
Wang and Liu ﻿Cybersecur (2021) 4:33
https://doi.org/10.1186/s42400-021-00098-2

RESEARCH

Position paper: GPT conjecture:
understanding the trade‑offs
between granularity, performance
and timeliness in control‑flow integrity
Zhilong Wang* and Peng Liu 

Abstract 

Performance/security trade-off is widely noticed in CFI research, however, we observe that not every CFI scheme is
subject to the trade-off. Motivated by the key observation, we ask three questions: ➊ does trade-off really exist in
different CFI schemes? ➋ if trade-off do exist, how do previous works comply with it? ➌ how can it inspire future
research? Although the three questions probably cannot be directly answered, they are inspiring. We find that a
deeper understanding of the nature of the trade-off will help answer the three questions. Accordingly, we proposed
the GPT conjecture to pinpoint the trade-off in designing CFI schemes, which says that at most two out of three prop-
erties (fine granularity, acceptable performance, and preventive protection) could be achieved.

Keywords:  Conjecture, Control-flow integrity, Trade-off

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Along with the increased complexity of software, it
becomes harder for the developers to ensure execution
correctness in their software products, especially in those
developed by the low-level programming languages,
such as C/C++. A substantial amount of execution in-
correctness is caused by the exploitation of software vul-
nerabilities in the real world. Softwares inevitably contain
a wide variety of vulnerabilities, opening a window for
attacks to compromise the system. Attackers have devel-
oped a series of attack methods, such as shellcode injec-
tion (Erickson 2008), return-to-libc (Wojtczuk 2001),
ROP (Shacham et al. 2007) and so on, to exploit all kinds
of vulnerabilities, e.g., buffer overflow, format string,
use-after-free, and so on (Szekeres et al. 2013). Among
all kinds of attacks, the control-flow hijacking attack is
the most dangerous one, because it allows the attacker
to control the program’s execution, execute arbitrary

malicious code and attain Turing-complete operation
(Shacham et al. 2007). To mitigate the threats, many
defense mechanisms, such as stack smashing protector
(SSP) (Cowan et al. 1998), address space layout rand-
omization (ASLR) (Shacham et al. 2004), data execution
prevention (DEP) (Andersen and Abella 2004) and so on,
have been put forward by researchers and applied in the
real world software products.

Among all the defense techniques, security schemes
based on the concept of control-flow integrity (CFI) have
attracted many researchers’ attention because of its sim-
plicity to implement, effectiveness to cope with the full
spectrum of control-flow hijacking attacks, and flexibil-
ity to trade between security and efficiency. CFI schemes
guarantee the correctness of the program by dynamically
checking the control-flow transfer and confining the tar-
get address to a legal set.

Since CFI was introduced by Abadi et al. in 2005
(Abadi et al. 2005), many researchers afterward were
dedicated to enhance its runtime performance, secu-
rity, scalability, compatibility and so on. According to

Open Access

Cybersecurity

*Correspondence: zzw169@psu.edu
The Pennsylvania State University, State College, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00098-2&domain=pdf

Page 2 of 9Wang and Liu ﻿Cybersecur (2021) 4:33

mainstream taxonomy, most CFI schemes can be clari-
fied into two categories: fine-grained CFI schemes that
provide more security guarantee, and coarse-grained CFI
schemes that attain higher runtime performance. How-
ever, both fine-grained and coarse-grained CFI schemes
have noticeable limitations that have not been addressed
yet. As shown in previous survey papers (Burow et al.
2017), lightweight CFI schemes can not fully prevent
sophisticated code reuse attack. The adversary’s attacking
strategy is to search large gadgets1 chain whose starting
addresses are allowed in a rough control-flow graph that
coarse-grained CFI schemes adopted (Göktas et al. 2014;
Lucas et al. 2014). Precise CFI schemes usually suffer
from unacceptable runtime overhead. Hence, it is widely
believed “performance/security trade-off” exists between
runtime overhead and security in different CFI schemes
(Burow et al. 2017; Xiaoyang et al. 2019).

However, we observe that not every CFI scheme is sub-
ject to the trade-off between performance and security.
In fact, several CFI schemes are “immunized” from doing
such a trade-off. For instance, πCFI designed by Niu et al.
achieves fine-grained security with a runtime overhead of
3.2% on average, which is fairly low and acceptable (Niu
and Tan 2015). Victor et al. proposed a context-sensitive
CFI scheme that achieves stronger security than conven-
tional fine-grained ones with an overhead of less than
some of the coarse-grained ones (Victor et al. 2015).

Key Observation. The trade-off between performance
and security does not universally exist in meaningful CFI
schemes. This intriguing observation motivates us to ask
three questions: ➊ does trade-off really exist in differ-
ent CFI schemes? ➋ if trade-off do exist, how do previ-
ous works comply with it? ➌ how can it inspire future
research?

Although the questions probably cannot be directly
answered, they are inspiring. On the other hand, we find
that a deeper understanding of the nature of the trade-
off will help answer these questions. Accordingly, we pro-
pose the Gpt conjecture to pinpoint general trade-offs in
CFI schemes: the impossibility of guaranteeing both fine
granularity and acceptable performance in a Just-In-Time
CFI scheme. We analyze its rationality through empirical
study— surveying a series of representative CFI schemes
and showing how existing CFI schemes comply with
our conjecture. Finally, we give some recommendations
for future researchers. We believe that our conjecture
will help researchers have a more clear understanding
of internal relations among properties of CFI schemes,
thereby, motivating future research in this area.

