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Abstract

performance on real-world benchmarks.

Role-Based Access Control (RBAC) policies are at the core of Cybersecurity as they ease the enforcement of basic
security principles, e.g., Least Privilege and Separation of Duties. As ICT systems and business processes evolve, RBAC
policies have to be updated to prevent unauthorised access to resources by capturing errors and misalignments
between the current policy and reality. However, such update process is a human-intensive activity and it is expected
to meet specific constraints. This paper proposes a semi-automatic RBAC maintenance process to fix and refine an
RBAC state when “exceptions” and “violations” are detected. Exceptions are permissions some users realise they miss
that are instrumental to their job and should be granted as soon as possible, while violations are permissions that
have to be revoked since they are no longer required by their current owners. We propose a formalisation for the
maintenance process which fixes single and multiple exceptions and violations by balancing two conflicting
objectives, i.e,, (i) optimising the current RBAC state, and (i) reducing the transition cost. Our approach is based on a
Max-SAT formalisation of the constraint-based optimisation problem, and on PDDL planning to define the transition
strategy with minimum cost. Our implementation relies on incomplete Max-SAT solvers and satisficing PDDL planners
which provide approximations of optimal solutions. Experiments along with a comparative evaluation show good
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Introduction
Granting access based on direct assignments of permis-
sions to users is highly inefficient for large-scale organi-
sations, where complex business processes and numerous
human resources are involved. Thus, many organisations
now adopt RBAC (Role Based Access Control) mecha-
nisms which simplify the management of permissions by
defining roles, which include the permissions required to
execute certain tasks (see Ferraiolo et al. (2001)). Users
gain the permissions which are included in at least one of
the roles assigned to them. In case users are moved to dif-
ferent tasks or if tasks change, it is sufficient to operate
at the role level without modifying several Permission-
to-User assignments. By posing conditions on roles and
their assignments it is also easy to enforce basic security
principles such as Least Privilege and Separation of Duties.
The management of roles throughout their entire
lifecycle is a complex and challenging task aiming at

*Correspondence: marco.mori@bancaditalia.it
TMarco Benedetti and Marco Mori contributed equally to this work.
Bank of Italy, ICT Department, Centro Donato Menichella, Roma, Italy

@ Springer Open

designing, implementing, testing, and maintaining roles
(Wachs [2014]; Iverson [2015]; Kern et al. 2002). While
role mining (Mitra et al. 2016) supports the discovery
of roles from scratch, in many cases as organisations
undergo changes, it is necessary to maintain the current
set of roles. Various causes may invalidate the currently
deployed roles: Roles may have to be revised to support
either new (i.e., exceptions) or missing (i.e., violations)
User-to-Permission assignments following technological
or business changes; or, a (possibly hand-made) RBAC
state may contain errors, which need to be first discovered
and then incorporated/subtracted into/from the current
state (after validation by a security administrator).

While maintaining an RBAC state, the company has to
consider conflicting objectives. It certainly benefits from a
simplification of the current Permission-to-Role and Role-
to-User assignments, i.e., of the so called RBAC state. For
a security administrator it is indubitably more efficient
to deal with a reduced number of roles which are simple
in terms of permissions and assignments than having a
higher number of roles or a high number of Permission-
to-Role assignments (Colantonio et al. 2008; Molloy et al.
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2008). Nevertheless, any uninformed simplification of a
given RBAC state may heavily modify the current assign-
ments, thus disrupting organisational processes and/or
separation of duty constraints (Vaidya et al. 2008), not to
mention the muscle memory of any human actor involved
in managing and assigning roles. Losing similarity to the
initial roles may be acceptable if the organisation is very
small or at a preliminary stage of RBAC adoption; not so
much in case of a large company with its own well-defined,
perhaps “cherished" working set of roles, which have been
costly defined and negotiated. These are conflicting objec-
tives, so a trade-off has to be found to balance them out.
For an optimised state to be adopted, it is also necessary to
determine the course of actions to reconfigure the input
set of roles. These are typically time-consuming human
activities whose complexity grows with the number of
required interventions to the target access control system.

In the context of role maintenance, we have identi-
fied two challenging tasks for security administrators: (i)
determining one or a set of candidate target RBAC states
that fix all outstanding issues, and (ii) defining the sim-
plest course of actions to implement the required changes.
Our previous work (Benedetti and Mori [2018]) defined a
new parametric RBAC maintenance process to determine
one or a set of candidate target RBAC states starting from
a missing permission to be granted (i.e., an exception).
When performing maintenance, the in-place RBAC state
is provided as input to the algorithm (together with the
permission to be granted) and an adjusted model is pro-
duced as output, which accommodates the new require-
ments by “patching” the original state. When starting from
a clean slate, a fully compliant RBAC state is grown out of
the empty state by a sequence of patches. In this paper we
extend the maintenance process in (Benedetti and Mori
[2018]) by considering also violations to the access con-
trol policy (i.e., permissions to be revoked) along with the
capability of including multiple exceptions and violations
in one single problem instance. In addition, this paper
formalises the automated planning of actions required to
adopt an optimised RBAC state when it has been dis-
covered and presents a comparative analysis with a few
representative state-of-the-art maintenance approaches.

As a key feature, the proposed algorithm aims at balanc-
ing two possibly conflicting metrics: similarity and sim-
plicity. Similarity is a measure of how different the patched
state is from the pre-patch state: the closer the two states
the less disrupting the update. Simplicity is a measure of
how close the patched state is to the unconstrained, opti-
mal RBAC state: the more a patch strives for optimality,
the larger the potential impact on the organisation. As we
will see, in our approach the RBAC administrator is pro-
vided with means to strike the best balance between these
two objectives.Finally, the course of actions to adopt the
target state is evaluated according to its length.
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Our maintenance process generates Max-SAT (Johnson
1973) and PDDL - Planning Domain Definition Language
(Ghallab et al. 2004) instances and solves them via
publicly-available, state-of-the-art solvers and planners.
Several well known datasets are adapted to this new incre-
mental setting and are used to establish the practicality of
our solution in real-world cases.

The rest of this paper is organised as follows. “RBAC
maintenance via Max-SAT” section frames the problem
and presents a working example. The “Formalisation”
section defines the Max-SAT and the PDDL planning for-
malisation and introduces the metrics we use to evaluate
the quality of an RBAC state and of the corresponding
reconfiguration strategy. “Validation” section describes
the datasets we use in the experiments and presents
the results of our experimental evaluation along with a
comparative analysis versus a few representative state-of-
the-art role mining algorithms. “Related work” section
discusses related works. “Conclusion and future work”
section concludes the paper and proposes directions for
future work.

RBAC Maintenance process

Preliminaries

Role mining is a preliminary step to enable the adoption
of an RBAC model. It can be executed bottom-up or top-
down.

The bottom-up approach takes as input an existing set
of direct Permission-to-User assignments. Then, mining
roles consists in defining a collection of roles (sets of per-
missions) and then assigning one or more roles to each
user. The permissions each user is granted by any of his
role(s) have to be exactly the same Permissions-to-User
assignments he had before roles were introduced.

Formally, starting from a binary matrix UPA € {0, 1}*"
representing the assignments of # permissions to m users,
role mining factorizes it into a Role-to-User matrix UA €
{0,1}"* and a Permission-to-User matrix PA € {0,1}%",
for some positive integer k (number of roles), such that
UA®PA = UPA, where the boolean matrix multiplication
operator ® is defined as LUPA;; = \/;(ZI(L[A,»Z A PAy).

Top-down approaches—employed as an alternative or
in combination with bottom-up mining—define roles
starting from an analysis of the business processes to
support. Top-down roles are typically hand-crafted by
business stakeholders after an analysis of the organisation
processes and of the permissions users require to exe-
cute them. Hand-made roles, though validated and closely
inspected, may of course contain (several) errors.

Whether the synthesis is top-down or bottom-up, once
an RBAC state is in place, a role maintenance process is
required to adapt the state to intervening organisational
changes (employees move, new systems are deployed, etc.)
or to fix errors that become apparent during actual usage.
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Maintenance of an RBAC state
Errors show up as either Permission-to-User assignments
that are not implied by the current state but should be,
or as unnecessary permissions granted to users. Figure 1
describes the maintenance process starting from the
detection of missing and extra permissions. The logs
captured by the monitoring systems record (among the
other things) events corresponding to missing permis-
sions. These can be directly forwarded to the validation
phases. The security administrator comes into play at this
stage by validating prohibited accesses; of particular inter-
est are false positives, i.e., permissions a user misses but
should be allowed to have, which we call exceptions.

Candidates for revocation, which we call violations, are
detected through a discovering phase which collects all
permissions a specific user exercises over a period of time
(during which he carries out his complete set of job func-
tions), and then looks for granted permissions that were
never used. At this stage, checking the differences among
users sharing the same job functions can help too. In
any case, the security administrator has to validate each
violation before enacting the maintenance process.

The administrator may also directly specify further
exceptions and violations by generalising the case at hand.

Starting from a list of validated exceptions E and viola-
tions V (x € EUV, with x : p — u) to be incorporated
into the current RBAC state Sy, the RBAC optimisation
phase generates a target RBAC state with the following
properties:

(a) it is semantically equivalent to Sp, aside from
accommodating eachx € EUV, i.e,, u now has
permission p (if x € E), and u no longer has
permission p (if x € V);

(b) among all states that satisfy (a), it is either (i) the
most similar to Sy, or (ii) the simplest possible state,
or (iii) any state in between these two extremes.

