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Abstract 

Performance/security trade-off is widely noticed in CFI research, however, we observe that not every CFI scheme is 
subject to the trade-off. Motivated by the key observation, we ask three questions: ➊ does trade-off really exist in 
different CFI schemes? ➋ if trade-off do exist, how do previous works comply with it? ➌ how can it inspire future 
research? Although the three questions probably cannot be directly answered, they are inspiring. We find that a 
deeper understanding of the nature of the trade-off will help answer the three questions. Accordingly, we proposed 
the GPT conjecture to pinpoint the trade-off in designing CFI schemes, which says that at most two out of three prop-
erties (fine granularity, acceptable performance, and preventive protection) could be achieved.
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Introduction
Along with the increased complexity of software, it 
becomes harder for the developers to ensure execution 
correctness in their software products, especially in those 
developed by the low-level programming languages, 
such as C/C++. A substantial amount of execution in-
correctness is caused by the exploitation of software vul-
nerabilities in the real world. Softwares inevitably contain 
a wide variety of vulnerabilities, opening a window for 
attacks to compromise the system. Attackers have devel-
oped a series of attack methods, such as shellcode injec-
tion (Erickson 2008), return-to-libc (Wojtczuk 2001), 
ROP (Shacham et al. 2007) and so on, to exploit all kinds 
of vulnerabilities, e.g., buffer overflow, format string, 
use-after-free, and so on (Szekeres et  al. 2013). Among 
all kinds of attacks, the control-flow hijacking attack is 
the most dangerous one, because it allows the attacker 
to control the program’s execution, execute arbitrary 

malicious code and attain Turing-complete operation 
(Shacham et  al. 2007). To mitigate the threats, many 
defense mechanisms, such as stack smashing protector 
(SSP) (Cowan et  al. 1998), address space layout rand-
omization (ASLR) (Shacham et al. 2004), data execution 
prevention (DEP) (Andersen and Abella 2004) and so on, 
have been put forward by researchers and applied in the 
real world software products.

Among all the defense techniques, security schemes 
based on the concept of control-flow integrity (CFI) have 
attracted many researchers’ attention because of its sim-
plicity to implement, effectiveness to cope with the full 
spectrum of control-flow hijacking attacks, and flexibil-
ity to trade between security and efficiency. CFI schemes 
guarantee the correctness of the program by dynamically 
checking the control-flow transfer and confining the tar-
get address to a legal set.

Since CFI was introduced by Abadi et  al. in 2005 
(Abadi et  al. 2005), many researchers afterward were 
dedicated to enhance its runtime performance, secu-
rity, scalability, compatibility and so on. According to 
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mainstream taxonomy, most CFI schemes can be clari-
fied into two categories: fine-grained CFI schemes that 
provide more security guarantee, and coarse-grained CFI 
schemes that attain higher runtime performance. How-
ever, both fine-grained and coarse-grained CFI schemes 
have noticeable limitations that have not been addressed 
yet. As shown in previous survey papers (Burow et  al. 
2017), lightweight CFI schemes can not fully prevent 
sophisticated code reuse attack. The adversary’s attacking 
strategy is to search large gadgets1 chain whose starting 
addresses are allowed in a rough control-flow graph that 
coarse-grained CFI schemes adopted (Göktas et al. 2014; 
Lucas et  al. 2014). Precise CFI schemes usually suffer 
from unacceptable runtime overhead. Hence, it is widely 
believed “performance/security trade-off” exists between 
runtime overhead and security in different CFI schemes 
(Burow et al. 2017; Xiaoyang et al. 2019).

However, we observe that not every CFI scheme is sub-
ject to the trade-off between performance and security. 
In fact, several CFI schemes are “immunized” from doing 
such a trade-off. For instance, πCFI designed by Niu et al. 
achieves fine-grained security with a runtime overhead of 
3.2% on average, which is fairly low and acceptable (Niu 
and Tan 2015). Victor et al. proposed a context-sensitive 
CFI scheme that achieves stronger security than conven-
tional fine-grained ones with an overhead of less than 
some of the coarse-grained ones (Victor et al. 2015).

Key Observation. The trade-off between performance 
and security does not universally exist in meaningful CFI 
schemes. This intriguing observation motivates us to ask 
three questions: ➊ does trade-off really exist in differ-
ent CFI schemes? ➋ if trade-off do exist, how do previ-
ous works comply with it? ➌ how can it inspire future 
research?