Background
When compiling source code written by low-level lan-
guage (such as C or C++) into machine code, the com-
piler emits control data (Chen et al. 2005) (data that are
loaded to processor program counter at some point in
program execution, e.g., return addresses and function
pointers) into the binary file without any protection.
The security of control data depends on checks inserted
by the programmer to enforce memory safety (Naga-
rakatte 2012). Along with program execution, attacker’s
malicious tampering with control data through software
vulnerabilities, such as buffer overflow, can transfer the
program’s control-flow to any executable address in pro-
cess space.

Based on this observation, researchers invented CFI to
protect programs against control-flow hijacking attacks
by checking programs’ control data before loading them
into the program counter (EIP/RIP register in x86/x64
architecture). CFI’s strategy is to restrict the control-flow
of a program to a pre-calculated CFG by checking indi-
rect control-flow transfers at runtime (Burow et al. 2017).
Generally, most of CFI schemes follow a mainstream that
consists of two phases.

In phase one, an analyzer statically computes the pro-
gram’s control-flow graph (CFG). CFG is a representation
in graph form of all legitimate control-flow transfers (also
being called branch) in program space. It consists of sets
of nodes and directed edges. Each node and edge denotes
a basic block and a valid branch in the program respec-
tively. For a comprehensive understanding, we refer the
reader to the formal definition of CFG in work by Allen
(1970).

In phase two, a runtime control-flow checking (vali-
dation) component validates just fetched control data
before each indirect-branching according to the legiti-
mate CFG generated in phase one.2 An indirect-branch
can pass checking only if it can be matched to a corre-
sponding edge in the CFG. A failed validation will result
in the process to terminate its execution and report an
error. In such a fashion, control-flow attacks which usu-
ally introduce out-of-range branch are extremely prohib-
ited. Researchers need to design efficient data structures
to represent the CFG and enable runtime checking.

Despite its straightforward main idea, it is pretty chal-
lenging to design a CFI scheme with strong security,
acceptable performance, high compatibility and so on
(Xiaoyang et al. 2019; Burow et al. 2017). Research-
ers have designed hundreds of CFI schemes to explore
its potential in different perspectives. The dominant

1  Gadget is the terminology used in ROP attack (Shacham et al. 2007), which
is the most important adversary of CFI.

2  Direct control-flow transfers do not load any control data, their target
addresses/offsets are hard-coded in their instructions.

Page 3 of 9Wang and Liu ﻿Cybersecur (2021) 4:33 	

difference of these various CFI schemes can be summa-
rized into three aspects: (1) the precision of a CFG they
employed. (2) the algorithm they designed to check indi-
rect-branches. (3) the time point checking algorithm was
activated.

Precision of CFG analyzer
CFG can be obtained by analyzing the program’s source
code or binary code. Like pointer analysis (Hind 2001),
perfect CFG generation cannot be fully achieved yet in
many situations (Göktas et al. 2014). By now researchers
have adopted several types of methods (insensitive analy-
sis, context-sensitive analysis, and path-sensitive analysis)
in their CFG analyzer and achieve different precisions. It
is widely agreed that path-sensitive analysis is more pre-
cise than context-sensitive analysis, and context-sensitive
analysis is more precise than insensitive analysis (Khed-
ker et al. 2017).

Algorithm to enforce checking
The efficiency of different CFI schemes is largely depend-
ent on their algorithms to enforce validation, which is
tightly combined with their data structure that represents
the CFG and enables runtime checking. Researchers have
designed different types of algorithms and data structures
in different CFI schemes. For example, the original CFI
scheme proposed by the Abadi, et al. groups branch tar-
gets into different sets, assigns each set with a label, and
inlines labels into each jump targets, i.e., the basic block’s
in code. Based on this data structure, “guard instructions”
are emitted before each indirect-branch instruction
to compare its label with the one in target basic block
(Abadi et al. 2005). A mismatch indicates that the control
data is corrupted, then the program’s execution will be
redirect to the error handling code accordingly.
πCFI (Niu and Tan 2015) and MCFI (Niu and Tan

2014) by Niu, et al. adopts two ID tables, namely Bary
and Tary, to store target program’s CFG. In essence, Bary
table and Tary table are hashmaps which can efficiently
map indirect-branch points and target basic blocks to
their corresponding IDs. Specifically, the Tary table is an
array of IDs indexed by code addresses, mapping target
basic block to their corresponding IDs. The Bary table
uses a similar design, mapping indirect-branch points to
their corresponding IDs. Two tables enable efficient ID
look-ups and a indirect-branch is checked by comparing
the IDs of branch point and target.

Just‑in‑time checking versus lazy checking
Another difference among CFI schemes is how they
schedule their checking operations. Most CFI schemes
check the target address before indirect-branch occurs
(we define it as a Just-In-Time checking). While,

to achieve better performance, some works log each
indirect-branches at runtime and check them by employ-
ing another accompanying thread (Hu et al. 2018; Ding
et al. 2017; Ge et al. 2017; Victor et al. 2015) (we define
it as Lazy checking). For example, PITTYPAT (Ding
et al. 2017) enforces path-sensitive CFI by maintaining a
“shadow” execution/analyzer, running concurrently with
the protected process and checking branches in execu-
tion trace of protected process. Such a non-intrusive
checking does not disturb the normal execution of the
monitored process, hence achieves path-sensitive CFI
with practical runtime overhead.

