
Végh ﻿Brain Inf. (2019) 6:4
https://doi.org/10.1186/s40708-019-0097-2

RESEARCH

How Amdahl’s Law limits the performance
of large artificial neural networks
why the functionality of full-scale brain simulation on processor-based simulators is
limited

János Végh* 

Abstract 

With both knowing more and more details about how neurons and complex neural networks work and having
serious demand for making performable huge artificial networks, more and more efforts are devoted to build both
hardware and/or software simulators and supercomputers targeting artificial intelligence applications, demanding
an exponentially increasing amount of computing capacity. However, the inherently parallel operation of the neural
networks is mostly simulated deploying inherently sequential (or in the best case: sequential–parallel) computing ele-
ments. The paper shows that neural network simulators, (both software and hardware ones), akin to all other sequen-
tial–parallel computing systems, have computing performance limitation due to deploying clock-driven electronic
circuits, the 70-year old computing paradigm and Amdahl’s Law about parallelized computing systems. The findings
explain the limitations/saturation experienced in former studies.

Keywords:  Amdahl’s Law, Neural networks, Performance limitation, Clock-driven electronic circuit, Supercomputing,
Parallelization

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

1  Introduction
Although von Neumann in his classic publication [1, 2]
targeted creating computing organs, developers had to
consider the that-time technological possibilities and the
urgent need to automate numeric calculations. In this
way, the primary goal was to compute and all efforts (at
that time and the next seven decades) were devoted to
develop the device computer. The sound success of that
automated computing and the growing scientific, indus-
trial, military, etc. needs targeted to increase the single-
processor performance, although more than five decades
ago it was already recognized [3] that when utilizing that
computing principle one faces serious performance limi-
tations. The today’s goal to simulate operation of even a
relatively small-scale (compared to human brain) neu-
ral network in real-time faces serious difficulties and
leads to serious performance issues [4]. In the light of

that biological neurons work in the millisecond range,
the silicon neurons could work in the nanosecond range
and that both software-only neural network simulator
programs running on supercomputers built from gen-
eral-purpose processors and special-purpose hardware
brain-simulator utilize million(s) of high-performance
processors produce such a low performance, the question
raises: where do we loose several orders of magnitude of
computing performance?

One obvious candidate for loosing performance is the
general-purpose processor itself [5]: its performance
is awfully low compared to implementation in Applica-
tion Specific Integrated Circuits. However, it cannot be
responsible alone for the full loss. The development of
single-processor performance has stalled [6] and only
marginal development of single-processor performance
can be expected. The computing needs renewing [7, 8]
because of many reasons. One of them is that the many
forms of increasing the performance through various
kinds of parallelization [9] is a short dead-end street:
the computing efficiency exponentially decreases as the

Open Access

Brain Informatics

*Correspondence: Vegh.Janos@gmail.com
Kalimános BT, Komlóssy u 26, Debrecen 4032, Hungary

http://orcid.org/0000-0002-3247-7810
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-019-0097-2&domain=pdf

Page 2 of 11Végh ﻿Brain Inf. (2019) 6:4

number of processors increases [10], the today’s super-
computers are stretched to their limits [11] in the case of
large-scale systems. A slowdown or stalling of the growth
of their performance is expected according to the general
experiences [12] and is really experienced among others
in the field of supercomputing [13]. However, similarly to
most of the basic limitations of computing, even the limi-
tations are limited [14].

The goal of the paper is to show that akin to super-
computers the computing performance of the proces-
sor-based brain simulators is also limited. As discussed
below, utilizing (mainly: thinking in) clocked electronic
circuits, the 70-year-old single-processor approach and
Amdahl’s Law together result in that only marginal devel-
opments in the performance of neuromorphic simula-
tions can be expected. The question only is how far brain
simulation is from its limitations? And of course, whether
those limitations are limited, too?

The paper first interprets Amdahl’s Law for any kind of
parallelized activity in Sect. 2 and shows in Sect. 3 that
utilizing clock signals in the electronic circuits leads to
an inherent limitation of performance. Section 4 shows
how in supercomputing this inherent limitation bounds
the achievable computing performance. Although brain
simulation seems to be unrelated to the sequential/paral-
lel computing world, in Sect. 5 it is shown that the tech-
nical implementation introduces a hidden clock signal
into neural computing. This section also reveals the ori-
gins of the saturation effects experienced in former stud-
ies. Finally, in Sect. 6, some ideas are proposed for using
some alternative approach to get closer to full-power
brain simulations.

2 � Amdahl’s Law of parallelization
2.1 � Amdahl’s idea
Amdahl’s Law is one of the few, fundamental laws of com-
puting [15], although sometimes it is partly or completely
misinterpreted or abused [15–17]. A general misconcep-
tion (introduced by successors of Amdahl) is to assume
that Amdahl’s law is valid for software only. Actually,
Amdahl’s law is valid for any partly parallelizable activ-
ity (including computer unrelated ones) and the non-par-
allelizable fragment shall be given as the ratio of the time
spent with non-parallelizable activity to the total time.
Notice that Amdahl speaks about partly parallelizable
activities in simple parallelized systems, unlike complex
sequential–parallel systems with variable degree of paral-
lelism [18] or the brain operation. That is, Amdahl’s law
can be directly applied only to such simple systems, but
the idea itself can be utilized to study even the mentioned
complex systems.

2.2 � Deriving the effective parallelization
Successors of Amdahl expressed Amdahl’s law with the
formula

where k is the number of parallelized activities, α is the
ratio of the parallelizable part within the total activity, S
is the measurable speedup. The assumption can be visu-
alized that (in a conventional computing system assum-
ing many processors) in α fraction of the running time
the processors are executing parallelized code, in ( 1− α )
fraction they are waiting (all but one), or making non-
payload activity. That is α describes how much, in aver-
age, processors are utilized, or how effective (at the level
of the computing system) the parallelization is.

