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Abstract 

In this paper, we study the hybrid dual attack over learning with errors (LWE) problems for any secret distribution. 
Prior to our work, hybrid attacks are only considered for sparse and/or small secrets. A new and interesting result from 
our analysis shows that for most cryptographic use cases a hybrid dual attack outperforms a standalone dual attack, 
regardless of the secret distribution. We formulate our results into a framework of predicting the performance of the 
hybrid dual attacks. We also present a few tricks that further improve our attack. To illustrate the effectiveness of our 
result, we re-evaluate the security of all LWE related proposals in round 3 of NIST’s post-quantum cryptography pro-
cess, and improve the state-of-the-art cryptanalysis results by 2-15 bits, under the BKZ-core-SVP model.
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Introduction
The learning with errors (LWE) problem, introduced by 
Regev (2009) in 2005, is one of the most important prob-
lems in lattice-based cryptography. A variety of schemes, 
from public key encryptions and digital signatures to 
homomorphic encryptions, base their security on LWE 
family of the lattice problems. The LWE problem and its 
variants are conjectured to be hard to solve, even with a 
quantum computer. The schemes that base their security 
on LWE problems, are therefore, considered quantum-
safe. Indeed, LWE and its variants contribute to 5 out of 
15 schemes in round 3 (NIST-round-3 2020 of National 
Institute of Standards and Technology’s post-quantum 
cryptography standardization process (NIST-PQC), 
namely Dilithium (Ducas et  al. 2018), Kyber (Bos et  al. 
2018b), Saber (D’Anvers et  al. 2018), Frodo (Bos et  al. 
2018a) and NTRULPrime (Bernstein et  al. 2017). This 
process has sparked a long list of cryptanalytic advance-
ments (Albrecht 2017; Albrecht et al. 2015a, 2017, 2018; 
Buchmann et al. 2016; Cheon et al. 2019; Dachman-Soled 
et al. 2020; Espitau et al. 2020; Son and Cheon 2019), and 

is still calling for a better understanding of the concrete 
security of LWE and its variant problems.

Informally, the search version of LWE asks to recover 
a secret vector s ∈ Z

n
q , given a matrix A ∈ Z

m×n
q  and a 

vector b ∈ Z
m
q  such, that As+ e = bmod q for a short 

error vector e ∈ Z
m
q  sampled from some error distri-

bution. The decision version LWE asks to distinguish 
between an LWE instance (A,b) and uniformly random 
(A,b) ∈ Z

m×n
q × Z

m
q .

In the survey paper (Albrecht et  al. 2015a), Albrecht 
et al. summerized three strategies to analyze the concrete 
hardness of LWE:

•	 The first one tries to recover the secret directly, for 
example, the algebraic attack (i.e., using the Arora-
Ge algorithm) (Arora and Ge 2011; Albrecht et  al. 
2015b) or exhaustive search.

•	 The second method tries to view an LWE problem as 
a Bounded Distance Decoding (BDD) problem. There 
are two subsequent attacks: the decoding attack (i.e., 
using the Nearest Plane algorithm) (Lindner and 
Peikert 2011) and the primal attack (Albrecht et  al. 
2017).

•	 The last strategy solves decisional LWE by reducing it 
to a Short Integer Solutions (SIS) problem. There are 
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also two subsequent attacks: the combinatorial attack 
(i.e., using BKW algorithm) (Albrecht et al. 2014) and 
the dual attack (Albrecht 2017).

In a later paper, Albrecht et al. (2018) studied the security 
of all lattice-based schemes from round 1 candidates of 
NIST-PQC, and concluded that the primal attack and the 
dual attack are the most effective ones from the crypta-
nalysis standpoint.

The primal attack is to find the closest lattice vector to 
b in the lattice spanned by the columns of A mod q (Lind-
ner and Peikert 2011) via bounded distance decoding. 
Then, one reduces the BDD problem to a unique Shortest 
Vector Problem (uSVP) in a higher dimension lattice via 
some embedding, and solves the uSVP with lattice reduc-
tions (e.g., BKZ Chen and Nguyen 2011). The lattice, as of 
our cryptanalysis interest, is then denoted by

The dual attack is to solve the (Inhomogeneous) Short 
Integer Solutions ((I)SIS) problem, i.e., using a lattice 
reduction algorithm to find short vectors w or (w, v) in 
the following lattice:

This allows one to distinguish an LWE sample b from a 
uniform vector u since �w,b� = �v, s� + �w, e� is small 
when w , v , s and e are all short (Alkim et al. 2016).

One may additionally combine the above attacks with 
guessing. This method is known as the hybrid attacks 
in the literature (Albrecht 2017; Buchmann et  al. 2016; 
Cheon et  al. 2019; Espitau et  al. 2020; Hoffstein et  al. 
2017; Howgrave-Graham 2007; Son and Cheon 2019; 
Wunderer 2018, 2019). Informally, a hybrid attack 
guesses part of the secret and performs some attack 
on the remaining part. As guessing reduces the dimen-
sion of the problem, the cost of the lattice attack on the 
remaining part is reduced. Moreover, in general, the lat-
tice attack component is reusable for multiple guesses; 
an optimal attack is achieved when the cost of guessing 
matches the cost of the lattice attack. For simplicity, we 
refer to hybrid attacks where the lattice attack compo-
nent is a primal attack as the hybrid primal attack, and 
accordingly, the hybrid dual attack.

Let us start with a typical example: we assume, with 
probability p, the attacker is able to guess all the entries 
for the guessing components. The cost of the hybrid 
attacks becomes that of the lattice attack compo-
nents (with a success rate p). For (sparse) binary/ter-
nary secrets, this strategy works well. For hybrid primal 

�primal = {x ∈ Z
m+n+1|(A|Im|b)x = 0mod q}.

�⊥
dual =

{

w ∈ Z
m : w · A = 0mod q

}

,

�E
dual =

{

(w, v) ∈ Z
m × Z

n : w · A = v mod q
}

.

attacks over other secret distributions, there are mainly 
two obstacles. First, for secrets with more entropy, such 
as Gaussian, p will be reduced significantly with the 
increase of guessing dimension. Second, one needs to 
solve a CVP (a decoding problem) rather than a uSVP (a 
primal attack) after guessing (see Son and Cheon 2019 
for more details about the reduction). As a rule of thumb, 
a decoding attack requires a better reduced lattice than 
a primal attack. Due to the above drawbacks, hybrid pri-
mal attacks are considered less efficient than standalone 
primal attacks when dealing with none (sparse) binary/
ternary secrets.

Now let us turn to the focus of this paper: hybrid dual 
attacks. They differ from the hybrid primal attacks in that, 
after a guess, the resulting lattice component becomes a 
new LWE lattice with a smaller dimension; and the LWE 
lattice remains the same for all guesses. Note that the 
attacker does not need to solve a decoding problem. In 
other words, the second obstacle for the hybrid primal 
attack is no longer an issue for hybrid dual attack. None-
theless, the community seems to have presumed the 
obstacles for the hybrid dual attack, and applying it over 
LWE with arbitrary secrets therefore remains a blind spot 
prior to this paper.

Related work
The very first hybrid attack was proposed by Howgrave-
Graham (2007) to analyze NTRU (Hoffstein et al. 1998). In 
the recent years, hybrid attacks have been extensively stud-
ied for LWE with sparse and/or small secrets. We sum-
marize those results in Table  1. The first work of hybrid 
attack on LWE (Buchmann et al. 2016) combined decod-
ing attack with meet-in-the-middle (MITM) technique. 
Then a similar approach was conducted on primal lat-
tices (Son and Cheon 2019). Albrecht (2017) proposed the 
framework of hybrid dual attack and applied it over LWE 
with sparse and binary/ternary secrets. Cheon et al. (2019) 

Table 1  Hybrid attacks on LWE

Lattice Guessing Secret

Buchmann et al. 
(2016)

Decoding MITM Small

Son and Cheon 
(2019)

Decoding + Primal MITM Small + sparse

Albrecht (2017) Dual Pruning Small + sparse

Cheon et al. (2019) Dual MITM Small + sparse

Espitau et al. (2020) Dual Matrix Mul. Small

This paper Dual Opt. Prun-
ing + Mat. 
Mul.

Arbitrary
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improved guessing in this attack via an MITM technique. 
We note that in a hybrid dual attack, the secret and errors 
will increase significantly. Therefore, the proposed MITM 
technique requires a gigantic modulus q to incorporate the 
new, larger error. Recently, Espitau et al. (2020) proposed 
a further optimization for guessing, via an efficient matrix 
multiplication exploiting the recursive structure of the 
matrix whose columns form the whole guessing space.

Contribution
In this work, we study the hybrid dual attack on LWE 
with arbitrary secrets. Our contributions are two-fold. 
From the theory side, we analyze the hybrid dual attack 
in details, and develop the following observation:

For most cryptographic use cases, hybrid dual attacks 
out-perform dual attacks, regardless of the secret 
distribution.

This observation is based on a quite interesting and 
surprising phenomenon in our analysis that when the 
guessing dimension (r) increases, the BKZ blocksize (β) 
indeed reduces. We formulate this phenomenon into the 
following theorem.

Theorem  1  (Informal) For a hybrid dual attack under 
the core-SVP model, for most cryptographic use cases, if 
we increase the guessing dimensions r, the minimum BKZ 
blocksize β that maintains the same level of success rate 
will be reduced.

We will provide our intuition shortly. The proof will 
be present in "The advantage of the hybrid dual attack" 
section. For LWE with short secrets, it is straightforward 
to see that the observation is implied by Theorem 1. For 
LWE with large secrets, when enough LWE samples are 
given, we normalize it and invoke Theorem  1. The only 
remaining case is LWE with large secrets and limited 
samples, for which we study separately in "Hybrid attack 
on uniform secrets" section.

To quantify the decreasing speed of β as r increases, 
we make an additional Heuristic  3 with justification in 
"Predicting improvement of Hybrid 1" section. Based on 
this heuristic, we give a prediction of the improvement of 
hybrid dual attack over dual attack in Theorem  2.

We also propose a few tricks that further improve the 
guessing complexity. This allows us to develop an estima-
tor that may be of independent interest (our estimator 
is open sourced (Code for this paper 2019) For exam-
ple, one may apply our estimator to other LWE based 
schemes, such as FHE (Gentry 2009; Brakerski et al. 2012; 
Gentry et  al. 2013) or lattice-based ZK proofs (Bootle 
et al. 2019, 2020; Esgin et al. 2019).

From the practical side, we re-evaluate all LWE-related 
candidates of NIST-PQC round 3 (NIST-round-3 2020), 

namely, Dilithium (Ducas et  al. 2018), Kyber (Bos et  al. 
2018b), Saber (D’Anvers et  al. 2018), Frodo (Bos et  al. 
2018a) and NTRULPrime (Bernstein et  al. 2017), and 
compare our results with the most prominent primal 
attack and standalone dual attack. An important issue 
when comparing primal attack and (hybrid) dual attack is 
the assumption about the short vectors produced by the 
BKZ algorithm. The optimistic assumption (Alkim et al. 
2016), which we call Assumption 1, assumes that when 
using sieving as the SVP oracle, BKZ algorithm with 
blocksize β provides 20.2075β short vectors that are almost 
as short as the shortest one. However, this assumption 
has been criticized to be too optimistic on the attacker’s 
ability (see the supporting document for Kyber, Frodo, 
and Dilithium). A more realistic assumption (Ducas 
2018), which we call Assumption 2, assumes most of 
these 20.2075β vectors are 

√

4
3  longer than the shortest 

one. We compare our results under both assumptions.
Our results under the classical core-SVP model (Alkim 

et al. 2016; Albrecht et al. 2015a, 2018) are summarized 
in Table 2. We will give more details on the estimations 
in "Security estimations" section. Compared with stan-
dalone dual attack, we improve the results by 2–13 bits 
under Assumption 1 and 2–15 bits under Assumption 2. 
Compared with the state-of-the-art cryptanalytic results, 
which is usually given by primal attack, we improve the 
results by 2–15 bits under Assumption 1.1 Even under 
Assumption 2, for NTRULPrime we improve the results 
by 1–7 bits, and for other candidates, our results is close 
to that of primal attack and the difference is within 2 bits. 
We believe that hybrid dual attacks should be considered 
for cryptanalysis on any future practical lattice-based 
cryptosystem.

