; and 
the importance of vj increases with the number of votes 
received. The importance of the vote itself is weighted 
by the voter’s importance: the more important the voter 
vi, the more important the vote. The score of a vertex is 
therefore calculated based on the votes it received and 
the importance of the voters. The votes received by a 
vertex can be calculated directly, i.e., the so-called local 
vertex-specific information. The importance of a voter is 
recursively computed based on both local vertex-specific 
information and global information.

TextRank adapts the original PageRank [29] algorithms 
to calculate word ranks. The original PageRank algorithm 
works on directed unweighted graphs, G = (V ,E). Let 
in(vi) be the set of vertices that point to a vertex vi, and 
out(vi) be the set of vertices to which vi point, the score of 
vi is calculated by PageRank as:

In TextRank, the in-degree of a vertex equals to its 
out-degree, since the graph is undirected. Formally, 
let D denote a document, and w denote a word, then 
D = {w1,w2, ...,wn}. The weight of a vertex calculated by 
TextRanks is:

where wij is the strength of the connection between two 
vertices vi and vj, and d is the dumping factor, usually set 
to 0.85 [15, 29].

Medical term filtering
Medical term filtering is the process of removing non-
medical terms from the results of C-Value, PrefixSpan 
or TextRank. This is required since non-medical terms 

S(vi) = (1− d)+ d ×
∑

j∈in(vi)

1

|out(vj)|
S(vj)

WS(vi) = (1− d)+ d ×
∑

vj∈in(vi)

wji
∑

vk∈out(vj) wjk
WS(vj)
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can also be extracted by the three algorithms. For exam-
ple, the term twelve months appear as a valid term 
in both the output of C-Value and PrefixSpan due to its 
high frequency in the corpus. However, it is not a medical 
term and thus should not be considered as a valid term.

It is important to note that this process does not guar-
antee that the terms survived the filtering are actual valid 
medical terms, but instead it tries to increase the likelihood 
of the remaining terms being actually medically related.

Due to the sheer volume of terms extracted, it was not 
feasible for the ophthalmology specialists to do manual 
filtering. Therefore, in order to facilitate this filtering, we 
constructed a medical dictionary that contained both 
practitioner-oriented and consumer-oriented medical 
terms. Since all of the clinical letters are in the field of 
ophthalmology, the dictionary contained only ophthal-
mology-related terms. The dictionary is composed by 
crawling terms from the websites listed below: 

http://www.doctor-hill.com/patients/glossary.htm
http://www.peckareyeclinic.co.uk/ophthalmicdictionary.htm
http://www.medicine.uiowa.edu/eye/glossary/
http://www.eyecenter.emory.edu/ophthalmology_terms.htm
http://www.tedmontgomery.com/the_eye/glossary/

Genetic algorithm enabled ensemble
Each of the three individual approaches produce a rank-
ing score for a n-gram. After these scores are ordered to 
indicate the likelihood of being medical terms, we apply 
a rank threshold for each approach as a cut-off to deter-
mine whether or not a term is medical related.

In order to combine and maximise the results from the 
three different techniques, we developed an ensemble 
medical term extractor by combining the ranking pow-
ers of all three methods. Despite being an ensemble of 
unsupervised methods, we hope it would follow the gen-
eral observations of ensemble supervised techniques, 
i.e. ensemble classifiers, which generally outperform 
individual classifiers [30]. Ensemble classifiers are meta-
classifiers that consider the results of a set of primary 
classifiers using a weighting method or algorithm. In 
order for an ensemble classifier to outperform its con-
stituent classifiers, the individual classifiers used must be 
both accurate and diverse [31]. As shown in the “Meth-
odology”, each of the three unsupervised algorithms 
focuses on different aspects of the language feature 
space. Sequence mining relies on the fact that complex 
terms often occur in order, C-Value is based on noun 

Fig. 1  TextRank example graph. The graph is created by concatenating two clinical documents. Two terms are connected if they appear in the 
same sentence
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phrases, their frequency and the sub-term frequency, 
whereas TextRank pays more attention to co-occurrence 
relations from a graph based structure perspective. 
Therefore, the ensemble unsupervised term extractor 
should demonstrate better performance than the indi-
vidual term extractor.