For a system under test, where α is not a priory known,
one can derive from the measurable speedup S an effec-
tive parallelization factor [19] as

Obviously, this is not more than α expressed in terms
of S and k from Eq. (1). For the classical case, α = αeff ;
which simply means that in the ideal case the actually
measurable effective parallelization achieves the theoreti-
cally possible one. In other words, α describes a system
the architecture of which is completely known, while αeff
characterizes the performance, which describes both the
complex architecture and the actual conditions. It was
also demonstrated [19] that αeff can be successfully uti-
lized to describe parallelized behavior from software
(SW) load balancing through measuring efficacy of the
on-chip communication inside a hardware (HW) unit to
characterizing performance of clouds.

The value αeff can also be used to refer back to
Amdahl’s classical assumption even in the realistic case
when the parallelized chunks have different lengths and
the overhead to organize parallelization is not negligible.
The speedup S can be measured and αeff can be utilized
to characterize the measurement setup and conditions,
how much from the theoretically possible maximum par-
allelization is realized. Numerically ( 1− αeff ) equals with
the f value, established theoretically [20].

The distinguished constituent in Amdahl’s classic anal-
ysis is the parallelizable fraction α , all the rest (includ-
ing wait time, non-payload activity, etc.) goes into the
“sequential-only” fraction. When using several proces-
sors, one of them makes the sequential calculation, the
others are waiting (use the same amount of time). So,
when calculating the speedup, one calculates

(1)S−1
= (1− α)+ α/k

(2)αeff =
k

k − 1

S − 1

S

(3)S =
(1− α)+ α

(1− α)+ α/k
=

k

k(1− α)+ α

Page 3 of 11Végh ﻿Brain Inf. (2019) 6:4

hence the efficiency is (see also Fig. 2).

This explains the behavior of diagram Sk in function of k
experienced in practice: the more processors, the lower
efficiency. At this point, one can notice that 1E is a linear
function of number of processors, and its slope equals to
(1− α) . Equation (4) also underlines the importance of
the single-processor performance: the lower is the num-
ber of the processors used in the parallel system having
the expected performance, the higher can be the efficacy
of the system.

Notice also, that through using Eq. (4), the efficiency S
k

(which is given for supercomputers as RMax
RPeak

 ) can be
equally good for describing the efficiency of paralleliza-
tion of a setup, provided that the number of processors is
also known. From Eq. (4)

If the parallelization is well-organized (load balanced,
small overhead, right number of processors), αeff is close
to unity, so tendencies can be better displayed through
using (1− αeff) in the diagrams.

The importance of this practical term αeff is underlined
by that it can be interpreted and utilized in many differ-
ent areas [19] and the achievable speedup (the maximum
achievable performance gain when using infinitely large
number of processors) can easily be derived from Eq. (1)
as

Provided that the value of αeff does not depend on the
number of the processors, for a homogenous system the
total payload performance is

i.e., the total payload performance can be increased by
increasing the performance gain or increasing the single-
processor performance, or both. Notice, however, that
increasing the single-processor performance through
accelerators also has its drawbacks and limitations [21],
and that the performance gain and the single-processor
performance are players of the same rank in defining the
payload performance.

Notice the special role of the non-parallelizable activi-
ties: independently of their origin, they are summed up as
‘sequential-only’ contribution and degrade considerably
the payload performance. In systems comprising paral-
lelized sequential processes actions like communication

(4)E =
S

k
=

1

k(1− α)+ α

(5)αE,k =
Ek − 1

E(k − 1)

(6)G =
1

(1− αeff)

(7)Ptotal payload = G · Psingle processor

(including also MPI), synchronization, accessing shared
resources, etc. [22–25] all contribute to the sequential-
only part. Their effect becomes more and more drastic as
the number of the processors increases. One must take
care, however, how the communication is implemented.
A nice example is shown in [26], how direct core to core
(in other words: direct thread to thread) communication
can enhance parallelism in large-scale systems.

3 � The inherent limit of parallelization
In the systems implemented in single-processor approach
(SPA) [3] as parallelized sequential systems, the life
begins in one such sequential subsystem. For example, in
large parallelized applications running on general-pur-
pose supercomputers, initially and finally only one thread
exists, i.e., the minimal absolutely necessary non-parallel-
izable activity is to fork the other threads and join them
again. With the present technology, no such actions can
be shorter than one processor clock period.1 That is, the
absolute minimum value of the non-parallelizable frac-
tion will be given as the ratio of the time of the two clock
periods to the total execution time. The latter time is a
free parameter in describing the efficiency, i.e., value of
the effective parallelization αeff also depends on the total
benchmarking time (and so does the achievable paralleli-
zation gain, too).

This dependence is of course well known for super-
computer scientists: for measuring the efficiency with
better accuracy (and also for producing better αeff val-
ues) hours of execution times are used in practice. For
example, in the case of benchmarking the supercomputer
Taihulight [27] 13,298 s benchmark runtime was used; on
the 1.45 GHz processors it means 2 ∗ 1013 clock periods.
This means that (at such benchmarking time) the inher-
ent limit of (1− αeff) is 10−13 (or equivalently the achiev-
able performance gain is 1013 ). If the fork/join is executed
by the operating system (OS) as usual, because of the
needed context switchings 2 ∗ 104 [28] clock cycles are
needed rather than the 2 clock cycles considered in the
idealistic case, i.e., the derived values are correspondingly
by 4 orders of magnitude different; that is the performance
gain cannot be above 109 . When making only 10 s long
measurements, the smaller denominator results in 103
times worse (1− αeff) and performance gain values. In
the following for simplicity 1.00 GHz processors (i.e., 1 ns
clock cycle time) will be assumed.

There are other similar limitations in consequence
of the physical implementation. The supercomputers,

1  Taking this two clock periods as an ideal (but not realistic) case, the actual
limitation will surely (much) worse than the one calculated for this idealistic
one. The actual number of clock periods depends on many factors, as dis-
cussed below.