Our technique
Our baseline for comparison is the standalone dual 
attack. In combination with the dual attack, we propose 
two hybrid attacks, namely, Hybrid 1 and Hybrid 2, 
vary in the strategy to conduct searching.

We first compare the standalone dual attack with 
Hybrid 1, which exhaustively searches all candidates 
from the guessing space. We show that for most crypto-
graphic use cases we can select a proper guess dimension 
for Hybrid 1 such that the overall cost is reduced. There-
fore, for most cryptographic use cases, Hybrid 1 can 
outperform the dual attack, regardless the secret distribu-
tion. We further assert that optimal blocksize of the BKZ 

1  NIST-PQC process has been running for 4 years. Finalists (and also the 
alternate candidates) and their parameters are considered mature and stable, 
and the security estimations are fairly conservative: even a few bits improve-
ment on an individual candidate may be considered as a valid contribution.
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decreases linearly as the guess dimension increases, i.e., 
Heuristic 3, and use BKZ simulator to validate this asser-
tion. This allows us to derive a formula to estimate the 
improvement of Hybrid 1 compared to the dual attack 
on arbitrary secrets.

Before proceeding further, let us give our intuition of 
Theorem 1. When the guessing dimension r is increased, 
the determinant of the lattice in the hybrid attack will be 
reduced. Hence, we can use a larger root Hermite fac-
tor (which implies a smaller β ) to produce a short vec-
tor, denoted by (w, v) , of a similar ℓ2-norm. Note that 
although each coefficient of (w, v) indeed increases, the 
ℓ2-norm remains unchanged (since the lattice dimension 
drops). From a dual attack’s standpoint, Heuristic 2 says 
that the advantage only cares about the ℓ2-norm of (w, v) , 
rather than its individual coefficients. Hence, so long as 
this ℓ2-norm remains stable, the success rate of the dual 
attack component is intact. We also remark that this is 
a key difference between a hybrid primal attack and a 
hybrid dual attack.

Our Hybrid 2 further improves upon Hybrid 1 with 
optimal pruning. This method works for center limited 
distributions that are common to most cryptosystems. 
Note that a main obstacle of hybrid dual attacks for gen-
eral secrets is the large secret space. The subtlety here is 
to find a better approach to guess instead of exhaustively 

searching. Straightforward methods, such as partition-
ing the search space, reduce the success probability of 
the attack (significantly). Our Hybrid 2 with a fine-tuned 
pruning allows for a high success probability over a fixed 
number of secrets; while having a minimal impact on the 
overall cost.

To achieve this, we present an algorithm to guess the 
secret with optimal success probability when the num-
ber of guesses is bounded. More precisely, we partition 
the secret space into ordered classes, sorted by the prob-
ability of a candidate being the correct secret. Then we 
greedily choose candidates from the class with the high-
est probability when the number of guesses permits. We 
give a theoretical analyses of this approach, as well as its 
impact on Hybrid 2; and show the advantage of Hybrid 
2 over Hybrid 1.

As an orthogonal line of optimization, we also give an 
efficient algorithm for matrix multiplication which can 
be seen as a non-trivial generalization of the algorithm in 
Espitau et al. (2020). Our improved algorithm decreases 
the computation time for each guess; consequently, we 
increase the number of guesses, given a fixed cost model. 
To be a bit more specific, assuming an integer multiplica-
tion takes a unit time, for an M × r matrix of arbitrary 
entries, and a r × ℓr matrix whose columns consist of all 
vectors from Qr , where Q is a set of ℓ numbers, Espitau 

Table 2  Bit-security estimations under Core-SVP Model

* Data for “Ours” uses Hybrid 2m estimator. �dual is the improvement over dual attack. �claim is the improvement over the claimed results.

* For a fair comparison, data for “Dual” also comes from our estimator.

* The claimed results of Frodo use a different cost model, thus we do not compare our results with the claimed results

Name Sec. Claim Assumption 1 Assumption 2

level Dual Ours �dual �claim Dual Ours �dual �claim

Kyber512 1 118 117 114 −3 −4 122 119 −3 +1

Kyber768 3 182 181 175 −6 −7 188 182 −6 0

Kyber1024 5 256 253 245 −8 −11 263 254 −9 −2

Saber512 1 118 117 114 −3 −4 122 119 −3 +1

Saber768 3 189 189 184 −5 −5 196 191 −5 +2

Saber1024 5 260 258 250 −8 −10 268 260 -8 0

Dilithium1024 2 123 123 121 −2 −2 126 124 −2 +1

Dilithium1280 3 182 181 179 −2 −3 186 183 −3 +1

Dilithium1792 5 252 251 246 −5 −6 257 252 −5 0

Frodo640 1 150 141 139 −2 – 147 145 −2 –

Frodo976 3 215 205 202 −3 – 212 209 −3 –

Frodo1344 5 280 270 264 −6 – 278 272 −6 –

NTRULPrime653 1 130 130 125 −5 −5 135 129 −6 −1

NTRULPrime761 2 155 155 148 −7 −8 161 153 −8 −2

NTRULPrime857 2 176 176 168 −8 −6 183 174 −9 −2

NTRULPrime953 3 197 195 187 −8 −10 202 193 −9 −4

NTRULPrime1013 4 210 209 200 −9 −10 217 207 −10 −3

NTRULPrime1277 5 271 269 256 −13 −15 279 264 −15 −7
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et al. (2020)’s algorithm improves the matrix multiplica-
tion cost from O(M · ℓr · r) to O(M · ℓr) . However, this 
algorithm is only applicable to matrices whose columns 
form the whole guessing space without pruning. We gen-
eralize it to all closed matrices (see Def.  3). We remark 
that this optimization can be used for both Hybrid 1 and 
Hybrid 2. We refer to the attacks with this additional 
optimization by Hybrid 1m and Hybrid 2m.

We conclude this section with a final remark. The 
advantage of Hybrid 1 and Hybrid 2 over standalone 
dual attack is independent of the underlying BKZ cost 
model and the assumption on the length of short vectors 
produced by BKZ. For example, Hybrid 1 will always 
out-perform dual attack, for core-SVP model or Practi-
cal model; the actual gain will vary depending on the cost 
model and the assumption, nonetheless. For consistency 
and a fair comparison, we will adopt the core-SVP model 
and Assumption 1 throughout the rest of the paper, 
unless otherwise stated.

Organization
We begin with some preliminaries in "Preliminaries" sec-
tion. In "Hybrid attack on arbitrary secrets" section we 
present the hybrid attack on arbitrary secrets (Hybrid 1) 
and show its advantage over the standalone dual attack. 
In "Hybrid dual attack with optimal pruning" section we 
present the method of optimal pruning in the guessing 
phase for Hybrid 2 and analyze the advantage of Hybrid 
2 over Hybrid 1. We give an additional efficient matrix 
multiplication in "An additional optimization" section. 
In "Security estimations" section, we conclude our paper 
with estimations for 5 NIST-PQC candidates.

Preliminaries
Notations
Logarithms are base 2 if not stated otherwise. We write 
ln for the natural logarithm. We denote vectors in bold, 
e.g. v and matrices in upper-case bold, e.g. A . The Euclid-
ean norm of a vector v ∈ R

m is ||v|| . We denote by �·, ·� 
the usual dot product of two vectors. For a compact set 
S ∈ R

n , we denote by U(S) the uniform distribution over 
S.

Lattices and lattice reductions
Lattice
A lattice is a discrete additive subgroup of Rm for 
some m ∈ N . In this case, m is called the dimen-
sion of the lattice. A lattice � is generated by a basis 
B = {b1, . . . ,bn} ⊂ R

m which is a set of n linearly inde-
pendent row vectors and � = �(B) can be represented as

We say that the rank of the lattice is n and its dimension 
is m. If n = m , the lattice is called a full-rank lattice.

For the lattice � = �(B) , its fundamental parallelepi-
ped is defined as

The determinant of � = �(B) denoted by det(�) is 
defined as the m-dimensional volume of its fundamental 
parallelepiped.

A non-zero vector in a lattice � that has the minimum 
norm is named as the shortest vector. The norm of the 
shortest vector is denoted as

Lattice reductions
When given as input some basis of a lattice, a lattice 
reduction algorithm is to find a basis that consists of rela-
tively short and relatively pairwise orthogonal vectors. 
The quality of basis returned by a lattice reduction algo-
rithm is characterized by the Hermite factor δm0 :

where b1 is the first vector in the output basis. Refer to δ0 
itself, we call it the root-Hermite factor.

The BKZ algorithm (Chen and Nguyen 2011) is a com-
monly used lattice reduction algorithm.

Heuristic 1  BKZ with blocksize β yields root-Hermite 
factor

This heuristic is experimentally verified in Chen (2013).

BKZ cost models
To estimate the runtime of BKZ, there are several dif-
ferent cost models. The main differences between them 
are (1) whether they choose sieving or enumeration as 
the SVP oracle and (2) how many calls to the SVP oracle 
are expected to produce a vector of length δm0 · det(�)

1
m , 

where δ0 is the root-Hermite factor, m is the dimension of 
lattice � . See (Albrecht et al. 2018) for more details.

�(B) = B · Zm =







�

i∈[n]
zi · bi : zi ∈ Z







.

P(B) = B ·
�

−1

2
,
1

2

�n

=







�

i∈[n]
ci · bi : ci ∈ [−1

2
,
1

2
)







.

�1(�) = min
v∈�,v �=0

||v||.

δm0 = ||b1||
det(�)

1
m

,

δ0 ≈
(

β

2πe
(πβ)

1
β

)
1

2(β−1)

.
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Let us first list relevant cost models in this paper. As 
mentioned earlier, we will be focusing on the core-SVP 
model with sieving (Alkim et al. 2016).

We will also briefly compare with the practical model, 
used by, for example (Albrecht 2017), where the number 
of calls is 8m rather than 1.

Note that the classical and quantum complexity of siev-
ing are from Becker et al. (2016) and Chailloux and Loyer 
(2021),respectively.

In addition, when using sieving as the SVP oracle, Alkim 
et al. (2016) made an assumption on the output short vec-
tors from BKZ. Alkim et al. (2016) pointed out that a siev-
ing algorithm maintains a list of 20.2075β vectors. When 
the sieving algorithm terminates, the list of vectors should 
be of approximately same length as the final output.

Assumption 1  (Alkim et al. 2016) When using sieving as 
the SVP oracle, the BKZ algorithm with blocksize β pro-
vides 20.2075β short vectors in one run, and they are almost 
as short as the shortest one produced by BKZ algorithm.

This assumption has been adopted by many LWE 
related proposals in round 3 finalists of NIST [38]: see 
Section 5.1.3 of the supporting documentation for Kyber, 
Section  5.2.3 for Frodo, Dilithium follows (Alkim et  al. 
2016); also see Section 6.1 of D’Anvers et al. (2018) and 
Section 2.3 of Espitau et al. (2020). To give a fair compari-
son, we follow this line of work and adopt this assump-
tion when analyzing the schemes in "Security 
estimations" section. Nonetheless, we note that Assump-
tion  1 is very optimistic on the attacker’s capability. In 
practice, most of the output vectors from sieving could 
be 

√

4
3  longer than the shortest one.

Assumption 2  (Ducas 2018) When using sieving as the 
SVP oracle, the BKZ algorithm with blocksize β provides 
20.2075β short vectors in one run, and most of them are 
√

4
3  longer than the shortest one produced by BKZ 

algorithm.

For consistency, we will focus on Assumption  1 
throughout the rest of the paper, except for Section 3.5.

We emphasize that Assumptions  1 and 2 margin-
ally affect the quality of our improvement. They do not 

TBKZ(m,β) =
{

20.292β , classical

20.257β , quantum

TBKZ(m,β) =
{

8m · 20.292β+16.4, classical

8m · 20.257β+16.4, quantum

change the fact that hybrid dual attacks are better than 
dual attacks. More concretely, under Assumption 1, the 
improvement of Hybrid 2m over dual attack will be 
2-14 bits; this changes to 2-15 bits under Assumption 2. 
See "Security estimations" section for more details.

For completeness, in "Advantage under different cost 
models andassumptions" section, we will compare our 
advantage under three assumptions, namely, Assump-
tions 1 and 2 and the amortized cost method (Albrecht 
2017), where the large number of short vectors are pro-
vided by using LLL instead of sieving. The advantage of 
Hybrid 2m over dual attack under different cost mod-
els and assumptions is given in Table  12.