To do this, we combine the individual methods’ rank-
ing scores through a weighted sum into a weighted rank-
ing score rw(t) for each term t, as shown below.

where w1 corresponds to the weight assigned to PrefixS-
pan, w2 for C-Value and w3 for TextRank. Each weight is 
in the range of [0, 1] and sum up to 1. ri(t) is the normal-
ised ranking score of term t from each algorithm, respec-
tively. The weights are then learnt through a genetic 
algorithm described below.

Population
Our population consists of Weights, where each Weight 
organism contains 3 individual weights corresponding 
to w1, w2 and w3 as defined above. The capitalised word 
“Weight” is used hereafter for better clarity to indicate 
that a Weight is a tuple of three weights.

Fitness function
To design a sensible fitness function, we need a sensible 
measurement of performance. First we define the uni-
verse (U = P ∪ N), consisting of both positives (P) and 
negatives (N), as a union of filtered terms extracted from 
all three methods:

The positives (P) consist of the valid complex terms 
annotated by the specialists and the unigrams confirmed 
by the dictionary filtering process.

With the above definition of U, P and N as ground 
truth, for each method, we can use the standard met-
rics below to determine precision, recall and F-measure, 
where

Our fitness function selects the best F-measure. The pro-
cess for calculating the accuracy of term t based on its 
rank r is shown in Algorithm 1.

(1)rw(t) =
n

∑

i=1

wi × ri(t)

U = PrefixSpan ∪ C-Value ∪ TextRank

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure = 2×
Precision× Recall

Precision+ Recall

Algorithm 1 Fitness Function
1: Total Retrieved = 0
2: Total Relevant = x
3: Terms = Union of Filtered Terms
4: for each term t in Terms do
5: if t’s weighted rank ≤ RankThreshold then
6: Total Retrieved ++
7: if t is in Terms then
8: Total Relevant ++
9: end if
10: end if
11: end for
12: Precision = Total Relevant

Total Retrieved

13: Recall = Total Relevant
Size of Terms

14: F −measure = 2 · Precision·Recall
Precision+Recall

15: return F −measure

Crossover
Two different crossover methods are used as explained in 
more detail below.

Naïve crossover
This crossover method is used during early to mid run-
ning stages of the genetic algorithm, such as to increase 
the variability and diversity within the population. The 
method works as follows: if there are two parent Weights, 
P1 and P2, then their children would be C1 and C2. Then 
C1’s w1 (wC1

1 ) is equal to the product of w1s of both P1 
and P2 normalised to a value within 0 and 1, its w2 to the 
product of w2s of both P1 and P2 normalised to a value 
within 0 and 1 and its w3 to the product of w3’s of both P1 
and P2 normalised to a value within 0 and 1. For C2, its 
weights are calculated in the same manner as above, but 
instead of multiplication, addition of the parents’ indi-
vidual weights are used, i.e. C2’s w1 is the sum of P1’s w1 
and P2’s w1, normalised to a value between 0 and 1, i.e. 
w
C2
1 = w

P1
1 + w

P2
1 .

Domination crossover
This crossover method is used during the late running 
stages of the Genetic Algorithm, in an attempt to max-
imise the overall fitness of the population. The method 
works as follows: if there are two parent Weights, P1 and 
P2, then their children would be C1 and C2. To deter-
mine C1’s weights, the largest w from both the parents’ 
weights is chosen (thus the domination attribute). For 
example, if P1’s w3 is the largest among the six possible 
parents’ weights, then C1’s w3 is assigned to that value. 

Then C1’s w1 and w2 is equal to 1−w
P1
3

2 , to ensure that C1’s 
weights sum up to 1. For C2, the same process is repeated 
as above, the only exception being that the second largest 
weight is chosen instead.
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Selection
An elitism rate of 40 % for our GA is used. During each 
generation, the top 40  % Fittest Weights of the popula-
tion are selected to reproduce and create the new popu-
lation. We have chosen a tournament style approach to 
reproduction. Four random parents are chosen from 
the top 40 % Weights to compete in two 2 vs 2 compe-
titions (where the winner is the one with the higher fit-
ness). The winners are then allowed to reproduce and 
create two children as per the crossover methods above. 
These reproduction processes continue until new popula-
tion’s size is 60 % of the original population size. Once the 
reproduction stage is over, the top 40  % Fittest Weights 
are then added to the new population to create the final 
new population for the next generation.