Although the questions probably cannot be directly 
answered, they are inspiring. On the other hand, we find 
that a deeper understanding of the nature of the trade-
off will help answer these questions. Accordingly, we pro-
pose the Gpt conjecture to pinpoint general trade-offs in 
CFI schemes: the impossibility of guaranteeing both fine 
granularity and acceptable performance in a Just-In-Time 
CFI scheme. We analyze its rationality through empirical 
study— surveying a series of representative CFI schemes 
and showing how existing CFI schemes comply with 
our conjecture. Finally, we give some recommendations 
for future researchers. We believe that our conjecture 
will help researchers have a more clear understanding 
of internal relations among properties of CFI schemes, 
thereby, motivating future research in this area.

Background
When compiling source code written by low-level lan-
guage (such as C or C++) into machine code, the com-
piler emits control data (Chen et al. 2005) (data that are 
loaded to processor program counter at some point in 
program execution, e.g., return addresses and function 
pointers) into the binary file without any protection. 
The security of control data depends on checks inserted 
by the programmer to enforce memory safety (Naga-
rakatte 2012). Along with program execution, attacker’s 
malicious tampering with control data through software 
vulnerabilities, such as buffer overflow, can transfer the 
program’s control-flow to any executable address in pro-
cess space.

Based on this observation, researchers invented CFI to 
protect programs against control-flow hijacking attacks 
by checking programs’ control data before loading them 
into the program counter (EIP/RIP register in x86/x64 
architecture). CFI’s strategy is to restrict the control-flow 
of a program to a pre-calculated CFG by checking indi-
rect control-flow transfers at runtime (Burow et al. 2017). 
Generally, most of CFI schemes follow a mainstream that 
consists of two phases.

In phase one, an analyzer statically computes the pro-
gram’s control-flow graph (CFG). CFG is a representation 
in graph form of all legitimate control-flow transfers (also 
being called branch) in program space. It consists of sets 
of nodes and directed edges. Each node and edge denotes 
a basic block and a valid branch in the program respec-
tively. For a comprehensive understanding, we refer the 
reader to the formal definition of CFG in work by Allen 
(1970).

In phase two, a runtime control-flow checking (vali-
dation) component validates just fetched control data 
before each indirect-branching according to the legiti-
mate CFG generated in phase one.2 An indirect-branch 
can pass checking only if it can be matched to a corre-
sponding edge in the CFG. A failed validation will result 
in the process to terminate its execution and report an 
error. In such a fashion, control-flow attacks which usu-
ally introduce out-of-range branch are extremely prohib-
ited. Researchers need to design efficient data structures 
to represent the CFG and enable runtime checking.

Despite its straightforward main idea, it is pretty chal-
lenging to design a CFI scheme with strong security, 
acceptable performance, high compatibility and so on 
(Xiaoyang et  al. 2019; Burow et  al. 2017). Research-
ers have designed hundreds of CFI schemes to explore 
its potential in different perspectives. The dominant 

1  Gadget is the terminology used in ROP attack (Shacham et al. 2007), which 
is the most important adversary of CFI.

2  Direct control-flow transfers do not load any control data, their target 
addresses/offsets are hard-coded in their instructions.
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difference of these various CFI schemes can be summa-
rized into three aspects: (1) the precision of a CFG they 
employed. (2) the algorithm they designed to check indi-
rect-branches. (3) the time point checking algorithm was 
activated.

Precision of CFG analyzer
CFG can be obtained by analyzing the program’s source 
code or binary code. Like pointer analysis (Hind 2001), 
perfect CFG generation cannot be fully achieved yet in 
many situations (Göktas et al. 2014). By now researchers 
have adopted several types of methods (insensitive analy-
sis, context-sensitive analysis, and path-sensitive analysis) 
in their CFG analyzer and achieve different precisions. It 
is widely agreed that path-sensitive analysis is more pre-
cise than context-sensitive analysis, and context-sensitive 
analysis is more precise than insensitive analysis (Khed-
ker et al. 2017).

