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How Amdahl’s Law limits the performance 
of large artificial neural networks
why the functionality of full-scale brain simulation on processor-based simulators is 
limited
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Abstract 

With both knowing more and more details about how neurons and complex neural networks work and having 
serious demand for making performable huge artificial networks, more and more efforts are devoted to build both 
hardware and/or software simulators and supercomputers targeting artificial intelligence applications, demanding 
an exponentially increasing amount of computing capacity. However, the inherently parallel operation of the neural 
networks is mostly simulated deploying inherently sequential (or in the best case: sequential–parallel) computing ele-
ments. The paper shows that neural network simulators, (both software and hardware ones), akin to all other sequen-
tial–parallel computing systems, have computing performance limitation due to deploying clock-driven electronic 
circuits, the 70-year old computing paradigm and Amdahl’s Law about parallelized computing systems. The findings 
explain the limitations/saturation experienced in former studies.
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1  Introduction
Although von Neumann in his classic publication  [1, 2] 
targeted creating computing organs, developers had to 
consider the that-time technological possibilities and the 
urgent need to automate numeric calculations. In this 
way, the primary goal was to compute and all efforts (at 
that time and the next seven decades) were devoted to 
develop the device computer. The sound success of that 
automated computing and the growing scientific, indus-
trial, military, etc. needs targeted to increase the single-
processor performance, although more than five decades 
ago it was already recognized [3] that when utilizing that 
computing principle one faces serious performance limi-
tations. The today’s goal to simulate operation of even a 
relatively small-scale (compared to human brain) neu-
ral network in real-time faces serious difficulties and 
leads to serious performance issues  [4]. In the light of 

that biological neurons work in the millisecond range, 
the silicon neurons could work in the nanosecond range 
and that both software-only neural network simulator 
programs running on supercomputers built from gen-
eral-purpose processors and special-purpose hardware 
brain-simulator utilize million(s) of high-performance 
processors produce such a low performance, the question 
raises: where do we loose several orders of magnitude of 
computing performance?

One obvious candidate for loosing performance is the 
general-purpose processor itself  [5]: its performance 
is awfully low compared to implementation in Applica-
tion Specific Integrated Circuits. However, it cannot be 
responsible alone for the full loss. The development of 
single-processor performance has stalled  [6] and only 
marginal development of single-processor performance 
can be expected. The computing needs renewing  [7, 8] 
because of many reasons. One of them is that the many 
forms of increasing the performance through various 
kinds of parallelization  [9] is a short dead-end street: 
the computing efficiency exponentially decreases as the 
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number of processors increases  [10], the today’s super-
computers are stretched to their limits [11] in the case of 
large-scale systems. A slowdown or stalling of the growth 
of their performance is expected according to the general 
experiences [12] and is really experienced among others 
in the field of supercomputing [13]. However, similarly to 
most of the basic limitations of computing, even the limi-
tations are limited [14].

The goal of the paper is to show that akin to super-
computers the computing performance of the proces-
sor-based brain simulators is also limited. As discussed 
below, utilizing (mainly: thinking in) clocked electronic 
circuits, the 70-year-old single-processor approach and 
Amdahl’s Law together result in that only marginal devel-
opments in the performance of neuromorphic simula-
tions can be expected. The question only is how far brain 
simulation is from its limitations? And of course, whether 
those limitations are limited, too?

The paper first interprets Amdahl’s Law for any kind of 
parallelized activity in Sect.  2 and shows in Sect.  3 that 
utilizing clock signals in the electronic circuits leads to 
an inherent limitation of performance. Section  4 shows 
how in supercomputing this inherent limitation bounds 
the achievable computing performance. Although brain 
simulation seems to be unrelated to the sequential/paral-
lel computing world, in Sect. 5 it is shown that the tech-
nical implementation introduces a hidden clock signal 
into neural computing. This section also reveals the ori-
gins of the saturation effects experienced in former stud-
ies. Finally, in Sect. 6, some ideas are proposed for using 
some alternative approach to get closer to full-power 
brain simulations.

2 � Amdahl’s Law of parallelization
2.1 � Amdahl’s idea
Amdahl’s Law is one of the few, fundamental laws of com-
puting [15], although sometimes it is partly or completely 
misinterpreted or abused [15–17]. A general misconcep-
tion (introduced by successors of Amdahl) is to assume 
that Amdahl’s law is valid for software only. Actually, 
Amdahl’s law is valid for any partly parallelizable activ-
ity (including computer unrelated ones) and the non-par-
allelizable fragment shall be given as the ratio of the time 
spent with non-parallelizable activity to the total time. 
Notice that Amdahl speaks about partly parallelizable 
activities in simple parallelized systems, unlike complex 
sequential–parallel systems with variable degree of paral-
lelism [18] or the brain operation. That is, Amdahl’s law 
can be directly applied only to such simple systems, but 
the idea itself can be utilized to study even the mentioned 
complex systems.