The learning with errors problem
The learning with errors (LWE) problem, introduced by 
Regev (2009), is a computational problem, whose pre-
sumed hardness (against quantum computers) gives 
rise to a large numbers of cryptographic constructions.

Definition 1  (LWE) Let n, q ∈ N , S be an distribution 
over Zn

q and s ← S be a secret vector. Let χ be a small 
error distribution over Z . Denote LWEn,q,s,χ the prob-
ability distribution on Zn

q × Zq obtained by choosing 
a ∈ Z

n
q uniformly at random, choosing e $←−χ and return-

ing (a, �a, s� + e) ∈ Z
n
q × Zq . Given access to the outputs 

from LWEn,q,s,χ distribution, we define two problems:

•	 Decision-LWE. Given m instances, distinguish 
U(Zn

q × Zq) and LWEn,q,s,χ distribution for a fixed 
s ← S.

•	 Search-LWE. Given m instances sampled from 
LWEn,q,s,χ distribution with fixed s ← S , recover s.

The LWE instances can be presented in the matrix 
form as follows:

with s ← S ,A
$←−Zm×n

q , e
$←−χm,b ∈ Z

m
q .

A useful lemma shows that given instances from 
LWEn,q,s,χ with s ∈ Z

n
q , we can construct normal-

form LWE instances, i.e., the secret follows the error 
distribution.

Lemma 1  (Applebaum et al. 2009) Given the instances 
(a, b = �a, s� + e) sampled from LWEn,q,s,χ with s ∈ Z

n
q , 

we can construct instances of the form (a, b = �a, e� + e) 
with e $←−χn and e $←−χ at the loss of n instances overall.

(1)(A,b = As+ emod q)
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In this paper, we will also be dealing with LWE variant 
problems, such as Ring-LWE, module-LWE and module-
LWR. We will treat those problems as LWE problems, 
following prior cryptanalysis.

Secret distributions
Practical LWE (and its variants) based cryptosystems uti-
lize various secret and error distributions. To list a few,

•	 B+ the distribution on Zn
q where each component is 

independently sampled uniformly at random from 
{0, 1}.

•	 B− the distribution on Zn
q where each component is 

independently sampled uniformly at random from 
{−1, 0, 1}.

•	 B
+
h  the distribution on Zn

q where each component is 
independently sampled uniformly at random from 
{0, 1} with the additional guarantee that the number 
of 1s is h.

•	 B
−
h  where each component is independently sampled 

uniformly at random from {−1, 0, 1} with the addi-
tional guarantee that the number of 1s and −1 s are 
both h.

In this paper, we divide the existing secret distributions 
into two categories: 

1	 Binary/ternary secret with fixed hamming weight,
2	 General central discrete distribution (without fixed 

hamming weight):

Value 0 ±1 ±2 · · · ±t

Probability p0 p1 p2 · · · pt

Note 1  If the number of values is infinite (e.g. the Gauss-
ian distribution), we truncate the distribution at a suit-
able place (also denoted by ±t ). Looking ahead, we will 
treat B− as a category 2 distribution. It shares a same 
behavior as a central limited distribution for our analysis.

Best known attacks on LWE
To date, primal attacks and dual attacks are consid-
ered best known attacks against LWE and it variants. 
Their complexity are approximately the same for most 
cryptosystems.

Primal attack
As mentioned in the introduction, the primal attack is to 
solve the search version LWE by viewing it as a Bounded 
Distance Decoding (BDD) problem. Then the attack 
reduces it to the unique Shortest Vector Problem (uSVP) 
via certain embedding technique, and solves uSVP with 

lattice reduction. We skip the details, since we will not 
focus on primal attacks in this paper.

Dual attack
The dual attack, introduced by Micciancio and Regev 
(2009), is to solve a decision-LWE by reducing it to a 
Shortest Integer Solution (SIS) problem, i.e., trying to 
find short vectors in the lattice

If the input instances are from the LWEs,σ , then, 
b = As+ emod q . In this case, given a short vector w , 
we have

which will follow a modular Gaussian distribution. Oth-
erwise, 〈w,b〉mod q is uniform on [− q

2 ,
q
2 ) . With suf-

ficient number of distinct w vectors, this attack can 
distinguish these two distributions with high probability.

Alkim et al. (2016) presented an improved dual attack 
on normal-form LWE, which tries to solve an inhomoge-
neous SIS problem, and works over the embedded lattice:

Following the same strategy, if the instances are from the 
normal-form LWEs,σ , then we have

In general, (w, v) ∈ �E
dual(A) is produced by BKZ. There 

is an assumption on the quality of this vector.

Assumption 3  (Chillotti et al. 2020; Espitau et al. 2020) 
The coordinates of vectors produced by lattice reduction 
algorithms are balanced, i.e., each coordinate of 
(w, v) ∈ Z

m × Z
n follows a Gaussian distribution of mean 

0 and standard deviation ℓ√
m+n

 , where ℓ = ||(w, v)||.

Under this assumption, the distribution of 
t := �v, s� + �w, e� can be viewed as a Gaussian distri-
bution Gρ with mean 0 and standard deviation ρ = ℓσ 
(Alkim et  al. 2016). Then the maximal variance dis-
tance between modular Gaussian distribution t mod q 
and uniform distribution U(− q

2 ,
q
2 ) is bounded by 

ε = 4 exp(−2π2τ 2) , where τ = ℓσ/q (Alkim et al. 2016). 
According to these, the advantage of the attack is sum-
marized in the following heuristic.

Heuristic 2  ( Alkim et  al. 2016) Given m normal-form 
LWE instances (A,b = As+ emod q) characterized by 
n, σ , q , and a vector (w, v) ∈ �E

dual of length ℓ , the dual 

�⊥
dual =

{

w ∈ Z
m : w · A = 0mod q

}

.

�w,b� = w · (As+ e) = �w, e�mod q,

�E
dual =

{

(w, v) ∈ Z
m × Z

n : w · A = v mod q
}

.

�w,b� = w · (As+ e) = �v, s� + �w, e�mod q.
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attack solves the decision-LWE with advantage 
ε = 4 exp(−2π2τ 2) where τ = ℓσ

q  . The success probability 
of the attack can be amplified to be at least 12 by using 
about 1/ε2 many such vectors (w, v) ∈ �E

dual of length ℓ.

By Assumption 1, when using sieving as the SVP ora-
cle, the attack needs to repeat BKZ ⌈ 1

20.2075βε2
⌉ times.

This attack (Alkim et al. 2016) was initially designed 
for normal-form LWE. When the secret does not 
match the error distribution, the attack also works 
via the scaling technique (Albrecht 2017). For the 
remaining part of this paper, we will also adopt this 
technique.

Note that the (Micciancio and Regev 2009) dual 
attack (referred to as original dual attack) works for 
arbitrary secrets; while the (Alkim et  al. 2016) dual 
attack (referred to as embedded dual attack) requires 
the secret to be somewhat short, so that 〈v, s〉 is small 
and distinguishable from uniform. Nonetheless, for 
practical cryptosystems (all NIST-PQC candidates 
use small secrets) the embedded dual attack is more 
efficient than the original dual attack. Therefore, for 
the remaining part of the paper, a (hybrid) dual attack 
stands for a (hybrid) embedded dual attack, unless oth-
erwise stated.

Hybrid attack on arbitrary secrets
Now we are ready to proceed to our hybrid dual attack. 
We start with a naive strategy where we conduct 
“guess” via exhaustive search. We name this strategy 
Hybrid 1. We first give the framework of our hybrid 
dual attack (which is the same as that in Albrecht 
2017) and its analysis in "The framework" and "Anal-
ysis" sections. In "The advantage of the hybrid dual 
attack" section, we conduct an extensive analysis of the 
advantage of Hybrid 1 over a standalone dual attack, 
which is our main contribution in this section. We 
further derive a formula to predict the improvement 
of Hybrid 1 in "Predicting improvement of Hybrid 1" 
section and compare the improvement under different 
cost models and assumptions in "Advantage under dif-
ferent cost models andassumptions" section. Finally, 
we study Hybrid 1 on LWE with uniform secrets in 
Section 3.6.

The framework
A hybrid attack has two components, a lattice reduc-
tion phase and a guessing phase. We start with the 

lattice reduction phase. Given m LWE instances 
(A,b = A · s+ emod q) as input, we divide the secret 
vector s and public matrix A into two parts, parameter-
ized by r:

Looking ahead, our guessing phase works over vectors of 
dimension r, and tries to identify the coefficient of s1.

Similar to the dual attack, we define a lattice over A2:

�E
dual(A2) has a dimension of d = m+ n− r and a vol-

ume of qn−r with high probability. Then, we assume that 
with lattice reduction algorithms we will obtain some 
short vector(s) (w, v) ∈ �E

dual that allow us to calculate 
〈w,b〉 as

This can be seen as a new LWE instance 
(â, b̂ = �â, s1� + ê) , where

Next we proceed to the guessing phase. Denote 
by s̃1 a candidate from the guessing space. Then, 
ê = b̂− �â, s̃1�mod q is from a modular Gaussian distri-
bution if s̃1 is a correct guess. Otherwise ê must follow 
the uniform distribution on Zq.

In order to recover s1 completely, we will require a 
large number of short vectors from �E

dual(A2) . This can 
be obtained from the lattice reduction phase, assuming 
Assumption 1.

We present the pseudo-code of the attack in Algo-
rithm  1. Here we denote M the number of short vec-
tors we need to sample from the dual lattice and denote 
N the number of calls to BKZ. Both values will be dis-
cussed in "Analysis" section. In addition, we denote C a 
collection of the selected candidates s̃1 and let L = |C| . 

s =
(

s1

s2

)

∈ Z
r
q × Z

n−r
q ,

A = (A1,A2) ∈ Z
m×r
q × Z

m×(n−r)
q .

�E
dual(A2) =

{

(w, v) ∈ Z
m × Z

n−r : wA2 = v mod q
}

.

�w,b� = w(As+ e)

= wA1s1 + wA2s2 + �w, e�
= wA1s1 + �v, s2� + �w, e�mod q.

(2)
b̂ = �w,b�mod q,

â = wA1 mod q,

ê = �v, s2� + �w, e�mod q.
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Note 2  We note that the framework is not efficient for 
LWE with large or uniform secrets, as the number of 
samples we need will be very large. However, this inef-
ficiency is note caused by the hybrid framework, but by 
embedded dual attack itself. We will provide methods 
to deal with this problem in "Hybrid attack on uniform 
secrets" section.

Analysis
The success probability of the attack is the product of two 
quantities: 

1	 ps := the success probability of the distinguish algo-
rithm,

2	 pc := the probability that C contains the right s1.

We present the analysis of ps in the remaining part of 
this section. The analysis of pc is deferred to "Guess with 
pruning" section as it depends on the specific secret 
distribution.

In Algorithm 1, The goal of lines 6-11 is to recover s1 
using the new LWE instances. For each guessed candi-
date s̃1 , we calculate the M distinct quantities  ẽi . If the 
input instances are from LWEs,σ , the distribution of ẽi 
must follow a modular Gaussian distribution otherwise 
ẽ is uniform in [− q

2 ,
q
2 ) . In order to recover s1 , we need 

to correctly identify the distribution for all candidates 
s̃1 ∈ C.

Denote p̃s the success probability of correctly guessing 
the distribution of one candidate  s̃1 , then the success 
probability of recovering s1 will be p̃Ls  . Similar to the dual 
attack, using majority vote, we can amplify the success 
probability from 12 + ε

2 to p̃s = 1− exp
(

− ε2

2 M
)

 by using 
M short vectors. If we target a success probability of 
ps = 1− 1

2κ  for the hybrid dual attack, for a given secu-
rity parameter κ , then we have p̃Ls � 1− 1

2κ  . Therefore, 
we can derive M from 

(

1− exp
(

− ε2

2 M
))L

≈ 1− 1
2κ .

As a result, when there are M ≈ κ+ln L
ε2

 short vectors 
(wi, vi) ∈ �E

dual(A2) of length  ℓ , the success probability 
of Algorithm  1 is ps = 1− 1

2κ  , where κ is the security 
parameter.