“RBAC optimisation” section formalises the meaning of

“most similar’, “simplest possible’; and “in between” The

Page 3 of 25

RBAC optimisation is applied as new exceptions/viola-
tions arrive. If necessary, several exceptions and violations
may be dealt with at once, in a single step. The degree of
freedom at (b) is exploited by the security administrator to
strike the best balance between evolving the state towards
simplicity and preserving the status quo, according to
criteria external to the algorithm.

Once the target state is determined, the plan synthe-
sis phase takes place to detect the best possible course of
actions to reconfigure the input RBAC state. These actions
represent the maintenance plan which has to be imple-
mented into the target access control system. The admis-
sible actions to reconfigure an RBAC state are described
in “Plan synthesis” section.

Scope of application

Role maintenance may also act as a fixing or mining tool,
depending on how it is applied; indeed, the state fed into
it can be:

Fix A hand-made, top-down RBAC state, which
despite possibly containing (several) errors cannot
be radically overhauled because it has been agreed
on by several stakeholders; here, role maintenance
is basically used to gradually shepherd the
hand-made model to the reality of business
processes;

An in-place, fully satisfactory RBAC state which
needs to undergo maintenance to accommodate
exogenous events, such as updates in business
processes, deployment/replacement of information
systems, relocation of employees, etc.;

An empty state granting no permission to anyone;
in this case, role maintenance is used as an
incremental role mining procedure whereby the
administrator generates a well-behaved and
well-structured RBAC state by monitoring missing
permissions on-line and judiciously granting them.

Tune

Mine

We focus on the “tune” use case in the rest of the paper.

Security
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A working example

Let us consider a consulting firm with dozens of employ-
ees. They use two applications that store data into a
company database. The first application supports the
publishing activity of the company. The second applica-
tion is used for marketing purposes, specifically in the
definition of campaigns for mainstream media. An inde-
pendent in-house quality assurance process ensures the
compliance of the actions taken through the publishing
and the marketing platform with all relevant guidelines
and regulations. Employees also use a general-purpose
Internet service and an in-house e-mail server, through
which they communicate with institutional stakeholders.
An Intranet is available for internal communication and
to access business applications. The HR department man-
ages a database with employees’ data. A web site describes
the services offered by the company on the web. The appli-
cation server and the databases are managed by different
administrators.

An RBAC solution is in place at this company: Roles
have been crafted so that each employee is enabled to per-
form only the task(s) he is involved in. The set of (business
and technical) roles are: publishing, marketing, quality
assurance, general communication, business communica-
tion, HR management, server administration and database
administration. As usual, each role is associated with the
set of permissions required to carry out the correspond-
ing task(s). For example, the marketing (publishing) role
entails the permission to access the marketing (publish-
ing) application, in addition to the permission to access
the shared business database. The business communica-
tion role grants the permission to use the mail server and
the Intranet, while the general communication role gives
access to the Internet. Finally, the database administration
role is required to operate on the business and the HR
databases.

Let us suppose the RBAC manager at this company
is now faced with these urgent requests: An employee
is about to join the marketing division and needs the
corresponding permissions; at the same time, another
employee who is already in that division just realised he
lacks some much needed permissions to operate; another
employee from the marketing division is required to (also)
work in the publishing process for a while. Finally, yet
another employee is to be temporarily granted permis-
sions to help the database administrator, but only on a
non-critical dataset.

The RBAC administrator would like to be supported in
the process of re-configuring the RBAC state. In particu-
lar, he would like to automatically obtain good answers to
questions such as:

— “How to modify the current RBAC state to implement
the necessary variations and nothing more?”
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— "Is it possible to operate on the Permission-to-Role
and/or Role-to-User assignments without adding
new roles?”

— “Would it be better to just create new custom roles?”

— “Is this an occasion to merge some existing roles into
less and more clear-cut business figures?”

— “Once I'm at it, can I simplify the current role set
while keeping the solution stable w.r.t. to the desired
RBAC state?”

— “Once a target RBAC state is determined, which is
the minimum possible set of applicable
reconfigurations to Permission-to-Role and/or
Role-to-User assignments which implement it?”

Formalisation

We use the language of propositional logic to represent
RBAC optimisation instances. The question we ask is
not simply about the satisfiability of a logic statement
by some propositional model (SAT), because we need to
also express preferences between conflicting objectives
(similarity and simplicity of the output RBAC state). It
turns out a slightly different, “optimising” framework per-
fectly suited to our needs is Max-SAT, which considers
all possible truth assignments to the input formula and
picks the best one according to a fitness metric defined in
the Max-SAT language itself (“SAT and Max-SAT", “Hard
constraints’, “Soft constraints” and “RBAC optimisation”
sections).

As far as the plan synthesis problem is concerned, we
use the language of domain-dependent automated plan-
ning by (Ghallab et al. 2004). This framework supports
the definition of optimisation problems which consist in
finding the course of RBAC actions to transform the input
into the target RBAC state while minimising the num-
ber of required actions as fitness metric (“Plan synthesis”
section). By solving such a planning problem, one finds
the best (shortest) sequence of actions to reach the desired
RBAC state.

SAT and Max-SAT
A SAT problem (Cook 1971) is solved by assigning a truth
value in {True, False} to each Boolean variable that appears
in the input propositional formula in such a way that the
formula as a whole evaluates to True. If at least one such
assignment exists, the formula is satisfiable and the satis-
fying assignment is called a model; otherwise, the formula
is unsatisfiable (inconsistent) and it has no model. This
problem is intractable (NP-complete) in general, yet sev-
eral highly efficient solvers exist that in practice solve real-
world problems with millions of variables in reasonable
time.

Given any UPA matrix, its factorisation into UA @ PA =
UPA for some number of roles k can be directly expressed
in SAT as:
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A [upA,«, < vk WAy A PA,,)] (1)
ij

Equation (1) is a SAT instance with k(m + n) variables.
Without loss of generality, most SAT solvers require input
formulas in Conjunctive Normal Form (CNF), i.e., a con-
junction of clauses, each clause being a disjunction of
literals. By either reworking the formula (possibly enlarg-
ing its size) or adding auxiliary variables, it is possible to
rewrite any non-CNF problem like (1) in CNFE.

In SAT, all clauses have to be satisfied for the formula
to be declared satisfiable. The Maximum Satisfiability
problem (Max-SAT) is a variant of SAT that relaxes this
premise. The goal of Max-SAT is to find an assignment
that makes true the largest possible subset of clauses: some
may remain unsatisfied. Partial Max-SAT is another vari-
ant in which some clauses are declared hard and must
be satisfied no matter what, as in SAT, while others are
declared soft: As many of them as possible must be satis-
fied, a la Max-SAT. Yet another variant is Weighted Max-
SAT, that generalises Max-SAT by associating a positive
real or integer weight to each input clause: An assign-
ment that maximizes the sum of the weights of satisfied
clauses, rather than just their number, is sought (clauses
left unsatisfied contribute nothing to the sum).

Finally, the Weighted Partial Max-SAT (WPMS) lan-
guage combines both features: It finds an assignment that
satisfies all hard clauses while maximizing the cumulative
weight of satisfied soft clauses. We employ WPMS here
(and call it simply Max-SAT).

Hard constraints

Hard clauses are well suited to represent invariants that
must hold on any RBAC state we may possibly output, and
in particular to capture condition (a) from “Maintenance
of an RBAC state” section.

The input RBAC state is represented by two boolean
matrices LA and PA® such that UA° @ PA® = UPA®. UA®
and PA° are respectively a m x k° and a k° x # boolean
matrices having non-empty roles, i.e.,

\/ L[Agt = True | A \/ PAgj = True

j=1,..n

Vt:l,..,ko

We consider exceptions e € E and violations v € V. An
exception e : p — u is meant to grant permission p
to user u, assuming it was UPAg’p = False. A violation
v : p — u is meant to revoke permission p from user
u, assuming it was LIPAg,p = True. We define EXC(E) as
the m x n boolean matrix that is True at position (u, p)
ife: p > u € E and False otherwise, and VIOL(V) as
the m x n boolean matrix that is True at position (u, p)
ifv:p — u € V and False otherwise. We then need
k(m + n) variables to represent the unknown elements of
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the updated Role-to-User (LIA) and Permissions-to-Role
(PA) matrices, where m, k, and n are the number of users,
roles, and permissions.

We have to find two boolean matrices LJA and PA such
that:

UAQ®PA = UPA® & (EXC(E) + VIOL(V)) = UPA (2)

where @ is the element-by-element exclusive-or operator,
while + is the element-by-element or operator. In terms of
the variables defining UA and PA, for each useri = 1,..,m
and for each permission j = 1, ..., s, this can be written as:

/\Fi,j7 where Fi,j = ( Vie[1k] UA;: N PAU‘)
i

= UPAY; & (EXC;;(E) + VIOL;;(V))
The formulas F;; are not in CNF, thus we convert

them into CNF. Two different cases have to be taken into
account:

UAjy1 ... UAiy | (... PArj, ... PAy, ...
UAij 1 ... UA; oo PAgjy ... PAgj; ...
jo j1
io | ... False
nl... ... ... True

If LIPA; is False, such as at index (ip, jo) above, we have:

\/ (UAi; APA,j) | = False
te[1,k]
which can be rewritten as a set of clauses by negating both
sides:
hasntij(UA, PA): = [\ (=UA;; v —PAy)) 3)
te[1,k]

If LIPA;j is True, such as at index (i1, j1), we have:

\/ (UAi; APAy) | = True
te[1,k]
Here we apply the Tseytin transformation (Tseitin 1983)

by inserting k auxiliary variables {aux;, ..., aux}, one for
each disjunct:

{ V e i auxe

/\te[l,k] auxy <> (LIAM VAN PAt,})
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which is equivalent to the CNF form:

Vtel1,k) auxt
/\te[l,k] (mauxy vV UAj¢) N (mauxt V PAgj)
Nteq ) @uxs v —UA;z V —PAg )

hasi,j(UA,PA): =

(4)

Overall, the hard clauses that guarantee we are both
incorporating the exceptions in E and removing the viola-
tions in V are:

exc_viol(UA,PA): = /\ has; j(UA, PA)
ijIUPA;

A )\ hasnt;j(UA, PA) (5)
ijl~UPA;;

Soft constraints
We use soft clauses to express constraints that we know
are in trade-off and cannot always be satisfied simultane-
ously. In particular, we want to capture the conditions (i)
and (ii) at point (b) in “Maintenance of an RBAC state”
section.

