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Abstract 

Introduction:  In a context of increasing automation of road transport, many researchers have been dedicated to 
analyse the risks and safety implications of resuming the manual control of a vehicle after a period of automated 
driving. This paper performs a systematic review about drivers’ performance during takeover manoeuvres in driving 
simulator, a tool that is widely used in the evaluation of automated systems to reproduce risky situations that would 
not be possible to test in real roads.

Objectives:  The main objectives are to provide a framework for the main strategies, experimental conditions and 
results obtained by takeover research using driving simulation, as well as to find whether different approaches may 
lead to different outcomes.

Methodology:  First, a literature search following the PRISMA statement guidelines and checklist resulted in 36 rel-
evant papers, which were described in detail according to the type of scenarios and takeover events, drivers’ engage-
ment in secondary tasks and the assessed takeover performance measures. Then, those papers were included in a 
meta-analysis combining PAM clustering and ANOVA techniques to find patterns among the experimental conditions 
and to determine if those patterns have influence on the observed takeover performance.

Conclusions:  Less complex experiments without secondary task engagement and conducted in low-fidelity simula-
tors are associated with lower takeover times and crash rates. The takeover time increases with the time budget of the 
first alert, which reduces the pressure for a driver’s quick intervention.
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1  Introduction
Road crashes were responsible for more than 1.3 million 
deaths worldwide in 2016 [57]. In the European Union, 
road fatalities have been cut in half in around ten years, 
but still represented more than 27 000 lives lost in the 
same year [14]. Most crashes involving human costs are, 

according to the European Commission (EC), directly or 
indirectly caused by human errors, such as distracted, 
fatigued, or drunk driving. To reduce the human role and 
eliminate this kind of crashes by 2050, the EC created the 
“Vision Zero” strategy [13], putting confidence in autono-
mous systems that should have safer driving capabilities 
than human driving. However, besides that a machine 
error is usually less accepted than a human error [34], 
even the best technologies may fail, especially when 
advances and adaptations occur every day during the 
ongoing transition to full automation. So far and for long 
years, automation will not completely replace human 
activity [25], imposing new coordination demands to the 
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driver. Additionally, it is expected that automated vehi-
cles will share the road environment with conventional, 
manually-driven vehicles. Therefore, beyond the tech-
nological progress, the rollout of automated vehicles on 
public roads requires intensive research on human fac-
tors. Moreover, it will be crucial to raise public awareness 
on the new risks introduced by the automated systems 
and to develop training actions about the appropriate use 
of automation, the prevention of risky behaviours, and 
the avoidance of misuse and disuse [42]. The research 
on automated driving has been exponentially growing in 
recent years to keep up with every step and ensure the 
safety of each new development.

1.1 � Automation levels and the L2 versus L3 paradox
Automation levels are commonly represented by the SAE 
scale (L0-L5) [39]. The transition across different levels 
is an extensive and challenging process; notwithstand-
ing, most of new cars already have some sort of driver 
assistance. L0 represents the absence of automated sys-
tems, being the driver completely and solely controlling 
the vehicle. L1 is very common and is characterized by 
having a single driver assistance system of either steer-
ing or acceleration/deceleration. The advanced driver 
assistance systems (ADAS), already present on L2, can be 
responsible for most of the dynamic driving task (DDT), 
allowing the driver to take the hands off the steering 
wheel and the feet off the pedals. However, the driver is 
still required to permanently monitor the road environ-
ment, being the only responsible for any failure that can 
occur. L3 automation not only performs all aspects of the 
DDT in some driving modes, but also is responsible for 
sending a takeover request (TOR) when the system faces 
a situation that it cannot handle. In such cases, the driver 
must be available to safely regain manual control, despite 
not being expected to constantly keep his/her eyes on the 
road while the system performs the DDT. This paradox 
has been hindering the homologation of L3 systems amid 
safety concerns, despite OEM’s attempts to assure rea-
sonable safety margins by capping L3 systems to specific 
traffic conditions at low speeds (e.g., traffic jam pilot). 
For this reason, the classification of an automated sys-
tem as L2 or L3 can be merely a question of responsibility 
assumption instead of noticeable technological differ-
ences. From another perspective, L4 and L5 add fallback 
capabilities of the DDT, ensuring full automation for spe-
cific and for all driving environments, respectively. The 
predictable design of these two systems allows the driver 
to completely turn the mind off the DDT (e.g., by sleep-
ing), or even the absence of a driver.

1.2 � Automation failures and manual takeover
Nowadays, with only a few L2 vehicles on the market 
and the lack of legislation about L3 in most countries, a 
relatively long transition period is expected until L4 and 
L5 automated vehicles become common and affordable, 
which is expected not before 2040 [25]. Current auto-
mated systems are still far from being perfect and can fail 
for several reasons. Generally, the failures can be divided 
into two main groups: system limits and system mal-
functions [7]. In the first case, the limitations are previ-
ously known and stated on the users’ manual, meaning 
that they can be anticipated by the system itself, issuing 
a TOR, or by the driver that is observing the cues at the 
road environment. Examples of system limits are a traf-
fic jam pilot that only works for specific ranges of speed 
and traffic volumes, a highway pilot that does not work 
in urban roads, or other limitations explicitly acknowl-
edged by the manufacturer, such as difficulties in recog-
nizing stationary vehicles or faded lane markings. System 
malfunctions raise higher concerns because the failure 
results from events unforeseen by the designers (e.g., 
algorithm errors or sensor breakdowns). This includes 
the inability to deal with certain situations (e.g., construc-
tion works and stationary objects) that were not tested or 
acknowledged as limitations [7]. As system malfunctions 
cannot be predicted by the driver, they may lead to immi-
nent dangerous situations, although some systems may 
issue a real-time warning about a sensor failure or a sud-
den deactivation.

Apart from system failures, drivers’ ability to react to 
unforeseen situations cannot be ignored, especially when 
referring to L3 and lower automation levels. As the auto-
mation progresses, the role of human drivers becomes 
less and less active, but even at lower levels such as L1 
and L2, drivers’ situation awareness tends to decrease. 
This can happen for the simple fact that the physical dis-
engagement of the DDT causes boredom or fatigue and 
because the facilitated driving better allows the engage-
ment in non-driving-related tasks (NDRTs) [11, 42]. With 
or without a TOR, drivers must be prepared to act when 
necessary. The alertness and promptness to resume the 
manual control are important factors affecting the effec-
tiveness and safety of the intervention. Drivers’ abilities 
rely on many factors, such as age, gender, driving experi-
ence, or drowsiness state [43, 44], but driving conditions, 
such as the environment complexity, traffic density, vis-
ibility, or time available to safely react (time budget), have 
a fundamental role in the takeover performance [19, 40].

1.3 � Research motivation and objectives
As fully autonomous vehicles will not be available over-
night, the shared control of dynamic driving between 
human and machine is the main challenge for the 
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advancement of vehicle technology in a context of 
increasing automation [11, 23]. In particular, takeover 
performance is the main safety concern related with 
partial (L2) and conditional (L3) automation. In recent 
years, numerous studies evaluated takeover performance 
though time and quality indicators that characterize 
drivers’ reactions [1, 63]. Most of this research has been 
conducted in virtual environment for ethical and practi-
cal reasons related with the safety of participants and the 
lack of widespread technologies and infrastructures for 
real-world testing of automated vehicles.