The cost of the attack is the sum of two main 
components: 

1	 N · TBKZ := N calls to BKZ on �E
dual(A2),

2	 Tguess := evaluate all L guesses s̃1 ∈ C using the M 
instances.

According to Assumption  1, we need repeat the BKZ 
algorithm for N = ⌈ M

20.2075β
⌉ times to produce M short 

vectors. If we use a naive way to evaluate all L guesses, 
we will have Tguess = M · L · r . We will give an improved 
algorithm for Tguess in "An additional optimization" 
section.

In summary, under Assumption  1 and Heuristic  2 for 
dual attacks, we have the results for hybrid dual attacks 
as follows.

Lemma 2  Given (A,b) ∈ Z
m×n
q × Z

m
q  , the hybrid dual 

attack using Algorithm  1 can decide whether they are 
LWE instances (A,b = As+ e)mod q characterized by 
n, σ , q or they are uniformly random. The success prob-
ability  p = pc · ps , where pc is presented in"Guess with 
pruning"   section andps = 1− 1

2κ  , where κ is a security 
parameter. The cost of dual attack is calculated as

where N = ⌈ M
20.2075β

⌉ is the number of repeated times of the 
BKZ algorithm, M = κ+ln L

ε2
 is the number of short vectors 

in the dual lattice, and Tguess = M · L · r (see"An addi-
tional optimization" section for an improvement of Tguess).

Remark 1
We will take κ as an arbitrary number from [0, 10] for the 
rest of the paper. In "Security estimations" section when 
we estimate schemes we set κ = 7 such that ps > 0.99 , the 

T = N · TBKZ + Tguess,
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same as Albrecht et al. (2018). Notice that the value of κ 
makes little difference for the final estimations.

The advantage of the hybrid dual attack
We analyze the advantage of the hybrid dual attack by 
comparing the dual attack and Hybrid 1 (Algorithm  1 
with exhaustive search). Since we always set the probabil-
ity ps = 1− 1

2κ  , it is safe to ignore ps . Then we just need 
to compare the running time.

Let SV be the number of short vector provided by 
BKZ algorithm with blocksize β using sieving as the SVP 
oracle. We first show that for dual attack and Hybrid 
1, under the optimal parameters, we should repeat the 
BKZ only once, i.e., N = 1 . Moreover, the number of 
short vectors produced by sieving (SV) should be almost 
the same as the number of short vectors required (M) to 
achieve the desired success probability ps.

Lemma 3  If β ≥ 50 , for a fixed r such that 
Tguess ≤ 250 · TBKZ,2 the optimal β that minimizes 
N · TBKZ will satisfy N = 1 and SV

20.2075
≤ M ≤ SV .

Proof  (Proof sketch) The full proof is deferred to 
Appendix A.3.1. We first assume β is a real number and 
show that the optimal β will satisfy M(β) = SV (β) and 
hence N = 1 . Then the claim of the lemma follows when 
β has to be an integer. Let β∗ be the real number such that 
M(β∗) = SV (β∗) . We consider two cases when β ≥ β∗ 
and β ≤ β∗ , and show that in both cases the optimal β 
is β∗ . The first case when β ≥ β∗ is easy as in this case 
N = ⌈ M(β)

SV (β)
⌉ = 1 . For the second case when β ≤ β∗ , we 

consider the continuous function f (β) corresponding to 
N · TBKZ defined as follows:

We can show that f (β) is decreasing in β . Then the opti-
mal β minimizing N · TBKZ is the maximum β such that 
β ≤ β∗ , i.e., the optimal β is β∗ .�  �

Next, we study the influence of the guessing dimension 
r on the number of required short vectors M = κ+ln L

ε2
 . In 

f (β):= M(β)

SV (β)
· TBKZ(β)

= M(β)

20.2075β
· 20.292β

= M(β) · 20.0845β .

Hybrid 1 when we guess r dimensions, the benefit is that 
the advantage ε will be increased, which will decrease M. 
On the other hand, the number L of guessing candidates 
increases with r, which will increase M. The key problem 
is how does M change when r increases. Our estimator 
shows that for all 5 schemes tested in "Security estima-
tions" section M decreases when r increases. This can be 
intuitively explained by the fact that ln L = r ln R , where 
R is the size of the support for each entry of the secret, 
increases linearly in r while ε2 increases exponentially in r 
(from 2−O(n) when r = 0 to O(1) when r = n).

We assume for now that M is decreasing in r and use 
this to explain why Hybrid 1 outperforms dual attack. 
Then, we will show that this condition, M is decreasing in 
r, is satisfied by most cryptosystems.

Lemma 4  If M is decreasing in r (when β is fixed), then 
when we increase the guessing dimension r, the optimal 
BKZ blocksize β that minimizes N · TBKZ and maintains 
the same level of success probability will be reduced.

Proof  To ease the analysis, we will take β as a real num-
ber (instead of an integer), and show that the optimal 
(real number) β will always be reduced when r increases. 
According to Lemma  3, the optimal β will always sat-
isfy N = 1 and M = SV ,3 which means that the opti-
mal β will maintain M = SV  when we increase r. Since 
decreasing β will increase M and decrease SV = 20.2075β , 
and we assume that M will be reduced when r increases, 
to maintain M = SV  , the optimal β will be reduced when 
r increases.�  �

Now we can explain why Hybrid 1 outperforms the 
dual attack. For dual attack we have Tdual = TBKZ−d and 
for Hybrid 1 we have THybrid 1 = TBKZ−h + Tguess . Note 
that we can take dual attack as a special case of Hybrid 
1 with r = 0 and Tguess = 0 . According to Lemma 3 and 
Lemma  4, in Hybrid 1 we can increase r and decrease 
β while maintaining SV ≈ M and N = 1 . As a result, 
TBKZ is decreased and Tguess is increased. As long as Tguess 
does not exceed TBKZ , we can increase r almost “for free” 
(at the expense of at most one bit when Tguess = TBKZ ) 
and decrease β such that the overall running time 
THybrid 1 = TBKZ−h + Tguess decreases. Our simulations 
show that the optimal r and β for Hybrid 1 will satisfy 
TBKZ ≈ Tguess . Figure  1 shows how parameter changes 
from dual attack to Hybrid 1.

2  This guarantees that we don’t guess too much. In practice, we usually have 
Tguess ≤ TBKZ . For example, all 5 schemes tested in   "Security estimations" sec-
tion haveTguess ≤ TBKZ under the optimal parameters. So it is safe to assume 
that Tguess ≤ 250 · TBKZ.

3  Lemma 3 claims SV
20.2075

≤ M ≤ SV  as β is an integer. The proof of Lemma 3 
shows that M = SV  when β is taken as a real number.
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Example
To give a more intuitive explanation, we take Kyber1024 
as an example and use a figure to show how TBKZ , Tguess , 
and THybrid 1 change as r increases. In fact, Tguess and 
THybrid 1 depend on both r and β . However, since we need 
to guarantee N = 1 (according to Lemma 3), the value of 
β can be determined once the value of r is chosen. This 
allows us to estimate TBKZ , Tguess , and THybrid 1 as func-
tions of r. The results are shown in Fig. 2. As expected, 
as r increases (and β decreases), Tguess increases and TBKZ 
decreases. Hence, as r increases, THybrid 1 first decreases 
and then increases, and the optimal THybrid 1 is achieved 
when the two lines cross. From Fig. 2, we can see that the 
cross point ( THybrid 1 ) is smaller than the starting point, 
which has r = 0 and represents a standalone dual attack.

M is decreasing in r
Recall that M = κ+ln L

ε2
 and the intuition for the 

decreasing is that ln L = r ln R increases linearly in r 
while ε2 increases exponentially in r. However, con-
sider the extreme case when r increases from 0 to 1, 
if we set κ = 1 , then κ + ln L is increased from 1 to 
1+ ln R , which is a vary large increase. Therefore, when 
r is very small, M could be actually increasing in r, but 
in the long run, M is decreasing in r. In this part, we 
show that when r ≥ 2 M is decreasing in r, under two 
minor assumptions. First, we assume β ≥ 150 , which 
implies that the cost of the BKZ is larger than 44 bits. 
This covers most cryptographic use cases, specifically, 
all 5 schemes tested in "Security estimations" section, 
whose optimal β is larger than 300. The second assump-
tion is that the optimal number m of equations for the 
dual attack is at least n2 , which is again satisfied by most 
cryptographic use cases, and for all 5 schemes tested in 
"Security estimations" section, the optimal m is close to 
n. We state this formally in the following assumption.

Assumption 4  Assume β ≥ 150 and the optimal 
number m of equations for the dual attack satisfies that 
m ≥ n

2 .

Now we can show that M decreases when r increases.

Lemma 5  Under Assumption  4, the number of short 
vectors required to achieve the success probability ps , 
denoted by M, is decreasing in the guessing dimension r 
for any r ≥ 2.

Fig. 1  Parameter relations and their value changes from dual attack to Hybrid 1. An arrow “ → ” (respectively, “ ��� ”) from node A to node B means that 
increasing A will increase (respectively, decrease) B. “ ↑ ” and “ ↓ ” shows the direction that the values change from the dual attack to Hybrid 1 when r is 
increased and β is decreased while maintaining M ≈ SV  and N = 1 unchanged

Fig. 2  Example: THybrid 1 , TBKZ and Tguess for Kyber1024
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The proof is deferred to Appendix  A.3.2. The idea 
is to firstly upper bound M(r+1)

M(r)  by a function that only 
depends on β . Then it becomes easy to derive the condi-
tion on β that ensures M decreases with r.

Combining Lemmas  4 and 5, we get the following 
conclusion.

Theorem 1(Formal) For Hybrid 1 under the core-
SVP model, for any LWE instance with arbitrary secrets, 
under Assumption  4, the optimal BKZ blocksize β that 
minimizes N · TBKZ and maintains the same level of suc-
cess rate is decreasing in the guessing dimension r when 
r ≥ 2.

Predicting improvement of Hybrid 1
We now proceed to a predictor that estimates the advan-
tage of Hybrid 1 over dual attacks under the aforemen-
tioned core-SVP model. We give our theoretical results in 
Theorem 2. We also compare the predictor’s outputs (i.e., 
advantage + dual attacks) with our Hybrid 1 estimator, 
for sanity checking the correctness of the predictor.

Let us first expand the result of Theorem 1. Our simula-
tions show that, for all 5 schemes, the value of the optimal 
β decreases linearly as r increases. However, the slopes 
differ among the schemes. Intuitively, the slope should be 
close to β

∗
n  , where β∗ is the optimal β for dual attack, as 

the optimal β decreases from β∗ to 0 if we increase r from 
0 to n. We could have computed the slope from m, n, σ , b 
and q, but it’s hard to derive a concrete formula from 
them. For simplicity, our predictor uses pre-computed 
slopes that we derived from our simulations. As a con-
sequence, our predictor relies on the following heuristic.

Heuristic 3  Fix N = 1 . The optimal β decreases linearly 
as r increases. The slope, denoted by α , for 5 schemes are 
shown in Table 10 in Appendix A.2.

Next, our simulations show that the optimal r and β 
for Hybrid 1 will satisfy TBKZ ≈ Tguess , i.e., we should 
increase r till the cost of guessing is about the same 
as the cost of BKZ. To ease analysis, we will assume 
TBKZ = Tguess and take parameters r and β as real num-
bers in our predictor. Since N = 1 (Lemma  3), we have 
THybrid 1 = 2TBKZ = 2Tguess . Note that this approxima-
tion differs from the optimal THybrid 1 by at most one bit, 
since increasing r will increase Tguess and decreasing r will 
increase β , which will increase TBKZ.

Finally, we are ready to present our predictor, captured 
via Theorem 2.

Theorem  2  Let R be the size of the support for each 
entry of the secret and let b1 be the optimal β for the dual 
attack. Using Heuristic 3 and assuming TBKZ = Tguess for 
Hybrid 1, then the cost of Hybrid 1 is 

THybrid 1 = 20.292b2+1 , where b2 = b1
log R

log R−0.0845α is the 
optimal β for Hybrid 1 and α is the slope, and the guess 
dimension is r = 0.0845b2

log R .

Proof  According to Lemma  3, we have 
M = SV = 20.2075b2 (when β is taken as a real number). 
Using Tguess = TBKZ = 20.292b2 , we get

Since L = Rr , we get

According to Heuristic 3,

Combining r = 0.0845b2
log R  and r = b2−b1

α
 , we get

� �

We use the result of Theorem 2 to predict the bit-secu-
rity of all 5 schemes. The Predictor data is computed as 
the sum of dual attack and the predicted advantage. The 
Predictor results are very close to those from our Hybrid 
1 estimator, with a difference of one bit in worst cases. 
The results can be found in Table 10 in Appendix A.2.