Identity. To express the condition that the output
RBAC state (UA, PA) must be identical to the input state
(UA®, PA®) we write:

/\ie[l,m],je[l,k] UAij < UI:?,;
Nieti,jerm PAij <> PA};

which in CNF is:

Nij (UAij v ﬁUA%) a (ﬁUAi’j v U )

PA;; v —-PA?J») A (ﬁPAz;; v PA%’)
(6)

Note that exc_viol(UA, PA) Aeq(UA, PA) is unsatisfiable
by construction in the traditional SAT sense.

Sparsification. To express the condition that the out-
put RBAC state (LA, PA) must be as “simple” as possible
we need to adopt some notion of simplicity. The two
simplifying conditions we consider are: (i) a reduction in
the number of Roles-to-User and/or Permission-to-Role
assignments (“sparsification”), and (ii) a reduction in the
number of roles (see next section, “Contraction”).

According to (i), the sparsest possible RBAC state would
be:

eq(UA,PA): =
i

/\ie[l,m],je[l,k],LIAgjzl —UA;j

sparse(UA,PA): = (7)

/\ie[1,k],je[1,n],PAgj:1 —PA;;

Contraction. Sometimes, incorporating an exception or
removing a violation makes it possible to satisfy Eq. 2
with one less role than those present in (UAO,PAO). The
soft constraint sparse(UA, PA) is not sufficient to prefer a
reduction in the number of roles over similarly-sized but
sparse unassignments from UA. The fact that role j is no
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longer in use in the target RBAC state is represented by a
column of 0’s in the Role-to-User assignment matrix (UA);
so the condition is:

contr(UA): = /\ unused;(UA) (8)
Jel1,k]

where {unused;} are auxiliary variables telling whether
role j is assigned to someone (unused; = False) or not
(unused; = True):

unusedeoyy (UA): = /\ [unusedj(L[A) eAte[l,m]ﬁUAt,j]
jellk]

©)

Expansion. Dually, it is possible that the only way to
incorporate an exception or removing a violation is by
adding one role to the state, i.e., one column to UA and
one row to PA. In a propositional encoding, the only way
to accommodate for a possible expansion of the matrices
we handle is to “reserve space” in advance for the addi-
tional row and column. This means we actually work with
an RBAC state made by a matrix UA™ with k + |E| + |V|
columns and a matrix PA* with k 4 |E| 4 |V| rows. The
condition that these additional roles stay unused is:

noexp(UA): = /\
jelk+1,k+|E|+[V[]

unused; (10)

where unused; is an auxiliary variable telling whether the
corresponding additional role remains unused:

unused,y, (UA):

- A

Jelk+1,k+|E|+[V]]

[unused,- < Nig[L,m] ﬁUAer]

(11)

unused(UA): = unusedony(UA) N unused,y,(UA) (12)

In an encoding where both contraction and expansion
constraints are added, we enforce a coherent interplay
between the two opposite effects by saying they must not
happen simultaneously:

mutex(UA): = noexp(UA) Vv —leastcontr(UA) (13)

where leastcontr tells weather at least a role is no longer in
use:

leastcontr(UA): = \/ unused;(LA)
JjElLK]

RBAC optimisation

We have all the pieces to present the complete encod-
ing of the RBAC optmisation problem as a Weighted
Partial Max-SAT instance. First, let us list the hard con-
straints (HC) that any feasible solution must comply with.
In addition to those from “Hard constraints” section, all
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the auxiliary contraints from “Soft constraints” section
are hard, because auxiliary propositional variables cannot
cause inconsistencies on their own, yet they must always
be assigned a consistent value:

HC(UA,PA):
= exc_viol (UA+,PA+) A unused(UA) N mutex(UA)
(14)

Soft constraints (SC) are used to express and balance
two potentially conflicting objectives of the RBAC main-
tenance procedure:

1. maximizing the similarity between the target and the
origin RBAC state; in this sense, the higher the
weight we assign to clauses in (6), the better;

2. maximizing the simplicity of the target RBAC state
(independently of the origin RBAC state); in this
sense, the higher the weight we assign to clauses in
(7), (8), and (10), the better.

Let us assume the weight of a given clause C is a real
value! w €]0,1], noted w : C. The notation w : (C; A... A
Cp) is a shorthand for w/n : C; A ... Aw/n : C,, while
wy @ (W2 : C) is interpreted as (w; - wp) : C. The three
components (7), (8), and (10) of the “simplicity” objec-
tive are merged into one weighted set of clauses, noted
SIMPy+ i~ (UP, PA) and defined as:

v:[k™: contrUA, PA) AsparseUA, PA) Ak noexpUA, PA)
(15)

Here, k=~ > 0 is a parameter meant to quantify how
much we reward the elimination of a role versus to the
sparsification of the matrix; k™ > 0 measures our adver-
sion to introduce a new role if not strictly necessary.
v: = (1 + k™ + k+)_1 is a normalization factor meant
to ensure the weights of the three components sum up to
1. We assume k= > kT > 1, i.e., we value the possibility
to expunge a role more than the removal of an equivalent
number of assignments; adding roles is a last resort.

Finally, let 8 €[0,1] be a balancing parameter that
measures the extent to which the RBAC administrator is
interested in a simplified (8 closer to 1) VS a stable (8
closer to 0) RBAC state; we pose:

SCg - i+ (UA, PA):
=(1— B):eq(UA,PA) A B : SIMPy+ ;- (UA, PA)
(16)

Given (i) the input RBAC state (LIAO,PAO), (ii) the
exceptions list E to incorporate and the violations to
remove in V, and (iii) some specific values for the param-
eters B,kT, and k~, we submit to a Max-SAT solver the
hard clauses (14) plus the soft clauses (16). The Max-SAT
solver returns a fixed RBAC state (LIAT, PAY), i.e., a truth
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assignment to all the (k 4 [E| - |V]) - (m + n) variables that
define LJA™ and PA™. Note that the encoding is satisfiable
by construction, so we always obtain a fixed state.

Plan synthesis

The Plan synthesis phase is activated after the RBAC
optimisation in order to determine the plan of actions
a security administrator has to carry out to deploy the
target RBAC state. The point here is that the Max-SAT
solver reasoned on the initial and target RBAC states inde-
pendently of the course of actions eventually required
to transform the former into the latter. The problem of
finding such plan, possibly the “best” or “cheapest” one
according to some formal metrics, is not trivial.

We formalise the problem as a Planning problem within
the PDDL framework (McDermott et al. 1998), one of
the reference languages for the planning community. In
PDDL, several concepts have to be formalised to produce
workable instances: objects are the entities of interest in
the world; predicates are the properties of the objects we
are interested in, and are either true or false at a certain
point; actions change the state of the world by changing
the truth value of predicates; they have preconditions that
must be met before considering them for execution; the
set of predicates that are true at the beginning is called ini-
tial state; the set of predicates we want to be true in the
final state is called the goal state.

In our formalisation we consider user, permission, and
role object types and two predicates: userRole(u,r) (true
iff role r is assigned to user u) and rolePermission(r, p)
(true iff the permission p is entailed by role 7). These two
predicates represent the state of L/A and PA. The initial
and the goal state are defined as the conjunction of pred-
icates which represent the assignments in the initial and
final Permission-to-Role and Role-to-User RBAC states
(see Egs. 17-18 where N represents the set of potentially
added roles, [N| < |E| + |V]).