Page 4 of 11Végh ﻿Brain Inf. (2019) 6:4

for example, are also distributed systems. In a stadium-
sized supercomputer, the distance between processors
(cable length) about 100 m can be assumed. The net sig-
nal round trip time is ca. 10−6 s, or 103 clock periods, i.e.,
in the case of a finite-sized supercomputer the per-
formance gain cannot be above 1010 (or 106 if context
switching also needed). The presently available network
interfaces have 100...200 ns latency times, and sending
a message between processors takes time in the same
order of magnitude. This also means that making better
interconnection is not really a bottleneck in enhancing
performance, at least when measured using the bench-
mark High-Performance Linpack (HPL). This statement
is underpinned also by statistical considerations [21].

Taking the (maybe optimistic) value 2 ∗ 103 clock peri-
ods for the signal propagation time, the value of the effec-
tive parallelization (1− αeff) will be at best in the range of
10−10 , only because of the physical size of the supercom-
puter. This also means that the expectations against the
absolute performance of supercomputers are excessive:
assuming a 100 Gflop/s processor, the achievable absolute
nominal performance (see Eq. (6)) is 1011*1010 flop/s , i.e.,
1000 EFlops. To implement this, around 109 processors
are required. One can assume that the value of (1− αeff)
will be2 around of the value 10−7 . With those very opti-
mistic assumptions (see Eq. 4), the payload performance
for benchmark HPL will be less than 10 Eflops, and for
the real-life applications of class of the benchmark High-
Performance Conjugate Gradients (HPCG), it will be
surely below 0.01 EFlops, i.e., lower than the payload per-
formance of the present TOP1-3 supercomputers.

These predictions enable to assume that the presently
achieved value of (1− αeff) persists also for roughly hun-
dred times more cores. However, another major issue
arises from the computing principle single-processor
approach (SPA): only one computer at a time can be
addressed by the first one. As a consequence, minimum
as many clock cycles are to be used for organizing the
parallel work as many addressing steps required. Basi-
cally, this number equals to the number of cores in the
supercomputer, i.e., the addressing in the TOP10 posi-
tions typically needs clock cycles in the order of 5 ∗ 105
...107 ; degrading the value of (1− αeff) into the range 10−6

...2 ∗ 10−5 . Two tricks may be used to mitigate the num-
ber of the addressing steps: either the cores are organ-
ized into clusters as many supercomputer builders do,
or at the other end the processor itself can take over the
responsibility of addressing its cores [29]. Depending on

the actual construction, the reducing factor of cluster-
ing of those types can be in the range 102...5 ∗ 104 , i.e.,
the resulting value of (1− αeff) is expected to be around
10−7 . Notice that utilizing “cooperative computing” [29]
enhances further the value of (1− αeff) , but it means
already utilizing a (slightly) different computing para-
digm: the cores have a kind of direct connection and can
communicate with the exclusion of the main memory.

An operating system must also be used, for protection
and convenience. If one considers context switching with
its consumed 2 ∗ 104 cycles [28], the absolute limit is cca.
5 ∗ 10−8 , on a zero-sized supercomputer. This value is
somewhat better than the limiting value derived above,
but it is close to that value and surely represents a con-
siderable contribution. This is why Taihulight runs the
actual computations in kernel mode [29].

Because all of this, in the name of the company PEZY3,
the last two letters are surely obsolete. Also, no Zetta-
flops supercomputers will be delivered for science and
military [30]. It looks like that in the feasibility studies,
an analysis on whether this inherent performance bound
exists is done neither in USA [31] nor in EU [32] nor in
Japan [33] nor in China [13].

As discussed above, some limitations follow immedi-
ately from the physical implementation and the comput-
ing paradigm; it depends on the actual conditions, which
of them will dominate. It is crucial to understand that
the decreasing efficiency (see Eq. (4)) is coming from the
computing paradigm itself rather than from some kind of
engineering imperfectness. This inherent limitation cannot
be mitigated without changing the computing/implemen-
tation principle.

4 � The inherent limits of supercomputing
The considerations on supercomputing result in a (by
intention oversimplified) parametrized model that quali-
tatively describes the behavior of the supercomputers
during its 26 years of history, and the parameters can be
estimated from the public, rigorously controlled, accurate
database [34]. The model [10, 35] not only describes the
performance of the presently existing supercomputers,
but also predicts their future achievable performance.

Although not explicitly dealt with here, notice that the
data exchange between the first thread and the other ones
also contribute to the non-parallelizable fraction and typ-
ically uses system calls, for details see [23–25]. Actually,
we may have communicating serial processes, which does
not improve the effective parallelism at all [22]. Essen-
tially, this is why supercomputers have a “benchmark

2  With the present technology the best achievable value is ca. 10−6 , which was
successfully enhanced by clustering to ca. 2 ∗ 10−7 for Summit and Sierra , and
the special cooperating cores of Taihulight enabled to achieve 3 ∗ 10−8.

3  https​://en.wikip​edia.org/wiki/PEZY_Compu​ting: The name PEZY is an
acronym derived from the greek derived Metric prefixs Peta, Eta, Zetta, Yotta.

https://en.wikipedia.org/wiki/PEZY_Computing

Page 5 of 11Végh ﻿Brain Inf. (2019) 6:4

efficiency” (measured by HPL) and a “practical efficiency”
(measured by benchmark HPCG), the latter of which is
100...1000 times lower than the former one. For details
see [10]. Recall that artificial neurons make intensive data
exchange among each other, so they surely belong to the
HPCG class of applications, although utilizing “far” and
“near” memories can change their behavior drastically.

Figure 1 depicts how the payload performance of the
benchmarks HPL and HPCG depend on the nominal
performance of the general-purpose supercomputers.
The diagram lines referring to different (1− αeff) val-
ues are calculated from the model [10], the marks are
measured for the different TOP15 supercomputers (as
of Nov 2018). The empty marks refer to the HPL and the
filled ones to the HPCG benchmarks. For more legends
and explanations see [10]. Notice that the simulators of

artificial neural networks show up a behavior quite close
to the HPCG class applications, see below.

5 � The inherent limits of neural network simulation
Of course, brain simulation as such has nothing to do
with clock-driven sequential-parallel processing. How-
ever, brain simulators (the SW ones and most of the HW
ones) run on such computing systems (are built from
such components) and inherit the limitations valid for
those systems. As discussed above, Eq. (7) defines the
achievable payload performance of a parallelized com-
puting system, and also that the performance gain is lim-
ited by the clock frequency.