2.2 � Deriving the effective parallelization
Successors of Amdahl expressed Amdahl’s law with the 
formula

where k is the number of parallelized activities, α is the 
ratio of the parallelizable part within the total activity, S 
is the measurable speedup. The assumption can be visu-
alized that (in a conventional computing system assum-
ing many processors) in α fraction of the running time 
the processors are executing parallelized code, in ( 1− α ) 
fraction they are waiting (all but one), or making non-
payload activity. That is α describes how much, in aver-
age, processors are utilized, or how effective (at the level 
of the computing system) the parallelization is.

For a system under test, where α is not a priory known, 
one can derive from the measurable speedup S an effec-
tive parallelization factor [19] as

Obviously, this is not more than α expressed in terms 
of S and k from Eq.  (1). For the classical case, α = αeff ; 
which simply means that in the ideal case the actually 
measurable effective parallelization achieves the theoreti-
cally possible one. In other words, α describes a system 
the architecture of which is completely known, while αeff 
characterizes the performance, which describes both the 
complex architecture and the actual conditions. It was 
also demonstrated  [19] that αeff can be successfully uti-
lized to describe parallelized behavior from software 
(SW) load balancing through measuring efficacy of the 
on-chip communication inside a hardware (HW) unit to 
characterizing performance of clouds.

The value αeff can also be used to refer back to 
Amdahl’s classical assumption even in the realistic case 
when the parallelized chunks have different lengths and 
the overhead to organize parallelization is not negligible. 
The speedup S can be measured and αeff can be utilized 
to characterize the measurement setup and conditions, 
how much from the theoretically possible maximum par-
allelization is realized. Numerically ( 1− αeff ) equals with 
the f value, established theoretically [20].

The distinguished constituent in Amdahl’s classic anal-
ysis is the parallelizable fraction α , all the rest (includ-
ing wait time, non-payload activity, etc.) goes into the 
“sequential-only” fraction. When using several proces-
sors, one of them makes the sequential calculation, the 
others are waiting (use the same amount of time). So, 
when calculating the speedup, one calculates

(1)S−1
= (1− α)+ α/k

(2)αeff =
k

k − 1

S − 1

S

(3)S =
(1− α)+ α

(1− α)+ α/k
=

k

k(1− α)+ α
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hence the efficiency is (see also Fig. 2).

This explains the behavior of diagram Sk in function of k 
experienced in practice: the more processors, the lower 
efficiency. At this point, one can notice that 1E is a linear 
function of number of processors, and its slope equals to 
(1− α) . Equation  (4) also underlines the importance of 
the single-processor performance: the lower is the num-
ber of the processors used in the parallel system having 
the expected performance, the higher can be the efficacy 
of the system.

Notice also, that through using Eq. (4), the efficiency S
k 

(which is given for supercomputers as RMax
RPeak

 ) can be 
equally good for describing the efficiency of paralleliza-
tion of a setup, provided that the number of processors is 
also known. From Eq. (4)

If the parallelization is well-organized (load balanced, 
small overhead, right number of processors), αeff is close 
to unity, so tendencies can be better displayed through 
using (1− αeff ) in the diagrams.

The importance of this practical term αeff is underlined 
by that it can be interpreted and utilized in many differ-
ent areas [19] and the achievable speedup (the maximum 
achievable performance gain when using infinitely large 
number of processors) can easily be derived from Eq. (1) 
as

Provided that the value of αeff does not depend on the 
number of the processors, for a homogenous system the 
total payload performance is

i.e., the total payload performance can be increased by 
increasing the performance gain or increasing the single-
processor performance, or both. Notice, however, that 
increasing the single-processor performance through 
accelerators also has its drawbacks and limitations  [21], 
and that the performance gain and the single-processor 
performance are players of the same rank in defining the 
payload performance.