The large body of literature on takeover during auto-
mated driving has sparked motivation for review studies 
that aggregate and summarize the knowledge obtained 
through a large spectrum of experimental conditions 
reflected in multiple takeover scenarios and diverse appa-
ratus and participants’ characteristics. Radlmayr and 
Bengler [36], Vogelpohl et al. [51], and Walch et al. [52] 
are examples of earlier reviews of takeover time and/or 
quality studies, developing a narrative analysis of studies 
published before 2016. Eriksson and Stanton [12] con-
ducted a quantitative review of takeover time, showing 
that this variable is positively correlated with the time 
budget. However, the authors did not extract from the 
literature any other effects that may affect the takeover 
time. More recently, Zhang et al. [65] acknowledged the 
lack of quantitative studies and presented one of the most 
comprehensive reviews of takeover times to date. The 
authors used a within-study analysis, a between-study 
analysis, and a linear mixed-effects model. The results 
showed that shorter takeover times are associated with 
urgent takeover events, not using handheld devices, not 
engaging in visual NDRTs, having experienced a previous 
takeover event during the experiment, and receiving an 
auditory or vibrotactile TOR. However, Zhang et al. [65] 
did not address takeover quality in their review.

Similarly to Zhang et  al. [65], the present review is 
also motivated by the few existing syntheses of takeover 
time and quality that follow a quantitative approach, as 
well as by the need to consider recent studies in a fast-
moving research field. However, rather than investigating 
the individual effects of different variables on takeover 
performance measures, the approach followed in this 
study is unique in the sense that: (i) the meta-analysis is 
focused on mining patterns among diverse experimen-
tal conditions used in takeover research to understand 
whether those patterns may be associated with differ-
ent outcomes, and (ii) a comprehensive narrative review 
contextualizes the most relevant experimental condi-
tions, supports the interpretation of the results from the 
quantitative analysis, and provides guidance for future 
research automated driving research. For the sake of 
consistency, this review is limited to driving simulator 

studies. In this context, this study aims to address the fol-
lowing questions:

•	 Which experimental conditions and simulated sce-
narios have been used to study takeover?

•	 Do the different experimental conditions play an 
important role on the outcomes of takeover perfor-
mance evaluation?

To accomplish these objectives, the methodology 
adopted in this review included three main steps. First, 
a systematic review of existing literature was conducted 
following the PRISMA statement guidelines and check-
list [30]. Second, a descriptive analysis focused on the 
selected papers allowed to synthetize the experimental 
conditions, including the simulation scenarios, NDRT 
engagement, presence of TOR, and takeover perfor-
mance measures. Finally, the quantitative analysis used 
PAM clustering and ANOVA techniques to explore dif-
ferent patterns characterized by takeover performance 
measures, simulation conditions, driver characteristics, 
and publication rankings.

2 � Search methods
The review started with a deep search in target databases 
following the PRISMA statement guidelines and checklist 
[30]. The databases selected for this search were the Web 
of Science (WoS), Scopus, and Transportation Research 
International Documentation (TRID), considering that 
these databases include a wide range of relevant papers 
in the transportation field. The search was performed in 
the title, abstract, and keywords of the papers indexed to 
the databases, using the following combination of terms: 
(autonomous OR automated OR self-driving) AND (driv-
ing OR car OR vehicle) AND (driver simulator OR driv-
ing simulator). Two filters were applied to limit the search 
to documents written in English and published between 
January 2015 and May 2020. Studies published before 
2015 were excluded to ensure that the selected studies 
are up-to-date with the fast development of automated 
driving paradigms and technology observed in the last 
few years, without detriment to the consideration of the 
large majority of the existing studies in the field. Through 
this selection procedure, 249 papers were obtained from 
WoS, 173 from Scopus, and 172 from TRID, resulting in 
594 documents to scan. Additional research identified 
though other sources resulted in one complementary 
relevant paper. After removing the duplicates, this num-
ber was reduced to 370 papers. Given the large number 
of documents, a filtering procedure was fundamental to 
be more insightful on the quality of the selected papers. 
Only the papers published in journals indexed to WoS, 
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i.e., with Journal Impact Factor, were retained, which 
reduced the sample to 255 documents. Then, the remain-
ing documents were screened by analysing the titles 
and abstracts, which led to the exclusion of 210 papers 
according to the following criteria:

•	 Research unrelated to automated driving (e.g., medi-
cine, robotics, augmented reality, traffic optimiza-
tion, railways);

•	 Focused on bicyclists, motorcyclists, and truck pla-
tooning;

•	 Focused on sustainability and eco-driving;
•	 Focused on trust, comfort, architecture, and design;
•	 Automation level too low or inexistent (e.g., a system 

only working with advanced cruise control);
•	 Not essentially sustained on driving simulator experi-

ments;
•	 Studies going deep into systems components, com-

puter science and complex algorithms.

The 45 papers that passed through the screening pro-
cess were read and examined in depth to assess if there 
were any reasons to exclude more studies from the 
analysis. Considering the previous research questions, it 
was decided to exclude nine studies that did not report 
takeover time or quality measures. All the remaining 36 
studies were included in the analysis and report takeo-
ver times, considered as the elapsed time between a TOR 
issued by the vehicle and the first manual input in the 
steering wheel or pedals, or, in the absence of a TOR, to 
the elapsed time between the moment when a potential 
danger becomes visually apparent in the simulation sce-
nario and the first manual input. The time-to-collision 
(TTC) and the crash rate are the other relevant takeo-
ver performance measures reported in the 36 selected 
papers, albeit with a much smaller incidence: the TTC is 
reported in nine studies and the crash rate in just eight. 
The literature search and selection procedure is summa-
rized by the flow diagram in Fig. 1.

The selected papers are the following: Alrefaie et al. [1], 
Blommer et al. [2], Bourrelly et al. [3], Choi et al. [4], De 
Winter et  al. [6], DeGuzman et  al. [7], DinparastDjadid 
et al. [8], Dogan et al. [9, 10], Feldhütter et al. [15], Gold 
et al. [17], Happee et al. [18], Lin et al. [24], Lodinger and 
DeLucia [26], Louw et al. [27, 28], Lu et al. [29], Naujoks 
et  al. [31], Payre et  al. [32, 33], Rauffet et  al. [37], Shen 
and Neyens [41], Vogelpohl et al. [48–50], Wan and Wu 
[53], Wandtner et  al. [54, 55], Wu et  al. [58–60], Yoon 
and Ji [61], Zeeb et  al. [62–64], Zhou et  al. [66]. These 
papers were published in the following journals: Acci-
dent Analysis & Prevention, Applied Ergonomics, Cogni-
tion, Technology & Work, Human Factors, IEEE Access, 
IEEE Transactions on Human–Machine Systems, IET 

Intelligent Transport Systems, International Journal of 
Vehicle Design, Journal of Safety Research, Transporta-
tion Research Part F: Traffic Psychology and Behaviour, 
and Transportation Research Record. The studies by Gold 
et al. [17] and Happee et al. [18] use data from previous 
works performed by the authors.

3 � Descriptive analysis
The experimental settings related to the evaluation of 
takeover performance in driving simulator do not fol-
low a single protocol, resulting in very distinct proce-
dures among experiments. However, some common 
points can be found. First, a pre-experiment driving task 
is described in almost all studies. This training phase is 
fundamental in every driving simulation experiment 
to produce reliable results, by alleviating the learning 
effects. For automated driving simulations, this training 
was even more important since most people have never 
experienced higher levels of automation. In this sense, 
most studies provided a few minutes for drivers’ famil-
iarization, usually including transitions from manual to 
automated driving and vice-versa.