The living “architectures” have no central clock sig-
nal, so the simulations should not have one, too. Despite
this, from technology reasons, all simulations utilize a

10−6 10−5 10−4 10−3 10−2 10−110−6

10−5

10−4

10−3

10−2

10−1

RPeak (exaFLOPS)

R
M

a
x
(e
x
a
F
L
O
P
S
)

HPL

1 ∗ 10−6

1 ∗ 10−5

HPCG

3 ∗ 10−4

Fig. 1  The RMax payload performance in function of the nominal performance RPeak , at different (1− αeff) values. The figures display the measured
values derived using HPL (empty marks) and HPCG (filled marks) benchmarks, for the TOP15 supercomputers. The computing performance of
AI applications may be similar to the diagram line marked by HPCG. The diagram lines marked as HPL and HPCG correspond to the behavior of
supercomputer Taihulight at (1− αeff) values 3.3 ∗ 10−8 and 2.4 ∗ 10−5 , respectively. The uncorrected values of the new supercomputers Summit
and Sierra are shown as diamonds, and the same values corrected for single-processor performance are shown as rectangles. The black dots mark
the performance data of supercomputers JUQUEEN and K as of 2014 June, for HPL and HPCG benchmarks, respectively. The red dot denotes the
performance value of the system used by [4]. The saturation effect can be observed for both HPL and HPCG benchmarks. The shaded area only
highlights the nonlinearity

Page 6 of 11Végh ﻿Brain Inf. (2019) 6:4

“time grid”, commonly with 1 ms integration time. This
grid time is used to put the free running neurons back to
the biological time scale, i.e., they actually act as a clock
signal: stimulating of the next calculation step can only
start when this clock signal arrives. This is absolutely
analogous with the goal of introducing clock signal for
executing the machine instructions: the processor, even
when it is idle, cannot begin the execution of the next
machine instruction until the clock signal arrives. The
artificial neural networks constructed in this way can be
considered as consisting from nodes having rather com-
plex internal operation (implementing exceptionally high
computing performance) and concerted by the clock sig-
nal which is technically required to enable performing
the concerted integration.

If the artificially introduced "biological clock cycle"
is not considered (it introduces a new dimension), the
payload efficiency depends on both the the efficiency of
parallelization and the number of the processors in the
system, as described by Eq. (4) and displayed in Fig. 2.
Under the conditions of supercomputing, the expected
high performance puts strong constraints both on the
number of the processors and the efficiency of their par-
allelization. As the figure displays, in order to get away
from the strongly non-linear part of this 2-dimensional
surface (i.e. to have a reasonable efficiency), the present
(as of 2018 November) top 5 supercomputers must show
up a good bargain between having large single-proces-
sor performance and at the same time showing up good
effective parallelism.

The figure shows also how the "benchmarking perfor-
mance (HPL)" of the top 5 supercomputers are posi-
tioned on the 2-dimensional surface, while the "real-life
performance (HPCG)" values of the efficiency are of
two orders of magnitude lower. It is crucial to see that
increasing only the number of the cores has a reverse
effect on the efficiency of the parallelization, and so leads
to a decreasing payload performance, see the right side of
Fig. 2. It is interesting to see that the unique HW solu-
tion of Taihulight resulting in outstanding parallalization
efficiency (especially at that high number of cores) works
only when measured with HPL and it draws back when
measuring with HPCG. Recall also, that the AI applica-
tions are expected to have effciency about 1% (the typical
efficiency of HPCG class), and introducing the "biologi-
cal clock cycle" in brain simulation, decreases the effi-
ciency further by 2-3 orders of magnitude.

5.1 � The contribution from the “clock signal”
As discussed shortly in Sect. 3 and in more details in [35],
the non-parallelizable fraction of the computing load
sums up from different contributions to (1− αeff) . In
the case of processors, the contribution due to utilizing

clock signals is about 10−13 when using hours of execu-
tion times,4 and in the case of using 10 s simulation time
it is about 10−10 . In the case of brain simulators working
on 1 ms time grid,5 one “neuron operation” is 106 times
longer than a “processor operation” (typically 1ns); cor-
respondingly the achievable (1− αeff) contribution would
be 10−7 for supercomputer benchmarking time and 10−4
for the 10 s simulation time.

This also means that for a neural network simula-
tion task utilizing a 1 ms grid time the performance gain
cannot be higher than 104 ; however, the exceptionally
high “node performance” may cover this fact. This con-
tribution alone roughly corresponds to the “practical
efficiency” of supercomputers, measured by the bench-
marks HPCG [38]. The AI applications usually run using
shorter floating numbers, typically a 2 · · · 4 multiplier
better payload performance appears by them, but the
intensive data exchange between the cores overcompen-
sates this. Consequently, roughly the same performance
will be seen for AI applications and HPCG class applica-
tions, with the same saturation value and payload per-
formance (see also Fig. 1). To conclude a more accurate
value is not possible without making dedicated measure-
ments: utilizing “near” and “far” memories, optimizing
thread access [36], using activation functions with differ-
ent computational need, etc. can considerably change the
value. Similarly, the intensive data exchange between the
nodes (and threads) of the neural networks is very sensi-
tive to the computing paradigm. The processor deploying
“cooperative computing” [29] considerably enhances the
computing performance in the case of the HPCG bench-
mark [26], which computationally is very similar to the
AI problems.

5.2 � The other contributions
The biggest contribution in the case of brain simulator of
this kind comes from context switching. As estimated for
the many-thread simulation running on a general-pur-
pose supercomputer [4] “the computation is split roughly
as 10% or 20,000 CPU cycles per time step for neural
updates and 90% or 180,000 CPU cycles for synapse pro-
cessing”, the frequent context switching takes about 10 %
of the total execution time, i.e., the value of (1− αeff) is
10−1 ; despite of that the mentioned 20,000 CPU cycles
roughly correspond only to one context switch per
time step plus several inter-thread switching between

4  Recall that the unrealistic ideal case of utilizing only 2 clock cycles for fork/
join operations and a zero-sized computer is assumed.
5  Notice that even SpiNNaker utilizes by design an unintended clock signal:
“An external, self-contained, instantaneous signal drives state change in
each process, which contains a trigger that will initiate or alter the process
flow” [37].