Algorithm to enforce checking
The efficiency of different CFI schemes is largely depend-
ent on their algorithms to enforce validation, which is 
tightly combined with their data structure that represents 
the CFG and enables runtime checking. Researchers have 
designed different types of algorithms and data structures 
in different CFI schemes. For example, the original CFI 
scheme proposed by the Abadi, et al. groups branch tar-
gets into different sets, assigns each set with a label, and 
inlines labels into each jump targets, i.e., the basic block’s 
in code. Based on this data structure, “guard instructions” 
are emitted before each indirect-branch instruction 
to compare its label with the one in target basic block 
(Abadi et al. 2005). A mismatch indicates that the control 
data is corrupted, then the program’s execution will be 
redirect to the error handling code accordingly.
πCFI (Niu and Tan 2015) and MCFI (Niu and Tan 

2014) by Niu, et  al. adopts two ID tables, namely Bary 
and Tary, to store target program’s CFG. In essence, Bary 
table and Tary table are hashmaps which can efficiently 
map indirect-branch points and target basic blocks to 
their corresponding IDs. Specifically, the Tary table is an 
array of IDs indexed by code addresses, mapping target 
basic block to their corresponding IDs. The Bary table 
uses a similar design, mapping indirect-branch points to 
their corresponding IDs. Two tables enable efficient ID 
look-ups and a indirect-branch is checked by comparing 
the IDs of branch point and target.

Just‑in‑time checking versus lazy checking
Another difference among CFI schemes is how they 
schedule their checking operations. Most CFI schemes 
check the target address before indirect-branch occurs 
(we define it as a Just-In-Time checking). While, 

to achieve better performance, some works log each 
indirect-branches at runtime and check them by employ-
ing another accompanying thread (Hu et  al. 2018; Ding 
et al. 2017; Ge et al. 2017; Victor et al. 2015) (we define 
it as Lazy checking). For example, PITTYPAT (Ding 
et al. 2017) enforces path-sensitive CFI by maintaining a 
“shadow” execution/analyzer, running concurrently with 
the protected process and checking branches in execu-
tion trace of protected process. Such a non-intrusive 
checking does not disturb the normal execution of the 
monitored process, hence achieves path-sensitive CFI 
with practical runtime overhead.

Conjecture
This section aims to answer Question➊ and Question➋. 
In this section, we firstly try to formalize the CFI enforce-
ment problem. Secondly, we give a clear definitions of 
properties that are used to define our conjecture. Thirdly, 
we propose the GPT conjecture which helps to answer 
Question➊. Finally, some evidence is collected from an 
empirical study to answer the Question➋.

A definition of CFI enforcement problem
Before introducing the GPT conjecture, let us formal-
ize CFI enforcement problem, that is how to enforce CFI 
during program running time. Our definition is try to 
define the problem itself. Therefore, the definition will 
not reflect any implementation of CFI schemes.

Given a program, let S denote the set of all indirect 
branches, and T denote the set of all targets of indirect 
branches. Then, n = |S| is the total number of indirect 
branches, and m = |T| is the total number of targets.

Let S× T denote the Cartesan Product of S and T . Sup-
pose that si and tj are an element in S and T , respectively. 
The CFI enforcement problem on a program is associ-
ated with a set V , where (si, tj) ∈ V if tj is an vaild target 
of branch sj.

Based on the above notion, we can give a formal defini-
tion of CFI enforcement problem.

Definition 1  CFI enforcement problem consists of two 
subproblems, which are corresponding to phase one and 
phase two discussed in “Background” section.

Subproblem1: How to generate V through program 
analysis.

Subproblem2: During program running time, how to 
verify whether a (si, tj) , which corresponds to an encoun-
tered branch and target, is a member of set V or not.

In such a definition, the granularity is corre-
lated with the size (l) of V . The small the l is, the finer 
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granularity a CFI scheme has. Each element (e.g., (si, tj) ) 
in set V represents a branch allowed by the CFI scheme. 
A smaller V means that fewer branches were allowed by 
the CFI scheme, and the CFI scheme has more tight con-
straints on the program’s indirect branches, therefore a 
stronger security guarantee. The low bound of CFI per-
formance is inherently connected with the complexity 
of subproblem2. Let tc and tb denote the check time and 
the branching time, respectively, for an indirect branch 
during problem execution. The timeliness is cor-
related with tc − tb . A CFI scheme is Just-In-Time if the 
tc − tb < 0 , otherwise, it is an lazy-checking scheme.