Mutation
We also include mutation to add variability and random-
ness to the population. We have employed two types of 
mutation, namely:

• • Gentle mutation This is where a single random 
weight w of a Weight organism is randomly reas-
signed a value between 0 and 1 and all the others 
weights are re-normalised.

• • Super mutation This is where all the weights of a 
Weight organism are randomly reassigned a value 
between 0 and 1 and re-normalised.

• • During the reproduction stage of each selection pro-
cess, the children have a 20 % chance of undergoing 
a gentle mutation. Also, during the reproduction 
stage, there is also 10 % chance of a Weight organism 
(within the top 40 % Fittest Weights of that genera-
tion) undergoing a gentle mutation. Super mutation 
is only used when a new child has one of its weights 
greater than the domination threshold of 0.85. This is 
to reduce the possibility of a single Weight organism 
severely affecting and dominating future generations 
and populations, due to the domination crossover 
method we have chosen to use.

Experiments
Dataset
We analysed 29,232 clinical letters, written in Micro-
soft Word, to test the three unsupervised approaches, 
both separately and together as a GA-enabled ensemble. 
These letters were written by five different ophthalmol-
ogy specialists in the past ten years to patients’ Gen-
eral Practitioners. All patients’ names and addresses are 
removed using anonymisation algorithms we developed 
for privacy protection before running any of the follow-
ing experiments.

Experiment details
PrefixSpan
The PrefixSpan implementation provided in the SPMF 
package [32] was adapted for our frequent single and 
multi-word terms extraction. The original implementa-
tion of PrefixSpan only works for integers and thus we 
redeveloped the source code for manipulating strings. 
The modified PrefixSpan requires a sequence file S and 
min_sup as an input, where S is a file that contains a 
single sequence per line (a sequence being equivalent to 
a single sentence) and min_sup is the minimum fre-
quency for a term to be considered frequent.

We set the minimum support to be 0.1% of the cor-
pus’ size of approximately 30 documents. The minimum 
pattern length was set to one word (i.e. both single and 
multi-word terms are considered). The PrefixSpan algo-
rithm was run on the entire corpus.

C‑Value
We developed a preprocessing technique for the C-Value 
program to help identify the candidate terms. It con-
sisted of two steps: text normalising and phrase chunk-
ing. In text normalising, we first converted a text into 
lower-case, and then tokenised and lemmatised the 
text using Python NLTK  [33] tokeniser and lemmatiser. 
We did not perform stemming because two words with 
the same stem may have different meanings in medical 
terminologies.

Phrase chunking was performed by first assigning POS 
tags for each word using Stanford POS Tagger [34], and 
then applying heuristics to chunk noun phrases. We 
considered that a medical term has to be a noun phrase 
(either a single word noun or multi-words noun phrase) 
and applied the following heuristics to identify a candi-
date term: (1) a token with any symbol or punctuation 
(except hyphen) was treated as invalid; (2) a term should 
not have more than four tokens; and (3) a term had to 
match the regular expression <JJ>∗<NN.∗>+ that 
looked for a sequence of words that starts with any num-
ber of adjectives and ends with one or more nouns.

TextRank setup
The strength of TextRank is that it determines the impor-
tance of a vertex in terms of both local vertex-specific 
information and global information. The local vertex-
specific information represents how frequently word wi 
co-occur with word wj, and the global information cor-
responds to how important the word wj itself is to the 
entire text. Thus the word wi is said to be important when 
it either has high co-occurrence frequency with wj, or wj 
is very important to the text, or both.

However, our corpus consists of relatively short docu-
ments, typically around 120 words. After cleaning, each 



Page 10 of 14Liu et al. Health Inf Sci Syst  (2015) 3:5 

document only contains about 20 candidate terms. 
Therefore, performing the TextRank over such a short 
text can only produce trivial result because neither the 
local vertex-specific information nor the global informa-
tion can be well captured. To overcome this issue, we 
concatenated each of the documents from the entire cor-
pus to build one large document, and then ran the Tex-
tRank over this large document. We did this because (1) 
the actual meaning (the diagnostic information for each 
patient) contained in each document was not impor-
tant to the task we were interested in; (2) concatenating 
documents would not affect the results we wanted to 
obtain; and (3) concatenating the documents significantly 
increased the statistical validity of the information used 
in the ranking algorithm.