Page 7 of 11Végh ﻿Brain Inf. (2019) 6:4

neurons. This is why special-purpose HW brain simula-
tor has been built where the “flagship goal is to be able
to simulate the behavior of aggregates of up to a billion
neurons in real time” [39].

The design principle of SpiNNaker [39] is that “A sin-
gle SpiNNaker core is a single ARM9 processor ...and is
expected to multiplex the behavior of around 1000 neu-
rons”, it also involves that if all neurons would be used in
the same grid time slot, around 2000 context switches
would be required for the operation.6 To implement this,
around 3 ∗ 107 clock cycles [28] would be required only
for context switching, in this way exceeding the avail-
able 3 ∗ 106 clock cycles (assuming 3GHz processors and
1 ms grid time slot). The available measured data referring
to an ARM processor [40] show that the number of the
cycles needed for context switching is in the same order
of magnitude as that for Intel processors [28], so the
number of neurons must be considerably lower than the
theoretical capacity mentioned.

This is why according to [4] “Each of these cores also
simulates 80 units per core”: when reducing the num-
ber of the required context switchings, the core has also
some time to make payload calculations. Because of this,
it is quite plausible that NEST and SpiNNaker produce
comparable performance data under the conditions of
the benchmarking by [4]: they by design spend a consid-
erable fraction of their time with the non-parallelizable
(and non-payload) activity of making context switches
and they both have a hidden unintended 1 ms internal
clock signal.7 Also, this is why “To obtain an accuracy
similar to that of NEST with 0.1 ms time steps, SpiNNa-
ker requires a slowdown factor of around 20 compared
to real time” [4]: otherwise, some of the neurons can-
not finish the required calculation until the clock signal
arrives. This indirectly underpins that the actual operat-
ing parameters are close to their limiting value: the ten
times more data traffic (including ten times more in-chip
data packets), the ten times more calculations, the ten
times more context switches require twenty times more
time. In this particular case, all other contributions are of
orders of magnitude lower, even when a proper optimiza-
tion of thread handling considerably increases the effec-
tive parallelism [36]; at the same time also demonstrating
that different thread handling affects the performance of
the simulation sensitively and so would do reducing the
number of the required context switchings. The final

reason is the improperly designed layering of computing:
to use operating system services and/or peripherals (like
network interfaces) the context switching is inevitable.

Notice that the analysis in the case of supercomputers
and neural network simulators shall consider contribu-
tions with different weights. In the case of the supercom-
puters, the 1 ns clock period forces to consider also the
effect of the physical size and the number of the proces-
sors. In the case of neural network simulators the “clock
period” and the context switching are the dominating con-
tributions and (at least at reasonably sized computers) all
other contributions can be neglected.

Also an issue is that the artificial neurons work “at
the same time” (biological time) and they are scheduled
essentially in a random way on the wall-clock time scale.
Since the neurons integrate “signals from the past”, this
method is not suitable for simulating the effects of spikes
with decay time comparable to length of the grid time. In
addition, this grid time is “making all cores likely to send
spikes at the same time” and “[SpiNNaker]does not cope
well with all the traffic occurring within a short time win-
dow within the time step” [4]. This is why the designers of
the HW simulator [39] say that the events arrive “more or
less” in the same order as they should. The difference of
the timely behavior is also noticed by [4]: “The spike times
from the cortical microcircuit model obtained with differ-
ent simulation engines can only be compared in a statisti-
cal sense”.

5.3 � How performance bound manifests
Recall that the performance limit was derived from the
commonly used 1 ms integration time and the SPA, both
for the SW simulator and the HW simulator. This also
explains why they produce a comparable absolute perfor-
mance: because of utilizing the same integration time as
clock period (this enables a neuron to enter the next time
station) the parallelization gain is about the same, only
the single-processor performance decides about the pay-
load performance. The “single neuron performance” has a
special interpretation here: it is the sum of all operations
done by a physical core in a biological time slot. So, the
single-processor performance is exceptionally high in
the case of neural network simulators: the “neuron core”
executes instructions in 1 ms (for ca. 100 neurons) rather
than in 1ns. In these time-slots typically differential equa-
tions are solved, context switchings made, waiting exe-
cuted, so the processing capacity is quite poorly utilized.
This is why the efficacy is not increasing as expected. The
experience is common for processor scientists [41]: “we
believed that the ever-increasing complexity of supersca-
lar processors would have a negative impact upon their
clock rate, eventually leading to a leveling off of the rate of
increase in microprocessor performance”. And, simulating

6  For the sake of simplicity it is not considered that that same scheduler must
do all context switchings. Although [39] emphasizes that “there is no conven-
tional operating system running on the cores”, using interrupts and preemptive
scheduling make using context switching a must.
7  Again: here the effect of the clock signal and the non-parallelizable con-
tribution arising from the need of context switching are competing for the
dominance, and without dedicated measurements there is no way to tell
which of them finally dominates.

Page 8 of 11Végh ﻿Brain Inf. (2019) 6:4

neuron activity on a sequential-parallel digital system is
really complex. An indirect proof of the limiting effect
of this implicit clock signal is that the analog electronic
simulators of neural networks can outperform thousands
of times the biological nerve system and the ones based
on general-purpose processors.

One must be careful with statements on scalability.
According to their goal [4] to implement simulation of
a Cortical Microcircuit Model, the authors performed
measurements only with a fragment of the available
supercomputing capacity (768 cores out of the 458,752)
and similarly using 6 (out of the 600 total) SpiNNaker
boards; see also the red dot in Fig. 1. At that perfor-
mance, the nonlinearity occurring at higher performance
(see the black dots) cannot be foreseen.