Notice the special role of the non-parallelizable activi-
ties: independently of their origin, they are summed up as 
‘sequential-only’ contribution and degrade considerably 
the payload performance. In systems comprising paral-
lelized sequential processes actions like communication 

(4)E =
S

k
=

1

k(1− α)+ α

(5)αE,k =
Ek − 1

E(k − 1)

(6)G =
1

(1− αeff )

(7)Ptotal payload = G · Psingle processor

(including also MPI), synchronization, accessing shared 
resources, etc. [22–25] all contribute to the sequential-
only part. Their effect becomes more and more drastic as 
the number of the processors increases. One must take 
care, however, how the communication is implemented. 
A nice example is shown in [26], how direct core to core 
(in other words: direct thread to thread) communication 
can enhance parallelism in large-scale systems.

3 � The inherent limit of parallelization
In the systems implemented in single-processor approach 
(SPA)  [3] as parallelized sequential systems, the life 
begins in one such sequential subsystem. For example, in 
large parallelized applications running on general-pur-
pose supercomputers, initially and finally only one thread 
exists, i.e., the minimal absolutely necessary non-parallel-
izable activity is to fork the other threads and join them 
again. With the present technology, no such actions can 
be shorter than one processor clock period.1 That is, the 
absolute minimum value of the non-parallelizable frac-
tion will be given as the ratio of the time of the two clock 
periods to the total execution time. The latter time is a 
free parameter in describing the efficiency, i.e., value of 
the effective parallelization αeff also depends on the total 
benchmarking time (and so does the achievable paralleli-
zation gain, too).

This dependence is of course well known for super-
computer scientists: for measuring the efficiency with 
better accuracy (and also for producing better αeff val-
ues) hours of execution times are used in practice. For 
example, in the case of benchmarking the supercomputer 
Taihulight [27] 13,298 s benchmark runtime was used; on 
the 1.45 GHz processors it means 2 ∗ 1013 clock periods. 
This means that (at such benchmarking time) the inher-
ent limit of (1− αeff ) is 10−13 (or equivalently the achiev-
able performance gain is 1013 ). If the fork/join is executed 
by the operating system (OS) as usual, because of the 
needed context switchings 2 ∗ 104  [28] clock cycles are 
needed rather than the 2 clock cycles considered in the 
idealistic case, i.e., the derived values are correspondingly 
by 4 orders of magnitude different; that is the performance 
gain cannot be above 109 . When making only 10  s long 
measurements, the smaller denominator results in 103 
times worse (1− αeff ) and performance gain values. In 
the following for simplicity 1.00 GHz processors (i.e., 1 ns 
clock cycle time) will be assumed.

There are other similar limitations in consequence 
of the physical implementation. The supercomputers, 

1  Taking this two clock periods as an ideal (but not realistic) case, the actual 
limitation will surely (much) worse than the one calculated for this idealistic 
one. The actual number of clock periods depends on many factors, as dis-
cussed below.
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for example, are also distributed systems. In a stadium-
sized supercomputer, the distance between processors 
(cable length) about 100 m can be assumed. The net sig-
nal round trip time is ca. 10−6 s, or 103 clock periods, i.e.,  
in the case of a finite-sized supercomputer the per-
formance gain cannot be above 1010 (or 106 if context 
switching also needed). The presently available network 
interfaces have 100...200  ns latency times, and sending 
a message between processors takes time in the same 
order of magnitude. This also means that making better 
interconnection is not really a bottleneck in enhancing 
performance, at least when measured using the bench-
mark High-Performance Linpack (HPL). This statement 
is underpinned also by statistical considerations [21].

Taking the (maybe optimistic) value 2 ∗ 103 clock peri-
ods for the signal propagation time, the value of the effec-
tive parallelization (1− αeff ) will be at best in the range of 
10−10 , only because of the physical size of the supercom-
puter. This also means that the expectations against the 
absolute performance of supercomputers are excessive: 
assuming a 100 Gflop/s processor, the achievable absolute 
nominal performance (see Eq. (6)) is 1011*1010 flop/s , i.e., 
1000  EFlops. To implement this, around 109 processors 
are required. One can assume that the value of (1− αeff ) 
will be2 around of the value 10−7 . With those very opti-
mistic assumptions (see Eq. 4), the payload performance 
for benchmark HPL will be less than 10  Eflops, and for 
the real-life applications of class of the benchmark High-
Performance Conjugate Gradients (HPCG), it will be 
surely below 0.01 EFlops, i.e., lower than the payload per-
formance of the present TOP1-3 supercomputers.