Concerning automation levels, the study of takeover 
safety is always focused on L2 (“hands-off”/partial auto-
mation) or L3 (“eyes-off”/conditional automation), fea-
turing simultaneous speed and steering assistance, or 
traffic jam assistance. When the automation level is not 
explicitly mentioned, L2 and L3 can be distinguished by 
the need for a constant monitoring of the road, which 
is mandatory in L2 [39]. L4 automation (“mind off”) is 
capable of bringing the vehicle to a stop at a safe loca-
tion if the driver does not assume the manual control 
when the road environment is out of the limits of tech-
nology, therefore takeover safety is not a problem. In 
L5, only voluntary takeovers may occur.

The following sections describe the experimental 
conditions that vary significantly across different stud-
ies. These conditions are related with the engagement 
in NDRTs, the simulated takeover events, the pres-
ence of a TOR, and the analysed takeover performance 
measures. The characteristics of the participants in the 
experiments are not under the scope of this analysis. In 
fact, it was detected that many driving simulation stud-
ies on takeover use convenience samples, being focused 
on the effects of different driving scenarios rather than 
on the participants’ features. Nevertheless, generic 
characteristics of the participants’ sample considered in 
each paper are summarized in Additional file 1: Appen-
dix, together with the type of experimental design, the 
most relevant takeover performance measures and the 
main findings.
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3.1 � NDRT engagement
When conducting a literature review about automated 
vehicles, approaching the issues related with NDRTs 
is unavoidable. Besides the safety reasons associated 
with the EC’s “Vision Zero” strategy [13], the evolu-
tion of automated vehicles brings practical benefits for 
the users that become allowed to engage in other tasks 
besides de DDT. Driving is time-consuming and can be 
boring and stressful [5], thus automation will allow driv-
ers to combine their trips with work, rest, or leisure. The 
36 reviewed studies do not neglect this fact. From those, 
15 had the presence of a distractive task, five were per-
formed without it, 17 had a combination of both situa-
tions, and two did not provide such information. In most 

of the 29 studies with NDRTs, the engagement on a spe-
cific activity was mandatory. This guaranteed that driv-
ers were all at the same conditions during the takeover 
and allowed to analyse the effects of distinct tasks and 
to compare them with a baseline scenario without dis-
traction. To ensure drivers’ engagement on the NDRT, 
some studies incentivized the participants to dedicate 
themselves to the activity, assuming it as primordial (e.g., 
exchange as many e-mails as possible, respond to ques-
tions, or get points in a game). However, five studies 
allowed for an optional task engagement at least in some 
experiments [5, 10, 15, 29, 31], with the driver being 
allowed to interrupt the task or to perform it only when 
he/she felt safe.

Fig. 1  PRISMA flow diagram for the searching procedure [30]
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NDRTs can be classified into 4 main categories: visual, 
auditory, motor, and cognitive. However, these stimuli 
are not usually present in an isolated form. For instance, 
playing a game can combine the four types: (i) looking at 
the playing device involves visual distraction, (ii) every 
game involves at least a selection of an answer or touch-
ing a virtual object, i.e., motor distraction, (iii) if the game 
is a trivia or needs concentration, a cognitive distraction 
is involved, and (iv) if the game is played with sound, an 
auditory distraction is present too. To illustrate the dis-
tractive domain under investigation, Table 1 summarises 
the NDRTs identified in the selected studies.

The visual distraction was the most present among the 
experiments, and playing a game was the most repro-
duced task, being present on 16 studies. In fact, play-
ing a game is a very complex activity that can involve all 
distraction types and requires drivers’ full engagement. 
Examples of used games are Tetris, Sonic Dash, Angry 
Birds, Candy Crush, trivia, labyrinths, anagrams, and 
specific tasks created by the researchers, such as connect-
ing dots or identifying objects. Some studies followed the 
methods to assess driver demand due to the use of in-
vehicle systems defined in ISO/TS 14198, standard from 
2012 revised in 2019 [20, 21], namely by introducing a 
surrogate reference task (SuRT) or an n-back task. SuRT 
requires locating target stimuli on a screen (visual and 
motor distraction), and was introduced in four studies 

[2, 4, 17, 18]. Because of the similarities of induced stim-
uli, SuRT was included in the “play a game” category. 
N-back is an auditory-vocal task that requires memoriz-
ing sequences of numbers (cognitive distraction), being 
used in five studies (Table  2). After gaming, watching a 
video and reading were the most common activities used 
to distract drivers in driving simulation studies.

Secondary task engagement is normally seen as a 
problem that may delay the manual control recovery in 
a critical situation, with many studies confirming such 
concerns. For instance, Wandtner et  al. [54] introduced 
an auditory-vocal, a visual-vocal, and two visual-manual 
NDRTs to demonstrate that drivers’ responses and per-
ceived safety were strongly affected by NDRTs. Over-
all, perceived safety (based on a self-assessment scale) 
decreased while braking response time increased in the 
following order: no task, auditory-vocal, visual-vocal, and 
visual-motor. Differences were observed even between 
the two visual-motor tasks: performing a task with a 
handheld device had stronger effects than performing it 
with the device mounted on the dashboard. In the same 
line, Zeeb et  al. [64] observed larger reaction times for 
drivers interacting with a handheld tablet than with a 
tabled fixed on the dashboard. Dogan et  al. [9] and Wu 
et al. [58] found that the minimum TTC tends to decrease 
when drivers engage in NDRTs under automated driving 
in relation to manual driving, which poses an increased 

Table 1  NDRTs identified in the selected studies

Legend: ● the NDRT involves this type of distraction; (●) in some experiments, the NDRT may involve this type of distraction

NDRT Involved stimuli References

Visual Auditory Motor Cognitive

E-mail ● ● (●) Alrefaie et al. [1], Dogan et al. [9], Zeeb et al. [63]

20 questions task ● ● Alrefaie et al. [1], Lodinger and de Lucia [26]

Adjust cabin temperature ● ● Blommer et al. [2]

Search for a song, radio 
station or internet search

● ● DeGuzman et al. [7], Yoon and Ji [61], Zeeb et al. [62]

Watch a video ● ● Bourrelly et al. [3], Dogan et al. [9], Feldhütter et al. [15], Lin et al. [24], Shen and 
Neyens [41], Wan and Wu [53], Wu et al. [59], Yoon and Ji [61], Zeeb et al. [63]

Use mobile phone ● ● Dogan et al. [10], Yoon and Ji [62]

Read ● (●) Dogan et al. [7], Feldhütter et al. [15], Lin et al. [24], Vogelpohl et al. [50], Wan and 
Wu [53], Wandtner et al. [54], Zeeb et al. [63, 64]

Play a game ● (●) ● (●) Blommer et al. [2], Choi et al. [4], De Winter et al. [6], DinparastDjadid et al. [8], 
Feldhütter et al. [15], Gold et al. [17], Happee et al. [18], Louw et al. [27, 28], Lu 
et al. [29], Payre et al. [32], Rauffet et al. [37], Vogelpohl et al. [50], Wan and Wu 
[53], Wu et al. [58, 59]

N-back task ● ● Choi et al. [4], Gold et al. [17], Happee et al. [18], Louw et al. [28], Wu et al. [58]

Office work ● ● (●) Naujoks et al. [31], Vogelpohl et al. [48]

Typing or texting ● ● Gold et al. [17], Wan and Wu [53], Zeeb et al. [62]

Take a nap ● ● ● ● Wan and Wu [53]

Repeat sentences ● ● Wandtner et al. [54]

Transcribe sentences ● ● Wandtner et al. [54, 55], Zeeb et al. [62, 64]
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safety risk. Wan and Wu [53] was the only study analys-
ing the possibility of a driver being asleep at the time of 
an urgent TOR, simulating a situation that would config-
ure a misuse of L2 and L3 automated systems.