Even in the case of peta-scale neural computing [42],
however, this saturation/limitation is the reason of the
conclusions like “the algorithms creating instances of
model neurons and their connections scale well for net-
works of ten thousand neurons, but do not show the same
speedup for networks of millions of neurons” [36] (Fig. 7)
and the pessimistic prediction [4] “Today’s supercom-
puters require tens of minutes to simulate 1 s of biologi-
cal time and consume megawatts of power. This means
that any studies on processes like plasticity, learning,
and development exhibited over hours and days of bio-
logical time are outside our reach.” Notice that [42] has
populated the memory of a much larger configuration,
but no data like how many neurons were actually used
or how many spikes processed are available.

Figure 3 attempts to provide a feeling on the effect
of the software contribution and of an increased clock
period length. A fictive supercomputer (with behavior

somewhat similar to that of supercomputer Taihulight )
is modeled, and combined with an increased clock
period length. All subfigures have dual scaling. The blue
diagram line refers to the right-hand scale and shows
the payload performance; all the rest to the left-hand
scale and display (1− αXX

eff) (for the details see [35])
contributions to the non-parallelizable fraction.

Since the behavior of the brain simulation is more
similar to the “real-life” applications, the starting point
to demonstrate the effect of the considerably increased
clock period is the HPCG benchmark (see the top right
Fig. 3). As displayed on the bottom figure, the increased
clock period results in considerably higher contribution
from the operating system (green line), making it domi-
nant. This results in both a considerable decrease in the
payload performance and shifts the peak of the payload
performance toward lower nominal performance values.
Notice that the performance breakdown shown in the
figures were experimentally measured by [36] (Fig. 7)
and [4] (Fig. 8). Because of the architectural features of
the implementations (more neural processors in a com-
puter core, mixing OS scheduling and time-stamped
messages, changing contributions due to context switch-
ing, etc.), the diagram lines describe the behavior only
qualitatively. Notice, however, that the difference in the
behavior manifests only at relatively high-performance
values (produced with high number of cores).

6 � How to overcome the issues
The discussion above explains that a huge factor of per-
formance is lost because of using a “time grid” and a
wrong computing stack; both are the consequence of the
70-year-old single-processor approach. As the numerical

10410510610710−7
10−6

10−5

10−2

10−1

100

No o
f cor

es

(1− αHPL
eff)

E
f
f
ic
ie
n
cy

Dependence of EHPL and EHPCG on (1− αHPL
eff) and N

TOP5’2018.11

Summit
Sierra
Taihulight
Tianhe-2
Piz Daint

104
105

106
10710−7

10−6
10−5

0.2

0.5

0.8

1

N
o
of

co
re
s

(1− αeff)

E
f
f
ic
ie
n
cy

Dependence of EHPL on (1− αeff) and N

Piz Daint
2012/11
2013/06
2013/11
2016/11
2017/06
2018/11

Fig. 2  The dependence of the efficiency E on the number of the cores and the value of (1− αX

eff
) , as described by Equ. (4). For comparison both

the corresponding measured (1− αX

eff
) values of the first five computers (as of 2018 November) are also displayed, as measured by the benchmarks

HPL and HPCG

Page 9 of 11Végh ﻿Brain Inf. (2019) 6:4

examples above demonstrate, the length of the clock
period and the need for context change are in close
competition for dominating the performance, but any-
how they together produce a strong upper bound for the
performance.

This simple qualitative analysis finds 3 orders of magni-
tude of the lost performance: the (apparent) performance
loss is due to the thousand times shorter execution
time: the merit of the parallelism depends on the length
of the measurement time. The rest can be attributed
to that the simulator makes control and timing, and it
takes a considerable amount of time for switching con-
text and making the needed calculations; i.e., that the

present general-purpose processors cannot make a bet-
ter job when imitating neurons. As it was demonstrated
by [36], through organizing the threads in a more rea-
sonable way, the performance of the simulators can be
considerably enhanced. Those solutions, however, only
influence the magnitude of the saturation and the posi-
tion where it occurs: the saturation is an inherent feature
of systems simulating the operation of brain on sequen-
tial-parallel systems. As discussed in [43], the “general-
purpose” processors are focussing on computing, rather
than on interacting with each other. The importance of
the cooperation is well underpinned by the fact that the
processor supporting “cooperative computing” [29] kept

10−3 10−2 10−1 100
10−10

10−9

10−8

10−7

10−6

10−5

10−4

RPeak(Eflop/s)

(1
−
α
H
P
L

e
f
f

)

10−5

10−4

10−3

10−2

10−1

100

R
H
P
L

M
a
x
(E

f
lo
p
/
s)

αSW

αOS

αeff

RMax(Eflop/s)

10−3 10−2 10−1 100
10−10

10−9

10−8

10−7

10−6

10−5

10−4

RPeak(Eflop/s)

(1
−
α
H
P
C
G

e
f
f

)

10−5

10−4

10−3

10−2

10−1

100

R
H
P
C
G

M
a
x

(E
f
lo
p
/
s)

αSW

αOS

αeff

RMax(Eflop/s)

10−3 10−2 10−1 100
10−10

10−9

10−8

10−7

10−6

10−5

10−4

RPeak(Eflop/s)

(1
−
α
N

N
e
f
f
)

10−5

10−4

10−3

10−2

10−1

100

R
N

N
M

a
x
(E

f
lo
p
/
s)

αSW

αOS

αeff

RMax(Eflop/s)

Fig. 3  Contributions (1− αX

eff
) to (1− αtotal

eff
) and max payload performance RMax of a fictive supercomputer ( P = 1Gflop/s @ 1GHz) in function

of the nominal performance. The blue diagram line refers to the right-hand scale ( RMax values), all others ( (1− αX

eff
) contributions) to the left scale.