These predictions enable to assume that the presently 
achieved value of (1− αeff ) persists also for roughly hun-
dred times more cores. However, another major issue 
arises from the computing principle single-processor 
approach (SPA): only one computer at a time can be 
addressed by the first one. As a consequence, minimum 
as many clock cycles are to be used for organizing the 
parallel work as many addressing steps required. Basi-
cally, this number equals to the number of cores in the 
supercomputer, i.e., the addressing in the TOP10 posi-
tions typically needs clock cycles in the order of 5 ∗ 105
...107 ; degrading the value of (1− αeff ) into the range 10−6

...2 ∗ 10−5 . Two tricks may be used to mitigate the num-
ber of the addressing steps: either the cores are organ-
ized into clusters as many supercomputer builders do, 
or at the other end the processor itself can take over the 
responsibility of addressing its cores [29]. Depending on 

the actual construction, the reducing factor of cluster-
ing of those types can be in the range 102...5 ∗ 104 , i.e., 
the resulting value of (1− αeff ) is expected to be around 
10−7 . Notice that utilizing “cooperative computing”  [29] 
enhances further the value of (1− αeff ) , but it means 
already utilizing a (slightly) different computing para-
digm: the cores have a kind of direct connection and can 
communicate with the exclusion of the main memory.

An operating system must also be used, for protection 
and convenience. If one considers context switching with 
its consumed 2 ∗ 104 cycles [28], the absolute limit is cca. 
5 ∗ 10−8 , on a zero-sized supercomputer. This value is 
somewhat better than the limiting value derived above, 
but it is close to that value and surely represents a con-
siderable contribution. This is why Taihulight runs the 
actual computations in kernel mode [29].

Because all of this, in the name of the company PEZY3, 
the last two letters are surely obsolete. Also, no Zetta-
flops supercomputers will be delivered for science and 
military  [30]. It looks like that in the feasibility studies, 
an analysis on whether this inherent performance bound 
exists is done neither in USA [31] nor in EU [32] nor in 
Japan [33] nor in China [13].

As discussed above, some limitations follow immedi-
ately from the physical implementation and the comput-
ing paradigm; it depends on the actual conditions, which 
of them will dominate. It is crucial to understand that 
the decreasing efficiency (see Eq.  (4)) is coming from the 
computing paradigm itself rather than from some kind of 
engineering imperfectness. This inherent limitation cannot 
be mitigated without changing the computing/implemen-
tation principle.

4 � The inherent limits of supercomputing
The considerations on supercomputing result in a (by 
intention oversimplified) parametrized model that quali-
tatively describes the behavior of the supercomputers 
during its 26 years of history, and the parameters can be 
estimated from the public, rigorously controlled, accurate 
database [34]. The model [10, 35] not only describes the 
performance of the presently existing supercomputers, 
but also predicts their future achievable performance.

Although not explicitly dealt with here, notice that the 
data exchange between the first thread and the other ones 
also contribute to the non-parallelizable fraction and typ-
ically uses system calls, for details see [23–25]. Actually, 
we may have communicating serial processes, which does 
not improve the effective parallelism at all  [22]. Essen-
tially, this is why supercomputers have a “benchmark 

2  With the present technology the best achievable value is ca. 10−6 , which was 
successfully enhanced by clustering to ca. 2 ∗ 10−7 for Summit and Sierra , and 
the special cooperating cores of Taihulight enabled to achieve 3 ∗ 10−8.

3  https​://en.wikip​edia.org/wiki/PEZY_Compu​ting: The name PEZY is an 
acronym derived from the greek derived Metric prefixs Peta, Eta, Zetta, Yotta.

https://en.wikipedia.org/wiki/PEZY_Computing
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efficiency” (measured by HPL) and a “practical efficiency” 
(measured by benchmark HPCG), the latter of which is 
100...1000 times lower than the former one. For details 
see [10]. Recall that artificial neurons make intensive data 
exchange among each other, so they surely belong to the 
HPCG class of applications, although utilizing “far” and 
“near” memories can change their behavior drastically.

Figure  1 depicts how the payload performance of the 
benchmarks HPL and HPCG depend on the nominal 
performance of the general-purpose supercomputers. 
The diagram lines referring to different (1− αeff ) val-
ues are calculated from the model  [10], the marks are 
measured for the different TOP15 supercomputers (as 
of Nov 2018). The empty marks refer to the HPL and the 
filled ones to the HPCG benchmarks. For more legends 
and explanations see  [10]. Notice that the simulators of 

artificial neural networks show up a behavior quite close 
to the HPCG class applications, see below.

5 � The inherent limits of neural network simulation
Of course, brain simulation as such has nothing to do 
with clock-driven sequential-parallel processing. How-
ever, brain simulators (the SW ones and most of the HW 
ones) run on such computing systems (are built from 
such components) and inherit the limitations valid for 
those systems. As discussed above, Eq.  (7) defines the 
achievable payload performance of a parallelized com-
puting system, and also that the performance gain is lim-
ited by the clock frequency.