Nevertheless, some authors recognize that a second-
ary task may be important to avoid drivers’ fatigue and 
boredom. For instance, Wu et  al. [59] investigated the 
effects of NDRTs on drowsiness, focusing on finding dif-
ferences between distinct age groups. The results showed 
that for younger drivers, engaging on NDRTs was benefi-
cial in combating drowsiness and did not disturb takeo-
ver performance. On the other hand, task engagement in 
older drivers did not affect drowsiness development but 
degraded takeover performance, especially under more 
complex tasks. Middle-aged drivers fell at an intermedi-
ate level between the other two groups. Gold et al. [17] 
also confirmed the benefits of at least certain tasks to 
improve takeover performance by increasing the mini-
mum TTC, but Feldhütter et al. [15] did not find relevant 
differences in this variable. In a different perspective, 
Blommer et  al. [2] used mandatory secondary tasks to 
avoid drivers’ fatigue and boredom, but ensured that such 
tasks were performed only during automated driving and 
ceased prior to the critical events.

3.2 � Takeover events
This section focuses on describing the takeover events 
created for the experimental studies. As mentioned 
above, automation failures that lead to manual control 
recovery can occur due to known and predictable sys-
tem boundaries (system-limit failure), or malfunctions 
unforeseen by the system’s designers (system-malfunc-
tion failure). A recent study conducted by DeGuzman 

et  al. [7] analysed the takeover performance of two 
groups of participants, one experiencing a system-limit 
failure, and the other a system-malfunction failure. The 
differences found in takeover behaviour between the two 
groups were clear. The system-limit failure was associ-
ated with drivers more prepared to act, revealing a higher 
percentage of time looking at the roadway and in-vehicle 
cues before the failure occurs, as well as smaller takeover 
times.

In addition to the type of failure, the event urgency 
also represents a factor that may affect takeover perfor-
mance. When the driver needs to recover the manual 
control of the vehicle, there is a situation that automa-
tion cannot handle, regardless if it results from a sys-
tem’s limitation or malfunction. These situations can 
assume many forms, including the need to perform a 
specific manoeuvre, the need to correct an action (or 
inaction) of the system, or the variation of road and 
traffic conditions, and may or not present a risky situ-
ation. To illustrate this, Vogelpohl et al. [50] tested two 
takeover scenarios: missing lane markings and road-
works. Both scenarios were designed with low and high 
urgency, respectively, resulting in distinct visual pat-
terns. The low-urgency situation was associated with 
shorter times between the TOR and the first gaze at the 
speedometer, while the high-urgency event resulted in 
shorter times for the first gaze at the road centre, hands 
on the steering wheel, and the first gaze at the side 
mirror.

Regardless the urgency of the situation recreated in 
simulated environment, most of the analysed takeo-
ver events had an associated collision risk if no human 

Table 2  Takeover scenarios identified in the selected studies

Takeover event References

Obstruction of the ego-vehicle’s lane, roadwork zone 
or lane reduction

Blommer et al. [2], Choi et al. [4], DinparastDjadid et al. [8], Dogan et al. [9], Feldhütter et al. [15], 
Gold et al. [17], Happee et al. [18], Lin et al. [24], Rauffet et al. [37], Vogelpohl et al. [48, 50], Wan 
and Wu [53], Wandtner et al. [54], Wu et al. [58–60], Yoon and Ji [61], Zeeb et al. [62, 63], Zhou 
et al. [66]

Lead-vehicle deceleration/braking or slow lead-vehicle Choi et al. [4], DinparastDjadid et al. [8], Lodinger and DeLucia [26], Louw et al. [28], Vogelpohl, 
et al. [48–50]

Vehicle cuts into the ego-vehicle’s lane Lodinger and DeLucia [26], Naujoks et al. [31], Payre et al. [33], Zeeb et al. [64]

Missing/faded lane markings Dogan et al. [9], Naujoks et al. [31], Payre et al. [32], Vogelpohl et al. [48–50], Zeeb et al. [63, 64], 
Zhou et al. [66]

Lane opening or diverging lanes DeGuzman et al. [7], Yoon and Ji [61], Zeeb et al. [63]

Pedestrian/dog/cyclist crossing De Winter et al. [6], DinparastDjadid et al. [8], Lu et al. [29]

Wind gust blowing Shen and Neyens [41], Zeeb et al. [63, 64]

Limited visibility due to adverse weather Lodinger and DeLucia [26], Louw, et al. [28], Vogelpohl, et al. [49, 50], Zhou et al. [66]

Change of road environment or traffic conditions Dogan et al. [10], Wandtner et al. [55]

Sensor failure or system’s shut-down DeGuzman et al. [7], DinparastDjadid et al. [8], Naujoks et al. [31], Louw et al. [29], Payre et al. 
[32, 33]
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intervention occurred. In this context, the simulated haz-
ards are listed in Table 2.

The obstruction of the ego-vehicle’s lane was the most 
replicated takeover event, being identified in 20 stud-
ies. Obstacle avoidance is a very common manoeuvre 
that can occur in real driving for several reasons, e.g., 
a broken vehicle [62], construction works [8], or a sim-
ple lane reduction [66]. The virtual objects blocking the 
lane represented on the experiments included station-
ary vehicles (with or without flashing warning lights), 
crashing scenes, police vehicles, falling objects, and traf-
fic signs/cones. The presence of a slow lead vehicle or the 
sudden breaking of this vehicle are situations that share 
some similarities with lane obstruction, obliging the ego 
vehicle to break or to perform an avoidance manoeuvre. 
These situations were simulated in seven studies.

Following obstacle avoidance, the failure to detect the 
lane markings was the most reproduced event. An ade-
quate performance of an automated vehicle depends on 
a full understanding of the road layout, which is mostly 
provided by lane markings [45]. If the vehicle is not able 
to detect lines or arrows, driving safety can be compro-
mised, and a TOR is the most reliable option to deal 
with such situation. These events are simulated by faded 
lines, poor visibility, or leaves covering the lines. Adverse 
weather, such as rain, snow or fog, is used to simulate the 
limitations of an automated system under low visibility, 
but its effects are mostly combined with other occur-
rences, such as lane obstruction, which does not allow 
to generalize conclusions. Nevertheless, two studies have 
assessed weather effects in a more comprehensive way, 
albeit obtaining contradictory results. Louw et  al. [28] 
found a degraded takeover performance in scenarios with 
fog, attributing this fact to the low visibility, but Vogel-
pohl et  al. [50] showed quicker reactions under rainfall, 
which may be associated with drivers’ increased efforts to 
stay alert and monitor the road environment.

Other important category of simulated events is the 
shut-down of the automated system, observed in 6 stud-
ies. In some cases, the failure may be accompanied by a 
TOR that warned for the deactivation of the system [8, 
31–33], or be a “silent” failure leading to subtle [27] or 
sudden [7] trajectory deviations.