Conjecture
This section aims to answer Question➊ and Question➋.
In this section, we firstly try to formalize the CFI enforce-
ment problem. Secondly, we give a clear definitions of
properties that are used to define our conjecture. Thirdly,
we propose the GPT conjecture which helps to answer
Question➊. Finally, some evidence is collected from an
empirical study to answer the Question➋.

A definition of CFI enforcement problem
Before introducing the GPT conjecture, let us formal-
ize CFI enforcement problem, that is how to enforce CFI
during program running time. Our definition is try to
define the problem itself. Therefore, the definition will
not reflect any implementation of CFI schemes.

Given a program, let S denote the set of all indirect
branches, and T denote the set of all targets of indirect
branches. Then, n = |S| is the total number of indirect
branches, and m = |T| is the total number of targets.

Let S× T denote the Cartesan Product of S and T . Sup-
pose that si and tj are an element in S and T , respectively.
The CFI enforcement problem on a program is associ-
ated with a set V , where (si, tj) ∈ V if tj is an vaild target
of branch sj.

Based on the above notion, we can give a formal defini-
tion of CFI enforcement problem.

Definition 1  CFI enforcement problem consists of two
subproblems, which are corresponding to phase one and
phase two discussed in “Background” section.

Subproblem1: How to generate V through program
analysis.

Subproblem2: During program running time, how to
verify whether a (si, tj) , which corresponds to an encoun-
tered branch and target, is a member of set V or not.

In such a definition, the granularity is corre-
lated with the size (l) of V . The small the l is, the finer

Page 4 of 9Wang and Liu ﻿Cybersecur (2021) 4:33

granularity a CFI scheme has. Each element (e.g., (si, tj) )
in set V represents a branch allowed by the CFI scheme.
A smaller V means that fewer branches were allowed by
the CFI scheme, and the CFI scheme has more tight con-
straints on the program’s indirect branches, therefore a
stronger security guarantee. The low bound of CFI per-
formance is inherently connected with the complexity
of subproblem2. Let tc and tb denote the check time and
the branching time, respectively, for an indirect branch
during problem execution. The timeliness is cor-
related with tc − tb . A CFI scheme is Just-In-Time if the
tc − tb < 0 , otherwise, it is an lazy-checking scheme.

Terminology
Even though the terms “fine-grained CFI” and “coarse-
grained CFI” are well known and widely used by related
researchers, we observe that they have not been clearly
defined yet. In such a case, some so-called “fine-grained”
schemes (claimed by their authors) are only relatively
finer than some other schemes, but far from the finest-
grained scheme. Therefore, in this subsection, we give
clear definitions of such properties that are used to define
our conjecture.

Property 1  (Granularity) Suppose a program has n
indirect branch instructions. Let Zi 3 denote the set of
valid targets (successors) of the i-th indirect branch
instruction, and S denote the set of all successor sets,
namely,

For a CFI scheme, let Ci denote the allowed target
set which is defined by the scheme and assigned to the
i-th indirect branch instruction, then used to check the
branch’s target at runtime. Only the elements in Ci are
valid successors authorized by the CFI schemes that the
i-th branch instruction could jump to.

Definition 2  For arbitrary two sets Zi , Zj from S , satis-
fying Zi = Zj , as long as the CFI scheme merges any one
or more Zi , Zj when define its Ci or Cj , namely,

we define this scheme as a coarse-grained CFI
scheme. Otherwise, we define it as a fine-grained
CFI scheme. This definition enables us to determinate
the granularity property of CFI schemes.

A coarse-grained CFI scheme will merge some Z s
when defining C s (e.g., Ci = Cj = Zi ∪ Zj ). In such a

(1)S = {Zi : 1 ≤ i ≤ n}

(2)Ci = Zi ∪ Zj orCj = Zi ∪ Zj

case, the set Ci used to enforce runtime checking is a
superset of the valid target set Zi . A potential attacker
can hijack program’s runtime control flow to a gadget—
x ( x ∈ Ci ∧ x /∈ Cj ), and without being detection by such
a CFI scheme. “Otherwise” means the CFI scheme does
not merges any Z s when defining C s. Therefore, any Ci is
strictly equal to Zi . In such a case, an attacker cannot find
any gadget—x, which belongs to Ci but not belongs to Zi.

Remark 1.  According to Definition 2, both context-
sensitive and path-sensitive CFI schemes belong to fine-
grained CFI scheme. In essence, they reduce the
size of their checking set Ci for i ∈ [1, n] based on con-
text-sensitive or path-sensitive pointer analysis. Their
protection is generally considered to be more powerful
than that of insensitive fine-grained CFI scheme.

Remark 2.  Note that CFI schemes (Mashtizadeh et al.
2015; Zhang et al. 2019) which adopt pointer encryp-
tion approach should be classified as coarse-grained
CFI scheme. They cannot fully prevent code reuse
attack because of two noticeable drawbacks. As discussed
in Cryptographically Enforced Control Flow Integrity
(CCFI) (Mashtizadeh et al. 2015), it is still possible to
replace the current encrypted pointer with another one
from the program space and potentially disrupt control
flow. The other drawback is that these schemes suffer
from key leakage issues: the key can be infered by brute-
force attack or known-plaintext attack (Peng et al. 2006),
especially for schemes which adopt a very simple encryp-
tion/decryption method (e.g., XOR) (Zhang et al. 2019).