In our experiment, two vertices are connected if they 
co-occur in the same sentence. Initially, the importance 
of each vertex was uniformly distributed, thus each ver-
tex was assigned an initial value of 1/n where n is the 
total number of the vertices in the graph. We also set the 
damping factor d = 0.85, iteration to be 30, and thresh-
old of breaking to be 0.0001. To maintain consistency, 
TextRank uses the same pre-processing process as that of 
C-Value.

The output of PrefixSpan, C-Value and TextRank all go 
through the Medical Term Filtering process in order to 
increase the likelihood of the final list of terms actually 
belonging to the medical domain.

Genetic algorithm
The following parameters were used in our genetic algo-
rithm, a elitism factor of 40  %, a Children Mutation 
chance of 20 %, with random mutation of 10 %. The rank 
threshold was 0.50 while the domination threshold 0.85.

We conducted 100 runs of GA, where each GA run 
contains 100 organisms and 200 generations.

Results and discussions
For the evaluation, we have three ophthalmologists anno-
tated the extracted complex terms, including 839 com-
plex terms from PrefixSpan, 2443 from C-Value and 2126 
from TextRank. Of these complex terms, 181 are com-
mon among all three methods, where 27 (15 %) of these 
common terms are considered as non-domain terms by 
the doctors based on majority votes. Terms received two 
votes above are considered valid domain terms.

Individual algorithms results
The number of terms extracted by PrefixSpan, C-Value 
and TextRank, before and after dictionary filtering are 
summarised in Table 2. As we can see, the percentage of 
terms surviving the filtering process from C-Value and 
TextRank are much more than PrefixSpan because they 

both used noun phrase chuncking as a preprocessing 
step.

Tables 3, 4, 5, 6 list the top and bottom 10 terms before 
and after dictionary filtering. As we can see, the PrefixS-
pan algorithm generated a lot of short hands notations, 
and the longest sequence before filtering was “direc-
tion of gaze when he was able to open 
the right eye following the blow out 
he denies noticing any diplopia”, which 

Table 2  The number of  terms extracted before  and 
after filtering

PrefixSpan C-Value TextRank

Before 383,397 56,264 55,055

After 564 3138 3025

Percentage 0.14 % 5.58 % 5.49 %

Table 3  Before filtering top 10

PrefixSpan C-Value TextRank

Possibly Right eye Eye

Possibly a Left eye Right eye

F Month time Left eye

F She Intraocular pressure Left

F FR Visual acuity Right

F FR FL Cataract surgery Vision

F FR FL N Optic disc Review

F FR FL N FR Current glass Time

F FR FL N FR FL Eye Diagnosis

F Left Ocular examination Month

Table 4  Before filtering bottom 10

PrefixSpan C-Value TextRank

sharp in the right Recent left cataract Migraine prophylaxis 
medication

Sharp in the left Eye institute Monthly fundus check

sharp in the left eye Disease for Upper thorax

Sharp in each Bar fusion range Persistent low grade 
inflammation

Sharp in each eye Single vision distance Think mrtaylor

Sharp in each eye with Sclerotic lens change Occasional mobic 
medication

Sharp in each eye with aNuclear sclerotic lens 
change

22 mhg

Sharp pain Pressure today Another ct head

Tumour Titmus stereo Continued annual pres-
sure check

Stressed Early nuclear sclerotic 
lens

Good condtion
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is a writing pattern used often by a particular special-
ist. These frequent sequences retrieved by PrefixSpan, 
makes it very applicable for writing style analysis. In 
addition, we observed that PrefixSpan retained more uni-
grams as compared to the other two methods after filter-
ing (Tables 5, 6). It is also worth noting that the bottom 
ranked terms from C-Value and TextRank still contained 
sensible terms, indicating low frequency or low co-occur-
rent terms can still be quite valid domain terms.

GA Results
The extraction results in Tables 3, 4, 5, 6 confirmed our 
hypothesis that the three different techniques are com-
plementary. As shown in Tables  7 and 8, individually, 
TextRank’s performance is similar to C-Value. They both 
outperform PrefixSpan on all accounts.