/\ie[l,m],je[l,k],UA%:l userRole(u;, rj)

/\ie[l,m],je[l,k],L[A?j:O —userRole(u;, rj)

/\ie[l,k],iE[l,n],PA?jzl rolePermission(ri, pj)

Niel1k) jel1n),pa =0 ~rolePermission(ri, pj)

initial (UA®, PA®): =

Niel1,m] jelk+1k+N|) ~userRole(u;, rj)
/\ie[k+1,k+\N|],je[1,n] —rolePermission(r;, pj)
(17)

/\ie[l,m],je[l,kHNl],L[A?'j:l userRole(u;, rj)

At o) NielLm jelL i+ NI LA —o THserRole(s, )
goa ) 1= ’ .
/\ie[1,k+\N|],je[1,n],PA2'j=1 rolePermission(r;, p;)

—rolePermission(r;, pj)

(18)

/\ie[1,k+\N|],je[1,n],PA$:0
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Actions, whose formalisation depends on the target
RBAC system, are defined in terms of input parameters,
preconditions, and effects. The set of action templates
the planner is allowed to instantiate have to reflect what
the RBAC management system at hand exposes to the
administrator. In Listing 1-10 we present a fairly basic
formalisation of a few core actions common to most
RBAC management systems. Listing 1 defines in PDDL
the action meant to assign a role » to a user u. User u
and role r are input parameters to the action (they will
be instantiated to specific values by the planner); the pre-
conditions states that the predicate userRole(u, r) has to
be false for the rule to fire, i.e., that r is not already
assigned to the user. The effect section states that the
predicate userRole(u,r) becomes true, i.e., that role r is
assigned to u as a consequence of the action. Similarly,
Listing 2, 3 and 4 show how to remove a role from a user
and assign/remove a permission to/from a role. Listing 5
shows how to remove a role r from all users by posing
to false userRole(u, r) for each user u for which this pred-
icate holds. Similarly, Listing 6 adjusts the predicates to
invalidate all the role assignments for an input user. We
also make it possible to adjust the predicates in order to
remove a single permission from each role (see Listing 7)
and to strip a single role from all its permissions (see Listing 8).
Listing 9 erases the entire input RBAC state by pos-
ing all predicates userRole(u,r) and rolePermission(r, p)
to False. Finally, Listing 10 replaces the assignments
of a permission from one role to another by invert-
ing the validity of the corresponding rolePermission
predicates.

Listing 1 Assigning a role to a user

(:action assignRoleToUser

:parameters (?u — user ?r — role)
:precondition (not (userRole ?u ?r))
:effect (userRole ?u ?r)

)

Listing 2 Removing a role from a user

(:action removeRoleFromUser

:parameters (?u — user ?r — role)
:precondition (userRole ?u ?r)
:effect (not (userRole ?u ?r))

)

Listing 3 Assigning a permission to a role

(:action assignPermissionToRole
:parameters (?r — role ?p — permission)
:precondition (not (rolePermission ?r ?p))
:effect (rolePermission ?r ?p)

)
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Listing 4 Removing a permission from a role

(:action removePermissionFromRole
:parameters (?r — role ?p — permission)
:precondition ( rolePermission ?r ?p)
:effect (not (rolePermission ?r ?p))

)

Listing 5 Removing a role from all users

(:action removeRoleFromAllUsers
:parameters (?r — role)

:effect (forall (?u — user)
(when (userRole ?u ?r)

(not (userRole ?u ?r))))

)

Listing 6 Removing all roles from a user

(:action removeAllRolesFromUser
:parameters (?u — user)

:effect (forall (?r — role)
(when (userRole ?u ?r)

(not (userRole ?u ?r))))

)

Listing 7 Removing a permission from all roles

(:action removePermissionFromAllIRoles
:parameters (?p — permission)

:effect (forall (?r — role)

(when (rolePermission ?r ?p)

(not (rolePermission ?r ?p))))

)

Listing 8 Removing all permission from a role

(:action removeAllPermissionsFromRole
:parameters (?r — role)

:effect (forall (?p — permission)
(when (rolePermission ?r ?p)

(not (rolePermission ?r ?p))))

)

Listing 9 Delete all assignments

(:action deleteUAPA
:parameters ()
:effect (and (forall
(forall (?r — role)
(when (userRole ?u ?r)
(not (userRole ?u ?r)))))
(forall (?p — permission)
(forall (?r — role)
(
(
)

(?u — user)

when (rolePermission ?r ?p)
not (rolePermission ?r ?p))))))
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Listing 10 Swap a permissions from two roles

(:action swapPermissionFromRoleToRole

:parameters (?rl — role ?r2 — role ?pl
— permission)

:precondition (and (not (rolePermission
?rl ?pl))

(rolePermission ?r2 ?pl))
:effect (and (not (rolePermission ?r2 ?pl))
(rolePermission ?rl ?pl))

)

The set of admissible actions (Listing 1-10), along with
the initial (Eq. 17) and goal (Eq. 18) RBAC state are issued
to a state-of-the-art PDDL planner to synthesise the main-
tenance plan. In our formalisation all actions have cost
1, thus the optimising planner (that seeks the cheapest
plan) looks for the shortest plan. Certain trivial plans of
actions may be considered as baselines. In particular: A
full rewrite plan consists in erasing the input RBAC state
(through deletelIAPA action) and then adding the assign-
ments to achieve the target RBAC state (actions in Listing
1 and 3). The cost (length) of such plan can be easily
computed as:

baselinerewrite: = 1 + ’UAW + ‘PA+| (19)

A second trivial plan is diff, which consists in adjusting the
differences in terms of assignments occurring between the
target and input matrices (actions in listings 1-4) whose
cost is:

baselinegyr: = |[UAT — UA®| + |PAT — PA®|  (20)
We expect the PDDL planner to find a plan with fewer
actions than either baseline.

Solutions and their quality

To assess the quality of LA™, PA* (both per se and w.r.t.
UA®, PA®) we need some synthetic indicators for the two
dimensions we are after: simplicity, similarity and main-
tainability.

Similarity is computed according to the metric defined
in Vaidya et al. (2008), which is based on the Jaccard
coefficient.

Role-to-Role similarity. The similarity between two roles
r1 and rp granting permissions P; and P, respectively is
defined as:

_P1N Py

simy—1(r1,r2): = W
1 2

Role-to-RoleSet similarity. The similarity between a role
rand a set of roles R is defined as:

simi-N(r,R): = maxy,,ersimi—1(r,7x)
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RoleSet-to-RoleSet similarity. The similarity between a
set of roles R; and a set of roles R, is defined as:

simn-N(R1,Ry): = avgrep, sim1—n(r, Rp)

Similarity. Building on the former definition, we pose
the similarity of the target RBAC state (with roles R) to the
source RBAC state (with roles Ry) as:

imn_N(Ro, R imn_N (R, R
sim(Ro, R): = simy—N(Ro )‘;S”’”N N(R, Ro)

(21)

This similarity function is always between 0 and 1; in
particular, the value 1 is obtained iff R = Ry.

Simplicity is defined in different ways in the relevant
literature; metrics taken into account to define it include,
but are not limited to, the number of roles, assignments,
erroneous permission granted, relations among roles, per-
mission assigned directly, and any combination of these
metrics. We start from a definition of “absolute complex-
ity” that grows with the number of roles and the number
of assignments in A and PA:

comp(UA,PA): = (UA| + |PA]) + k™ - |R| (22)

where R is the set of roles, k™ is the parameter to reward
elimination of a role versus the the sparsification of the
matrixes and UA and PA are the assignments of permis-
sions and roles®. A relative complexity is then computed
as the ratio between the complexity of the target state and
the complexity of the “trivial” admissible state; in such
state, each user is assigned one and only one custom role
which entails exactly the set of permissions that user has
in UPA. In this configuration, the L/A matrix becomes the
identity matrix, there are as many roles as users, and all
the knowledge about permissions is in PA. The absolute
complexity of such trivial state is thus (|UPA|+|U|)+k~-|U].
The (relative) simplicity® of a state is then:

_ |UA| + |PA| + k™ - IR]
|UPA| + |U| + k= - |U|

spt = (23)

Validation

In this section we validate our maintenance process (i)
at a small-scale in “Maintenance of our working exam-
ple” section, where we apply it to our motivating example
from “A working example” section; (ii) at a larger scale
in “Experimental evaluation” section, where we present
experimental results showing its viability in real-word
cases.

Maintenance of our working example

Table 1 formalises (a small version of) the example
from “A working example” section. Table 2 show the cor-
responding RBAC state as Permission-to-Role and Role-
to-User assignments.
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Table 1 Permission-to-User assignment matrix (UPA) with legend

U\P [ pl p2 p3 p4 p5 pb6 p7 p8 p9 plo pll
ul 1 1 0 1 0 1 1 1 0 0 0
u2 1 1 0 1 0 1 1 1 0 0 0
u | 1 1 0 1 o0 1 1 o> o o0 0
wt |1 1 0 1 0 1 ot 1 0 0 0
us | 1 10 1 0 1 01 1 0 0 0
w (1 0 0O 0 0O O 0O 0 0 o* o
u7 1 0 0 0 0 0 0 0 0 0 0
u8 1 1 0 1 0 1 0 0 1 1 0
u9 1 1 0 0 0 1 1 1 0 0 1
ulo |1 1 0 1 1 1 0 0 0 0 0
ull 1 1 1 0 0 1 0 0 0 0 0
Permission | Meaning

pl Internet Access

p2 Mail Access

p3 HR DB Access

p4 Business DB Access

p5 High Perf. Comp. Resource Access

p6 Intranet Access

p7 Marketing Application Access

p8 Publishing Application Access

P9 HR DB Admin

pl0 Business DB Admin

pll Application Server Admin

We now imagine that four exceptions to such initial
RBAC state—listed in Table 3—are captured by the moni-
toring system or directly specified by the RBAC adminis-
trator. We have to incorporate them.

e1: According to the first exception, it is necessary to
augment the permissions of user u4 by granting him
access to the marketing application (permission p7). The
user already has access to the publishing application and
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to the business database. Different RBAC states result
from different values of the balance parameter 8. For
example, if (i) the administrator prefers not to alter the
current state too much and he submits the value § =
0.1 to the algorithm, the exception is incorporated by
simply assigning role marketingFunct to u4 (action 1 in
Listing 11). The variation over the current RBAC state
is minimal (sim 1) and the complexity of the state
is almost unchanged at opt 0.252 (same number
of roles and the addition of a single assignment); in
case (ii) the administrator values simplicity more and
sets the value 8 0.5, the algorithm again answers
by assigning role marketingFunct to u4, but then car-
ries out further simplifying and adjustments to the input
state.