Terminology
Even though the terms “fine-grained CFI” and “coarse-
grained CFI” are well known and widely used by related 
researchers, we observe that they have not been clearly 
defined yet. In such a case, some so-called “fine-grained” 
schemes (claimed by their authors) are only relatively 
finer than some other schemes, but far from the finest-
grained scheme. Therefore, in this subsection, we give 
clear definitions of such properties that are used to define 
our conjecture.

Property 1  (Granularity) Suppose a program has n 
indirect branch instructions. Let Zi  3 denote the set of 
valid targets (successors) of the i-th indirect branch 
instruction, and S denote the set of all successor sets, 
namely,

For a CFI scheme, let Ci denote the allowed target 
set which is defined by the scheme and assigned to the 
i-th indirect branch instruction, then used to check the 
branch’s target at runtime. Only the elements in Ci are 
valid successors authorized by the CFI schemes that the 
i-th branch instruction could jump to.

Definition 2  For arbitrary two sets Zi , Zj from S , satis-
fying Zi  = Zj , as long as the CFI scheme merges any one 
or more Zi , Zj when define its Ci or Cj , namely,

we define this scheme as a coarse-grained CFI 
scheme. Otherwise, we define it as a fine-grained 
CFI scheme. This definition enables us to determinate 
the granularity property of CFI schemes.

A coarse-grained CFI scheme will merge some Z s 
when defining C s (e.g., Ci = Cj = Zi ∪ Zj ). In such a 

(1)S = {Zi : 1 ≤ i ≤ n}

(2)Ci = Zi ∪ Zj orCj = Zi ∪ Zj

case, the set Ci used to enforce runtime checking is a 
superset of the valid target set Zi . A potential attacker 
can hijack program’s runtime control flow to a gadget—
x ( x ∈ Ci ∧ x /∈ Cj ), and without being detection by such 
a CFI scheme. “Otherwise” means the CFI scheme does 
not merges any Z s when defining C s. Therefore, any Ci is 
strictly equal to Zi . In such a case, an attacker cannot find 
any gadget—x, which belongs to Ci but not belongs to Zi.

Remark 1.  According to Definition  2, both context-
sensitive and path-sensitive CFI schemes belong to fine-
grained CFI scheme. In essence, they reduce the 
size of their checking set Ci for i ∈ [1, n] based on con-
text-sensitive or path-sensitive pointer analysis. Their 
protection is generally considered to be more powerful 
than that of insensitive fine-grained CFI scheme.

Remark 2.  Note that CFI schemes (Mashtizadeh et  al. 
2015; Zhang et  al. 2019) which adopt pointer encryp-
tion approach should be classified as coarse-grained 
CFI scheme. They cannot fully prevent code reuse 
attack because of two noticeable drawbacks. As discussed 
in Cryptographically Enforced Control Flow Integrity 
(CCFI) (Mashtizadeh et  al. 2015), it is still possible to 
replace the current encrypted pointer with another one 
from the program space and potentially disrupt control 
flow. The other drawback is that these schemes suffer 
from key leakage issues: the key can be infered by brute-
force attack or known-plaintext attack (Peng et al. 2006), 
especially for schemes which adopt a very simple encryp-
tion/decryption method (e.g., XOR) (Zhang et al. 2019).

Remark 3.  We remark that schemes that only provide 
partial protection—protecting subset of indirect branches 
in program space—belong to coarse-grained CFI 
scheme. For instance, vfGuard (Prakash et  al. 2015), 
VTV (Tice et  al. 2014), and SafeDispatch (Jang et  al. 
2014) only achieve strict protection for virtual function 
calls in COTS binaries;

Property 2  (Performance) 	  
Evidence 1. As discussed in many papers (Szekeres et  al. 
2013; Burow et al. 2017; Starr and Abella 2012), runtime 
performance is one of the most important determinants of 
whether a defense technique will be adopted by industry. 
Generally, to get adopted by industry, a defense technique 
should introduce less than 5% average overhead, such 
as StackGurad, ASLR, and DEP. Techniques incuring an 
overhead larger than 10% do not tend to gain wide adop-
tion in production environments. Accordingly, the thresh-
old should lie between 5%-10%.

3  It is computed through mainstream insensitive control flow analysis. We 
admit the inaccuracy due to the difficulty of the pointer analysis.
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Evidence 2. Other than runtime performance, space 
performance is another important index to measure a 
scheme. Program’s runtime memory consumption con-
sists of four aspects, i.e., code, global data, heap, and 
stack. Different programs have different ratios in four 
aspects, and a defense technique commonly increases 
memory consumption in one or more aspects. We 
observe that shadow based protections like shadow stack 
(Dang et al. 2015), shadow memory (Newsome and Song 
2005) and shadow processing (Patil and Fischer 1995), 
that double memory consumption in one or more aspects 
are unlikely to be deployed in practice.