The top left figure illustrates the behavior measured with benchmark HPL. The looping contribution becomes remarkable around 0.1 Eflops, and
breaks down payload performance when approaching 1 Eflops. The black dot marks the HPL performance of the computer used in works [4, 36]. In
the top right, the behavior measured with benchmark HPCG is displayed. In this case, the contribution of the application (thin brown line) is much
higher, the looping contribution (thin green line) is the same as above. As a consequence, the achievable payload performance is lower and also
the breakdown of the performance is softer. The black dot marks the HPCG performance of the same computer. The bottom figure demonstrates
what happens if the clock cycle is 5000 times longer: it causes a drastic decrease in the achievable performance and strongly shifts the performance
breakdown toward lower nominal performance values. The figure is purely illustrating the concepts; the displayed numbers are somewhat similar to
the real ones

Page 10 of 11Végh ﻿Brain Inf. (2019) 6:4

supercomputer Taihulight in the first slot on the list of
top supercomputers as well as that through optimizing
internally the calculations utilizing the cooperation of the
processors can considerably enhance the (apparent) com-
puting performance of the supercomputer [26].

When implementing artificial neurons, more than one
abstraction levels shall be introduced. At behavioral level,
abstract rather than physiological parameters and less
computing-intensive methods of calculations should be
used. The performance can also be enhanced through
introducing direct notifications and core-level (rather
than system level) timing, using ideas from [29, 43]. For
more details see [35]. The real solution, however, would
be to renew the outdated SPA computing model [8]
(when utilizing processors for simulating the brain oper-
ation). Since the modeled biological objects have no cen-
tral clock cycle, the other way round would be to design
(from scratch) a new architecture, a biologically inspired
neural network, rather than adapting system of parallel-
ized processors and components based on the principles
of sequential processing.

7 � Summary
Simulating the inherently massively parallel brain uti-
lizing inherently sequential conventional comput-
ing systems is a real challenge. According to the recent
studies [4, 36] both the purely SW simulation and the
specially designed (but SPA processor-based) HW simu-
lation currently show very similar performance limita-
tions and saturation. The present paper interpreted why
even the special-purpose HW simulator cannot match
the performance of the human brain in real time. It was
explained that the reason is the operating principle itself
(or more precisely: the computing paradigm plus its tech-
nical implementation together). Based on the experiences
with the rigorously controlled database of supercomputer
performance data, the performance of the large artificial
neural networks was placed on the map of performance
of the high-performance computers. The conclusion is
that processor-based brain simulators using the present
computing paradigms and technology surely cannot sim-
ulate the whole brain (i.e., study processes like plasticity,
learning, and development), and especially not in real
time.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable. The paper used publicly available data, from publications listed
in the bibliography.

Funding
Project No. 125547 has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary,
financed under the K funding scheme. The funding body played no role in
making the research and writing the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 17 January 2019 Accepted: 10 March 2019

References
	1.	 Aspray W (1990) John von Neumann and the origins of modern comput-

ing. MIT Press, Cambridge, pp 34–48
	2.	 von Neumann J (1945) First draft of a report on the EDVAC. http://www.

wiley​.com/legac​y/wiley​chi/wang_archi​/supp/appen​dix_a.pdf
	3.	 Amdahl GM (1967) Validity of the single processor approach to achieving

large-scale computing capabilities. AFIPS Conf Proc 30:483–485
	4.	 van Albada SJ et al (2018) Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation
software NEST for a full-scale cortical microcircuit model. Front Neurosci
12:291

	5.	 Hameed R, et al (2010) Understanding sources of inefficiency in general-
purpose chips. In: Proceedings of the 37th annual international sympo-
sium on computer architecture, ACM, New York, ISCA’10, pp 37–47

	6.	 US National Research Council (2011) The future of computing perfor-
mance: Game over or next level? http://scien​ce.energ​y.gov/~/media​/
ascr/ascac​/pdf/meeti​ngs/mar11​/Yelic​k.pdf

	7.	 IEEE (2013) IEEE rebooting computing. http://reboo​tingc​omput​ing.ieee.
org/

	8.	 Végh J (2018) Renewing computing paradigms for more efficient paral-
lelization of single-threads. Advances in parallel computing, vol 29. IOS
Press, Amsterdam, chap 13, pp 305–330

	9.	 Hwang K, Jotwani N (2016) Advanced computer architecture: parallelism,
scalability, programmability, 3rd edn. Mc Graw Hill, New York

	10.	 Végh J, Vásárhelyi J, Drótos D (2019) Can parallelization save the (comput-
ing) world? Adv Sci Technol Eng Syst J 4:141–158

	11.	 Bourzac K (2017) Streching supercomputers to the limit. Nature
551:554–556

	12.	 Denning PJ, Lewis T (2017) Exponential laws of computing growth. Com-
mun ACM 60:54–65

	13.	 Liao X et al (2018) Moving from exascale to zettascale computing: chal-
lenges and techniques. Front Inf Technol Electron Eng 19(10):1236–1244

	14.	 Markov I (2014) Limits on fundamental limits to computation. Nature
512(7513):147–154

	15.	 Paul JM, Meyer BH (2007) Amdahl’s Law revisited for single chip systems.
Int J Parallel Program 35(2):101–123

	16.	 Dévai F (2017) The refutation of Amdahl’s Law and its variants. In: Gervasi
O, Murgante B, Misra S, Borruso G, Torre CM, Rocha AMA, Taniar D, Apdu-
han BO, Stankova E, Cuzzocrea A (eds) Computational science and its
applications—ICCSA 2017. Springer, Cham, pp 480–493

	17.	 Krishnaprasad S (2001) Uses and abuses of Amdahl’s Law. J Comput Sci
Coll 17(2):288–293

	18.	 Pingali K et al (2011) The tao of parallelism in algorithms. SIGPLAN Not
46(6):12–25

	19.	 Végh J, Molnár P (2017) How to measure perfectness of parallelization
in hardware/software systems. In: 18th International Carpathian control
conference ICCC, pp 394–399

	20.	 Karp AH, Flatt HP (1990) Measuring parallel processor performance. Com-
mun ACM 33(5):539–543

	21.	 Végh J (2017) Statistical considerations on limitations of supercomputers.
CoRR arXiv​:abs/1710.08951​

	22.	 Abdallah AE, Jones C, Sanders JW (eds) (2005) Communicating sequential
processes. The first 25 years. Springer, Berlin. https​://doi.org/10.1007/
b1361​54

http://www.wiley.com/legacy/wileychi/wang_archi/supp/appendix_a.pdf
http://www.wiley.com/legacy/wileychi/wang_archi/supp/appendix_a.pdf
http://science.energy.gov/%7e/media/ascr/ascac/pdf/meetings/mar11/Yelick.pdf
http://science.energy.gov/%7e/media/ascr/ascac/pdf/meetings/mar11/Yelick.pdf
http://rebootingcomputing.ieee.org/
http://rebootingcomputing.ieee.org/
http://arxiv.org/abs/abs/1710.08951
https://doi.org/10.1007/b136154
https://doi.org/10.1007/b136154