The living “architectures” have no central clock sig-
nal, so the simulations should not have one, too. Despite 
this, from technology reasons, all simulations utilize a 
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Fig. 1  The RMax payload performance in function of the nominal performance RPeak , at different (1− αeff ) values. The figures display the measured 
values derived using HPL (empty marks) and HPCG (filled marks) benchmarks, for the TOP15 supercomputers. The computing performance of 
AI applications may be similar to the diagram line marked by HPCG. The diagram lines marked as HPL and HPCG correspond to the behavior of 
supercomputer Taihulight at (1− αeff ) values 3.3 ∗ 10−8 and 2.4 ∗ 10−5 , respectively. The uncorrected values of the new supercomputers Summit 
and Sierra are shown as diamonds, and the same values corrected for single-processor performance are shown as rectangles. The black dots mark 
the performance data of supercomputers JUQUEEN and K as of 2014 June, for HPL and HPCG benchmarks, respectively. The red dot denotes the 
performance value of the system used by [4]. The saturation effect can be observed for both HPL and HPCG benchmarks. The shaded area only 
highlights the nonlinearity
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“time grid”, commonly with 1  ms integration time. This 
grid time is used to put the free running neurons back to 
the biological time scale, i.e., they actually act as a clock 
signal: stimulating of the next calculation step can only 
start when this clock signal arrives. This is absolutely 
analogous with the goal of introducing clock signal for 
executing the machine instructions: the processor, even 
when it is idle, cannot begin the execution of the next 
machine instruction until the clock signal arrives. The 
artificial neural networks constructed in this way can be 
considered as consisting from nodes having rather com-
plex internal operation (implementing exceptionally high 
computing performance) and concerted by the clock sig-
nal which is technically required to enable performing 
the concerted integration.

If the artificially introduced "biological clock cycle" 
is not considered (it introduces a new dimension), the 
payload efficiency depends on both the the efficiency of 
parallelization and the number of the processors in the 
system, as described by Eq. (4) and displayed in Fig.  2. 
Under the conditions of supercomputing, the expected 
high performance puts strong constraints both on the 
number of the processors and the efficiency of their par-
allelization. As the figure displays, in order to get away 
from the strongly non-linear part of this 2-dimensional 
surface (i.e. to have a reasonable efficiency), the present 
(as of 2018 November) top 5 supercomputers must show 
up a good bargain between having large single-proces-
sor performance and at the same time showing up good 
effective parallelism.

The figure shows also how the "benchmarking perfor-
mance (HPL)" of the top 5  supercomputers are posi-
tioned on the 2-dimensional surface, while the "real-life 
performance (HPCG)" values of the efficiency are of 
two orders of magnitude lower. It is crucial to see that 
increasing only the number of the cores has a reverse 
effect on the efficiency of the parallelization, and so leads 
to a decreasing payload performance, see the right side of 
Fig. 2.  It is interesting to see that the unique HW solu-
tion of Taihulight resulting in outstanding parallalization 
efficiency (especially at that high number of cores) works 
only when measured with HPL and it draws back  when 
measuring with HPCG. Recall also, that the AI applica-
tions are expected to have effciency about 1% (the typical 
efficiency of HPCG class), and introducing the  "biologi-
cal clock cycle" in brain simulation, decreases the effi-
ciency further by 2-3  orders of magnitude.

5.1 � The contribution from the “clock signal”
As discussed shortly in Sect. 3 and in more details in [35], 
the non-parallelizable fraction of the computing load 
sums up from different contributions to (1− αeff ) . In 
the case of processors, the contribution due to utilizing 

clock signals is about 10−13 when using hours of execu-
tion times,4 and in the case of using 10 s simulation time 
it is about 10−10 . In the case of brain simulators working 
on 1 ms time grid,5 one “neuron operation” is 106 times 
longer than a “processor operation” (typically 1ns); cor-
respondingly the achievable (1− αeff ) contribution would 
be 10−7 for supercomputer benchmarking time and 10−4 
for the 10 s simulation time.