Namely, the busComm role is augmented with the Inter-
net access permission (action 2 in Listing 11) thus making
it possible to reduce the assignments of role genComm to
just u6 and u7 through the sequence of actions 3, 4 and 5
in Listing 11. Simplicity raises to opt = 0.309 at the price
of lowering the similarity to sim1 = 0.958. Let us suppose
in what follows that the RBAC administrator picks option
(ii).

ey: It is now required that the marketing application
(p7) is made accessible to user u5 too. Assuming (i) a
high interest in similarity (8 = 0.1), the algorithm assigns
role marketingFunct to u5 (action 6 in Listing 11), thus

Table 2 Permission-to-Role matrix PA (top) and User-to-Role matrix UAT (bottom)

R\P pl p2 p3 p4
bussComm oy’ 1 0 0
genComm 1 0 0 0
marketingFunct 0 0 0 1
publishingFunct 0 0 0 1
HRManagement 0 0 1 0
QualityAssurance 0 0 0 1
DBAdmin 0 0 0 1
ServerAdmin 0 0 0 0
BussDBAdmIn or* [oy* [03* [0y
R\U ul u2 u3 u4
bussComm 1 1 1 1
genComm 1007’ 100)’ 0]’ 1[0)'
marketingFunct 1 1 1 ory’
publishingFunct 1701 1001 010 1001
HRManagement 0 0 0 0
QualityAssurance 0 0 0 0
DBAdmin 0 0 0 0
ServerAdmin 0 0 0 0
BussDBAdmIn [o* [oy* [0* [o*

p5 pb6 p7 p8 P9 p10 pl1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 on? 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 1 1 0 0 1
[op* [0 [0 [0 [0 1 [0
u5 ub u’/ u8 u9 ul0 ull
1 0 0 1 1 1 1
110)’ 1 1 100]’ 107" 101’ 1[0]’
o[11? 0 0 0 0 0 0
100P° o[op? o[o)® o[oP® o[op? o[op? o[op?
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
[oy* [ [op* [op* [op* [oy* [o*
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Table 3 List of exceptions to incorporate in the working example

RBAC state
Exception B |UPA| IR| [UA| + |PA| opt sim
- - 50 8 47 0.254 -
er:p7 — u4 0.5 51 8 40 0.309 0.958
ey p7 — U5 0.1 52 8 41 0.307 1
e3:p8 — u3 0.3 53 7 36 0.397 0.935
es:pl0—u6 0.1 54 8 38 0338 0958

In Tables 1 and 2, we note old[ new]" an assignment that is changed from value old
to value new by applying exception e’

maintaining a stable state (sim = 1) and essentially
the same simplicity (opt = 0.307). Alternatively, (ii) the
assignment B = 0.5 causes the algorithm to extend the
role publishingFunct—which is already assigned to u5—
with the missing permission p7. This is possible since no
user is granted p8 but not p7 anymore. Thus, the new
publishingFunct role enables both business applications,
while marketingFunct gives access to the marketing appli-
cation only, and is assigned to u3. This new RBAC state
has a lower similarity at sim = 0.958, but only a slightly
improved simplicity at 0.329. Since the optimization is
marginal and it comes with a damage to similarity, the
administrator picks option (i) over option (ii).

e3: User u3 needs to access the publishing applica-
tion (permission p7). It turns out that in the current
state all users granted p8 should also have p7. It fol-
lows that the distinction between marketingFunct and
publishingFunct makes no longer sense. It is thus not
surprising that with even moderate importance assigned
to simplicity (8 = 0.3), the algorithm answers by join-
ing such two roles and reducing the state complexity
to opt = 0.397, at the price of some state variation
(sim = 0.935). In particular, role publishingFunct is erased
(action 7 in Listing 11) and role marketingFunct, already
assigned to u3, is augmented with p8, thus enabling
the access to both business applications (action 8 in
Listing 11)

eq: User u6 is assigned the responsibility of managing
the business DB (permission pl10). A role enabling the
management of all the databases (business and HR, p10
and p9) already exists: DBAdmin. However, u6 is to be
granted access to the business database only; it may be
necessary to augment the role set. By applying the role-
maintenance algorithm with § = 0.1, we are indeed
returned a target RBAC state with a new role (we call it
BussDBAdmin) assigned to u6 and including permission
p10 only. The planning actions to achieve this target state
are the last two in the overall maintenance plan of Listing
11. The complexity of the RBAC state is augmented since
a new role is introduced (opt = 0.338); there is a minimal
variation from the initial state (sim = 0.958).
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Listing 11 Maintenance Plan

assignRoleToUser (u4, marketingFunct)
assignPermissionToRole (pl,bussComm)
removingRoleFromAllUser (genComm)
assignRoleToUser (u6,genComm)
assignRoleToUser (u7,genComm)
assignRoleToUser (u5, marketingFunct)
7 removingRoleFromAllUser (publishing
Funct)

8 assignPermissionToRole (marketingFunct,
p8)

9 assignRoleToUser (BussDBAdmin, u6)

10 assignPermissionToRole (BussDBAdmin,
pl0)

Uk Wi

Experimental evaluation

To experiment at a larger scale we exercise our algorithms
on the semi-synthetic datasets described in “Synthetic
datasets: single violations/exceptions” and “Synthetic
dataset: Multiple violations/exceptions and Planning”
sections. Different Max-SAT solvers are compared
in “Choosing a Max-SAT solver” section to select the one
that best suits our needs.

We experiment with the inclusion of single exceptions
and violations (“Experimental Results: single exception-
s/violations” section) and we compared such performance
with SOTA maintenance algorithms (“Comparative eval-
uation” section). We also experiment with the inclusion
of queues of exceptions and violations (“Multiple excep-
tions/violations” section) and with planning the minimum
course of actions required to reach the optimised RBAC
state (“Planning evaluation” section).

Experimental results have been performed on a 20-core
Intel CPU with 138GB of memory and, unless noted oth-
erwise, they have been obtained by setting k™ = k= = 1.
All the results and datasets can be downloaded from the
web site Mori and Benedetti [2019].

Synthetic datasets: single violations/exceptions
In order to experiment with single exceptions/violations,
we require datasets that include (i) some initial RBAC
state defined in terms of a set of roles and their assign-
ment to users, and (i) a list of exceptions and violations:
couples of Permission-to-User assignments that are miss-
ing and couples that are in excess in such RBAC state.
To the best of our knowledge, no public dataset pro-
vides such information. Most datasets only consist of a
binary matrix of Permission-to-User assignments, with no
associated RBAC state. Moreover, exception histories are
never included.

In order to synthesize a benchmark for the maintenance
problem, we start with four existing datasets: our exam-
ple from “Maintenance of our working example” section,
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named SmallComp here, plus three classical problems
of increasing dimension used in the role-mining litera-
ture, called Domino, University, and Firewalll. All these
instances are defined in terms of their User-to-Permission
matrix. Starting from one of these UPA matrices,
we generate (purely additive) maintenance instances as
follows:

1. Given a positive integer k, we randomly select k user
permissions in UPA and remove them, thus
obtaining UPA®. A random order is assigned to such
permissions to obtain the list of exceptions which we
ask our algorithm to incorporate;

2. Given k, we randomly select k user permissions from
UPA® without removing them from the matrix. This
list consists of the violations we ask our algorithm to
remove from UPAY;

3. We synthesize a complete RBAC state out of L/PA°
via one of the role mining algorithms available in the
literature. Given that we aim at an arbitrary (not
necessarily optimal) initial state, we adopt Fast Miner,
a heuristic procedure which returns a sub-optimal
set of roles*. The corresponding {/A® matrix is then
iteratively generated, and the resulting RBAC state is
used as initial state for the maintenance algorithm.

The resulting benchmark is described in Table 4.

Synthetic dataset: Multiple violations/exceptions and
Planning

We need a dataset to prove the ability of our algorithm to
include sets of exceptions and violations in one single step.
Typically, security administrators have to include excep-
tions and violations which are related to one another:
Either they manipulate different permissions of the same
user, or they alter the same permission for different users.
Taking this perspective into account, we generate different
maintenance instances as follows:

1. We implement a Markov chain model to generate
the list of exceptions and violations. According to
this model, a first exception/violation (i, p) is
randomly generated. Then, two equally probable
options exist. Either the model chooses one among
the not-yet selected permissions of the same users
or, alternatively, one among any of the other users
with the same permission p. Once one option is
picked, the same process is repeated with probability
0.8, while with probability 0.2 the process re-starts
with a novel exception/violation (u, p/). This process
is repeated until k exceptions/violations are
generated. Finally, the list of exceptions are removed
from UPA, thus obtaining L/PA°.