Other less represented situations included other 
vehicles cutting into the ego vehicle’s lane, the open-
ing of new lanes, the crossing of vulnerable road users 
and the change of road/traffic conditions. Table  1 also 
shows that several studies analysed multiple events, but 
Alrefaie et al. [1] and Bourrelly et al. [3] are not included. 
Alrefaie et al. [1] simulates critical events but do not pro-
vide details that allow to classify them. Bourrelly et  al. 
[3] focused exclusively on the effects on driving perfor-
mance after a long period of automation, issuing a TOR 
without a specific cause or visual cue. The authors con-
cluded that the longer the driving period, the longer the 
reaction times and the sharper the avoidance manoeu-
vres. They also suggested that frequent TORs could 
improve takeover performance, since taking over control 
seemed to eliminate the impact of the accumulated pas-
sive fatigue. In the same vein, Naujoks et  al. [31] con-
cluded that drowsiness affects drivers’ performance in 
partially automated driving, while low to moderate lev-
els of visual and mental workload improved the perfor-
mance in the riskiest driving scenarios. Feldhütter et  al. 
[15] showed another perspective and did not find sig-
nificant differences in the takeover performance between 
two conditions, in which one should be associated with 
higher fatigue levels than the other. However, the authors 
justified that short relaxing moments, or even sleeping 
periods, had a certain reviving effect, so that the drivers 
could be no longer fatigued during the takeover event.

From the analysed studies, the great majority were 
conducted in medium-(11 studies) or high-fidelity simu-
lators (17 studies). Both types feature a real or mock-up 
car and immersive video projection, with the latter add-
ing dynamic feedback capabilities. Five studies were con-
ducted in low-fidelity simulators, consisting of a gaming 
steering wheel and pedals, regular monitors and, some-
times, a car seat [24, 26, 53, 61, 66]. One study combined 
experiments in low- and medium-fidelity simulators [6]. 
Gold et al. [17] and Shen and Neyens [41] did not provide 
information about the characteristics of the simulators.

Table 3  Presence of TOR in the selected studies

TOR References

Yes Alrefaie et al. [1], Blommer et al. [2], Bourrelly et al. [3], Choi et al. [4], DinparastDjadid et al. [8], Dogan et al. 
[9, 10], Feldhütter et al. [15], Gold et al. [17], Happee et al. [18], Lin et al. [24], Lu et al. [29], Naujoks et al. [31], 
Payre et al. [32, 33], Rauffet et al. [37], Vogelpohl et al. [48–50], Wan and Wu [53], Wandtner et al. [54, 55], Wu 
et al. [58–60], Yoon and Ji [61], Zeeb et al. [62–64]

No De Winter et al. [6], DeGuzman et al. [7], Lodinger and DeLucia [26], Louw et al. [27, 28], Shen and Neyens [41]

Some experiments Zhou et al. [66]
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3.3 � Presence of TOR
The need for resuming the manual control of the vehi-
cle after a period of automated driving was present in 
every selected study. However, a driver’s consciousness 
about this need may be triggered by a TOR issued by an 
in-vehicle warning system or by the visual perception of 
potential hazards or critical events. The majority of the 
studies (29) included in the review provided a request 
before the system limits were reached, while six stud-
ies did not provide such alert, considering it as a “silent” 
failure [27]. Only one study considered both situations. 
Table  3 presents the studies that implemented or not a 
TOR in the driving simulations.

Moreover, human factors affecting the interaction 
between drivers and automated systems, such as the 
level of acceptance, trust and reliance on technology, 
together with drivers’ knowledge about the system lim-
its, may have strong impacts on the decision to take over 
control. These factors not only impact the promptness 
of drivers’ reaction to a TOR, consequently affecting 
takeover performance, but also impact the earlier deci-
sion to undertake an NDRT. In some studies, the authors 
opted to provide all the information about how the sys-
tem works and its limitations and boundaries [6, 7, 26]. 
From another perspective, some studies aimed to analyse 
a more critical scenario and do not inform participants 
that automation would fail [27, 41]. This background on 
the system’s functionalities is essential to define a driv-
er’s level of alertness and interaction with environmen-
tal cues. It is logical to assume that, if a driver trusts on 
automated technology and/or is told that the system will 
emit an anticipated alert when human intervention is 
needed, he/she will be more relaxed and less engaged in 
the monitoring task. However, as the risk perception in 
simulated environment is much lower than in real-world 
driving, many of the reviewed studies do not approach 
these issues, lacking information about the participants’ 
trust and previous knowledge on the performance of 
automated systems.

3.4 � Takeover performance measures
To evaluate the efficiency of drivers’ manual inputs, stud-
ies observed indicators of takeover quality. The most 
common variables are the takeover time (also known as 
response or reaction time), TTC, crash rate, and varia-
tions in driving dynamic parameters (see the Additional 
file 1: Appendix).

The definition of reaction time is not a global and well-
defined concept, and there are a variety of measures, 
depending on the event that generates the response [16]. 
In autonomous driving, a commonly adopted definition 
for takeover time is the time between the takeover stimu-
lus and the moment of driver intervention [65]. However, 

this definition is too generic and questions are raised 
about what is considered as the first stimulus and how a 
driver’s intervention can be verified. Regarding the first 
stimulus, commonly the takeover time is measured as the 
elapsed time since the first auditory, visual, and/or haptic 
TOR [4, 48, 64]. Nonetheless, some studies calculate the 
takeover time without a TOR, for instance considering 
the first visual cue of a hazard or the start of an untypical 
behaviour from the automated system (e.g., due to a mal-
function) [7, 27]. Concerning driver intervention, studies 
generally assume the intervention as the system deacti-
vation, which, depending on the system, can occur due 
to the first pedal or steering wheel input or by pressing a 
button. Nonetheless, some studies specify the boundaries 
of assuming a steering or braking reaction. For instance, 
the steering reaction was considered as a minimum turn-
ing of 2 degrees by Louw et al. [28] and Wan and Wu [53]. 
Lodinger and de Lucia [26] considered a brake response 
as 2% of the maximum possible brake pressure, and Wan 
and Wu [53] and Zeeb et al. [62] increased that limit to 
10%. In the analysed studies, the mean takeover time was 
extracted as the smallest value between braking, steering, 
or system deactivation, depending on the available infor-
mation. The time until the first gaze on the hazard and 
the time until putting the hands on the wheel was also 
calculated in some studies, however, to have homogene-
ous data, those times were not considered in this review. 
Figure  2 shows the number of papers presenting mean 
takeover times within intervals of 0.5 s.

All the 36 selected papers reported takeover times, and 
each paper may report more than one mean takeover 
time value to represent different experimental conditions 
and/or participants characteristics. In total, 150 mean 
takeover time values were extracted from the papers, 75% 
of which fall between 1.5 and 3.5 s.

In relation to the TTC, Feldhütter et  al. [15] defined 
it as “the theoretically remaining time until a potential 
collision with an obstacle assuming a constant speed of 
the ego-vehicle”, which means that higher TTCs should 
represent safer behaviours [3]. However, as previously 
mentioned, some authors analysed NDRT engagement 
in relation to the minimum TTC with either positive or 
negative effects [9, 15, 17, 58]. The TTC was also used 
for comparison between visual and auditory tasks [54], 
partial and highly automated driving [31], and short and 
long automated driving periods [3, 60]. Happee et al. [18] 
focused on the analysis of different TTC measures. In 
total, only 9 studies measured the TTC. In turn, 19 stud-
ies refer to the time budget, defined as the time for a sys-
tem’s deactivation or as the TTC at the moment a TOR is 
issued due to a critical event, corresponding in this case 
approximately to the sum of the takeover time with the 
minimum TTC. Because of both definitions, the time 
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budget varies over a wide range (1.7–60.0 s) in the sample 
studies, being less relevant for the assessment of takeo-
ver performance than the takeover time or the TTC. For 
instance, with the reduction of the takeover urgency, 
Wan and Wu [53] found that the probability of having a 
crash stabilizes at near zero for time budgets above 10 s.