Table 9 shows the weights of two separate runs of GAs 
with and without unigrams. As we can see, PrefixSpan 
dominated the final ranking score, especially when single 

word medical terms (unigrams) are taken into considera-
tion, with a very high weight of 92.84  %. In the case of 
complex multi-word medical phrases, TextRank acquire 
higher weights than C-Value. This seems to be counter-
intuitive when traditional ensemble approaches tend to 
lean towards better performed methods. In this case, 
please note that the positive terms are a union of all three 
methods and the overlap of common terms are a small 
proportion of the total number of terms extracted. There-
fore, the GA generated weights is pushing the PrefixSpan 
terms into higher ranks when they are available, because 
they constitute a small portion of the universe. In the case 
of complex terms, the PrefixSpan results only constitutes 
15.51 % of the total number of complex terms generated.

The fitness values (in this case, F-measure) were cal-
culated by averaging the best, worst and average fitness 
achieved by the population at the end of each run over 
the entire 100 runs. Likewise, the Fittest Weight’s values 
are the average of the weights of all the Fittest Weight at 
the end of each run over the entire 100 runs. Results are 
shown in Figs. 2 and 3.

The top and bottom 20 terms extracted using the GA 
weighted score, with and without unigrams are shown in 
Tables 10 and 11, respectively.

Conclusion
In this research, we conducted intensive medical term 
extraction exercise using a real-world document set of 
near 30,000 clinical letters collected over the past 10 years 

Table 5  After filtering top 10

PrefixSpan C-Value TextRank

Eye Intraocular pressure Eye

Examination Visual acuity Vision

Glasses Cataract surgery Diagnosis

Cataract Optic disc Examination

Surgery Eye Visual acuity

Intraocular Ocular examination Intraocular pressure

Acuity Diabetic retinopathy Symptom

Cataract surgery Fundus examination History

Glaucoma Vision Treatment

Lens Visual field examination Cornea

Table 6  After filtering bottom 10

PrefixSpan C-Value TextRank

Retinal photocoagula-
tion

Bilateral yag Pigmentary sign

Homonymous Intraocular len Ocular fundus

Detached retina Simple convergence Odd microaneurysm

Band Bilateral normal pres-
sure

Non ischemic retinal 
vein occlusion

Sphere Eye surgery Lens measurement

Refract External eye Topical medical treat-
ment

Proliferative Maddox rod Blood nose symptom

On examination on 
visual

External eye disease Primary diagnosis

Keratic precipitates Ocular history Posterior retina

Atypical Dilated fundus Posterior chamber lens 
implant

Table 7  Performance measures with unigram

Prefix (%) C-Value (%) TextRank GA (avg)

Precision 59.30 61.25 63.83

Recall 5.36 82.30 75.36

F-Measure 9.82 70.24 69.12 72.47 %

Table 8  Performance measures without unigram

Prefix (%) C-Value (%) TextRank (%) GA (avg)

Precision 18.09 49.93 51.60

Recall 5.36 82.30 81.98

F-Measure 8.27 62.16 63.34 65.65 %

Table 9  Weights of  GA-enabled ensemble (averaged 
over 100 runs)

wi PrefixSpan (%) C-Value (%) TextRank (%)

With unigrams 92.84 0.28 6.88

Without unigrams 82.96 0.1 16.94
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from one eye clinic. We used three popular ranking algo-
rithms for unsupervised medical term extraction, namely, 
PrefixSpan, C-Value and TextRank, as each covered dif-
ferent aspects of the language feature space. A genetic 
algorithm was developed to generalise the weight learning 
process by linearly combining the three ranking scores in 
an ensemble. The experiments showed promising results 
that with minimal amount of annotated data, an GA-ena-
bled ensemble of unsupervised approaches can achieve 
an average F-measure of 65.65 % when considering only 

complex medical terms, and a F-measure of 72.47 % if we 
take single word terms (i.e. unigrams) into consideration.

As side products of this research, we also developed 
algorithms and strategies for anonymising medical letters 
and constructing online dictionaries using web resources, 
which are not detailed in this paper due to lack of space 
and lack of immediate relevance.