Remark 3.  We remark that schemes that only provide
partial protection—protecting subset of indirect branches
in program space—belong to coarse-grained CFI
scheme. For instance, vfGuard (Prakash et al. 2015),
VTV (Tice et al. 2014), and SafeDispatch (Jang et al.
2014) only achieve strict protection for virtual function
calls in COTS binaries;

Property 2  (Performance) 	
Evidence 1. As discussed in many papers (Szekeres et al.
2013; Burow et al. 2017; Starr and Abella 2012), runtime
performance is one of the most important determinants of
whether a defense technique will be adopted by industry.
Generally, to get adopted by industry, a defense technique
should introduce less than 5% average overhead, such
as StackGurad, ASLR, and DEP. Techniques incuring an
overhead larger than 10% do not tend to gain wide adop-
tion in production environments. Accordingly, the thresh-
old should lie between 5%-10%.

3  It is computed through mainstream insensitive control flow analysis. We
admit the inaccuracy due to the difficulty of the pointer analysis.

Page 5 of 9Wang and Liu ﻿Cybersecur (2021) 4:33 	

Evidence 2. Other than runtime performance, space
performance is another important index to measure a
scheme. Program’s runtime memory consumption con-
sists of four aspects, i.e., code, global data, heap, and
stack. Different programs have different ratios in four
aspects, and a defense technique commonly increases
memory consumption in one or more aspects. We
observe that shadow based protections like shadow stack
(Dang et al. 2015), shadow memory (Newsome and Song
2005) and shadow processing (Patil and Fischer 1995),
that double memory consumption in one or more aspects
are unlikely to be deployed in practice.

Definition 3  Conservatively, we define a runtime
overhead of less than 10% and a space overhead of less
than 100% (in any of aforementioned four aspects) as an
acceptable performance. Otherwise, it is an unac-
ceptable performance. This definition enables us to
determinate the performance property of CFI schemes.

Property 3  (Timeliness) 	
Observation 1. Whereas the term “integrity” in the
context of CFI implies that it can prevent the attacks
(Abadi et al. 2005), some of the CFI schemes do not
hit the mark. To achieve higher efficiency, some CFI
schemes as mentioned in “Just-in-time checking ver-
sus lazy checking” section adopted a lazy check-
ing mechanism, which checks programs’ control-
flow following the program’s execution rather than
before each indirect branching. Generally, they log the
program’s runtime control-flow transfer along with
its execution, then check the control-flow offline or
through an accompanying thread. In these designs, a
sliding window exists between the program’s control-
flow transfer and checking. The attacker can compro-
mise the system without being perceived in the sliding
window, which means this kind of CFI cannot protect
software against such attacks.

Definition 4  We regard that the aforementioned design
of CFI schemes provides less protection than CFI schemes
that perform Just-In-Time checking. We define
protection capability powered by lazy checking
schemes as detective protection, the others that
powered by Just-In-Time checking as preven-
tive protection. This definition enables us to deter-
minate the property timeliness of CFI schemes.

An empirical analysis of the relation among three
properties
We notice a strong relation between granularity, perfor-
mance, and timeliness. In this subsection, we will provide
some empirical observations regarding the relationship
among three properties.

Firstly, the trade-off between granularity and performance
(time/space overhead) has been widely noticed by previ-
ous researchers (Tice et al. 2014; Burow et al. 2017). A finer
granularity means less Z s was merged when defining C s. It
indicates that more equivalent sets C s were used to enforce
CFI. Generally, more equivalent sets will require more time/
space when designing an algorithm to enforce checking.

Secondly, trade-off between time and space commonly
exists when designing algorithms to solve a problem. For
the membership problem, the most effective way to solve
it is through a hash table, which maps all possible que-
ries to the corresponding results directly. In such a case,
the runtime overhead is negligible (O(1)), however, the
space overhead is fairly large. Another algorithm, which
answers queries through traversing lists, will require less
memory, but suffer from a larger time overhead.

Thirdly, we observe the trade-off between timeliness and
performance. Lazy checking CFI schemes validate the tar-
get address after indirect-branch occurs. We observed that
the main purpose of such a design is to reduce runtime
overhead. Because the task of runtime checking in such
a case could be assigned to another monitor thread, thus
greatly reduce the runtime overhead of the protected pro-
gram. If we measure the timeliness through tc − tb . Then,
if tc − tb < 0 , the CFI scheme achieves just-in-time check-
ing. Otherwise, it achieves lazy checking. Meanwhile, a
less timeliness (the larger tc − tb is), the fewer synchro-
nizations are required between the program’s thread and
the monitor thread. Fewer synchronizations mean a small
overhead to the protected program. Therefore, there exists
a trade-off between timeliness and performance

Finally, both the granularity and timeliness will affect the
security of a CFI scheme in different aspects. Specifically,
attackers need both a certain amount of gadgets and a cer-
tain amount of time for code reuse attacks (e.g., ROP (Sha-
cham et al. 2007)). A finer granularity better restricts the
number of gadgets that attackers can use. Better timeliness
(the small tc − tb is) better restricts the time that attack-
ers can use. Therefore, both finer granularity and better
timeliness mean fewer risks that the CFI protection can be
compromised.