Page 11 of 11Végh ﻿Brain Inf. (2019) 6:4

	23.	 David T, Guerraoui R, Trigonakis V (2013) Everything you always wanted
to know about synchronization but were afraid to ask. In: Proceedings
of the twenty-fourth ACM symposium on operating systems principles
(SOSP’13), pp 33–48

	24.	 Eyerman S, Eeckhout L (2010) Modeling critical sections in Amdahl’s Law
and its implications for multicore design. SIGARCH Comput Arch News
38(3):362–370

	25.	 Yavits L, Morad A, Ginosar R (2014) The effect of communication and
synchronization on Amdahl’s law in multicore systems. Parallel Comput
40(1):1–16

	26.	 Ao Y, Yang C, Liu F, Yin W, Jiang L, Sun Q (2018) Performance optimization
of the HPCG benchmark on the Sunway TaihuLight supercomputer. ACM
Trans Arch Code Optim 15(1):11:1–11:20

	27.	 Dongarra J (2016) Report on the Sunway TaihuLight system. Technical
Report UT-EECS-16-742, Department of Electrical Engineering and Com-
puter Science, University of Tennessee

	28.	 Tsafrir D (2007) The context-switch overhead inflicted by hardware inter-
rupts (and the enigma of do-nothing loops). In: Proceedings of the 2007
workshop on experimental computer science, ACM, New York, ExpCS’07,
p 3

	29.	 Zheng F et al (2015) Cooperative computing techniques for a deeply
fused and heterogeneous many-core processor architecture. J Comput
Sci Technol 30(1):145–162

	30.	 DeBenedictis EP (2005) Petaflops, Exaflops, and Zettaflops for science
and defense. http://deben​edict​is.org/erik/SAND-2005/SAND2​005-2690-
CUG20​05-B.pdf

	31.	 US Government NSA and DOE (2016) A report from the NSA-DOE techni-
cal meeting on high performance computing. https​://www.nitrd​.gov/
nitrd​group​s/image​s/b/b4/NSA_DOE_HPC_TechM​eetin​gRepo​rt.pdf

	32.	 European Commission (2016) Implementation of the action plan for the
European high-performance computing strategy. http://ec.europ​a.eu/
newsr​oom/dae/docum​ent.cfm?doc_id=15269​

	33.	 Japan Tests Silicon for Exascale Computing in 2021. (2018) https​://www.
extre​metec​h.com/compu​ting/27255​8-japan​-tests​-silic​on-for-exasc​ale-
compu​ting-in-2021

	34.	 TOP500org (2016) The top 500 supercomputers. https​://www.top50​
0.org/

	35.	 Végh J (2018) Limitations of performance of exascale applications and
supercomputers they are running on. ArXiv e-prints arXiv​:1808.05338​

	36.	 Ippen T, Eppler JM, Plesser HE, Diesmann M (2017) Constructing neuronal
network models in massively parallel environments. Front Neuroinf 11:30

	37.	 Rast AD, et al (2010) Scalable event-driven native parallel processing:
the SpiNNaker neuromimetic system. In: 2010 Proceedings of 7th ACM
international conference on computing frontiers, pp 21–30. https​://doi.
org/10.1145/17872​75.17872​79

	38.	 HPCG Benchmark (2016) HPCG Benchmark. http://www.hpcg-bench​
mark.org/

	39.	 Furber SB et al (2013) Overview of the SpiNNaker system architecture.
IEEE Trans Comput 62(12):2454–2467

	40.	 David FM, Carlyle JYC, Campbell RH (2007) Context switch overheads for
Linux on ARM platforms. In: Proceedings of 2007 workshop on experi-
mental computer science, Article No. 3

	41.	 Schlansker M, Rau B (2000) EPIC: explicitly parallel instruction computing.
Computer 33(2):37–45

	42.	 Kunkel S et al (2014) Spiking network simulation code for petascale
computers. Front Neuroinf 8:78

	43.	 Végh J (2018) Introducing the explicitly many-processor approach. Paral-
lel Comput 75:28–40

http://debenedictis.org/erik/SAND-2005/SAND2005-2690-CUG2005-B.pdf
http://debenedictis.org/erik/SAND-2005/SAND2005-2690-CUG2005-B.pdf
https://www.nitrd.gov/nitrdgroups/images/b/b4/NSA_DOE_HPC_TechMeetingReport.pdf
https://www.nitrd.gov/nitrdgroups/images/b/b4/NSA_DOE_HPC_TechMeetingReport.pdf
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=15269
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=15269
https://www.extremetech.com/computing/272558-japan-tests-silicon-for-exascale-computing-in-2021
https://www.extremetech.com/computing/272558-japan-tests-silicon-for-exascale-computing-in-2021
https://www.extremetech.com/computing/272558-japan-tests-silicon-for-exascale-computing-in-2021
https://www.top500.org/
https://www.top500.org/
http://arxiv.org/abs/arXiv:1808.05338
https://doi.org/10.1145/1787275.1787279
https://doi.org/10.1145/1787275.1787279
http://www.hpcg-benchmark.org/
http://www.hpcg-benchmark.org/

	How Amdahl’s Law limits the performance of large artificial neural networks
	Abstract
	1 Introduction
	2 Amdahl’s Law of parallelization
	2.1 Amdahl’s idea
	2.2 Deriving the effective parallelization

	3 The inherent limit of parallelization
	4 The inherent limits of supercomputing
	5 The inherent limits of neural network simulation
	5.1 The contribution from the “clock signal”
	5.2 The other contributions
	5.3 How performance bound manifests

	6 How to overcome the issues
	7 Summary
	References