2. A complete RBAC state is defined from LPA® as
described in the case of single exceptions/violations.
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Table 4 Datasets in our benchmark: single exceptions and

violations
RBAC state

Dataset #U #P Density  |R?| [UA®| + |PA°)
SmallComp 11 11 0.207 13 65
Domino 79 231 0.039 71 1803
University 493 56 0.143 71 8769
Firewall1 365 709 0.123 580 99713

Max-SAT encoding (single exceptions)
Dataset #Excs #V #C #Ch #C
SmallComp 12 6.8602  2.9943 26293  3.6502
Domino 19 73664 14476 14236 23894
University 10 32375 26436 25966  4.7824
Firewall1 32 19177 1.8838 1.8878 6.2355

Max-SAT encoding (single violations)
Dataset #Viols #V #C #Cp #Cs
SmallComp 12 6.5802 2.9363 25713 3.6502
Domino 19 7.3514 1.4476 14236 2.3894
University 10 32365 26436 25956 4.7824
Firewall1 32 19177 18838 18778 6.2355

#U, #P, and Density are the number of users, permissions, and the percentage of
assignments in the UPA® matrix, respectively, after the removal of #Excs exceptions.
|R] and |UA®| 4 |PA°| are the number of roles and assignments in the initial RBAC
state. #V, #C, #Cp,, and #C; are the number of variables, clauses, hard clauses, and soft
clauses in the Max-SAT encoding (exception and violation cases), respectively

We also carry out experiments aimed at proving the
ability of our planning phase to generate good mainte-
nance plans. The dataset for these tests are generated by
adopting the same Markov chain model as above. Our
intention here is to evaluate the plan required to fix the
exceptions/violations without considering possible opti-
misations to the input state. Thus, we use as input a set of
RBAC states already optimised by applying our algorithm
with g = 1.

Table 5 describes the benchmarks generated for the multi-
ple exceptions/violations case, and for the planning phase.

Choosing a Max-SAT solver
Max-SAT solvers are either complete or incomplete. Com-
plete solvers always identify the optimal solution (if one
exists), given enough time. Incomplete solvers determine
an approximate solution, with no guarantee on how dis-
tant it is from the optimum. In practice, on satisfiable
non-random instances, they often produce good approxi-
mations, and quickly. Furthermore, some solvers work as
anytime algorithms, i.e., given any timeout as input, they
return the best solution they could possibly find (if any)
within the assigned timeout.

Complete solvers. Solving large instances of the
role-maintenance problem may be unfeasible in prac-
tice for complete solvers. To check if this is the
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case, we chose a few of the best performers at the
Max-SAT 2016 international competition Then, we exer-
cise these promising solvers on the datasets from
“Synthetic datasets: single violations/exceptions” section,
imposing a time limit of 1 h. Results are in the following
table.

Solver SmallComp Domino University Firewalll
Maximo fB <0.5 B=0 B=0 B=0
MaxHS B <04 B=0 B=0 -

LMHS B <03 p=0 =0 -

Ahmaxsat 8 < 0.25 - - -

The table shows the maximum value of 8 for which
solvers are able to incorporate all the exceptions. The sym-
bol “—” means the solver failed (timeout or memout) on
one or more instances.

The SmallComp dataset is the only one for which we
obtain some results across the entire panel of solvers. Even
with such dataset of small instances, as § grows most
solvers quickly stop responding within the alloted time-
out. For example, even the best solver of SmallComp (i.e.,
Maximo) fails instances as § > 0.5.

As expected, the larger the instances in the benchmark,
the sooner complete solvers stop responding. More sur-
prising is how quickly performance deteriorates: By the
time we try to solve Firewalll, even the best solver doesn’t
return solutions unless § = 0.

We conclude that it is not feasible to employ complete
solvers to tackle real-world instances of our RBAC main-
tenance encoding, except perhaps for very small values of .

Incomplete solvers. Let us shift our attention to state-of-
the-art incomplete solvers, as represented by the best per-
formers at Max-SAT 2016. We tested: Dsat, CCLS2015,
CCEHC, OptiRiss, Dist, WPM3.

CCEHC (Luo et al. 2017) stands out here, because it
is the only solver that: (1) showed a strong performance

Table 5 Datasets in our benchmark: multiple exceptions and

violations

Max-SAT encoding - multiple exceptions/violations
Dataset #Runs #V #C #Ch #C
SmallComp 10 12464 4.9284 44514 4.7743
Domino 10 56837 1.1167 1.1007 1.6575
University 10 1.7636 14357 14137 2.1685

PDDL encoding

Dataset #Runs #Atoms #Init_State #Goal_State #Dim(byte)
SmallComp 10 9.0223 11773 1.1703 8.0004
Domino 10 12246 48134 48124 3.7486

#V,#C, #Cp,, and #C; are the number of variables, clauses, hard clauses, and soft
clauses in the Max-SAT encoding to include multiple exceptions and violations.
#Runs is the number of instance, #Atoms, #Init_State, #Goal_State and #Dim(byte)
are respectively the number of atomic prepositions, predicates of the init and goal
state and the size of the PDDL instance
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at Max-SAT 2016, (2) accepts command-line options to
tune its solving behavior for industrial benchmarks, and
(3) works as an anytime algorithm. Let us first mea-
sure how CCEHC behaves in a case clearly beyond
reach for complete solvers. We generate 90 maintenance
instances of increasing size from Firewalll by selecting
more and more of its users (i.e., rows); each instance is
associated with a single exception to incorporate and
generates a Max-SAT encoding of growing size. We ask
CCEHC to incorporate the exception leaning strongly
towards on optimized, simpler RBAC state (8 = 0.8).
Figure 2 shows the minimum timeout needed to obtain
a feasible solution for these inputs as a function of
their size.

While the minimum timeout grows exponentially, per-
formances over instances in a real-world size range are
acceptable; for example, it is possible to obtain a solution
in less than one hour for a 337.2MB formula that encodes
the problem of incorporating one exception into an RBAC
state with 165 users and 709 permissions.

But how good are these solutions? To provide an esti-
mate we compare them to optimal solutions returned
by complete solvers. As we have shown, Firewalll is
completely out of reach, so we resort to SmallComp. Given
that hard constraints are always satisfied by feasible solu-
tions from both complete and incomplete solvers, we
focus on the ability of the incomplete solver to satisfy soft
constraints. In particular, we compute the average weight
of satisfied soft constraints over the total sum of input
weights for the 12 different exceptions in the dataset. In
Figure 3 we report this metric measured after CCEHC has
worked for ¢ = 2sec and then for t = 180sec. We include
the same metric computed on optimal solutions by com-
plete solvers, which we could obtain for 8 < 0.5 (1 h
timeout).

As expected, the complete solver outputs (slightly) bet-
ter answers across the line, independently of g, but
CCEHC is not far. These results, though quite comfort-
ing, have to be taken with a grain of salt because the small
instances in SmallComp may not be representative of the
general behavior of CCEHC.

Experimental Results: single exceptions/violations
Incremental Max-SAT solvers seem capable of providing
good approximate solutions within reasonable time on
real-world instances. In the rest of the experiments we
use them (namely, CCEHC) to explore the behavior of our
encoding and we set k= = 7 and kT = 2 to prefer role
reduction to matrix simplification.

Impact of B. The first thing we assess experimentally is
the impact the value of 8 has on the structure of the fixed
RBAC state when performing additions of exceptions and
removals of violations. To this end, starting from the input
state (see Table 4) we perform maintenance using the
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Fig. 2 Minimum time to compute feasible solutions to Firewall1 (y axis, secs) as a function of the number of users (x axis). Along the x axis we also
note the size of the corresponding CNF encoding in Megabytes

input list of exceptions and violations with different g
settings and then we collect the average results. For the
inclusion of each single exception and violation, we set
the timeout to 600, 500, and 800 seconds for smallcomp,
domino, and university, respectively.

Figure 4 shows that—for all datasets—similarity decreases
(and simplicity increases) almost monotonically as 8
grows. Similarity and simplicity curves coming from the
addition of exceptions are only slightly different from the

results of violation removals (see dashed trends). Figure 5
shows how the corresponding number of roles and assign-
ments decrease on average by increasing the preference
towards optimized solutions (8 close to 1). Conversely,
if the encoding leans towards preserving the original
RBAC state (B close to 0) these numbers stay close to the
input values. This holds for both addition of exceptions
and removal of violations. None of the instances in the
largest of the four datasets could be solved within 1 h:

Average Rate of Satisfied Soft Constraints
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Fig. 3 Average percentage of satisfied soft clauses (y axis) as a function of the balance 8 (x axis) in the SmallComp dataset
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Firewalll thus constitute a hard problem at present (see
Conclusions). Overall, by tuning B, it seems actually pos-
sible to steer the quality of the solution towards similarity
or simplicity during maintenance.

Impact of timeout. We show how the output RBAC state
(simplicity, similarity) changes by granting more time to
the solver, at different balance points. Figure 6a and b
show the results for timeouts in 10s—600s on the dataset
Domino (representative of the entire benchmark). Sim-
plicity increases for f > 0.25 (we are optimizing the state
as a side effect of the maintenance) while it drifts towards
lower values when 8 < 0.25 (the price we pay to avoid
reworking the RBAC state too much as exceptions arrive).
Conversely, similarity improves for low values of 8 while
it remains almost stable for 8 > 0.25. It follows that if the
interest towards simplification is high, it always pays to
allot more reasoning time to the solver. Conversely, if the
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interest is in preserving the input state, increasing the rea-
soning time pays for f < 0.25, where similarity increases
at the expense of simplicity.