This also means that for a neural network simula-
tion task utilizing a 1 ms grid time the performance gain 
cannot be higher than 104 ; however, the exceptionally 
high “node performance” may cover this fact. This con-
tribution alone roughly corresponds to the “practical 
efficiency” of supercomputers, measured by the bench-
marks HPCG [38]. The AI applications usually run using 
shorter floating numbers, typically a 2 · · · 4 multiplier 
better payload performance appears by them, but the 
intensive data exchange between the cores overcompen-
sates this. Consequently, roughly the same performance 
will be seen for AI applications and HPCG class applica-
tions, with the same saturation value and payload per-
formance (see also Fig. 1). To conclude a more accurate 
value is not possible without making dedicated measure-
ments: utilizing “near” and “far” memories, optimizing 
thread access [36], using activation functions with differ-
ent computational need, etc. can considerably change the 
value. Similarly, the intensive data exchange between the 
nodes (and threads) of the neural networks is very sensi-
tive to the computing paradigm. The processor deploying 
“cooperative computing”  [29] considerably enhances the 
computing performance in the case of the HPCG bench-
mark  [26], which computationally is very similar to the 
AI problems.

5.2 � The other contributions
The biggest contribution in the case of brain simulator of 
this kind comes from context switching. As estimated for 
the many-thread simulation running on a general-pur-
pose supercomputer [4] “the computation is split roughly 
as 10% or 20,000 CPU cycles per time step for neural 
updates and 90% or 180,000 CPU cycles for synapse pro-
cessing”, the frequent context switching takes about 10 % 
of the total execution time, i.e., the value of (1− αeff ) is 
10−1 ; despite of that the mentioned 20,000 CPU cycles 
roughly correspond only to one context switch per 
time step plus several inter-thread switching between 

4  Recall that the unrealistic ideal case of utilizing only 2 clock cycles for fork/
join operations and a zero-sized computer is assumed.
5  Notice that even SpiNNaker utilizes by design an unintended clock signal: 
“An external, self-contained, instantaneous signal drives state change in 
each process, which contains a trigger that will initiate or alter the process 
flow” [37].
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neurons. This is why special-purpose HW brain simula-
tor has been built where the “flagship goal is to be able 
to simulate the behavior of aggregates of up to a billion 
neurons in real time” [39].

The design principle of SpiNNaker  [39] is that “A sin-
gle SpiNNaker core is a single ARM9 processor ...and is 
expected to multiplex the behavior of around 1000 neu-
rons”, it also involves that if all neurons would be used in 
the same grid time slot, around 2000 context switches 
would be required for the operation.6 To implement this, 
around 3 ∗ 107 clock cycles  [28] would be required only 
for context switching, in this way exceeding the avail-
able 3 ∗ 106 clock cycles (assuming 3GHz processors and 
1 ms grid time slot). The available measured data referring 
to an ARM processor  [40] show that the number of the 
cycles needed for context switching is in the same order 
of magnitude as that for Intel processors  [28], so the 
number of neurons must be considerably lower than the 
theoretical capacity mentioned.

This is why according to  [4] “Each of these cores also 
simulates 80 units per core”: when reducing the num-
ber of the required context switchings, the core has also 
some time to make payload calculations. Because of this, 
it is quite plausible that NEST and SpiNNaker produce 
comparable performance data under the conditions of 
the benchmarking by [4]: they by design spend a consid-
erable fraction of their time with the non-parallelizable 
(and non-payload) activity of making context switches 
and they both have a hidden unintended 1 ms internal 
clock signal.7 Also, this is why “To obtain an accuracy 
similar to that of NEST with 0.1 ms time steps, SpiNNa-
ker requires a slowdown factor of around 20 compared 
to real time” [4]: otherwise, some of the neurons can-
not finish the required calculation until the clock signal 
arrives. This indirectly underpins that the actual operat-
ing parameters are close to their limiting value: the ten 
times more data traffic (including ten times more in-chip 
data packets), the ten times more calculations, the ten 
times more context switches require twenty times more 
time. In this particular case, all other contributions are of 
orders of magnitude lower, even when a proper optimiza-
tion of thread handling considerably increases the effec-
tive parallelism [36]; at the same time also demonstrating 
that different thread handling affects the performance of 
the simulation sensitively and so would do reducing the 
number of the required context switchings. The final 

reason is the improperly designed layering of computing: 
to use operating system services and/or peripherals (like 
network interfaces) the context switching is inevitable.

Notice that the analysis in the case of supercomputers 
and neural network simulators shall consider contribu-
tions with different weights. In the case of the supercom-
puters, the 1 ns clock period forces to consider also the 
effect of the physical size and the number of the proces-
sors. In the case of neural network simulators the “clock 
period” and the context switching are the dominating con-
tributions and (at least at reasonably sized computers) all 
other contributions can be neglected.