Page 6 of 9Wang and Liu ﻿Cybersecur (2021) 4:33

The proposed conjecture

so that they are restricted to the [0, 4 GB) memory
region. Another 4 GB memory region is reserved for
tables.” In view of the size of memory consumption of
typical programs (mostly less than 1 GB (SPEC 2006)),

Table 1  Reflection of GPT conjecture in 32 control-flow integrity
schemes

1 If a CFI scheme supports different security levels, e.g. having both coarse-
grained and fine-grained versions, we focus on its most secure version
2‘H’, ‘P’ and ‘C’ denote hardware-assisted CFI scheme, path sensitive CFI scheme,
and context sensitive CFI scheme, respectively

Some evidence of the GPT conjecture
In this section, we will reflect on our conjecture through
several pieces of evidence. To verify the rationality of our
conjecture, we conduct an empirical study on 32 repre-
sentative works, and show the results in Table 1. Three
columns (P1, P2 and P3) in the table display three prop-
erties respectively as we define in “Terminology” sec-
tion. P1 column denotes the granularity— check-mark
indicates a fine-grained scheme whileas cross-mark
represents a coarse-grained scheme. P2 column
shows the performance overheads which are reported
in corresponding papers. Note that we prefer evaluation
results which are based on SPEC CPU

R©2006 bench-
marks (SPEC 2006). P3 column labels whether a CFI
scheme provides preventive protection. We label
the data in each column with red color when it fails to
meet the requirement defined in the conjecture.

Evidence i. It can be clearly seen in Table 1 that all CFI
schemes we surveyed comply with our conjecture—no
CFI schemes can achieve all three properties. Also,
some of unsophisticated schemes, such as PittyPat
(Ding et al. 2017) and Griffin (Ge et al. 2017), only
achieve one properity, i.e., fine granularity.

Evidence ii. MCFI (Niu and Tan 2014) and πCFI
developed by Niu, et al. achieve fine granularity
with acceptable runtime overheads, i.e., 3.2% and 5.0%,
respectively. However, researchers did not realize that
their better runtime overhead is achieved through sacri-
ficing their space performance. Even though they did not
report their space overhead in their paper explicitly, we
can infer it in a reasonable manner.

As discussed in “Algorithm to enforce checking” sec-
tion, both of two schemes adopt two tables, namely Bary
and Tary, to support their runtime checking. Accordingly,
1 GB/4 GB memory space on x86-32 and x86-64 oper-
ating system, respectively, need to be reserved in each
process for the tables. As stated by the author, “On x86-
32, memory segmentation is used, as in NaCl (Yee et al.
2009). A 1 GB segment is reserved for running the appli-
cation code and another 1 GB segment is reserved for the
table region. x86-64, however, does not support memory
segmentation. Instead, memory writes are instrumented

Page 7 of 9Wang and Liu ﻿Cybersecur (2021) 4:33 	

their space overhead has already reached 100% except for
code bloat caused by extra no-op instructions inserted to
enforce four-byte alignment on indirect-branch targets.

Evidence iii. Griffin (Ge et al. 2017) is a hardware-
assisted CFI, which leverages Intel PT to record control-
flow of a monitored program. It supports multiple types of
CFI policies to enable flexible trade-offs between security
and performance. The fine-grained scheme incures
an average of 11.9% overhead. It leverages idle cores on a
multi-core system for security checking by having multi-
ple worker threads to check runtime control-flow simul-
taneously. In most of the time, it performs non-blocking
checking which analyzes trace buffer of Intel PT whenever
it becomes full; In a few cases when security-sensitive
system calls are invoked, it performs blocking checking
which stops the target thread until all the control trans-
fers in the buffer have been checked. It can only provide
the detective protection for software according
to Definition 4. This case indicates that GPT conjecture is
applicable to hardware-assisted CFI schemes.

Evidence iv. PittyPat (Ding et al. 2017), µCFI (Hu et al.
2018) and PathArmor (Victor et al. 2015) are path/context
sensitive CFI schemes which adopt path-sensitive or context-
sensitive analysis to generate their CFG. However, path-sen-
sitive and context-sensitive analysis is generally considered to
be more time-consuming and space-consuming than insensi-
tive analysis (Khedker et al. 2017). We find that all three CFI
schemes adopt two common features: hard-assisted
branch recording and lazy checking. Specifically,
PittyPat and µCFI employ Intel PT—a brand new hardware
feature in Intel CPUs—to efficiently record conditional and
indirect branches taken by a program at runtime while Pat-
hArmor adopts Last Branch Record (LBR) registers available
in Intel processors to monitor recently exercised control-flow
transfers in an efficient way. Their control-flow checking is
achieved through accompanying threads. This case indicates
that both path-sensitive and context-sensitive CFI schemes
conform to the claim of GPT conjecture.

Remark 4.  Our observations indicate that the GPT con-
jecture is universally applicable in all kinds of scenarios.
Further, four pieces of evidence are not meant to be
exhaustive and more evidence are easy to find.

Implications of the GPT conjecture
In this section, we will focus on answering Question ➌:
how can GPT conjecture inspire future research?