Advantage under different cost models and assumptions
In this section, we take Kyber1024 as an example to 
compare the improvement of Hybrid 1 over dual attack 
under different cost models, the core-SVP model and the 
practical model, and different assumptions, Assump-
tion  1, Assumption  2, and Amortising cost method 
(Albrecht 2017) (see "Lattices and lattice reductions" 
section).

In the proof of Theorem  2, we have 
L = TBKZ

SV = 20.0845b2 . This means the guessing space (L) is 
determined by the gap between the running time of BKZ 
( TBKZ ) and the number of short vectors produced by 
sieving (SV). In addition, Theorem  2 shows 
b2 = b1 · log R

log R−0.0845α , then b1 − b2 = b1 · −0.0845α
log R−0.0845α 

(recall that α < 0 ). If we switch to Assumption 2, then b1 
becomes larger, and hence the improvement of Hybrid 1 
over dual attack ( b1 − b2 ) will be larger.

L = Tguess

M
= TBKZ

SV
= 20.0845b2 .

r = 0.0845b2

log R
.

b2 − b1 = αr ⇒ r = b2 − b1

α
.

b2 = b1 ·
log R

log R− 0.0845α
.
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Taking Kyber1024 as an example, Fig.  3 shows TBKZ 
and Tguess as a function of the guessing dimension r 
under different cost models and assumptions/method. 
For Assumptions  1 and 2, the advantage of Hybrid 1 
is apparent under both cost models. The advantage is 
slightly larger under the practical model since here the 
gap between TBKZ and SV is 8d · 20.0845β+16.4 , where d is 
the dimension of the dual lattice, which is greater than 
the gap 20.0845β under the core-SVP model.

For amortized cost method, we first run BKZ once and 
then re-randomize the basis and run LLL M times to pro-
duce M short vectors (see Albrecht et al. 2017 for details). 
The optimal blocksize will balance the cost of BKZ and 
the cost of repeated LLL. Assume these two costs are 
equal, then the overall cost to produce M short vectors 
is close to the cost of repeating LLL M times. Then the 
gap between the overall cost and M is essentially the cost 
of running LLL once. Consequently, under the core-SVP 
model, the advantage of Hybrid 1 is very small as the 
additional cost from LLL under this cost model is only 
0.584 bit; while under the practical model, the advantage 
of Hybrid 1 is larger as the cost of LLL under this cost 
model becomes larger.

Hybrid attack on uniform secrets
The framework in "The framework" section is not effi-
cient for LWE with large or uniform secrets, as the num-
ber of samples we need will be large. Essentially, there are 
two methods to deal with uniform secrets: 

1	 Attack the LWE samples directly with the original 
dual attacks;

2	 Convert the uniform LWE samples into normal-form 
LWE samples (Lemma  1), and then use embedded 
dual attacks.

The second option requires more samples, but is 
believed to be more efficient in general when the num-
ber of samples permits. Via normalizing the uniform 
LWE, we obtain an LWE problem with short secrets. 
Hence we can adopt the strategy in "Hybrid attack on 
arbitrary secrets" section. There are also cases where an 
attacker must use the original dual attacks (perhaps due 
to the limitation of samples, etc.). We emphasis that 
this setting (uniform secret and limited samples) does 
not reflect any real-world cryptosystem. Nonetheless, it 
is interesting to show that hybrid dual attacks are still 
better than dual attacks with both approaches, from a 
theoretical point of view.

To see this, we start with the first option. We can 
still adopt the strategy in "Hybrid attack on arbitrary 
secrets" section, and combine an original dual attack 
with guess to obtain a hybrid original dual attack. In 
addition, we can still invoke the predictor from Theo-
rem 2, via setting R = q , and α to a value close to −1 for 
simplicity (Table 10 shows that α is close to -1 and the 
scope is (−0.6,−1) . The advantage would be larger if we 
have larger absolute value of α.). According to Theo-
rem 2, we have

Fig. 3  Example: TBKZ and Tguess as a function of r for Kyber1024 under different cost models and assumptions
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For a larger q the cost of guessing even a single entry 
becomes too high. Therefore, we can guess very few 
entries and the improvement is limited. Taking Regev’s 
original scheme (Regev 2009) as an example, where 
q ≈ n2 and σ = q

2π
√
n log2 n

 , we consider two different 
restrictions on the number of samples: the original one 
m ∈ (0, n log q) and m ∈ (0, 2n) . We see marginal 
improvements between 1 and 3 bits in Table 3.

For the second option, we transform the samples with 
s uniform in Zn

q to normal-form ones at a loss of n sam-
ples. The advantage of this method is that as the secret 
is small, we can guess more entries than the previous 
option. Similarly, we present the estimations in Table  4. 
We see improvements across all parameter sets. Notice an 
anomaly from Regev1024: it occurs when there isn’t suffi-
cient number of samples. The advantage of hybrid embed-
ded dual attack over embedded dual attack is surprisingly 
large when number of samples is (extremely) limited.

Tables  3 and 4 show that hybrid dual attack always 
outperforms dual attack for uniform secrets, regard-
less the number of samples.

In addition, the advantage of hybrid dual attacks 
increases (sometimes drastically) with the increase of 
n, when the number of samples is limited ( m ∈ (0, 2n)).

Hybrid dual attack with optimal pruning
We proceed with our hybrid dual attack combined with 
optimal pruning. We name this strategy Hybrid 2. After 
presenting the method of optimal pruning for different 

r = 0.0845b2

log q
and

b2 − b1 =
b1 · 0.0845α

log q − 0.0845α
≈ −0.0845b1

log q
.

secret distributions in "Hybrid dual attack with optimal 
pruning" section, we analyze the advantage of Hybrid 2 
in "Advantage under different cost models andassump-
tions" section and give a prediction for the improvement of 
Hybrid 2 in "Predicting improvement of Hybrid 2" section.

Guess with pruning
In this section, we show how to choose the optimal subset 
of secret candidates for different secret distributions when 
the hybrid dual attack becomes too expensive or unfea-
sible to guess all candidates. In this scenario, since our 
guess time need to approximate the cost of BKZ (similarly 
to Hybrid 1), we can only guess a limited number of can-
didates. To optimize the success probability pc , we need 
to find a collection of certain number of candidates such 
that its success probability is as large as possible, i.e. we 
want to maximize the success probability when the num-
ber of candidates is limited. This can be formally stated as 
max|C|<c p(C), where C is a collection of guessed candi-
dates, c is the upper limit of |C|, and p(C) = Pr[s1 ∈ C] is 
the probability that the correct s1 is in C.

Note that the optimal parameters that minimize the 
target 

(

N · TBKZ + Tguess

)

/pc may result in pc <
1
2 . 

To boost the success probability pc , we can repeat the 
attack by guessing different parts (r dimensions) of the 
secret. We can repeat the attack for at least ⌊nr ⌋ times. 
Since the optimal guess strategy may ignore some candi-
dates with low probability, it could happen that for some 
instances the attack fails for all ⌊nr ⌋ times. However, the 
probability for this to happen is very low as long as pc is 
not too small. For all LWE-related proposals we test in 
"Security estimations" section, the probability that the 
attack fails after repeat is at most 2−19 under the optimal 
parameters, with an exception of NTRULPrime1277, for 
which the fail probability is 0.01. Therefore, the attack is 
valid from a practical point of view.

In the rest of the section, we will look into three dif-
ferent distributions.

Pruning for B+
h

Let s ∈ B
+
h  be a binary secret vector with hamming weight 

h. Denote  S the set of all the candidates of s1 ∈ {0, 1}r . 
Let kmin and kmax be the lower and upper bound of the 
hamming weight of candidates in S. It is easy to see that 
kmin = max

{

0, h+ r − n
}

 and kmax = min
{

h, r
}

.
Our goal is to greedily form the set C with candidates 

of high(est) success rate from S. To this end, we first 
partition the set S into several subsets according to the 
hamming weight. For each integer k ∈ [kmin, kmax] , let 
Sk be the set of candidates from S with hamming weight 
k. Then S =

⋃

k∈[kmin,kmax] Sk . Next, we can compute the 
order of Sk , denoted by N(k), and the probability that 

Table 3  (Hybrid) original dual attack

Regev m ∈ (0, 2n) m ∈ (0, n log q)

n Dual Hybrid Dual Hybrid

256 63 62 56 56

512 150 149 135 134

1024 343 340 306 305

Table 4  (Hybrid) embedded dual attack

Regev m ∈ (0, n) m ∈ (0, n log q− n)

n Dual Hybrid Dual Hybrid

256 63 61 56 55

512 151 147 134 133

1024 631 570 306 303
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Sk contains the correct s1 , denoted by p(k) for each 
k ∈ [kmin, kmax] as follows:

Since candidates in the same set Sk have the same proba-
bility to be the correct s1 , the probability for each candi-

date in Sk to be s1 is p(k) = p(k)
N (k)

=

(

n− r
h− k

)

(

n
h

) . Finally, 

based on p(k) , we can greedily choose candidates in Sk 
with the highest p(k) to C till |C| ≈ c . It is easy to see that 
this method achieve the optimal success probability as 
every time when we put a vector into C, it is the one with 
the highest success probability p(k) in S\C.

Note 3  If n > r + 2h , then it holds that 
(n− r)/2 > h− k , and hence p(k) decreases as k 
increases. Therefore, in this case, we should always start 
guessing candidates from Sk with the lowest hamming 
weight. Accordingly, the guessing time and success prob-
ability are

where h∗ satisfies 
∑h∗

i=1N (i) < c and 
∑h∗+1

i=1 N (i) > c.

Pruning for B−
h

Let s ∈ B
−
h  be a ternary secret vector with h number of 1 

and h number of −1 . Similar to the case of binary secret 
vector, let S(k+,k−) be a subset of S where k+ and k− denote 
the number of 1 and −1 , respectively. The order of S(k+,k−) 
(denoted by N (k+, k−) ) and the probability that S(k+,k−) 
contains the correct s1 (denoted by p(k+, k−) ) are calcu-
lated as

N (k) =
(

r
k

)

and p(k) =

(

r
k

)(

n− r
h− k

)

(

n
h

) .

Tguess = M ·
h∗
∑

i=0

N (i) · i, and pc =
h∗
∑

i=1

p(i),

N (k+, k−) =
(

r
k+

)(

r − k+

k−

)

p(k+, k−) =

(

r
k+

)(

r − k+

k−

)(

n− r
h− k+

)(

n− r − h+ k+

h− k−

)

(

n
h

)(

n− h
h

) .

Also, the probability for each candidate in S(k+,k−) to be 
the correct s1 is

Based on p(k+, k−) , we choose the candidates in S(k+,k−) 
with the highest  p(k+, k−) to C till C ≈ c . Accordingly, 
the guessing time and success probability are

Note 4  If n > r + 3h , then p(k+, k−) decreases when 
k+ + k− increases. Moreover, for a fixed k+ + k− , 
p(k+, k−) decreases as |k+ − k−| increases. Therefore, in 
this case, we should choose the candidates following two 
rules: k+ + k− is minimized, and |k+ − k−| is minimized.

Pruning for central discrete distribution
For a general central discrete distribution with a sup-
port S := {0,±1, . . . ,±t} , we partition all candidates 
in S into subsets according to the appearance of each 
value in S. Denote S(k0,k1,...,kt ) the subset of candidates 
with ki entries being ±i for i ∈ [0, t] . For each subset, its 
order, denoted by N (k0, k1, . . . , kt) , and the probability 
of each candidate to be the correct guess, denoted by 
p(k0, k1, . . . , kt) , can be calculated as

p(k+, k−) = p(k+, k−)

N (k+, k−)
=

(

n− r
h− k+

)(

n− r − h+ k+

h− k−

)

(

n
h

)(

n− h
h

) .

Tguess = M ·
∑

S(i+ ,i−)∈C
N (i+, i−) · (i+ + i−) and

pc =
∑

S(i+ ,i−)∈C
p(i+, i−).

N (k0, k1, . . . kt)

=
(

r
k0

)(

r − k0
k1

)

· · ·
(

r − k0 − · · · − kt−1

kt

)

· 2r−k0

p̄(k0, k1, . . . , kt) = p
k0
0 p

k1
1 . . . k

kt
t .