Definition 3  Conservatively, we define a runtime 
overhead of less than 10% and a space overhead of less 
than 100% (in any of aforementioned four aspects) as an 
acceptable performance. Otherwise, it is an unac-
ceptable performance. This definition enables us to 
determinate the performance property of CFI schemes.

Property 3  (Timeliness) 	  
Observation 1. Whereas the term “integrity” in the 
context of CFI implies that it can prevent the attacks 
(Abadi et  al. 2005), some of the CFI schemes do not 
hit the mark. To achieve higher efficiency, some CFI 
schemes as mentioned in “Just-in-time checking ver-
sus lazy checking” section adopted a lazy check-
ing mechanism, which checks programs’ control-
flow following the program’s execution rather than 
before each indirect branching. Generally, they log the 
program’s runtime control-flow transfer along with 
its execution, then check the control-flow offline or 
through an accompanying thread. In these designs, a 
sliding window exists between the program’s control-
flow transfer and checking. The attacker can compro-
mise the system without being perceived in the sliding 
window, which means this kind of CFI cannot protect 
software against such attacks.

Definition 4  We regard that the aforementioned design 
of CFI schemes provides less protection than CFI schemes 
that perform Just-In-Time checking. We define 
protection capability powered by lazy checking 
schemes as detective protection, the others that 
powered by Just-In-Time checking as preven-
tive protection. This definition enables us to deter-
minate the property timeliness of CFI schemes.

An empirical analysis of the relation among three 
properties
We notice a strong relation between granularity, perfor-
mance, and timeliness. In this subsection, we will provide 
some empirical observations regarding the relationship 
among three properties.

Firstly, the trade-off between granularity and performance 
(time/space overhead) has been widely noticed by previ-
ous researchers (Tice et al. 2014; Burow et al. 2017). A finer 
granularity means less Z s was merged when defining C s. It 
indicates that more equivalent sets C s were used to enforce 
CFI. Generally, more equivalent sets will require more time/
space when designing an algorithm to enforce checking.

Secondly, trade-off between time and space commonly 
exists when designing algorithms to solve a problem. For 
the membership problem, the most effective way to solve 
it is through a hash table, which maps all possible que-
ries to the corresponding results directly. In such a case, 
the runtime overhead is negligible (O(1)), however, the 
space overhead is fairly large. Another algorithm, which 
answers queries through traversing lists, will require less 
memory, but suffer from a larger time overhead.

Thirdly, we observe the trade-off between timeliness and 
performance. Lazy checking CFI schemes validate the tar-
get address after indirect-branch occurs. We observed that 
the main purpose of such a design is to reduce runtime 
overhead. Because the task of runtime checking in such 
a case could be assigned to another monitor thread, thus 
greatly reduce the runtime overhead of the protected pro-
gram. If we measure the timeliness through tc − tb . Then, 
if tc − tb < 0 , the CFI scheme achieves just-in-time check-
ing. Otherwise, it achieves lazy checking. Meanwhile, a 
less timeliness (the larger tc − tb is), the fewer synchro-
nizations are required between the program’s thread and 
the monitor thread. Fewer synchronizations mean a small 
overhead to the protected program. Therefore, there exists 
a trade-off between timeliness and performance

Finally, both the granularity and timeliness will affect the 
security of a CFI scheme in different aspects. Specifically, 
attackers need both a certain amount of gadgets and a cer-
tain amount of time for code reuse attacks (e.g., ROP (Sha-
cham et  al. 2007)). A finer granularity better restricts the 
number of gadgets that attackers can use. Better timeliness 
(the small tc − tb is) better restricts the time that attack-
ers can use. Therefore, both finer granularity and better 
timeliness mean fewer risks that the CFI protection can be 
compromised.
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The proposed conjecture

so that they are restricted to the [0, 4  GB) memory 
region. Another 4  GB memory region is reserved for 
tables.” In view of the size of memory consumption of 
typical programs (mostly less than 1  GB (SPEC 2006)), 