The order of exceptions. In these experiments, excep-
tions are incorporated sequentially, one-by-one, as they
show up (though bulk incorporation is also possible, as
already noted). We are interested in understanding how
much the order in which they manifest affects the qual-
ity of the eventual state. In principle, the number of
roles can either increase (small values of 8) or decrease
(large B). To confirm this, we select the Domino dataset
and pick a string of 6 exceptions to be incorporated.
We generate all their permutations (720) as incorpora-
tion sequences. For each sequence, we record the final
number of roles, assignments, simplicity and similarity to
the initial state (that has 73 roles). Figure 7 shows the
distribution generated by 715 paths (each solvable in 60
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Fig. 6 Average simplicity (a) and similarity (b) in Domino (y axis) as a function of the timeout (x axis, secs) at difference balance points (8)
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Fig. 7 Distribution of the number of roles in Domino (x axis) after incorporating 6 exceptions in all possible orderings

seconds) with four different 8 configurations. While by
construction the final states are equivalent in terms of
Permission-to-User assignments, the average value and
the variance of the distributions are profoundly impacted
by B; the variance in particular widens as B goes close
to 0; for example, with 8 = 0.1 the number of roles
ranges from 28 to 43, corresponding respectively to a
61.6% to 41.1% reduction with respect to initial RBAC
state.

This behavior suggests that—independently of the order
in which exceptions arrive—by leveraging g the RBAC
administrator can direct the state over time to become
simpler, to accumulate “clutter; or to remain stable in
terms of number of roles.

Comparative evaluation

We carry out a comparative evaluation to assess how our
approach compares to other state-of-the-art role mining
algorithms. We chose two algorithms of different nature:
(i) Fast Miner (FM), a classical role mining algorithm
which mines roles by neglecting the input RBAC state; and
(if) Minimal Perturbation (MP), which considers the input
state while determining the target roles.

Fast Miner is a heuristic procedure which prioritizes a
set of eligible roles which are generated from (i) distinct
user permission sets and (ii) their intersections. For each
eligible role r, FM measures how many users have exactly
the same set of permissions in » and how many users are
assigned a superset of r. A parameter exists to balance the
interest on (i) over (ii). Minimal Perturbation applies FM
to generate a candidate set of roles which is then evalu-
ated according to their coverage of the input UPA matrix,
and based on their similarity to the input RBAC state. A

real parameter is adopted to tune the interest on coverage
versus similarity (see “Related work” section for further
details).

We run these algorithms and our approach (RBAC
Maintenance via Max-SAT - RMS) over our set of bench-
marks to compare the “quality” (in terms of simplicity and
similarity) of their output solutions.

All three algorithms take a real parameter in 0.0 — 1.0
as input. Such parameters control the nature of eligible
roles (FM), the bias toward the input set of roles (MP), and
the bias toward maintaining the input RBAC state (RMS).
We tried different values for all parameters and all algo-
rithms sampling the 0.0 — 1.0 intervals uniformly with step
0.1. We use as input a set of randomly selected exceptions
from the input UPA matrices, and we generate the cor-
responding input RBAC states using Pair Count®. Once
maintenance is performed with the different algorithms,
we record the averages simplicity and similarity obtained
by each of them, and a 95% confidence interval. Figure 8
shows the average similarity and simplicity obtained for
SmallComp (a), Domino (b) and University (b) datasets.
On all input datasets, RMS solutions move considerably in
the similarity-simplicity plane as 8 changes, whereas FM
and MP solutions stay approximately in the same position,
even as the input parameters change.

In SmallComp (Fig. 8a) RMS produces solutions which
dominate all FM outputs. With high values of §, RMS
produces solutions which are simpler but less stable than
EM. MP produces solutions which dominate the ones pro-
duced by RMS with 8 €[0.2 — 0.3], but RMS can either
improve similarity (8 €[0.1 — 0.2]) to the detriment of
simplicity, or it may improve simplicity (8 €[0.4 — 1])
at the expenses of similarity. In Domino (Fig. 8b) RMS
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achieves solutions of the same quality as FM (with 8 = 0)
and simpler solutions for higher values of 8. MP domi-
nates RMS solutions for values of 8 €[ 0.1 —0.4], but RMS
can still produce higher similarity (8 = 0) and higher
simplicity (8 €[0.5 — 1] ).

In University, FM produces the highest possible level
of similarity. In turn, RMS achieves better simplicity than
EM (B €[0.1 — 1]) to the detriment of similarity. MP
dominates all RMS solutions with 8 €[0.1 — 0.8] but it
cannot attain the maximum absolute similarity (8 = 0) or
simplicity (8 = 1) of RMS.

Overall, RMS is able to produce results that are better
than MP, either for similarity or simplicity, at the extreme
values of 8; however its solutions are dominated by MP’s
outputs for intermediate values of 8. Crucially, only RMS
is able to move the output solution dramatically across the
simplicity-similarity plane, according to the user input.

Multiple exceptions/violations

Multiple exceptions and/or violations can be taken care
of in one single problem instance. Starting from the
benchmarks described in “Synthetic dataset:Multiple vio-
lations/exceptions and Planning” section, we measure
the average similarity and simplicity of the solutions
resulting from including all the 10 different exceptions
and violations at once. We set 600, 500 and 1600 sec-
onds as timeouts for smallComp, domino, and university,
respectively.

Figure 9 shows how the same behaviour obtained for
the inclusion of single exceptions/violations (see Fig. 4)
holds also for the inclusion of multiple exceptions/viola-
tions. Independently on the selected dataset, if the interest
is to preserve the input state (low 8 values), it is possible to
maintain an high level of similarity at the price of having
a low simplicity. Conversely, if we are interested towards
RBAC optimisation (high 8 values) we can improve sim-
plicity at the price of changing the input state.

It is worth noting that for the experiments concerning
smallComp and domino, we were able to apply the same
timeouts as for the inclusion of single exceptions/viola-
tions. For university, we had to double the timeout to have
the solver work with 20 exceptions/violations combined
into one instance.

Planning evaluation

We carry out a set of experiments to evaluate the qual-
ity of the maintenance plans created by the planning
phase. We experimented with optimal and approximated
planners. Optimal planners provide the best possible
solution but it proved impractical to use them on our
RBAC instances. Satisficing planners provide approxi-
mated (non-optimal) solutions, but they were able to
provide good solutions in reasonable time. We selected
Fast-downward (Seipp and Roger 2018) as a planner since
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it won the satisficing track at the IPC - International Plan-
ning Competition 2018 and it works as anytime algorithm
with good performance on our instances.

We selected the smallComp and domino benchmarks
described in “Synthetic dataset:Multiple violations/excep-
tions and Planning” section and we set different RBAC
optimisation and planning timeouts. We respectively set
600, 500 seconds for RBAC optimisation and 30, 480
minutes for planning.

Figure 1 shows the number of actions obtained with
our planning phase depending on S across the 10 dif-
ferent instances in the smallComp and domino datasets.
These results are compared with two baselines: rewrite,
which erases the input RBAC state to build the target state
from scratch; diff, which adjusts the differences between
target and input states. The figure shows how our plan-
ning process outperforms the baselines both on average
and if we consider the best possible result across the 10
runs. The latter is computed by measuring the improve-
ments of our planner with respect to the diff baseline;
we did not consider rewrite to evaluate the best possible
results since it only outperforms diff when the initial state
is not to be taken into account (high values of ).

As shown in Fig. 10a (SmallComp), our planner out-
performs on averages both baselines: it is able to create a
plan which is shorter than the differences between matri-
ces (diff) and shorter with respect to the set of actions
to rebuild the target RBAC state from scratch (rewrite).
On averages, with 8 < 0.65 we have an improvement
which varies from 21 to 28% across the 10 different runs.
As B reaches 0.7, the behaviour of our planner becomes
basically the same as the baseline rewrite, and improve-
ments are no longer possible. For the best case, we can
reduce the number of actions to § = 0.65 and the gain
raises from 29 to 53% according to 8. We observe a simi-
lar behaviour for domino (see Fig. 10(b)): Our planner can
shorten the list of actions both on average and in the best
case, up to B = 0.35. Here we measure an improvement
which falls into the range from 8 to 37% on average and
63% at maximum. The curves resulting from both datasets
show how the planning of actions to reconfigure the input
RBAC state is convenient only if we did not change drasti-
cally the input state (low § values). On the contrary, when
the interest is on optimisation (high B values), it is worth
to discard the input solution and re-build the target state
from scratch.

Related work
In the literature, RBAC optimisation and Plan Synthesis
problems have been considered separately.

RBAC Optimisation
The literature on Role Mining and RBAC state tuning is
quite extensive. The works most closely related to this
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paper are (Jafarian et al. 2015; Xia et al. 2014; Zhang et
al. 2013; Vaidya et al. 2008). These approaches are similar
to ours in that they aim at reconfiguring an existing set of
roles with the goal of simplifying them.

In Xia et al. (2014) the simplification procedure works as
follows: A candidate set of new roles are iteratively gener-
ated starting from the trivial role set (one role per permis-
sion) and combining them in several ways (pairwise, etc.).
The candidate set is kept consistent with the input RBAC

state, i.e., each old role must be representable as the union
of some new roles. Individual candidates with the lowest
“management cost” are preferred, where the management
cost is the sum of a fixed component (the same for all
roles) plus a variable component which depends on the
role cardinality and granularity. A parameter is introduced
to balance their relative importance.

The approach presented in Vaidya et al. (2008) more
directly balances the quality of the new RBAC state against
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its similarity to the current one. It first applies a canonical
role mining algorithm (Fast Miner) to generate a start-
ing set of candidates. Then it iteratively evaluates roles
according to a fitness function and selects the best ones
until a solution is obtained that covers all the Permission-
to-User assignments of the input RBAC state. The fitness
function is a weighted sum of a measure of similarity
to the original roles and a measure of coverage of the
input Permission-to-User matrix. This algorithm has been
extended to work with role hierarchies (Guo et al. 2008;
Takabi and Joshi 2010).