Also an issue is that the artificial neurons work “at 
the same time” (biological time) and they are scheduled 
essentially in a random way on the wall-clock time scale. 
Since the neurons integrate “signals from the past”, this 
method is not suitable for simulating the effects of spikes 
with decay time comparable to length of the grid time. In 
addition, this grid time is “making all cores likely to send 
spikes at the same time” and “[SpiNNaker]does not cope 
well with all the traffic occurring within a short time win-
dow within the time step” [4]. This is why the designers of 
the HW simulator [39] say that the events arrive “more or 
less” in the same order as they should. The difference of 
the timely behavior is also noticed by [4]: “The spike times 
from the cortical microcircuit model obtained with differ-
ent simulation engines can only be compared in a statisti-
cal sense”.

5.3 � How performance bound manifests
Recall that the performance limit was derived from the 
commonly used 1 ms integration time and the SPA, both 
for the SW simulator and the HW simulator. This also 
explains why they produce a comparable absolute perfor-
mance: because of utilizing the same integration time as 
clock period (this enables a neuron to enter the next time 
station) the parallelization gain is about the same, only 
the single-processor performance decides about the pay-
load performance. The “single neuron performance” has a 
special interpretation here: it is the sum of all operations 
done by a physical core in a biological time slot. So, the 
single-processor performance is exceptionally high in 
the case of neural network simulators: the “neuron core” 
executes instructions in 1 ms (for ca. 100 neurons) rather 
than in 1ns. In these time-slots typically differential equa-
tions are solved, context switchings made, waiting exe-
cuted, so the processing capacity is quite poorly utilized. 
This is why the efficacy is not increasing as expected. The 
experience is common for processor scientists  [41]: “we 
believed that the ever-increasing complexity of supersca-
lar processors would have a negative impact upon their 
clock rate, eventually leading to a leveling off of the rate of 
increase in microprocessor performance”. And, simulating 

6  For the sake of simplicity it is not considered that that same scheduler must 
do all context switchings. Although [39] emphasizes that “there is no conven-
tional operating system running on the cores”, using interrupts and preemptive 
scheduling make using context switching a must.
7  Again: here the effect of the clock signal and the non-parallelizable con-
tribution arising from the need of context switching are competing for the 
dominance, and without dedicated measurements there is no way to tell 
which of them finally dominates.
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neuron activity on a sequential-parallel digital system is 
really complex. An indirect proof of the limiting effect 
of this implicit clock signal is that the analog electronic 
simulators of neural networks can outperform thousands 
of times the biological nerve system and the ones based 
on general-purpose processors.

One must be careful with statements on scalability. 
According to their goal  [4] to implement simulation of 
a Cortical Microcircuit Model, the authors performed 
measurements only with a fragment of the available 
supercomputing capacity (768 cores out of the 458,752) 
and similarly using 6 (out of the 600 total) SpiNNaker 
boards; see also the red dot in Fig.  1. At that perfor-
mance, the nonlinearity occurring at higher performance 
(see the black dots) cannot be foreseen.

Even in the case of peta-scale neural computing [42], 
however, this saturation/limitation is the reason of the 
conclusions like “the algorithms creating instances of 
model neurons and their connections scale well for net-
works of ten thousand neurons, but do not show the same 
speedup for networks of millions of neurons” [36] (Fig. 7) 
and the pessimistic prediction  [4] “Today’s supercom-
puters require tens of minutes to simulate 1 s of biologi-
cal time and consume megawatts of power. This means 
that any studies on processes like plasticity, learning, 
and development exhibited over hours and days of bio-
logical time are outside our reach.” Notice that [42] has 
populated the memory of a much larger configuration, 
but no data like how many neurons were actually used 
or how many spikes processed are available.

Figure  3 attempts to provide a feeling on the effect 
of the software contribution and of an increased clock 
period length. A fictive supercomputer (with behavior 

somewhat similar to that of supercomputer Taihulight ) 
is modeled, and combined with an increased clock 
period length. All subfigures have dual scaling. The blue 
diagram line refers to the right-hand scale and shows 
the payload performance; all the rest to the left-hand 
scale and display (1− αXX

eff ) (for the details see  [35]) 
contributions to the non-parallelizable fraction.