The promising results confirm our system can be used 
as a solid foundation for bootstrapping of supervised 
medical entity extraction. On the other hand, it also poses 
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Fig. 2  GA optimisation process with unigram
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a number of interesting research questions that are worth 
pursuing. More immediately, we will investigate the valid-
ity of bottom ranked terms and incorporate doctors’ 
annotations through semi-supervised learning to further 
improve performance.

Authors’ contributions
WL leads the project with overall design, grant management, algorithmic 
development and implementation, and final writing of the manuscript. BC 
was an honours student contributing to the pre-processing of the medical let-
ters, implementation of Prefix-Span, C-Value and genetic algorithm and draft 
writing of the manuscript. RW is a PhD student responsible for the anonimisa-
tion of the medical letters and implementation of the TextRank algorithm. 
JN is an ophthalmology specialist, contributing to the manual labelling of 
medical terms and proof-reading of the manuscript. NM is an ophthalmology 
specialist, contributing to collecting the original medical letters and manual 
labelling of medical terms. All authors read and approved the final manuscript.

Author details
1 The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, 
Australia. 2 Western Eye Clinic, Unit 5, 592 Stirling Highway, Mosman Park, WA 
6012, Australia. 

Acknowledgements
This research is supported by the Australia China Council grant, and partially 
by the linkage grant LP110100050 from the Australian Research Council.

Competing interests
The authors declare that they have no competing interests.

Received: 18 August 2015   Accepted: 24 November 2015

References
	1.	 Goldman B. Scientists consider potential of abundant biomedical data. 

http://med.stanford.edu/ism/2013/may/bigdata-052813.html
	2.	 Amrich D. Within two years, 80 % of all medical data will be unstructured. 

2013. http://www.zdnet.com/within-two-years-80-percent-of-medi-
cal-data-will-be-unstructured-7000013707. Accessed 16 Oct 2013.

	3.	 Friedman C, Hripcsak G. Natural language processing and its future in 
medicine. Acad Med. 1999;74(8):890–5.

	4.	 Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H. A study 
of machine-learning-based approaches to extract clinical entities and 
their assertions from discharge summaries. J Am Med Inform Assoc. 
2011;18(5):601–6.

	5.	 Sang EFTK, Veenstra J. Representing text chunks. In: Proceedings of the 
Ninth Conference on European Chapter of the Association for Computa-
tional Linguistics. EACL ’99, pp. 173–179. Association for Computational 
Linguistics, Stroudsburg, PA, USA (1999). doi:10.3115/977035.977059.

	6.	 Tang B, Cao H, Wu Y, Jiang M, Xu H. Clinical entity recognition using 
structural support vector machines with rich features. In: Proceedings 
of the ACM Sixth International Workshop on Data and Text Mining in 
Biomedical Informatics. DTMBIO ’12, ACM, New York, NY, USA (2012). p. 
13–20. doi:10.1145/2390068.2390073.

	7.	 Wang Y. Annotating and recognising named entities in clinical 
notes. In: Proceedings of the ACL-IJCNLP 2009 Student Research 
Workshop. ACLstudent ’09, Association for Computational Linguis-
tics, Stroudsburg, PA, USA. 2009. p. 18–26. http://dl.acm.org/citation.
cfm?id=1667884.1667888

	8.	 Conrado MS, Koza W, Dıaz-Labrador J, Abaitua J, Rezende SO, Pardo 
TA, Solana Z. Experiments on term extraction using noun phrase 