Table 1  Reflection of GPT conjecture in 32 control-flow integrity 
schemes

1 If a CFI scheme supports different security levels, e.g. having both coarse-
grained and fine-grained versions, we focus on its most secure version
2‘H’, ‘P’ and ‘C’ denote hardware-assisted CFI scheme, path sensitive CFI scheme, 
and context sensitive CFI scheme, respectively

Some evidence of the GPT conjecture
In this section, we will reflect on our conjecture through 
several pieces of evidence. To verify the rationality of our 
conjecture, we conduct an empirical study on 32 repre-
sentative works, and show the results in Table  1. Three 
columns (P1, P2 and P3) in the table display three prop-
erties respectively as we define in “Terminology” sec-
tion. P1 column denotes the granularity— check-mark 
indicates a fine-grained scheme whileas cross-mark 
represents a coarse-grained scheme. P2 column 
shows the performance overheads which are reported 
in corresponding papers. Note that we prefer evaluation 
results which are based on SPEC CPU

R©2006 bench-
marks (SPEC 2006). P3 column labels whether a CFI 
scheme provides preventive protection. We label 
the data in each column with red color when it fails to 
meet the requirement defined in the conjecture.

Evidence i. It can be clearly seen in Table 1 that all CFI 
schemes we surveyed comply with our conjecture—no 
CFI schemes can achieve all three properties. Also, 
some of unsophisticated schemes, such as PittyPat 
(Ding et  al. 2017) and Griffin (Ge et  al. 2017), only 
achieve one properity, i.e., fine granularity.

Evidence ii. MCFI (Niu and Tan 2014) and πCFI 
developed by Niu, et  al. achieve fine granularity 
with acceptable runtime overheads, i.e., 3.2% and 5.0%, 
respectively. However, researchers did not realize that 
their better runtime overhead is achieved through sacri-
ficing their space performance. Even though they did not 
report their space overhead in their paper explicitly, we 
can infer it in a reasonable manner.

As discussed in “Algorithm to enforce checking” sec-
tion, both of two schemes adopt two tables, namely Bary 
and Tary, to support their runtime checking. Accordingly, 
1  GB/4  GB memory space on x86-32 and x86-64 oper-
ating system, respectively, need to be reserved in each 
process for the tables. As stated by the author, “On x86-
32, memory segmentation is used, as in NaCl (Yee et al. 
2009). A 1 GB segment is reserved for running the appli-
cation code and another 1 GB segment is reserved for the 
table region. x86-64, however, does not support memory 
segmentation. Instead, memory writes are instrumented 
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their space overhead has already reached 100% except for 
code bloat caused by extra no-op instructions inserted to 
enforce four-byte alignment on indirect-branch targets.

Evidence iii. Griffin (Ge et  al. 2017) is a hardware-
assisted CFI, which leverages Intel PT to record control-
flow of a monitored program. It supports multiple types of 
CFI policies to enable flexible trade-offs between security 
and performance. The fine-grained scheme incures 
an average of 11.9% overhead. It leverages idle cores on a 
multi-core system for security checking by having multi-
ple worker threads to check runtime control-flow simul-
taneously. In most of the time, it performs non-blocking 
checking which analyzes trace buffer of Intel PT whenever 
it becomes full; In a few cases when security-sensitive 
system calls are invoked, it performs blocking checking 
which stops the target thread until all the control trans-
fers in the buffer have been checked. It can only provide 
the detective protection for software according 
to Definition 4. This case indicates that GPT conjecture is 
applicable to hardware-assisted CFI schemes.

Evidence iv. PittyPat (Ding et al. 2017), µCFI (Hu et al. 
2018) and PathArmor (Victor et  al. 2015) are path/context 
sensitive CFI schemes which adopt path-sensitive or context-
sensitive analysis to generate their CFG. However, path-sen-
sitive and context-sensitive analysis is generally considered to 
be more time-consuming and space-consuming than insensi-
tive analysis (Khedker et al. 2017). We find that all three CFI 
schemes adopt two common features: hard-assisted 
branch recording and lazy checking. Specifically, 
PittyPat and µCFI employ Intel PT—a brand new hardware 
feature in Intel CPUs—to efficiently record conditional and 
indirect branches taken by a program at runtime while Pat-
hArmor adopts Last Branch Record (LBR) registers available 
in Intel processors to monitor recently exercised control-flow 
transfers in an efficient way. Their control-flow checking is 
achieved through accompanying threads. This case indicates 
that both path-sensitive and context-sensitive CFI schemes 
conform to the claim of GPT conjecture.