Since the behavior of the brain simulation is more 
similar to the “real-life” applications, the starting point 
to demonstrate the effect of the considerably increased 
clock period is the HPCG benchmark (see the top right 
Fig. 3). As displayed on the bottom figure, the increased 
clock period results in considerably higher contribution 
from the operating system (green line), making it domi-
nant. This results in both a considerable decrease in the 
payload performance and shifts the peak of the payload 
performance toward lower nominal performance values. 
Notice that the performance breakdown shown in the 
figures were experimentally measured by  [36] (Fig.  7) 
and  [4] (Fig.  8). Because of the architectural features of 
the implementations (more neural processors in a com-
puter core, mixing OS scheduling and time-stamped 
messages, changing contributions due to context switch-
ing, etc.), the diagram lines describe the behavior only 
qualitatively. Notice, however, that the difference in the 
behavior manifests only at relatively high-performance 
values (produced with high number of cores).

6 � How to overcome the issues
The discussion above explains that a huge factor of per-
formance is lost because of using a “time grid” and a 
wrong computing stack; both are the consequence of the 
70-year-old single-processor approach. As the numerical 
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examples above demonstrate, the length of the clock 
period and the need for context change are in close 
competition for dominating the performance, but any-
how they together produce a strong upper bound for the 
performance.

This simple qualitative analysis finds 3 orders of magni-
tude of the lost performance: the (apparent) performance 
loss is due to the thousand times shorter execution 
time: the merit of the parallelism depends on the length 
of the measurement time. The rest can be attributed 
to that the simulator makes control and timing, and it 
takes a considerable amount of time for switching con-
text and making the needed calculations; i.e., that the 

present general-purpose processors cannot make a bet-
ter job when imitating neurons. As it was demonstrated 
by  [36], through organizing the threads in a more rea-
sonable way, the performance of the simulators can be 
considerably enhanced. Those solutions, however, only 
influence the magnitude of the saturation and the posi-
tion where it occurs: the saturation is an inherent feature 
of systems simulating the operation of brain on sequen-
tial-parallel systems. As discussed in  [43], the “general-
purpose” processors are focussing on computing, rather 
than on interacting with each other. The importance of 
the cooperation is well underpinned by the fact that the 
processor supporting “cooperative computing”  [29] kept 
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The top left figure illustrates the behavior measured with benchmark HPL. The looping contribution becomes remarkable around 0.1 Eflops, and 
breaks down payload performance when approaching 1 Eflops. The black dot marks the HPL performance of the computer used in works [4, 36]. In 
the top right, the behavior measured with benchmark HPCG is displayed. In this case, the contribution of the application (thin brown line) is much 
higher, the looping contribution (thin green line) is the same as above. As a consequence, the achievable payload performance is lower and also 
the breakdown of the performance is softer. The black dot marks the HPCG performance of the same computer. The bottom figure demonstrates 
what happens if the clock cycle is 5000 times longer: it causes a drastic decrease in the achievable performance and strongly shifts the performance 
breakdown toward lower nominal performance values. The figure is purely illustrating the concepts; the displayed numbers are somewhat similar to 
the real ones
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supercomputer Taihulight in the first slot on the list of 
top supercomputers as well as that through optimizing 
internally the calculations utilizing the cooperation of the 
processors can considerably enhance the (apparent) com-
puting performance of the supercomputer [26].

When implementing artificial neurons, more than one 
abstraction levels shall be introduced. At behavioral level, 
abstract rather than physiological parameters and less 
computing-intensive methods of calculations should be 
used. The performance can also be enhanced through 
introducing direct notifications and core-level (rather 
than system level) timing, using ideas from [29, 43]. For 
more details see  [35]. The real solution, however, would 
be to renew the outdated SPA computing model  [8] 
(when utilizing processors for simulating the brain oper-
ation). Since the modeled biological objects have no cen-
tral clock cycle, the other way round would be to design 
(from scratch) a new architecture, a biologically inspired 
neural network, rather than adapting system of parallel-
ized processors and components based on the principles 
of sequential processing.

7 � Summary
Simulating the inherently massively parallel brain uti-
lizing inherently sequential conventional comput-
ing systems is a real challenge. According to the recent 
studies  [4, 36] both the purely SW simulation and the 
specially designed (but SPA processor-based) HW simu-
lation currently show very similar performance limita-
tions and saturation. The present paper interpreted why 
even the special-purpose HW simulator cannot match 
the performance of the human brain in real time. It was 
explained that the reason is the operating principle itself 
(or more precisely: the computing paradigm plus its tech-
nical implementation together). Based on the experiences 
with the rigorously controlled database of supercomputer 
performance data, the performance of the large artificial 
neural networks was placed on the map of performance 
of the high-performance computers. The conclusion is 
that processor-based brain simulators using the present 
computing paradigms and technology surely cannot sim-
ulate the whole brain (i.e., study processes like plasticity, 
learning, and development), and especially not in real 
time.
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