Page 16 of 27Bi et al. Cybersecurity            (2022) 5:15 

Based on p(k0, k1, . . . , kt) , we choose the candidates 
in S(k0,k1,...,kt ) with the highest p(k0, k1, . . . , kt) to C till 
C ≈ c . Accordingly, the guessing time and success prob-
ability are

The advantage of optimal guess
Now we are ready to analyze the advantage of Hybrid 
2 over Hybrid 1. Similar to the previous comparison in 
"The advantage of the hybrid dual attack" section, it is 
safe to ignore ps as it is close to 1 for both algorithms. 
Recall that we have THybrid 1 = N · TBKZ−h1 + Tguess−h1 
and THybrid 2 =

(

N · TBKZ−h2 + Tguess−h2

)

/pc
Intuitively, in Hybrid 2, our guess dimension r will be 

larger. This decreases blocksize β , and therefore, the cost 
for a single attack is reduced. So long as the advantage 
one gains via Hybrid 2 makes it up to the loss in success 
probability (pc ), pruning will improve the overall cost.

The detailed analysis comes as follows.
We first analyze the relation between the cost THybrid 2 

and the parameters r, β and L, which is shown in Fig. 4. 
Note that the influence of r and β on the cost THybrid 2 is 
almost the same as in Hybrid 1. The only difference is 
that in Hybrid 1 the number of candidates L is directly 

Tguess = M ·
∑

S(i0,...,it )∈C
N (i0, . . . , it) · (i1 + . . .+ it)

pc =
∑

S(i0,...,it )∈C
p(i0, . . . , it).

determined by r since we guess all candidates, while in 
Hybrid 2, L is a free parameter that the attacker can 
choose. This introduces a success probability pc , i.e., the 
optimal probability we can achieve via optimal prun-
ing in "Guess with pruning" section. It’s easy to see that 
increasing r or decreasing L will decrease pc.

A natural next step is to adjust the parameters r,β , L in 
Hybrid 2 to get a lower cost THybrid 2 than that of Hybrid 
1. Recall that in Hybrid 1, we fix N = 1 , and gradu-
ally increase r from 0 (and decrease β accordingly) till 
TBKZ = Tguess . We follow a similar strategy in Hybrid 2 
by fixing N = 1 and gradually increase r. Once a balance 
between TBKZ and Tguess is reached, we gradually decrease 
L (this do not change the condition that TBKZ = Tguess ) 
and compute the corresponding success probability pc . 
We search for the point where the overall cost is mini-
mal. Note that a deciding factor on whether there exists 
a minimal point (other than the starting point of L), in 
other words, whether Hybrid 2 can outperform Hybrid 
1, is the concentration of the secret distribution.

Concentration level
As we will see in "Security estimations" section the 
improvement of Hybrid 2 depends largely on the indi-
vidual secret distribution. For example, for secret distri-
butions that are more centralized, the success probability 
pc are higher. To capture this quantity, we formally define 
a concentration level as a metric to indicate the effective-
ness of our optimal pruning.

Fig. 4  Parameter relations in Hybrid 2 and value changes from Hybrid 1 to Hybrid 2. The attack can choose the value for parameters in red color (i.e., 
β , r and L), which then determine the value for other parameters
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Definition 2  Let g(r, L) be a function of r and L, which 
is the optimal success probability when Hybrid 2 guesses 
L candidates for a secret of dimension r and distribution 
χ , i.e.,

where D(r) is the set of all candidates for the secret and 
p(C) is the probability that the correct secret is in C. We 
say g(r, L) is χ ’s concentration level.

As per definition, g(r, L) characterizes how centralized 
a distribution is, or how hard it is to achieve a high suc-
cess probability when guessing r dimensions and L can-
didates. For example, for two distributions χA and χB , if 
we guess a same r and L and we get gχA(r, L) > gχB(r, L) , 
then we can claim that χA is more centralized, or easier 
to guess. The metric g(r, L) will be used in the predic-
tion of the improvement of Hybrid 2 in Theorem  3. 
The influence of concentration level on Hybrid 2 could 
be a useful reference when designing schemes based on 
LWE with special secret distributions.

Note that concentration level is different from 
entropy. Surprisingly, a distribution with higher entropy 
could have a higher concentration level, which means it 
will be easier to guess. For example, for two distribu-
tions χA and χB with the same support set {0, 1, 2} and 
pA = (0.6, 0.2, 0.2) and pB = (0.5, 0.5, 0) , the entropy of 
χA is higher than that of χB ( 1.37 > 1 ), but when guess-
ing only one dimension ( r = 1 ) and one candidate 
( L = 1 ), the success probability for χA is higher than 
that of χB , i.e., gχA(1, 1) = 0.6 > gχB(1, 1) = 0.5.

Example
To show how the concentration level influences Hybrid 
2, let us consider two typical examples:

•	 LAC192 with a secret distribution B+
h  for n = 1024 

and h = 128;
•	 Dilithium768 whose secret is from uniform distri-

bution.

Hybrid 2 can improve the state-of-the-art crypta-
nalytic result by 27 bits for LAC192. In particular, our 
estimator show that Hybrid 2 can reduce the bit com-
plexity of LAC192 by 13 bits compared with Hybrid 
1, but there is no difference between Hybrid 2 and 
Hybrid 1 for Dilithium768.

For each r, we should choose an appropriate β such 
that N = 1 and then choose L such that Tguess = TBKZ . 
Then, for a secret distribution, the bit complexity and 
the optimal success probability pc = g(r, L) can be 

g(r, L) = max
C⊆D(r),|C|≤L

p(C),

expressed as functions of r. We plot this function in 
the Fig. 5. Specifically, the first row shows the progres-
sion of THybrid 2 , TBKZ , and pc as functions of r, and the 
second row shows the centralization function g(r, L) for 
the two different secret distributions. For better visu-
alization, in Fig. 5, we present the following quantities:

•	 � log THybrid 2(r) = log THybrid 2(r)− log THybrid 2(0),
•	 � log TBKZ(r) = log TBKZ(r)− log TBKZ(0),
•	 � log(1/pc(r)) = log(1/pc(r))− log(1/pc(0)).

For LAC192, when 0 ≤ r ≤ 50 , TBKZ(r) decreases; 
1/pc(r) = 1/pc(0) = 1 . As a result, THybrid 2(r) and 
TBKZ(r) behaves similarly. Indeed, during this stage, 
we have Tguess(r) < TBKZ(r) . This means we have been 
under-guessing for Hybrid 2: we can afford to guess all 
candidates. The optimal r for Hybrid 1 is r = 50 when 
Tguess(r) = TBKZ(r).

On the other hand, when 50 < r ≤ 150 , TBKZ(r) 
decreases and 1/pc(r) increases. The overall cost, 
THybrid 2(r) drops since the gain in doing less BKZ over-
takes the loss of success probability. The above gain and 
loss balance out at r = 150 , at which point, Hybrid 2 
becomes optimal.

For Dilithium768, 0 ≤ r ≤ 9 is also the under-guess-
ing phase where Hybrid 1 ≈ Hybrid 2. Beyond r = 9 , 
1/pc(r) increases much faster due to its low concentra-
tion level, there is not a point where the gain in BKZ 
cost can catch up the loss in success probability. There-
fore, for Dilithium768, pruning does not improve the 
hybrid attack.

Figure 5 (the second row) visualizes the concentration 
level for a fixed r = 150 . Here, observe that for LAC192 
a small ratio of guessed candidates is enough to achieve 
a high success probability, while for Dilithium768 with 
uniform secrets, the success probability is proportional 
to the guessed candidates. For example, with a guess 
ratio of 2−50 , the success probability is close to 1 for 
LAC192, and remains 2−50 for Dilithium768.

Predicting improvement of Hybrid 2
In this section, we present a predictor for Hybrid 2 ’s 
advantage. In our simulator, we observe that, similar to 
Hybrid 1, the optimal parameters for Hybrid 2 also 
satisfy that N = 1 and TBKZ = Tguess . This leads to the 
predictor in Theorem 3.

Theorem 3  Assuming Heuristic 3 and that the optimal 
parameters of Hybrid 2 satisfy N = 1 and TBKZ = Tguess , 
let b1 the optimal β for the dual attack, then the optimal 
cost of Hybrid 2 when guessing r entries of the secret s is 
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f (r) = 20.292·b(r)+1

g(r,20.0845·b(r))
, where b(r) = b1 + αr is the optimal 

β corresponding to r, g(r, L) is the centralization function, 
and α is the slope. The optimal cost of Hybrid 2 is 
minr≥0 f (r).

Proof  According to Heuristic  3 and Tguess = TBKZ , we 
have that the optimal β and r satisfies that b(r) = b1 + αr , 
and

Since N = 1,

then

The success probability

Tguess = TBKZ = 20.292·b(r).

M = SV = 20.2075·b(r),

L = Tguess

M
= 20.0845·b(r).

Therefore, we get the cost of the attack

� �

Remark 2
As an additional sanity check, we show that Theorems 2 
and 3 converge when guessing all candidates is indeed the 
optimal strategy. In this case we have 
g(r∗, 20.0845·b(r

∗)) = 1 for some optimal point r∗ . Note that 
20.0845·b(r

∗) = Rr∗ , where R is the size of the support for 
each entry of the secret. Combined with b(r∗) = b1 + αr∗ , 
we achieve Theorem 2, that is, b2 ≈ b1

log R
log R−0.0845α .

pc = g(r, L) = g(r, 20.0845·b(r)).

f (r) = TBKZ · N + Tguess

pc
= 2TBKZ

pc
= 20.292·b(r)+1

g(r, 20.0845·b(r))
.

Fig. 5  Comparison between LAC192 (left) and Dilithium768 (right). Figures in the first row plot THybrid 2 , TBKZ , and pc in function of r; Figures in the 
second row visualize the impact of centralization level over pc
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An additional optimization
In this section we give an efficient algorithm for the 
matrix multiplication in the guessing stage, which can 
further decrease Tguess . This algorithm can be used for 
both Hybrid 1 and Hybrid 2 and we refer to the attacks 
with this additional optimization by Hybrid 1m and 
Hybrid 2m.

Recall that in the guessing stage, for each s̃1 ∈ C , we 
use M short vectors (w, v) ∈ �E

dual(A2) to check the dis-
tribution of ẽ = b̂− �â, s̃1�mod q corresponding to the 
guesses s̃1 (line 9 in Algorithm 1). For all the M short vec-
tors and all the L guessed s̃1 , we rewrite their combina-
tions into the matrix form as Ẽ = B̂− ÂSmod q, where 
Ẽ, B̂ ∈ Z

M×L
q , Â ∈ Z

M×r
q  and S ∈ Z

r×L . Each column of Ẽ 
denotes all the ẽ ’s to be tested of a guessed s̃1 ∈ C . There-
fore, the overall cost of the guessing stage has two main 
parts: (1), computing the multiplication of Â and S and 
(2), checking the distributions of all the L columns of Ẽ . It 
is obvious that the multiplication cost dominants, and is 
therefore, the focus of optimization.

An efficient algorithm from Espitau et al. (2020)
A school book multiplication for A ∈ Z

M×r
q  and S ∈ Z

r×L 
takes O(M · r · L) , assuming integer multiplications take 
unit time. Espitau et al. (2020) improves the cost by a fac-
tor of r, when the matrix S has a special form.

Lemma 6  (Espitau et al. 2020) The product of a matrix 
A ∈ Z

M×r and a matrix S of size r × ℓr which consists of 
all vectors from {t1, . . . , tℓ}r in lexicographic order can be 
calculated in O(M · ℓr) time.

However, Lemma 6 relies on the property that the sec-
ond matrix S of size r × ℓr consists of all vectors from 
{t1, . . . , tℓ}r . As a result, Lemma 6 only works for Hybrid 
1, and does not work after pruning. For example, for a 
central discrete distribution with a support set {0,±1,±2} 
and p0 = 0.7, p1 = 0.2, p2 = 0.1 , an optimal guess set C 
for dimension 3 may contain (0,  0,  1) and (0,  0,  2), but 
not (1, 1, 1), since (0, 0, 1) and (0, 0, 2) have higher suc-
cess probabilities than (1,  1,  1). Now there is no set in 
the form required by Lemma  6 (except for the whole 
set {0,±1,±2}3 ) that contains (0,  0,  1) and (0,  0,  2) but 
not (1, 1, 1). In the next section, we present an improved 
algorithm.