First of all, GPT conjecture illustrates the inherent
trade-offs of three important properties (fine granu-
larity, acceptable performance, and pre-
ventive protection) in CFI schemes. It helps
researchers to have a deeper understanding of the nature

of CFI based protection. Accordingly, future researchers
should make a necessary sacrifice before designing new
CFI schemes. In the broader context, GPT conjecture
provides insights into the feasible design space for CFI
schemes, shedding some light on the manner in which
algorithm designers and software engineers have circum-
vented the conjecture.

Second, for decades, security researchers have been
focused on CFI scheme’s runtime performance and made
their best effort to improve it. Evidence ii shows that in
some cases, better runtime performance is achieved by sac-
rificing its space performance. Just as Gerhard states, “For
some problems, we can reach an improved time complexity,
but it seems that we have to pay for this with an exponen-
tial space complexity” (Woeginger 2004). Therefore, per-
formance evaluation in future research should not merely
be limited to runtime performance and researchers should
have a more comprehensive evaluation of their schemes.

Third, Evidence iii shows that even powerful hard-
ware support cannot eliminate the runtime overhead of
Just-In-Time CFI schemes to an acceptable level,
which implies that the challenge in the implementation
of CFI cannot be solved only through engineering efforts,
instead, it may relate to computational complexity the-
ory (Goldreich 2008). In a broader sense, we observe
that indirect branching poses not only challenge in the
security field, but also challenges to many others: pre-
cise pointer analysis is NP-hard (Horwitz 1997); indi-
rect branch prediction is a performance-limiting factor
for current computer systems (Santana et al. 2002).
Hence, GPT conjecture implies the complexity of the CFI
enforcement problem, which deserves to be investigated
through theoretical methods.

Fourth, the GPT conjecture could have the following
impact in practice: firstly, for CFI product managers, engi-
neers, the conjecture provides useful awareness. That is
the research works have not yet achieved P1, P2, and P3
simultaneously. Secondly, the conjecture provides aware-
ness on 3 trade-offs in developing CFI products. For exam-
ple, the LLVM CFI choose to implement different options
for user to trade-off between performance and granularity.

At last, despite the inspiring implications that GPT
conjecture gives to us, we admit that we still cannot
prove the conjecture at this time.

Some suggestions for future research
In most cases, Subproblem1 in definition 1 can be solved
through offline static analysis. The performance and
timeliness of a CFI scheme depend on the algorithm to
solving Subproblem2. Our definition of CFI enforcement
problem reveals that the Subproblem2 (online phase) can
be viewed as membership problem (Mastrolilli 2021).
However, even though the membership problem has

Page 8 of 9Wang and Liu ﻿Cybersecur (2021) 4:33

been widely researched in theoretical computer science,
it does not mean that the conjecture can be easily proved.

Also, we think that the proof of GPT conjecture need
some statistical data from benchmark programs. For
example, the average size of S and T in benchmark pro-
grams, the variance of si and tj , and the frequency of indi-
rect jumps to be executed.

Conclusion
Control-flow integrity is a popular defence technique for
detecting and defeating control-flow hijacking attacks.
Since its inception in the decade, researchers have put
great efforts to explore its potential regarding security,
performance, compatibility and so on. Even though per-
formance/security trade-off is widely noticed in CFI
research, we observe that not every CFI scheme is sub-
ject to it. In this paper, we propose the Gpt conjecture
to illustrate the general trade-offs in CFI schemes. The
conjecture points out the impossibility of guaranteeing
both fine granularity and acceptable per-
formance in a Just-In-Time CFI schemes. We have
verified the rationality of our conjecture based on an
empirical study on existing works. Even though we can-
not prove the conjecture at this time, we believe that Gpt
conjecture will help researcher to have a deeper under-
standing of the nature of CFI enforcement problem and it
will direct future research in this area.

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work was supported by ARO W911NF-13-1-0421 (MURI), NSF CNS-
1814679, and NSF CNS-2019340.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 14 May 2021 Accepted: 9 August 2021

References
Abadi M, Budiu M, Erlingsson Ú, Ligatti J (2009) Control-flow integrity

principles, implementations, and applications. ACM Trans Inf Syst Secur
(TISSEC) 13(1):4

Abadi M, Budiu M, Erlingsson Ú, Ligatti J (2005) Control-flow integrity. In:
Proceedings of the 12th ACM conference on computer and communica-
tions security, CCS ’05, New York, NY, USA, ACM, pp 340–353

Abbasi A, Holz T, Zambon E, Etalle S (2017) ECFI: asynchronous control flow
integrity for programmable logic controllers. In: Proceedings of the 33rd

annual computer security applications conference, ACSAC 2017, New
York, NY, USA, ACM, pp 437–448

Allen FE (1970) Control flow analysis. In: Proceedings of a symposium on
compiler optimization, New York, NY, USA, ACM, pp 1–19

Andersen S, Abella V (2004) Data execution prevention. Changes to functional-
ity in Microsoft Windows XP Service Pack 2, Part 3. Memory protection
technologies

Bounov D, Kici RGö, Lerner S (2016) Protecting C++ dynamic dispatch
through VTable interleaving. In: The network and distributed system
security symposium (NDSS)

Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, Payer M (2017)
Control-flow integrity: precision, security, and performance. ACM Com-
put Surv 50(1):16

Burow N, McKee D, Carr SA, Payer M (2018) CfIXX: object type integrity for
C++ virtual dispatch. In: Proceedings of network and distributed system
security symposium (NDSS). https://​hexhi​ve.​epfl.​ch/​publi​catio​ns/​files/​
18NDSS.​pdf