The number of collisions, or crash rate, is also an out-
put related with driver behaviour, as it is common sense 
that poorer driving performance increases crash prob-
ability. For instance, Williamson et  al. [56] conducted 
experiments to study the effects of drowsiness on manual 
driving performance and results showed that the majority 
of participants reporting increasing sleepiness levels had 
a higher likelihood of crashing. In the case of imminent 
risks, which are often the cause of TORs under auto-
mated driving, a timely reaction should be accompanied 
by the capability of avoiding that risk. For this reason, 
the crash rate is an important measure of takeover per-
formance in pair with time measures. However, takeover 
quality has been much less analysed than takeover time. 
Taking a look at the 36 selected papers, only eight of them 
reported crash figures in the conducted experiments. 
From those, Choi et al. [4], De Winter et al. [6], Lodinger 
and DeLucia [26], and Naujoks et al. [31] reported zero 
crashes. The remaining studies obtained collision rates 
varying from 0 to 60%, depending on the time budget, 
the NDRT engagement and the type of NDRT, and gaze 
behaviour. Zeeb et al. [62] categorized their sample into 
“high”, “medium” and “low-risk” drivers, according to the 
percent time looking at the road and gaze behaviour, and 

found that high-risk drivers collided significantly more 
often (45.0%) than low-risk drivers (15.2%). Lin et al. [24], 
Wan and Wu [53], and Wandtner et  al. [54] found that 
drivers distracted with NDRTs with increasing difficulty 
collided more often and simultaneously presented higher 
takeover times. Therefore, while secondary tasks may 
help to reduce drowsiness [59], they also seem to pose an 
additional crash risk under critical takeover situations.

Besides crash figures, takeover quality can be reflected 
in dynamic driving variables. The most common indica-
tors found in this review were changes in the acceleration 
and lateral position. Louw et  al. [28] stated that “steer-
ing collision avoidance remains a feasible option for a 
longer time than braking avoidance, during the run-up 
to a potential collision”, with 55% of their sample mainly 
steered in response to a lead vehicle. Wandtner et al. [55] 
used standard deviation of lateral position (SDLP) and 
percentage of lane excursions to assess lateral control 
quality when recovering manual control. Both SDLP and 
lane excursions revealed a performance decrement when 
drivers were engaged in secondary tasks. The authors 
also analysed vehicles’ lateral and longitudinal accelera-
tions, and results showed that during the NDRT, drivers 
generated significantly higher maximum accelerations. 
Alrefaie et al. [1] considered the mean percentage change 
of vehicle’s speed and heading angle for a period before 
takeover, associating higher values with poorer takeover 
performance. Lane excursions were analysed by Louw 
et  al. [27], and the effects of NDRTs were significant 
(30% of lane excursions occurred in normal conditions, 

Fig. 2  Mean takeover times extracted from the analysed papers
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while 70% occurred for drivers distracted with non-
driving activities). Moreover, lane excursions occurred 
more often on curved road sections than on straight road 
sections.

4 � Quantitative analysis
A meta-analysis was performed to find common pat-
terns among the reviewed studies and to investigate how 
the experimental conditions in those studies may have 
influenced the measured outcomes. Generically, all the 
36 studies had the objective of analysing takeover per-
formance, thus the most frequent time and quality meas-
ures, i.e., takeover reaction time and crash rate, were 
chosen as target variables.

4.1 � Data description
The data used for this analysis was extracted directly 
from the selected papers. As previously mentioned, most 
authors performed different experiments to simulate dif-
ferent takeover conditions. In this sense, the authors pre-
sented the results of takeover performance by averaging 
takeover time and quality indicators according to dif-
ferent aggregation criteria, such as the type of takeover 
event, the type of NDRT, or some participants’ character-
istics. In total, 150 values of mean takeover time (TOT) 
were extracted from the studies, of which just 22 were 
associated with the corresponding mean crash rate (CR). 

These 150 observations were completed with information 
about the following variables:

•	 Simulator fidelity (FID): low, medium, or high;
•	 NDRT engagement: no, optional, or mandatory;
•	 Presence of TOR: no or yes;
•	 Mean time budget (TB);
•	 Participants’ sample size (SAMPLE);
•	 Participants’ mean age (AGE);
•	 Percentage of male participants (MALE);
•	 Journal’s highest quartile in WoS’s 2020 Journal Cita-

tion Reports (QUART): Q1, Q2, and Q3/Q4.

All the variables were selected by seeking homogenous 
data across the different sources. Nevertheless, in some 
cases the information is not available. The inclusion of 
sample characteristics aims to enrich the quantitative 
analysis, despite being out of the scope of the descriptive 
analysis, focused on the simulation characteristics. The 
journal ranking represents a standardised measure of its 
quality. The 3rd and 4th quartiles were grouped under the 
same category for practical reasons, because there was 
only one paper on a Q3 journal and four papers on Q4 
journals. The data description is presented in Table 4.

Table 4  Data description for the meta-analysis

Variable Mean Standard deviation Minimum Maximum Relative 
frequency 
(%)

TOT (s) 2.6 1.0 0.4 5.2 –

CR (%) 7.6 11.9 0.0 45.0 –

FID = low – – – – 13.3

FID = medium – – – – 28.0

FID = high – – – – 52.7

FID = n/a – – – – 6.0

NDRT = no – – – – 25.3

NDRT = optional – – – – 6.7

NDRT = mandatory – – – – 48.0

NDRT = n/a – – – – 20.0

TOR = no – – – – 16.0

TOR = yes – – – – 84.0

TB (s) 6.7 2.6 1.7 10.0 –

Sample 31.3 16.3 6.0 84.0 –

Age (years) 36.8 9.3 19.8 64.3 –

Male (%) 54.4 12.4 17.0 100.0 –

QUART = Q1 – – – – 38.7

QUART = Q2 – – – – 50.7

QUART = Q3/Q4 – – – – 10.7



Page 12 of 18Soares et al. Eur. Transp. Res. Rev.           (2021) 13:47 

4.2 � Methods
To find patterns associating the experimental condi-
tions (FID, NDRT, TOR, and TB), the sample charac-
teristics (SAMPLE, AGE, and MALE) and the journal 
ranking (QUART), a PAM clustering, also known as 
partition around medoids or k-medoids clustering, 
with Gower distance was applied to the 150-observa-
tion database. The Gower distance is a common meas-
ure applied to clustering with mixed data [22], being 
calculated as the mean of partial dissimilarities among 
subjects and varying between 0 and 1. For numerical 
variables, the Gower distance between observations i 
and j for feature f can be computed as follows:

where xi and xj are the absolute difference between 
observations and Rf is the maximum observed range. For 
categorical variables, the Gower distance is equal to zero 
if observations i and j belong to the same category, and 
equal to 1 otherwise. Missing values are allowed, as the 
dissimilarities for a given feature are computed consider-
ing only the non-missing values.

PAM clustering requires to define a priori the num-
ber of clusters (k), thus iterations were run starting 
with k = 2, using the data mining software R [35]. The 
selection of the number of clusters to retain was made 
according to both clustering performance and inter-
pretability criteria. The silhouette coefficient (SC) [38] 

(1)d
(f )
ij =

∣

∣xif − xjf
∣

∣
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was chosen to evaluate the clustering performance 
based on the pairwise differences between and within-
cluster distances. The analysis of this index determined 
that the optimal number of clusters was 10, for which 
SC peaked at 0.496. However, for k = 10, the clustering 
resulted in over-segmentation, isolating small groups 
that cannot be considered representative of gen-
eral patterns. The first deceleration of the SC growth 
was observed between k = 4 (SC = 0.341) and k = 5 
(SC = 0.359). Additionally, it was possible to obtain 
interpretable and meaningful results for k = 4. For these 
reasons, four clusters were retained for this analysis.