An improved algorithm
Warm up
Let us begin with our intuition. Let a = (a1, a2, . . . , ar) 
and b = (b1, b2, . . . , br) be two vectors of dimension r. 
Compute 〈a,b〉 requires O(r) time. However, if we already 
have the result of �a,b′� , where b′j = 0 for some j ∈ [r] 
and b′i = bi for all other i  = j , then �a,b� = �a,b′� + ajbj 

can be computed in constant time based on the result of 
�a,b′� . To compute the product of a vector a and a matrix 
S , we need to compute the inner product of a with each 
column of S . If all columns of the matrix S have an order 
such that the inner product for one column can be com-
puted recursively based on the inner product for another 
column, then we can drop the dimension r out in the 
running time.

Concrete algorithm
We start with a few new definitions. Let D ⊆ Z be a set of 
integers including 0. For two vectors v, v′ ∈ Dr , we say v′ 
precedes v , denoted as v′ ≺ v , if there exists j ∈ [r] such 
that v′j = 0 and v′i = vi for all  i  = j . Slightly abusing the 
notation, we use S as the set of column vectors of S and 
we write v ∈ S if v is a column of S . Finally we can for-
mally define the closed matrices.

Definition 3  (Closed Matrix) For a matrix S ∈ Dr×L , 
we say S is closed if for any v ∈ S , we have v′ ∈ S for all 
v
′ ≺ v.

The main result of this section is stated in the following 
theorem.

Theorem  4  The product of a matrix A ∈ Z
M×r and a 

closed matrix S ∈ Dr×L , where D ⊆ Z is a set of integers 
including 0, can be computed in O(M · L) time.

Proof  Let Ai be the i-th row vector of A . We show that 
Ai · S runs in O(L) time. Then the claim of the theorem 
follows.

Denote h the maximum number of non-zero entries of all 
columns of S . We can partition all columns of S into h+ 1 
subsets S0, S1, . . . , Sh , where Sk consists of all columns 
having k non-zero entries. Since S is closed, all these sub-
sets are non-empty. Moreover, for any v ∈ Sk , there is a 
vector v′ ∈ Sk−1 such that v′ ≺ v . Let j ∈ [r] be the index 
such that v′j = 0 , vj  = 0 , and v′i = vi for all i  = j . Then, 
the product of 〈Ai, v〉 can be easily computed based on 
the product of �Ai, v

′� as follows:

This can be done in constant time. Hence, when we com-
pute the product of Ai and S , we can compute the prod-
uct of Ai and the columns of S in the order of increased 
number of non-zero entries. The result for each column 
in S0 can be done in constant time, and result for each 
columns in Sk can also be done in constant time given the 
results for all columns in Sk−1 . Therefore, the product of 
Ai and S can be done in O(L) time. �

�Ai, v� = �Ai, v
′� + Ai,jvj .
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Remark 3
Note that to ensure the recursive computation in the proof, 
we need to maintain a function which given a column 
v ∈ S outputs a column v′ ∈ S with v′ ≺ v . We can do 
this once for all Ai in O(L2) time. Since under the optimal 
parameters, we have ML = Tguess = TBKZ = 20.292β and 
M = 20.2075β , so L = 20.0845β < M . Therefore, this addi-
tional O(L2) does not influence the claimed running time.

About the increased storage space, our algorithm need 
at most O(20.0845β) bits (recall that L = 20.0845β ). At first 
glance, it seems that our algorithm needs ML bits to 
store the resulting matrix AS . However, it is actually not 
necessary to store the whole matrix since what we need 
is the number of entries that are in Ig for each column 
of AS . Hence, during our algorithm, we keep a vector of 
length L to record this number for all columns. And at 
each step when computing AiS , we need to remember at 
most L numbers to ensure the recursive approach. There-
fore, the actual storage space is O(20.0845β) bits, which is 
negligible compared with the exponential storage space 
( O(20.2075β) ) needed for the sieving algorithm.

Next, we show that all the optimal subsets of candi-
dates discussed in "Guess with pruning"  section are 
closed, and hence Theorem 4 can be applied.

Corollary 1  If the guessing part s1 has dimension r 
and the secret distribution of the LWE problem is from 
one the following distributions: B+

h  with n− r ≥ 2h , 
B
−
h  with n− r ≥ 3h , or a central discrete distribu-

tion, then the candidate subset C∗ for s1 satisfying that 
C∗ = arg max|C|<c p(C) is closed.

Hence, the multiplication of the matrix Â ∈ Z
M×r
q  and the 

corresponding optimal candidate matrix S∗ ∈ Z
r×L can 

be computed in O(M · L) time.

Proof  For any non-zero candidate vector v ∈ C∗ and 
any vector v′ ≺ v , we show that v′ ∈ C∗ . According to the 
definition of C∗ , it suffices to show that the probability 
that v or v′ is the correct s1 satisfies that p(v′) ≥ p(v).

For B+
h  with n− r ≥ 2h , assume that the hamming weight 

of v and v′ are k and k − 1 , respectively. We have that

p(v) =

(

n− r
h− k

)

(

n
h

) , and p(v′) =

(

n− r
h− k + 1

)

(

n
h

) .

Since n− r ≥ 2h , we have p(v′) ≥ p(v).

For B−
h  with n− r ≥ 3h , assume that v contains k+ of 1 

and k− of −1 . We have that

Since v′ ≺ v , v′ contains one less 1 or one less −1 . It’s easy 
to see that in both case we have p(v)′ ≥ p(v).

For a central discrete distribution, assume that v contains 
ki of ±i for i ∈ [t] . We have that

Since v′ ≺ v , v′ contains one less non-zero entry. Since 
p0 ≥ pi for all i ∈ [t] , we have that p(v)′ ≥ p(v).

Therefore, for any one of these three distributions, C∗ is 
closed, and according to Theorem 4, the multiplication of 
Â and S∗ can be done in O(M · L) time. � �

Security estimations
We conclude our paper with new estimations for 5 
NIST-PQC candidates. Their parameters are given in 
Table  6 in Appendix  A.1. The highlight is presented 
in Table 2. A full comparison under Assumption 1 for 
both classical and quantum models is given in Table 11 
in Appendix  A.2. The improvements under different 
assumptions discussed in  "Lattices and lattice reduc-
tions" section are presented in Table  12 in Appen-
dix A.2. Again, our base line for comparison is the dual 
attack. Then we compare it with the most optimized 
one, Hybrid 2m, taking into account the optimal prun-
ing and our additional optimization. Our results are in 
both the core-SVP model and the practical model.

The number of samples allowed from each scheme is 
shown in Table 6. We observe that the optimal number 
of samples is smaller than the allowed one in our simu-
lation, with an exception of Frodo.

For Frodo, we use the optimal number of samples 
under the restriction of allowed samples. Nevertheless, 
the influence of this restriction is at most one bit.

p(v) =

(

n− r
h− k+

)(

n− r − h+ k+

h− k−

)

(

n
h

)(

n− h
h

)

=

(

n− r
h− k−

)(

n− r − h+ k−

h− k+

)

(

n
h

)(

n− h
h

) .

p(v) = p
k0
0 p

k1
1 · · · kktt .
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In addition, we note that for the schemes whose dis-
tributions of secret s and error e are different, we use 
the “lattice scaling” technique (Albrecht 2017) (which 
balances the weight of s and e ) to improve the estima-
tion results. Among the 5 schemes we considered, we 
use this technique for Saber and NTRULPrime.

For all cases, Hybrid 2m is more efficient than dual 
attacks, regardless of the model and the assumption. 
Although, we remark that the gain becomes more sig-
nificant, if we assume a higher complexity of BKZ 
(i.e., the practical model). Compared with the claimed 
results (by primal attack), our method reports an over-
all improvement between 2 to 15 bits under Assump-
tion  1; the actual improvement varies, depending on 
scheme/parameter sets, as well as the security model. 
Even under Assumption  2, our method achieves a 
speedup of up to 7 bits on NTRULPrime. Our algo-
rithm works best on NTRULPrime1277 under the clas-
sical core-SVP model, which records an improvement 

Table 5  Parameters of LAC192

Name n q σ Secret distribution Hamming 
weight

LAC192 1024 251 1/
√
2 #(−1, 0, 1) = (128, 768, 128) 256

Table 6  Parameters for NIST-PQC round 3 LWE-based schemes

* The parameters are the secret dimension n, MLWE rank k, modulo q, standard deviation of the error σ and the distribution of secret s.

* m∗ is the maximum number of allowed samples for each scheme.

* Frodo uses the Frodo model; all the rest schemes use core-SVP model

Name Parameters Security

n k q σ m
∗ Secret dist. Level Claim

Classical Quantum

Kyber 256 2 3329 1.2 768 see Table 7 1 118 107

256 3 3329 1 1024 3 182 165

256 4 3329 1 1280 5 256 232

Saber 256 2 213 2.29 768 see Table 8 1 118 107

256 3 213 2.29 1024 3 189 172

256 4 213 2.29 1280 5 260 236

Dilithium 256 4 8380417
√
2 1280 Uniform in [−2, 2] 2 123 112

256 5 8380417
√
20/3 1536 Uniform in [−4, 4] 3 182 165

256 7 8380417
√
2 2048 Uniform in [−2, 2] 5 252 229

Frodo 640 – 215 2.8 640 see Table 9 1 150 137

976 – 216 2.3 976 3 215 196

1344 – 216 1.4 1344 5 280 255

NTRULPrime 653 – 4621
√
2/3 909 #(±1) = 252 1 130 118

761 – 4591
√
2/3 1017 #(±1) = 250 2 155 140

857 – 5167
√
2/3 1113 #(±1) = 281 2 176 160

953 – 6343
√
2/3 1209 #(±1) = 345 3 197 178

1013 – 7177
√
2/3 1269 #(±1) = 392 4 210 190

1277 – 7879
√
2/3 1533 #(±1) = 429 5 271 245

Table 7  Kyber’s secret distribution

Name n k Probability of

0 ±1 ±2 ±3

Kyber512 256 2 5
16

15
64

3
32

1
64

Kyber768 256 3 3
8

1
4

1
16

–

Kyber1024 256 4 3
8

1
4

1
16

–
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of 15 bits under Assumption  1 and 7 bits under 
Assumption 2.

We want to emphasis that, under Assumption  1 
the new estimations for Kyber, Saber, Dilithium and 
NTRULPrime are indeed lower than the corresponding 
security level.

As a final takeaway, we believe that hybrid dual 
attacks (with pruning) should be considered for 
cryptanalysis on any future practical lattice-based 
cryptosystem.

Appendix A: Appendix
Parameters for various cryptosystems
Parameters for various cryptosystems considered in this 
paper are listed in Table 5, 6, 7, 8 and 9 .

Full results
The full results are shown in Tables 10, 11 and 12.

Additional proofs
Proof of Lemma 3

Proof  We first show that N = 1 and SV
20.2075

≤ M ≤ SV  . 
Note that β is an integer. In the following analysis, 
we will assume β is a real number and show that the 
optimal β will satisfy M(β) = SV (β) and hence N = 1 . 
Then when β has to be an integer, we have that the 
optimal β satisfies N = 1 and SV

20.2075
≤ M ≤ SV  , as 

claimed.

Let β∗ be the real number such that M(β∗) = SV (β∗) . 
We consider two cases when β ≤ β∗ and β ≥ β∗ , and 
show that in both cases the optimal β is β∗ . Since M(β) 
is decreasing in β and SV (β) is increasing in β , M(β)

SV (β)
 

is decreasing in β . Then β ≤ β∗ ⇔ M(β)
SV (β)

≥ 1 and 
β ≥ β∗ ⇔ M(β)

SV (β)
≤ 1.

When β ≥ β∗ and M(β)
SV (β)

≤ 1 , we have that 
N = ⌈ M(β)

SV (β)
⌉ = 1 and N · TBKZ = TBKZ is increas-

ing in β . Then in this case the optimal β minimizing 
N · TBKZ = TBKZ is the minimum β such that β ≥ β∗ , i.e., 
the optimal β is β∗.

When β ≤ β∗ and M(β)
SV (β)

≥ 1 , we consider the continu-
ous function f (β) corresponding to N · TBKZ defined as 
follows:

We will show that f (β) is decreasing in β . Then in this 
case the optimal β minimizing N · TBKZ is the maximum 
β such that β ≤ β∗ , i.e., the optimal β is β∗.