Cheng Y, Zhou Z, Miao Y, Ding X, Deng RH (2014) ROPecker: a generic and
practical approach for defending against ROP attack. In: Symposium on
network and distributed system security (NDSS). Internet Society

Chen S, Xu J, Sezer EC, Gauriar P, Iyer RK (2005) Non-control-data attacks are
realistic threats. In: USENIX security symposium, vol 5

Cowan C, Calton P, Maier D, Walpole J, Bakke P, Beattie S, Grier A, Wagle P,
Zhang Q, Hinton H (1998) Stackguard: automatic adaptive detection
oand prevention of buffer-overflow attacks. In: USENIX security sympo-
sium. San Antonio, TX

Criswell J, Dautenhahn N, Adve V (2014) KCoFI: complete control-flow integrity
for commodity operating system kernels. In: 2014 IEEE symposium on
security and privacy, pp 292–307

Dang THY, Maniatis P, Wagner D (2015) The performance cost of shadow stacks
and stack canaries. In: Proceedings of the 10th ACM symposium on
information, computer and communications security (ASIACCS 15), New
York, NY, USA, ACM, pp 555–566

Ding R, Qian C, Song C, Harris B, Kim T, Lee W (2017) Efficient protection of
path-sensitive control security. In: 26th USENIX security symposium (USE-
NIX security 17), Vancouver, BC, USENIX Association, pp 131–148

Erickson J (2008) Hacking: the art of exploitation
Fratrić I (2012) ROPGuard: runtime prevention of return-oriented program-

ming attacks. Technical report
Ge X, Cui W, Jaeger T (2017) GRIFFIN: guarding control flows using intel proces-

sor trace. In: Proceedings of the twenty-second international conference
on architectural support for programming languages and operating
systems (ASPLOS 17), New York, NY, USA, ACM, pp 585–598

Göktas E, Athanasopoulos E, Bos H, Portokalidis G (2014) Out of control:
overcoming control-flow integrity. In: 2014 IEEE symposium on security
and privacy (S&P). IEEE

Goldreich O (2008) Computational complexity: a conceptual perspective.
SIGACT News 39(3):35–39

Hind M (2001) Pointer analysis: Haven’T we solved this problem yet? In:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on program
analysis for software tools and engineering, PASTE ’01, New York, NY, USA,
ACM, pp 54–61

Horwitz S (1997) Precise flow-insensitive may-alias analysis is NP-hard. ACM
Trans Program Lang Syst 19(1):1–6

Hu H, Qian C, Yagemann C, Chung SPH, Harris WR, Kim T, Lee W (2018) Enforc-
ing unique code target property for control-flow integrity. In: Proceed-
ings of the 2018 ACM SIGSAC conference on computer and communica-
tions security. ACM, pp 1470–1486

Jang D, Tatlock Z, Lerner S (2014) SafeDispatch: securing C++ virtual calls
from memory corruption attacks. In: the Network and distributed system
security symposium (NDSS)

Khedker U, Sanyal A, Sathe B (2017) Theory and practice, data flow analysis
LLVM—control flow integrity (2015)
Lucas D, Sadeghi A-R, Lehmann D, Monrose F (2014) Stitching the gadgets: on

the ineffectiveness of coarse-grained control-flow integrity protection. In:
23rd USENIX security symposium (USENIX Security 14). USENIX

Mashtizadeh AJ, Bittau A, Boneh D, Mazières D (2015) CCFI: cryptographi-
cally enforced control flow integrity. In: Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. ACM, pp
941–951

https://hexhive.epfl.ch/publications/files/18NDSS.pdf
https://hexhive.epfl.ch/publications/files/18NDSS.pdf

Page 9 of 9Wang and Liu ﻿Cybersecur (2021) 4:33 	

Mastrolilli M (2021) The complexity of the ideal membership problem for
constrained problems over the Boolean domain

Microsoft. Visual Studio 2015—compiler options—enable control flow guard
(2015)

Mohan V, Larsen P, Brunthaler S, Hamlen KW, Franz M (2015) Opaque control-
flow integrity. In: The network and distributed system security sympo-
sium (NDSS), vol 26, pp 27–30

Muntean P, Fischer M, Tan G, Lin Z, Grossklags J, Eckert C (2018) τ CFI: type-
assisted control flow integrity for x86-64 binaries. In: International
symposium on research in attacks, intrusions, and defenses. Springer, pp
423–444

Nagarakatte SG (2012) Practical low-overhead enforcement of memory safety
for C programs

Newsome J, Song DX (2005) Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software.
In: The network and distributed system security symposium (NDSS).
Citeseer, vol 5, pp 3–4

Niu B, Tan G (2014) Modular control-flow integrity. In: Proceedings of the 35th
ACM SIGPLAN conference on programming language design and imple-
mentation (PLDI 14), New York, NY, USA. ACM, pp 577–587

Niu B, Tan G (2015) Per-input control-flow integrity. In: Proceedings of the
22nd ACM SIGSAC conference on computer and communications secu-
rity, CCS ’15, New York, NY, USA, ACM, pp 914–926

Pappas V, Polychronakis M, Keromytis AD (2013) Transparent ROP exploit miti-
gation using indirect branch tracing. In: Proceeding of the 22nd USENIX
security symposium (USENIX security 13), pp 447–462