Finally, to analyse the variations of takeover per-
formance measures across the clusters, two one-way 
ANOVAs were conducted, considering TOT or CR as 
the dependent variable and the cluster coding as the 
independent variable. Post-hoc Tukey’s HSD tests were 
conducted to analyse the significance of the differences 
between clusters. ANOVA was performed using the soft-
ware IBM SPSS Statistics 26 [19].

4.3 � Results and discussion
The centroids of the four groups resulting from the PAM 
clustering are presented in Table 5. The cluster partition-
ing is displayed on a two-dimensional space in Fig. 3. This 
chart was made using the Rtsne package in R [46, 47], 
which allows to construct a low dimensional embedding 
of high-dimensional data.

The relevance of the cluster partitioning is evidenced 
by the fact that each cluster’s observations are grouped 

Table 5  Cluster centroids

N is the number of observations

Variable Cluster 1 (N = 47) Cluster 2 (N = 57) Cluster 3 (N = 15) Cluster 4  
(N = 31)

FID = low 0.04 0.11 0.60 0.10

FID = medium 0.21 0.00 0.27 0.90

FID = high 0.60 0.89 0.00 0.00

FID = n/a 0.15 0.00 0.13 0.00

NDRT = no 0.06 0.32 0.53 0.29

NDRT = optional 0.02 0.02 0.20 0.16

NDRT = mandatory 0.70 0.51 0.13 0.26

NDRT = n/a 0.21 0.16 0.13 0.29

TOR = no 0.02 0.21 0.73 0.00

TOR = yes 0.98 0.79 0.27 1.00

TB (s) 6.71 5.81 n/a 8.80

SAMPLE 33.44 29.47 24.15 34.97

AGE (years) 36.09 36.75 38.54 37.02

MALE (%) 51.39 52.91 56.21 60.19

QUART = Q1 0.96 0.12 0.13 0.13

QUART = Q2 0.00 0.88 0.07 0.81

QUART = Q3/Q4 0.04 0.00 0.80 0.06
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approximately in the same zone of the chart of Fig.  3, 
with the exception, to a certain extent, of cluster 2. How-
ever, it should be noted that the data dimensionality 
reduction that enables this representation may cause that 
some clusters look less cohesive.

In relation to the cluster’s interpretation based on the 
obtained centroids, cluster 1 gathers observations with 
complex experimental settings, featuring NDRTs (72%), 
TORs (98%), and high-fidelity dynamic simulators (60%). 
Together with the fact that 96% of the observations were 
extracted from Q1 journal publications, this denotes that 
cluster 1 may be associated with studies featuring higher 
quality standards.

In contrast with cluster 1, the observations in cluster 3 
are mainly associated with Q3 and Q4 journals (80% of 
observations), low-fidelity driving simulators (60%), and 

no distractive task (53%) or TOR (73%). In combination 
with the lack of information on the time budget, those 
factors show a lower complexity of the studies repre-
sented in cluster 3.

Clusters 2 and 4 show some similarities, namely the 
prevalence of TORs and Q2 journals, as well as a more 
balanced distribution between the presence and the 
absence of NDRTs. The main differences are observed 
in the mean time budget, which is the lowest in cluster 2 
(5.8 s) and the highest in cluster 4 (8.8 s), and in the type 
of driving simulator, with a prevalence of high-fidelity 
simulations (89%) in cluster 2 and medium-fidelity simu-
lations (90%) in cluster 4. Therefore, both clusters seem 
to represent studies with intermediate levels of complex-
ity, mostly differing in the simulation infrastructure and 
the adjustment of simulation parameters.

Fig. 3  Cluster partitioning

Table 6  Takeover time and crash rate descriptive statistics for each cluster

Cluster TOT CR

N Mean (s) Standard deviation (s) N Mean (%) Standard 
deviation 
(%)

1 15 2.54 0.80 10 15.43 13.64

2 47 2.64 0.88 8 1.66 4.70

3 57 1.55 0.91 4 0.00 0.00

4 31 3.18 1.08 0 n/a n/a

Total 150 2.61 0.99 22 7.62 11.86



Page 14 of 18Soares et al. Eur. Transp. Res. Rev.           (2021) 13:47 

The participants’ characteristics did not present large 
variations across the four clusters: the mean age varied 
between 36 and 39  years old, the mean percentage of 
males between 51 and 60%, and the mean sample size 
between 24 and 35 participants. These small variations 
seem to confirm the use of relatively small convenience 
samples belonging to the same group (e.g., university stu-
dents or workers at an R&D centre or car manufacturer).

The variations of takeover time and crash rate across 
clusters is depicted in Table 6. Crash rates are not avail-
able for any of the observations contained in cluster 4.

As determined by the one-way ANOVA, there are 
statistically significant differences between clusters, 
at the 1% level, in relation to the mean takeover time 
(F(3,146) = 10.988, p = 0.000) and mean crash rate 
(F(2,19) = 5.847, p = 0.010). A post-hoc Tukey’s HSD 
test revealed that the takeover time was statistically sig-
nificantly lower, at the 5% level, for cluster 3 in relation 
to clusters 1 (p = 0.020), 2 (p = 0.000) and 4 (p = 0.000). 
The takeover time was also statistically significant higher 
for cluster 4 in relation to clusters 1 (p = 0.016) and 2 
(p = 0.041). There was no statistically significant differ-
ence between clusters 1 and 2 (p = 0.956). In relation to 
the crash rate, Tukey’s HSD test showed that is statisti-
cally significantly higher in cluster 1 than in clusters 2 
(p = 0.021) and 3 (p = 0.039). The mean crash rate is not 
statistically significantly different between clusters 2 and 
3 (p = 0.959).

The fact that cluster 3 presented the lowest mean take-
over time and crash rate may be associated with the lower 
complexity of these studies. Despite that most experi-
ments do not warn the driver for the need of manual 
intervention, NDRTs are notoriously absent or, at least, 
are optional, thus drivers may be more alert to potentially 
risky situations and to the urgent need of manual inter-
vention. In practice, this type of experiments are useful 
as a baseline for comparison with more complex simula-
tions rather than addressing the wide spectrum of driver-
vehicle interactions occurring the real world.

Cluster 4 is associated with higher mean reaction 
times (crash rates are not available). Considering the 
higher mean time budgets and that all the observations 
presented a TOR, the higher reaction times may be 
explained by a timely anticipation of critical events and/
or system limits (scheduled takeover), reducing the pres-
sure on drivers to act quickly. This is the case of the stud-
ies by Dogan et al. [10], Vogelpohl et al. [49, 50] and Yoon 
and Ji [61], which have all their observations grouped in 
cluster 4.

Clusters 1 and 2 present similar mean takeover times 
(≈ 2.6  s), but the mean crash rate is significantly lower 

in cluster 2. Both clusters are associated with high-fidel-
ity simulators, the presence of TOR, NDRT engagement 
and similar mean time budgets. However, the prevalence 
of mandatory NDRT is higher in cluster 1 (70% versus 
51%), and the absence of NDRT is much more notorious 
in cluster 2 (32% versus 6%), with comparable values for 
optional NDRT and missing data. Therefore, cluster 1 can 
be associated with more demanding experiments testing 
a larger array of risky behaviours leading to crashes. As 
previously mentioned, secondary task engagement has 
been widely associated with an increased crash risk [24, 
53, 54, 62]. Although NDRTs have also been associated 
with higher reaction times [9, 58], some authors found 
contradictory or null effects [15, 17, 59]. The potential of 
NDRTs to increase drivers’ situation awareness [3] nar-
rows the consensus around the negative effects on takeo-
ver times and strengthens the importance of evaluating 
takeover performance using simultaneously time and 
quality measures [63].