Now we show that f (β+1)
f (β)

≤ 1 . To ease the analysis, we 
use the approximation δ0 = 2

1
β (Stehlé 2013). Let m1 and 

m2 be the optimal number of equations to use for β and 
β + 1 respectively, we have

f (β):= M(β)

SV (β)
· TBKZ(β)

= M(β)

20.2075β
· 20.292β

= M(β) · 20.0845β .

Table 8  Saber’s secret distribution

Name n k Probability of

0 ±1 ±2 ±3 ±4 ±5

Saber512 256 2 0.2460 0.2051 0.1172 0.0439 0.0098 0.0010

Saber768 256 3 0.2734 0.2187 0.1094 0.0313 0.0039

Saber1024 256 4 0.3124 0.2344 0.0938 0.0156

Table 9  Frodo’s secret distribution

Name n Probability of (in multiples of 2−16)

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12

Frodo640 640 9288 8720 7216 5264 3384 1918 958 422 164 56 17 4 1

Frodo976 976 11278 10277 7774 4882 2545 1101 396 118 29 6 1

Frodo1344 1344 18286 14320 6876 2023 364 40 2
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Table 10  Comparison of Hybrid 1 and the Predictor

Name Parameters Dual Hybrid 1 Predictor

b1 R α

Kyber512 404 5 −0.98 117 115 115

Kyber768 622 5 −0.96 181 176 177

Kyber1024 870 5 −0.99 253 246 246

Saber512 402 11 −0.96 117 115 116

Saber768 648 9 −0.99 189 185 185

Saber1024 885 7 −1 258 252 252

Dilithium1024 424 13 −0.56 123 122 123

Dilithium1280 623 11 −0.62 181 179 180

Dilithium1792 861 7 −0.59 251 247 248

Frodo640 486 25 −0.99 141 140 140

Frodo976 705 21 −0.89 205 203 203

Frodo1344 927 13 −0.83 270 266 267

NTRULPrime653 447 3 −0.86 130 126 126

NTRULPrime761 532 3 −0.84 155 150 150

NTRULPrime857 605 3 −0.85 176 170 170

NTRULPrime953 671 3 −0.85 195 189 189

NTRULPrime1013 719 3 −0.86 209 202 202

NTRULPrime1277 925 3 −0.86 269 260 260

Table 11  Bit-security estimations under Assumption 1

Name Core-SVP Model Practical Model

Classical Quantum Classical Quantum

Dual Hybrid 2m Dual Hybrid 2m Dual Hybrid 2m Dual Hybrid 2m

� � r � � r � � r � � r

Kyber512 117 114 13 103 102 7 146 140 26 132 128 20

Kyber768 181 175 24 159 157 13 211 201 38 189 183 28

Kyber1024 253 245 34 223 219 19 284 271 49 253 246 34

Saber512 117 114 11 103 102 6 146 141 22 132 129 17

Saber768 189 184 20 166 164 11 219 211 32 196 191 23

Saber1024 258 250 31 227 223 17 288 277 43 257 251 30

Dilithium1024 123 121 14 108 108 6 154 150 26 139 136 20

Dilithium1280 181 179 15 160 159 8 212 208 25 190 188 18

Dilithium1792 251 246 30 221 219 16 282 275 42 252 248 30

Frodo640 141 139 10 124 123 5 171 167 19 154 151 13

Frodo976 205 202 17 181 179 9 236 230 27 211 208 17

Frodo1344 270 264 28 238 235 17 301 292 41 268 263 28

NTRULPrime653 130 125 25 114 112 14 159 149 48 144 137 37

NTRULPrime761 155 148 38 136 133 22 184 172 61 166 158 45

NTRULPrime857 176 168 46 155 151 26 206 192 72 185 176 51

NTRULPrime953 195 187 44 172 168 24 225 211 68 202 193 50

NTRULPrime1013 209 200 45 184 180 25 239 225 67 214 205 48

NTRULPrime1277 269 256 90 237 231 56 300 281 112 268 256 83
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The first inequality holds since m2 is the optimal number 
to minimize ε(β + 1) . The last inequality holds since the 
BKZ blocksize β should be smaller than the dimension 
m1 + n of the dual lattice.

Then our goal is to show that

f (β + 1) = κ + ln L

ε2(β + 1)
· 20.0845(β+1)

= κ + ln L

4e
−4π2σ2q

2n
m2+n

q2
2

2(m2+n)
β+1

· 20.0845(β+1)

≤ κ + ln L

4e
−4π2σ2q

2n
m1+n

q2
2

2(m1+n)
β+1

· 20.0845(β+1)

= κ + ln L

(

ε2(β)
)2

− 2(m1+n)
β(β+1)

· 20.0845(β+1)

= f (β) ·
(

ε2(β)
)1−2

− 2(m1+n)
β(β+1)

· 20.0845

≤ f (β) ·
(

ε2(β)
)1−2

− 2
β

· 20.0845.

g(β):=
(

ε2(β)
)1−2

− 2
β

· 20.0845 ≤ 1

when β ≥ 50 and M(β)
SV (β)

≥ 1 . To this end, we give an upper 
bound for ε2(β) . According to M(β)

SV (β)
≥ 1 , we have that 

M(β) = κ+ln L
ε2(β)

≥ SV (β) = 20.2075β , then

According to M(β)
SV (β)

≥ 1 and Tguess ≤ 250 · TBKZ , we can 
upper bound L by that

Then it is easy to verify that for any β ≥ 50 and any 
κ ≤ 10,

Incorporating Eqs. 4–3, we get the upper bound for ε2(β)
:

Incorporating Eq. 5 to g(β) we get

(3)ε2(β) ≤ 2−0.2075β(κ + ln L).

L = Tguess(β)

M(β)
≤ 250 · TBKZ(β)

SV (β)
= 250+0.0845β .

(4)2−0.0075β(κ + ln L) ≤ 26.

(5)ε2(β) ≤ 2−0.2β+6.

g(β) ≤ 2(−0.2β+6)(1−2
− 2
β )+0.0845.

Table 12  Bit-security estimations under different cost models and assumptions

*H2M means Hybrid 2m in this table

Name Core-SVP Model Practical Model

Assumption 1 Assumption 2 Amortising cost Assumption 1 Assumption 2 Amortising cost

Dual H2M � Dual H2M � Dual H2M � Dual H2M � Dual H2M � Dual H2M �

Kyber512 117 114 3 122 119 3 138 138 0 146 140 6 152 145 7 167 164 3

Kyber768 181 175 6 188 182 6 210 210 0 211 201 10 218 208 10 240 236 4

Kyber1024 253 245 8 263 254 9 292 292 0 284 271 13 294 280 14 323 318 5

Saber512 117 114 3 122 119 3 137 137 0 146 141 5 151 146 5 167 164 3

Saber768 189 184 5 196 191 5 219 219 0 219 211 8 226 218 8 249 245 4

Saber1024 258 250 8 268 260 8 297 297 0 288 277 11 298 286 12 328 324 4

Dilithium1024 123 121 2 126 124 2 135 135 0 154 150 4 157 153 4 165 163 2

Dilithium1280 181 179 2 186 183 3 198 198 0 212 208 4 216 212 4 229 227 2

Dilithium1792 251 246 5 257 252 5 272 272 0 282 275 7 288 281 7 304 301 3

Frodo640 141 139 2 147 145 2 164 164 0 171 167 4 177 172 5 194 192 2

Frodo976 205 202 3 212 209 3 233 233 0 236 230 6 243 237 6 264 261 3

Frodo1344 270 264 6 278 272 6 302 302 0 301 292 9 309 300 9 333 330 3

NTRULPrime653 130 125 5 135 129 6 151 150 1 159 149 10 165 154 11 180 174 6

NTRULPrime761 155 148 7 161 153 8 179 177 2 184 172 12 191 177 14 209 199 10

NTRULPrime857 176 168 8 183 174 9 203 200 3 206 192 14 213 198 15 233 222 11

NTRULPrime953 195 187 8 202 193 9 224 221 3 225 211 14 233 218 15 254 245 9

NTRULPrime1013 209 200 9 217 207 10 239 236 3 239 225 14 247 232 15 270 260 10

NTRULPrime1277 269 256 13 279 264 15 306 299 7 300 281 19 309 289 20 337 323 14
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It is easy to verify that the right side is decreasing in β 
and for any β ≥ 50,

This finish the proof for that the optimal β will satisfy 
M(β) = SV (β) and N = 1 . � �

Proof of Lemma 5

Proof  For a fixed r, we can find the corresponding opti-
mal β . Then the advantage is ε(r) = 2e−2π2τ 2 , where 
τ = ℓσ

q  and ℓ = δm+n−r
0 q

n−r
m+n−r . Once r and β are fixed, it 

is easy to verify that the optimal number m of equations 
to use is given by

then ℓ = (δ20)

√

(n−r) log q
log δ0  . So the number of samples we 

need is,4

To ease the notation, let X(r) = (δ40)

√

(n−r) log q
log δ0  . Notice 

that

and

Now

Our goal is to show that F(r) decreases when r increases. 
It suffices to show that F(r+1)

F(r) < 1 for any r ≥ 2 . We 
will upper bound κ+ln L(r+1)

κ+ln L(r) and ε2(r) , and lower bound 

g(β) < 1.

m =
√

(n− r) log q

log δ0
− (n− r)[40]

F(r):=M(r) = κ + ln L(r)

ε2(r)
= κ + ln L(r)

4e
−4π2σ2(δ40 )

√

(n−r) log q
log δ0

q2

.

X(r + 1) = X(r)

√

n−r−1
n−r ,

ε2(r + 1) = 4e
−4π2σ2X(r+1)

q2 = (ε2(r))X(r)
√

n−r−1
n−r −1

.

(6)

F(r + 1)

F(r)
= κ + ln L(r + 1)

κ + ln L(r)

ε2(r)

ε2(r + 1)

= κ + ln L(r + 1)

κ + ln L(r)

ε2(r)

(

ε2(r)
)X(r)

√
n−r−1
n−r −1

= κ + ln L(r + 1)

κ + ln L(r)

(

ε2(r)
)1−X(r)

√
n−r−1
n−r −1

.

1− X(r)

√

n−r−1
n−r −1 in Eq. 6 by functions that only depend 

on β , and then using these upper bounds to show that 
F(r+1)
F(r) < 1 for any β ≥ 150.

1. For any r ≥ 2 , we have that

2. According to Lemma  3, the optimal β satisfies 
M = κ+ln L

ε2
= SV = 20.2075β . As long as Tguess ≤ TBKZ , 

we can upper bound L by that

So we can upper bound ε2(r) by that

3. According to Assumption 4, we have 
√

n log q
log δ0

− n ≥ 1
2n , 

so 
√

n log q
log δ0

≥ 3
2n and then 

√

(n−r) log q
log δ0

≥ 3(n−r)
2  . In addi-

tion, 
√

n−r−1
n−r − 1 ≤ − 1

2(n−r) . Combining these two ine-
qualities, we get

Then

Note that δ0 is a function of β.

Now incorporating Eqs. 7, 8, 9 into Eq. 6, we can upper 
bound F(r+1)

F(r)  by a function of β:

It is easy to verify that for any β ≥ 150 , f (β) < 1.

� �

(7)

κ + ln L(r + 1)

κ + ln L(r)
= κ + (r + 1) ln R

κ + r ln R

≤ 1+ ln R

κ + r ln R

≤ 1+ 1

r

≤ 3

2

L ≤ Tguess

M
≤ TBKZ

SV
= 20.0845β .

(8)
ε2(r) ≤ 2−0.2075β(κ + ln L) ≤ 2−0.2075β+log(10+0.06β)

√

(n− r) log q

log δ0
(

√

n− r − 1

n− r
− 1) ≤ −3

4
.

(9)

1− X(r)

√

n−r−1
n−r

−1 = 1− (δ40)

√

(n−r) log q
log δ0

(
√

n−r−1
n−r

−1
)

≥ 1− δ−3
0 .

F(r + 1)

F(r)
≤ f (β):=3

2
(
1

2
)(1−δ−3

0 )(0.2075β−log(10+0.06β)).

4  The formular in Micciancio and Regev (2009) is 
√

n log q
log δ0

 since Micciancio 

and Regev (2009) considers the original dual attack.
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