Table 10  GA top 20

With unigrams Without unigrams

Eye Cataract surgery

Examination Intraocular pressure

Cataract Visual acuity

Surgery Macular degeneration

Cataract surgery Contact lens

Glaucoma Optic disc

History Intraocular lens

Lens Posterior vitreous detachment

Diagnosis Anterior chamber

Acuity Cataract extraction

Pressure Dry eye

Macula Retinal detachment

Cornea Visual field

Pterygium Double vision

Diplopia Optic nerve

Contact Posterior capsule

Tear Retinal vein occlusion

Macular degeneration Colour vision

Intraocular pressure Fluorescein angiography

Angle Meibomian gland dysfunction

Table 11  GA bottom 20

With unigrams Without unigrams

Bilateral defect Conjunctival naevus

de Chronic simple glaucoma

cl Central visual field test

os Blepharo spasm

Visual test Bilateral posterior uveitis

Vision bilateral Bilateral macular pattern dystrophy

Pupillary conjunctivitis Bilateral iritis

Normal migraine Atypical migraine

Macula i Atropine occlusion

Jaw wink Acute iritis

Inferior retinal break Active epithelial disease

i o p Macular microaneurysms

Diplopia n Haptic lens

i Choroidal naevi

uv Senile ptosis

al Lacrimal pressure

od Arteritic ischaemic optic neuropa-
thy

Arteritic ischaemic optic neuropathy Choroidal neovascular

Inferior hemi retinal vein occlusion Inferior hemi retinal vein occlusion

Eye i Eye i

http://med.stanford.edu/ism/2013/may/bigdata-052813.html
http://www.zdnet.com/within-two-years-80-percent-of-medical-data-will-be-unstructured-7000013707
http://www.zdnet.com/within-two-years-80-percent-of-medical-data-will-be-unstructured-7000013707
http://dx.doi.org/10.3115/977035.977059
http://dx.doi.org/10.1145/2390068.2390073
http://dl.acm.org/citation.cfm?id=1667884.1667888
http://dl.acm.org/citation.cfm?id=1667884.1667888


Page 14 of 14Liu et al. Health Inf Sci Syst  (2015) 3:5 

subclassifications. In: Proceedings of Recent Advances in Natural Lan-
guage Processing, Hissar, Bulgaria, pp. 746–751.

	9.	 Frantzi K, Ananiadou S, Mima H. Automatic recognition of multi-word 
terms: the c-value/nc-value method. Int J Digital Lib. 2000;3(2):115–30. 
doi:10.1007/s007999900023.

	10.	 Wong W, Liu W, Bennamoun M. Determining termhood for learning 
domain ontologies using domain prevalence and tendency. In: Proceed-
ings of the Sixth Australasian Conference on Data Mining and analytics. 
Australian Computer Society, Inc., Volume 70, 2007. p. 47–54.

	11.	 Wong W, Liu W, Bennamoun M. A probabilistic framework for automatic 
term recognition. Intel Data Anal. 2009;13(4):499.

	12.	 Liu J, Shang J, Wang C, Ren X, Han J. Mining quality phrases from massive 
text corpora. In: 2015 ACM SIGMOD Int. Conf. on Management of Data 
(SIGMOD’15), ACM - Association for Computing Machinery, New York, 
NY, USA. 2015. p. 1729–1744. http://research.microsoft.com/apps/pubs/
default.aspx?id=241783.

	13.	 Ren, X., El-Kishky, A., Wang, C., Tao, F., Voss, C.R., Han, J.: Clustype: Effec-
tive entity recognition and typing by relation phrase-based clustering. 
In: Proceedings of the 21th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. KDD ’15, pp. 995–1004. ACM, 
New York, NY, USA (2015). doi:10.1145/2783258.2783362.

	14.	 Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M-C. 
Mining sequential patterns by pattern-growth: the prefixspan approach. 
IEEE Trans Knowl Data Eng. 2004;16(11):1424–40.

	15.	 Mihalcea R, Tarau P. TextRank: Bringing order into texts. In: Proceedings 
of EMNLP-04 the 2004 Conference on Empirical Methods in Natural 
Language Processing, Barcelonaand Spain. 2004.

	16.	 Fahmi I. Automatic term and relation extraction for medical question 
answering system. PhD thesis, University of Groningen. 2009.

	17.	 Bourigault D. Surface grammatical analysis for the extraction of ter-
minological noun phrases. In: Proceedings of the 14th Conference on 
Computational linguistics, Association for Computational Linguistics, Vol 
3, 1992. p. 977–981.

	18.	 Justeson JS, Katz SM. Technical terminology: some linguistic properties 
and an algorithm for identification in text. Nat Lang Eng. 1995;1(1):9–27.

	19.	 Banerjee S, Pedersen T. The design, implementation, and use of the 
ngram statistics package. In: Computational Linguistics and Intelligent 
Text Processing. Berlin Heidelberg: Springer, 2003. p. 370–381.