Remark 4.  Our observations indicate that the GPT con-
jecture is universally applicable in all kinds of scenarios. 
Further, four pieces of evidence are not meant to be 
exhaustive and more evidence are easy to find.

Implications of the GPT conjecture
In this section, we will focus on answering Question ➌: 
how can GPT conjecture inspire future research?

First of all, GPT conjecture illustrates the inherent 
trade-offs of three important properties (fine granu-
larity, acceptable performance, and pre-
ventive protection) in CFI schemes. It helps 
researchers to have a deeper understanding of the nature 

of CFI based protection. Accordingly, future researchers 
should make a necessary sacrifice before designing new 
CFI schemes. In the broader context, GPT conjecture 
provides insights into the feasible design space for CFI 
schemes, shedding some light on the manner in which 
algorithm designers and software engineers have circum-
vented the conjecture.

Second, for decades, security researchers have been 
focused on CFI scheme’s runtime performance and made 
their best effort to improve it. Evidence  ii shows that in 
some cases, better runtime performance is achieved by sac-
rificing its space performance. Just as Gerhard states, “For 
some problems, we can reach an improved time complexity, 
but it seems that we have to pay for this with an exponen-
tial space complexity” (Woeginger 2004). Therefore, per-
formance evaluation in future research should not merely 
be limited to runtime performance and researchers should 
have a more comprehensive evaluation of their schemes.

Third, Evidence  iii shows that even powerful hard-
ware support cannot eliminate the runtime overhead of 
Just-In-Time CFI schemes to an acceptable level, 
which implies that the challenge in the implementation 
of CFI cannot be solved only through engineering efforts, 
instead, it may relate to computational complexity the-
ory (Goldreich 2008). In a broader sense, we observe 
that indirect branching poses not only challenge in the 
security field, but also challenges to many others: pre-
cise pointer analysis is NP-hard (Horwitz 1997); indi-
rect branch prediction is a performance-limiting factor 
for current computer systems (Santana et  al. 2002). 
Hence, GPT conjecture implies the complexity of the CFI 
enforcement problem, which deserves to be investigated 
through theoretical methods.

Fourth, the GPT conjecture could have the following 
impact in practice: firstly, for CFI product managers, engi-
neers, the conjecture provides useful awareness. That is 
the research works have not yet achieved P1, P2, and P3 
simultaneously. Secondly, the conjecture provides aware-
ness on 3 trade-offs in developing CFI products. For exam-
ple, the LLVM CFI choose to implement different options 
for user to trade-off between performance and granularity.

At last, despite the inspiring implications that GPT 
conjecture gives to us, we admit that we still cannot 
prove the conjecture at this time.

Some suggestions for future research
In most cases, Subproblem1 in definition 1 can be solved 
through offline static analysis. The performance and 
timeliness of a CFI scheme depend on the algorithm to 
solving Subproblem2. Our definition of CFI enforcement 
problem reveals that the Subproblem2 (online phase) can 
be viewed as membership problem (Mastrolilli 2021). 
However, even though the membership problem has 
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been widely researched in theoretical computer science, 
it does not mean that the conjecture can be easily proved.

Also, we think that the proof of GPT conjecture need 
some statistical data from benchmark programs. For 
example, the average size of S and T in benchmark pro-
grams, the variance of si and tj , and the frequency of indi-
rect jumps to be executed.

Conclusion
Control-flow integrity is a popular defence technique for 
detecting and defeating control-flow hijacking attacks. 
Since its inception in the decade, researchers have put 
great efforts to explore its potential regarding security, 
performance, compatibility and so on. Even though per-
formance/security trade-off is widely noticed in CFI 
research, we observe that not every CFI scheme is sub-
ject to it. In this paper, we propose the Gpt conjecture 
to illustrate the general trade-offs in CFI schemes. The 
conjecture points out the impossibility of guaranteeing 
both fine granularity and acceptable per-
formance in a Just-In-Time CFI schemes. We have 
verified the rationality of our conjecture based on an 
empirical study on existing works. Even though we can-
not prove the conjecture at this time, we believe that Gpt 
conjecture will help researcher to have a deeper under-
standing of the nature of CFI enforcement problem and it 
will direct future research in this area.
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