The results may also denote some publication bias, with 
high-ranking journals favouring more complex studies 
in which it can be difficult to control for confounding 
effects. Clusters 1, 2 and 4 are widely dominated by Q1 
or Q2 journal publications, while cluster 3, in which the 
lowest mean takeover time and crash rate are observed, 
is the only one characterized by a majority of Q3/Q4 
publications. It should be remembered that cluster 3 is 
mainly associated with less complex experiments without 
TOR or NDRTs, but such studies are still relevant for the 
analysis of urgent takeover events and baseline monitor-
ing conditions of the automated driving activity. As noted 
by Zhang et al. [65] regarding publication bias, “high and 
low takeover times could be regarded as equally interest-
ing to authors, publishers, and editors.”

As mentioned before, the study by Zhang et  al. [65] 
can be seen as a reference in automated driving takeover 
reviews, particularly concerning a very detailed evalua-
tion of the individual impacts of different variables on the 
mean takeover time. Despite the different objectives and 
approach, both Zhang et al. [65] and the present review 
achieved intuitive and consistent findings. Specifically, 
low urgency of manual control recovery, characterized by 
the presence of a TOR and long time budgets, seem to 
lead to higher takeover times. Zhang et al. [65] associated 
this with higher automation levels featuring increased 
capabilities of anticipating a TOR, in accordance to the 
SAE scale [39]. Both reviews concluded that avoid-
ing NDRTs decreases takeover time. However, contrary 
to Zhang et  al. [65], we did not find a relation between 
high-fidelity driving simulators and older samples of 
participants.
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5 � Conclusions
The transition to automated driving requires long and 
comprehensive research to address the risks introduced 
by new technology, particularly regarding the interaction 
between the automated vehicle, its driver, and the other 
road users. Because of the safety concerns related with 
an early maturity of automated systems and the lack of a 
widespread regulatory framework for real-world testing, 
driving simulators, together with closed testing facilities, 
have been used by the majority of researchers in the field.

This review systematizes the latest research performed 
in driving simulators focused on the manual control 
recovery in an automated vehicle, thus providing relevant 
information and guidance for the experimental design 
of future analyses. Takeover is a major safety concern 
associated with the intermediate stages of development 
of automated vehicles [11, 23], which has been demon-
strated by an increasing number of studies published on 
this topic.

A descriptive analysis of 36 papers, selected accord-
ing to different eligibility criteria, allowed understanding 
the most reproduced takeover situations and the most 
important measures used in the assessment of takeover 
performance. It was observed that researchers have been 
mainly dedicated to the analysis of critical situations that 
may reduce drivers’ ability to reassume manual driving, 
such as distraction, drowsiness and passive fatigue. Dif-
ferent types of NDRTs, involving combinations of visual, 
auditory, motor and cognitive stimuli, have been tested 
against a wide array of more or less critical events. The 
takeover reaction time is, by far, the most used measure 
to assess takeover performance.

As expected, drivers’ performance tends to decrease as 
the complexity of the situation increases, i.e., as the more 
immersive the NDRTs and the more critical the traf-
fic situations are (e.g., play a game while an automation 
malfunction causes a lane departure). Nevertheless, some 
authors found that NDRTs may have, under certain con-
ditions, a positive effect on drivers’ situation awareness 
and reaction times [17, 59]. One of those situations is the 
takeover after a long period of automation [3], especially 
if timely anticipated by the system. In this case, second-
ary task engagement may help drivers to avoid boredom 
and drowsiness and to be more prepared to recover man-
ual control.

The selected papers were also examined though a 
meta-analysis to identify different research patterns. 
Several variables characterizing the driving simulation 
settings, the participants’ sample, and the takeover per-
formance were extracted from the papers, together with 
the corresponding journal quartiles. A cluster analysis 
evidenced that more complex studies, i.e., featuring 
a wide array of simulation scenarios and developed in 

high-fidelity dynamic driving simulators, are typically 
published in high-ranking journals (Q1 or Q2). These 
studies tend to reveal worse takeover performance indi-
cators, as a result of the complexity of the analysed sit-
uations. In turn, simpler studies without secondary task 
engagement are more likely to be published in Q3 or 
Q4 journals. The lower takeover times and crash rates 
associated with these studies may not be representative 
of the many complex interactions between driver and 
vehicle in real-world driving. Notwithstanding, these 
studies allow for a better understanding of baseline 
conditions (e.g., no TOR and no NDRT) in comparison 
to more complex approaches.

This study has some limitations related to its concep-
tualization and methodology, but as any review, it also 
reflects the limitations of the current state-of-art. First, as 
the objectives were to provide a description of the main 
experimental conditions used for takeover research and 
to use a meta-analysis to establish patterns among the 
existing studies, the methodology can be classified as a 
between-study analysis that does not control for the con-
founding effects of within-study variables. For example, 
the results showed that higher takeover times are associ-
ated with the presence of TOR and higher time budgets, 
representing low-urgency events. Therefore, this does not 
mean that a sufficiently anticipated or scheduled TOR 
reduces takeover safety. In this sense, reducing takeover 
times should not necessarily be a priority for the advance 
of automated driving technology [65]. Designers and 
researchers should aim for the reduction of unexpected 
or sudden takeover events by increasing warning, com-
munication and sensoring capabilities. For a deep under-
standing of the individual effects of numerous variables 
on takeover time, please see Zhang et al. [65].

Second, the process of extracting variables from differ-
ent sources may be a source of ambiguity, because it is 
not completely possible to assure that similar variables 
are measured in a similar way. An example of this issue is 
the instant considered to measure the reaction time after 
a TOR, which can be established according to different 
threshold values defining a human action on the steering 
wheel [28, 53] and/or pedals [26, 53, 62].

Third, as mentioned before, the crash rate is the most 
reported measure of takeover quality, but it is still absent 
from the majority of takeover performance assessment 
studies. This aspect is highlighted by the methodology 
adopted in this review, as one of the clusters is exclusively 
composed by observations with missing crash rates. A 
widespread availability of consistent takeover quality 
measures would allow for better insights on the crash 
risks associated with each experimental setup. Thus, for a 
deeper and more comprehensive assessment of takeover 
performance, future research should give more attention 
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to takeover quality indicators in addition to reaction 
times.

Fourth, it was observed that most of the selected stud-
ies used convenience samples with small variability of 
basic demographic indicators, such as gender and age. 
These characteristics did not vary significantly across 
the obtained clusters, which seems to confirm this 
issue. Future experimental research should then seek to 
increase the representativeness of the sample of partici-
pants in relation to the general population.

Finally, this review is limited to driving simulator 
studies, which represent the vast majority of takeover 
research conducted to date. Nevertheless, perceived 
crash risk is lower in virtual environment than in real-
world driving, which could discourage fast reactions 
[65]. However, an increasing number of large-scale tests 
of automated vehicles on public roads, especially in the 
United States, together with open-source data initiatives 
by some OEMs and mobility companies, are expected 
to address this issue and boost R&D of automated driv-
ing technology in the next few years. Therefore, future 
reviews are also expected to address on-road conditions.
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