	20.	 Dunning T. Accurate methods for the statistics of surprise and coinci-
dence. Comput Linguist. 1993;19(1):61–74.

	21.	 Frantzi K, Ananiadou S, Mima H. Automatic recognition of multi-word 
terms: the c-value/nc-value method. Int J Digital Librar. 2000;3(2):115–30.

	22.	 Krenn B. Empirical implications on lexical association measures. In: Pro-
ceedings of The Ninth EURALEX International Congress. 2000.

	23.	 Church KW, Hanks P. Word association norms, mutual information, and 
lexicography. Comput linguist. 1990;16(1):22–9.

	24.	 Manning CD, Schütze H. Foundations of statistical natural language 
processing. Cambridge: MIT press; 1999.

	25.	 Wang R, Liu W, McDonald C. How preprocessing affects unsupervised 
keyphrase extraction. In: Gelbukh A, editor. Computational Linguistics 
and Intelligent Text Processing, vol. 8403., Lecture Notes in Computer 
ScienceBerlin Heidelberg: Springer; 2014. p. 163–76.

	26.	 Wang R, Liu W, McDonald C. Using word embeddings to enhance key-
word identification for scientific publications. In: Sharaf MA, Cheema MA, 
Qi J, editors. Databases Theory and Applications, vol. 9093., Lecture Notes 
in Computer ScienceBerlin Heidelberg: Springer; 2015. p. 257–68.

	27.	 Hliaoutakis, A., Zervanou, K., Petrakis, E.G.M., Milios, E.E.: Automatic 
document indexing in large medical collections. In: Proceedings of 
the International Workshop on Healthcare Information and Knowl-
edge Management. HIKM ’06, ACM, New York, NY, USA (2006). p. 1–8. 
doi:10.1145/1183568.1183570.

	28.	 Plantevit M, Charnois T, Klema J, Rigotti C, Cremilleux B. Combining 
sequence and itemset mining to discover named entities in bio-
medical texts: a new type of pattern. Int J Data Mining Model Manage. 
2009;1(2):119–48.

	29.	 Brin S, Page L. The anatomy of a large-scale hypertextual web search 
engine. Comp Netw ISDN Syst. 1998;30(1):107–17.

	30.	 Dietterich TG. Ensemble methods in machine learning. Multiple Classifier 
Systems, vol. 1857., Lecture Notes in Computer ScienceBerlin Heidelberg: 
Springer; 2000. p. 1–15.

	31.	 Hansen LK, Salamon P. Neural network ensembles. IEEE Trans Pat Anal 
Mach Intel. 1990;12(10):993–1001.

	32.	 Fournier-Viger P, Gomariz A, Soltani A, Gueniche T. SPMF: Open-Source 
Data Mining Platform. 2013. http://www.philippe-fournier-viger.com/
spmf/

	33.	 Bird S, Klein E, Loper E. Natural Language Processing with Python, 1st 
edn., O’Reilly Media, Inc. 2009.

	34.	 Klein D, Manning CD. Accurate unlexicalized parsing. In: Proceedings of 
the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, Association for Computational Linguistics. 2003. p. 423–430.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1007/s007999900023
http://research.microsoft.com/apps/pubs/default.aspx?id=241783
http://research.microsoft.com/apps/pubs/default.aspx?id=241783
http://dx.doi.org/10.1145/2783258.2783362
http://dx.doi.org/10.1145/1183568.1183570
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

	A genetic algorithm enabled ensemble for unsupervised medical term extraction from clinical letters
	Abstract 
	Background
	Related work
	Candidate term generation
	Statistical analysis
	T-score
	Mutual information
	Log-likelihood
	TextRank
	C-Value
	Sequential pattern mining


	Methodology
	PrefixSpan
	Problem definition
	Algorithm

	C-Value
	Linguistic component
	Statistical component

	TextRank
	Medical term filtering

	Genetic algorithm enabled ensemble
	Population
	Fitness function
	Crossover
	Naïve crossover
	Domination crossover

	Selection
	Mutation

	Experiments
	Dataset
	Experiment details
	PrefixSpan
	C-Value
	TextRank setup
	Genetic algorithm


	Results and discussions
	Individual algorithms results
	GA Results

	Conclusion
	Authors’ contributions
	References