Patil H, Fischer CN (1995) Efficient run-time monitoring using shadow process-
ing. In: Proceeding of automated and algorithmic debugging (AADE-
BUG), vol 95, pp 1–14

Payer M, Barresi A, Gross TR (2015) Fine-grained control-flow integrity through
binary hardening. In: International conference on detection of intrusions
and malware, and vulnerability assessment. Springer, pp 144–164

Peng X, Zhang P, Wei H, Bin Yu (2006) Known-plaintext attack on opti-
cal encryption based on double random phase keys. Opt Lett
31(8):1044–1046

Prakash A, Hu X, Yin H (2015) vfGuard: strict protection for virtual function
calls in COTS C++ binaries. In: Symposium on network and distributed
system security (NDSS)

Santana OJ, Falcón A, Fernández E, Medina P, Ramírez A, Valero M (2002) A
comprehensive analysis of indirect branch prediction. In: Hans PZ, Kazuki
J, Mitsuhisa S, Yoshiki S, Masaaki S (eds) High performance computing.
Springer, Berlin, pp 133–145

Shacham H et al (2007) The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In: ACM conference on
computer and communications security. New York, pp 552–561

Shacham H, Matthew P, Ben P, Eu-Jin G, Nagendra M, Dan B (2004) On the
effectiveness of address-space randomization. In: Proceedings of the 11th
ACM conference on computer and communications security. ACM

SPEC CPU 2006 system requirements. https://​www.​spec.​org/​cpu20​06
Starr A, Abella V (2012) The BlueHat prize contest official rules

Szekeres L, Payer M, Wei T, Song DS (2013) Sok: eternal war in memory. In: 2013
IEEE symposium on security and privacy (S&P). IEEE, pp 48–62

Tice C, Roeder T, Collingbourne P, Checkoway S, Erlingsson Ú, Lozano L, Pike G
(2014) Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
23rd USENIX security symposium (USENIX security 14), pp 941–955

Victor Van der V, Andriesse D, Göktaş E, Gras B, Sambuc L, Slowinska A, Bos
H, Giuffrida C (2015) Practical context-sensitive CFI. In: Proceedings of
the 22nd ACM SIGSAC conference on computer and communications
security. ACM, pp 927–940

Wartell R, Mohan V, Hamlen KW, Lin Z (2012) Securing untrusted code via
compiler-agnostic binary rewriting. In: Proceedings of the 28th annual
computer security applications conference. ACM, pp 299–308

Woeginger GJ (2004) Space and time complexity of exact algorithms: some
open problems. In: Rod D, Michael F, Frank D (eds) Parameterized and
exact computation. Springer, Berlin, pp 281–290

Wojtczuk R (2001) The advanced return-into-Libc exploits: PaX case study.
Phrack Magazine

Xia Y, Liu Y, Chen H, Zang B (2012) CFIMon: detecting violation of control flow
integrity using performance counters. In: IEEE/IFIP international confer-
ence on dependable systems and networks (DSN 2012). IEEE, pp 1–12

Xiaoyang X, Ghaffarinia M, Wang W, Hamlen KW, Lin Z (2019) CONFIRM: evalu-
ating compatibility and relevance of control-flow integrity protections for
modern software. In: 28th USENIX security symposium (USENIX Security
19), Santa Clara, CA, August 2019. USENIX Association, Santa Clara, CA,
August, pp 1805–1821

Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, Okasaka S, Narula N,
Fullagar N (2009) Native client: a sandbox for portable, untrusted x86
native code. In: 2009 30th IEEE symposium on security and privacy (S&P),
pp 79–93

Zhang J, Qi B, Qin Z, Qu G (2019) HCIC: hardware-assisted control-flow integ-
rity checking. IEEE Internet Things J 6(1):458–471

Zhang J, Hou R, Fan J, Liu K, Zhang L, McKee SA (2017) RAGuard: a hardware
based mechanism for backward-edge control-flow integrity. In: Proceed-
ings of the computing frontiers conference, CF’17, New York, NY, USA,
ACM, pp 27–34

Zhang M, Sekar R (2013) Control flow integrity for COTS binaries. In: Proceed-
ing of the 22nd USENIX security symposium (USENIX security 13), pp
337–352

Zhang C, Wei T, Chen Z, Duan L, Szekeres L, McCamant S, Song D, Zou W
(2013) Practical control flow ontegrity and randomization for binary
executables. In: 2013 IEEE symposium on security and privacy (S&P). IEEE,
pp 559–573

Zhi W, Xuxian J (2010) HyperSafe: a lightweight approach to provide lifetime
hypervisor control-flow integrity. In: 2010 IEEE symposium on security
and privacy, pp 380–395

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.spec.org/cpu2006

	Position paper: GPT conjecture: understanding the trade-offs between granularity, performance and timeliness in control-flow integrity
	Abstract
	Introduction
	Background
	Precision of CFG analyzer
	Algorithm to enforce checking
	Just-in-time checking versus lazy checking

	Conjecture
	A definition of CFI enforcement problem
	Terminology
	An empirical analysis of the relation among three properties
	The proposed conjecture
	Some evidence of the GPT conjecture

	Implications of the GPT conjecture
	Some suggestions for future research

	Conclusion
	Acknowledgements
	References