A different perspective is adopted in Zhang et al. (2013).
This procedure analyzes logs of actual permission uti-
lizations over time and exploits this data to inform the
next RBAC state. There are two phases: The first phase
applies a variant of the subset enumeration technique of
Fast Miner to iteratively generate a set of roles, which
are then sorted according to a fitness function. The fit-
ness function is where the traces of real permission usage
come into play: It aims at balancing similarity to the
original roles with “homogeneity” to actual permission
utilization. At each iteration, top ranked roles which cover
the input Permission-to-User matrix are selected; this is
repeated until fixpoint (two subsequent steps result in the
same set of roles) or until a maximum number of itera-
tions is reached. The second phase then assigns roles to
users based on a heuristic process which aims to contain
redundancy.

A first difference between our approach and (Xia et al.
2014; Vaidya et al. 2008) is that those procedures ignore
how the simplified Permission-to-Role matrix they output
will impact (in terms of administration costs) the cor-
respondingly adjusted Permission-to-User assignments.
This is evident because at no point those procedures take
into account the UA matrix or how complex it would be
for the administrator to edit it. Furthermore, in Xia et al.
(2014) the management cost of a set of roles is defined by
only looking at roles per se, and not at the distance from
the original. Overall, the link between the input matri-
ces and the output matrices is very indirect: Both couples
represent the same Permission-to-User relations, but the
difficulty for an administrator to transform UA® into UA
and PA° into PA is not modeled. Conversely, our encod-
ing explicitly captures the difference of /A from UA® and
PA from PAY, so it relates more directly to the amount of
work an administrator will have to do.

Another major difference from (Xia et al. 2014; Vaidya
et al. 2008; Zhang et al. 2013) is that our approach
captures the RBAC optimization problem declaratively
within a logic formalism, and neatly separates the dec-
laration of the constraints and objective function from
the search for an optimal solution. This provides sev-
eral benefits and additional guarantees versus employing
custom multi-phase heuristics. One advantage is that
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future breakthroughs from the community developing
complete (and incomplete) Max-SAT solvers will result
in an improved RBAC maintenance process without any
change to our encoding. Another advantage is that the
mechanism controlling the trade-off between quality and
similarity provides strong guarantees about the output
RBAC state; for example, for 8 = 0 we are sure that the
output RBAC state is the least variation to the input that
is capable of accommodating the intervening exception,
whereas for § = 1 we have the guarantee that the output
state is optimal w.r.t. a certain metric and that the input
state has been completely ignored®.

A logic-based formalization of the RBAC state similar
to ours is presented in Jafarian et al. (2015). In that case,
the Satisfiability Modulo Theory (SMT) framework is
adopted; the theory used to expand the expressive power
of SAT is Integer Linear Programming (ILP), employed to
capture certain boolean-unfriendly quality metrics. The
paper shows how to exploit SMT to solve several role min-
ing variants, including one that generates an RBAC state
optimal in terms of a combination of WSC (Molloy et
al. 2008) and similarity to an input RBAC state. To this
end, a heuristic technique is presented to iteratively gen-
erate role sets, which are evaluated according to a fitness
function that balances the conflicting WSC-vs-similarity
objectives. The complete RBAC state is thus taken into
account, and configurations that disrupt the Role-to-User
assignments are penalized. Other variants consider the
permission usage or the RBAC hierarchy as optimisation
metrics, resulting in a hybrid role mining approach.

The major difference between this approach and ours
(beyond the definitions of certain quality metrics) is
that we embrace the inherent nature of the role main-
tenance process as an optimisation procedure by using
a logic framework (Max-SAT) meant to optimize an
objective function, whereas Satisfiability Modulo The-
ory (SMT) is a decision procedure meant to prove the
consistency of statements. As a result, while the entire
problem is captured by a single Max-SAT instance and
the reasoning/searching/optimisation stage is decoupled
and offloaded to an external solver, in Jafarian et al. (2015)
a long sequence of SMT problems is generated in the
context of a complex, custom algorithm to achieve the
trade-off between quality and similarity. Another differ-
ence is that instead of generating candidate role sets and
testing them against the original RBAC state to assess
their similarity, we directly embed the original RBAC state
as-is in the encoding together with penalties for diverging
from it.

Another key difference from previous approaches is in
when and how the RBAC reconfiguration is supposed
to happen. Previous algorithms are presented as off-
line procedures; administrators are supposed to first let
the complexity of the RBAC state increase, perhaps by
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creating several ad-hoc new roles to quickly fix excep-
tions. Then, from time to time, a procedure is applied to
simplify everything. Large discontinuities are acceptable
at these “reconfiguration points” Conversely, the approach
presented here can be leveraged to continuously intro-
duce small optimizing changes: Applied on-line, in an
exception-driven way, it steers the trajectory of the RBAC
state towards simplicity without any costly or stakeholder-
adverse update.

Plan synthesis

Many approaches exist to evaluate the differences among
RBAC models. In (Fisler et al. 2005) a tool-supported
approach is presented to analyse differences and match a
source and a target RBAC state defined via XACML. This
approach does not explicitly support migrations through
the definition of a plan but it aims at identifying if the
combination of policies causes violation of access control
properties. In (Ni et al. 2009) an approach is presented
to formalise RBAC policies which can then be compared
according to policy similarity measures. This approach is
meant to be used to discover which one, in a set of poli-
cies, is the most similar to the currently deployed one.
Differences can be reported in a human-readable format
and then used as the basis for the definition of migra-
tion strategies. In (Saenko and Kotenko 2016) a genetic
algorithm is presented to determine the minimum varia-
tions to Role-to-User and Permission-to-Role assignment
matrices to include variations to the Permission-to-User
assignments.

None of the above approaches (Fisler et al. 2005; Ni et al.
2009; Saenko and Kotenko 2016) produces a maintenance
plan as a result.

In (Huetal. 2010) a role update, request-driven
approach is presented to support administrators in spec-
ifying variations to permission assignments. The latter
are formalised within a single instance and then solved
via model-checking techniques. The results consist in
a sequence of assign and revoke operations working on
Permission-to-Role and Role-to-Permission assignments.
In (Baumgrass and Strembeck 2013) a model comparison
approach is presented to identify differences between two
RBAC states. Based on these differences, a set of migra-
tion rules is derived to determine which relationships
have to be added/removed/changed. The approaches in
(Huetal. 2010) and (Baumgrass and Strembeck 2013)
determine the minimum set of operations necessary to
reconfigure the input state into the target state. However,
these approaches only reason in terms of assignment/de-
assignment operations to /A and PA®, similarly to our
baseline fix strategy diff. It results from our experiments
that our approach is able to produce plans shorter than
diff, hence shorter than anything produced by the above
techniques. This is possible by virtue of our additional
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operators (such as: erase entire rows or columns; swap
Permission-to-Role assignments, etc.) which are sup-
ported by current RBAC technologies and correctly
captured by our PDDL formalisation.

Conclusion and future work

We presented a novel RBAC maintenance approach: It
produces an optimised plan of actions meant to recon-
figure the RBAC state after certain exceptions/violations
show up. At the same time, it aims at improving the quality
of the RBAC state by simplifying it. Our method is based
upon generating Max-SAT/PDDL instances and solving
them via state-of-the-art solvers/planners.

We are motivated to pursue RBAC maintenance
by actual issues at our company. Seldom there is
the time and opportunity to perform large, impactful
RBAC updates; conversely, errors show up on a daily
basis, and if any push towards optimization can be
exerted during maintenance, the RBAC state may actu-
ally start to converge to an (almost) optimal version of
itself.

Directions for future work are as follows. Large datasets
(e.g., Firewalll) still require too much time to solve;
improvements to the encodings and/or the solving and
planning stage are of the essence here. We submitted our
datasets to the organizers of the Max-SAT competition
to provide them with challenging real-world instances
on which to compare solvers. We plan to extend the
RBAC model to include hierarchies of roles which have a
great potential on easing administration activities and to
include further constraints among roles as supported by
the RBAC standard.

Endnotes

!Some Max-SAT solvers only accept positive integer
values as weights; we can map real values onto integers
that are equivalent to the effect of the optimization we
perform as weight;,; = [8 * weight,.,;] where § is the min-
imum absolute difference between the sum of the weights
of any two disjoint subsets of the real weights mentioned
in the formula.

2 According to the formula, we penalize the growth of
roles linearly (according to k~) compared to the role and
permission assignments.

3 Another possibility here would be to measure the abso-
lute complexity via (22) as a percentage of the complexity
of the initial state. We prefer measure (23) because it is
independent of the unknown quality of the initial state
(which we’ll synthesize via an approximate miner) and
stays in the range [0,1) with a clear meaning at the

extremes.
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“We choose Fast Miner over the alternatives—which
we tried—because it quickly returns solutions of good
quality to medium and large problems. In preliminary
experiments done with other miners, we observed differ-
ent initial absolute values but quite similar trends (as a
function of beta and of the timeout) in all the experiments.

>We did not chose FM to avoid favoring it in the eval-
uation. Pair Count is a heuristic procedure similar to FM
except that it prioritizes eligible roles considering how
many pairs of users share each candidate role, and not a
superset of it as in FM.

®It is worth noticing that while the encoding we propose
offers these guarantees, we may lose them by solving the
resulting problems with incomplete solvers.
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