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Abstract Herethe authors present a Grid-aware middleware system, called GridPACS, that enables
management and analysis of images in a massive scale, leveraging distributed software components coupled with
interconnected computation and storage platforms. The need for this infrastructure is driven by the increasing
biomedical role played by complex datasets obtained through a variety of imaging modalities. The GridPACS
architecture is designed to support a wide range of biomedical applications encountered in basic and clinical research,
which make use of large collections of images. Imaging data yield a wealth of metabolic and anatomic information
from macroscopic (e.g., radiology) to microscopic (e.g., digitized slides) scale. Whereas this information can
significantly improve understanding of disease pathophysiology as well as the noninvasive diagnosis of disease in
patients, the need to process, analyze, and store large amounts of image data presents a great challenge.
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The use of biomedical imaging is growing in prevalence and
has become a key component in both basic research and clin-
ical practice. Although advances in data acquisition technol-
ogies have improved the resolution and speed at which we
can collect image data, most researchers have access to a
limited research repository mainly due to lack of efficient
software for managing, manipulating, and sharing large vol-
umes of image data. For instance, a single digitized micros-
copy image can reach up to several tens of gigabytes in
size, and a research study may require access to hundreds
of such images. Querying and retrieving the data of interest
so that the analysis can be completed quickly is a challenging
step in large datasets. Formulation and execution of effective
image analysis workflows are also crucial. An image analysis
workflow can consist of many steps of simple and complex
operations on image data as well as interactive visualization.
There is also a need to support the information service needs
of collaborative studies in which datasets may reside on var-
ious heterogeneous distributed resources including a wide
range of networks, computation platforms, and data storage
systems.

In this work we present a software system that is designed to
address these data management and processing challenges.
The contributions of this report include: (1) an efficient client
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frontend that implements the functionality to submit queries
in a uniform way against distributed image databases consist-
ing of multiple studies and modalities; (2) extensible metadata
schema for images that can be used to represent two-dimen-
sional (2D), three-dimensional (3D), and time-dependent im-
ages with optional application-specific metadata; and (3) an
integrated runtime system that provides support for storage
and management of distributed image databases, defined by
metadata schemas, and for processing large numbers of im-
ages quickly. GridPACS extends the traditional image archival
systems and our previous work'? in the following ways:

o Virtualized and Federated Data Access. An image dataset can
be partitioned and accessed at multiple distributed sites.
Multiple image servers can be grouped to form a collective
that can be queried as if it were a single, centralized server
entity.

® Scalability. The infrastructure makes it possible to employ
compute and storage clusters to store and manipulate large
image datasets. An image server can be set up on any num-
ber of nodes of a cluster. New image server nodes can
be added to or deleted from the system with little overhead.
A single image can be partitioned and stored on multiple
server nodes.

® Active Storage. The architecture supports invocation of pro-
cedures on ensembles of images. These procedures can
be used to, for example, carry out subsetting, error correc-
tion, image processing, feature analysis, and rendering.
Processing of data can be split across storage nodes (where
image data are stored) and compute nodes without requir-
ing the client to download the data to a local machine. The
system is extensible in that application developers can de-
fine and deploy their own procedures.

® On-demand Database Creation. An application-specific data
type (e.g., results of an image analysis workflow) can be
registered in the system as a new schema. New versions
of existing schemas may also be created by altering vari-
ous aspects such as the existence, cardinality, ordering, and
value constraints of attributes and elements. Moreover, the
schema can be a composition of new attributes and/or
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elements and references to existing schemas. Application-
defined metadata types and image datasets conforming to
a given schema can be automatically manifested as custom
databases at runtime, and image data adhering to these
data types can be stored in these databases.

Our previous work®” developed middleware frameworks
for distributed data management and data processing.
GridPACS is an application of these middleware frameworks
optimized to support distributed image datasets. This work
also complements our earlier work on digitized microscopy,'
which focused on efficient storage and retrieval of large dig-
itized microscopy images and distributed image processing,’
which developed a runtime system for distributed execution
of image processing operations. GridPACS implements sup-
port for images from multiple imaging modalities and builds
image management support on a generic XML-based data
management system. In GridPACS, image datasets and data
processing workflows are modeled by XML schemas. These
schemas and their instances are stored, retrieved, and man-
aged by distributed data management services. Images might
be organized in grids of 2D tiles, 3D volumes, and 2D/3D
time-dependent datasets. Through the use of XML schemas,
multiple attributes of arbitrary complexity can be defined
and associated with an image. Examples of such attributes in-
clude image type, unique identifier of the study for which the
image was acquired, and acquisition date. Distributed execu-
tion services carry out instantiation of data processing opera-
tions (components) on distributed platforms, management of
data flow between operations, and data retrieval from and
storage to distributed collections of data servers.

Background

The growth of radiology imaging data led to the development
of Picture Archiving and Communication Systems (PACS)®
that store images in the DICOM standard format.” PACS-
based systems support storage, management, and retrieval
of image datasets and metadata associated with the image
data. A client using these systems typically retrieves and
downloads the data of interest, often specified through
a graphical user interface, to the local workstation for applica-
tion-specific processing and analysis. The effectiveness of im-
aging studies with such configurations is severely limited by
the capabilities of the client’s workstation, while the server’s
compute capabilities are underutilized. Advanced analysis
techniques and exploration of collections of datasets can easily
overwhelm the capacity of most advanced desktop worksta-
tions as well as premium clinical review stations. A number
of projects targeted systems for federation of multiple PACS in-
stances.” ' GridPACS extends such systems by not only en-
abling federation at the Grid scale but also making it
possible to set up image databases on storage clusters and in-
tegrate data processing and data retrieval in a distributed
server environment.

The Open Microscopy Environment project (<http://
openmicroscopy.org>) supports a database-driven system
for analysis of biological images. The system consists of a
relational database that stores image data and metadata.
Images in the database can be processed using a series of
modular programs. These programs are connected to the da-
tabase; a module in the processing sequence reads its input
data from the database and writes its output back to the

database so that the next module in the sequence can work
on it. The Virtual Slidebox project (<http://www.path.
uiowa.edu/virtualslidebox>) at the University of Iowa is
a web-based portal to a database of digitized microscopy
slides used in education. The users can search for virtual
slides and view them through the portal. The Visible Mouse
project (<http:/ /tvmouse.compmed.ucdavis.edu>) provides
access to basic information about the mouse and mouse pa-
thology through a web-based portal. The Visible Mouse sys-
tem can be used for educational and research applications.

Manolakos and Funk'' describe a Java-based tool for rapid
prototyping of image processing operations. This tool uses
a component-based framework, called JavaPorts, and imple-
ments a master-worker mechanism. Oberhuber'? presents an
infrastructure for remote execution of image processing appli-
cations using SGI ImageVision library, which is developed
to run on SGI machines, and NetSolve.!®> Andrade et al."*
developed a distributed semantic caching system, called
ActiveProxy-G, which allows proxies interspersed between
application clients and application servers to speed up execu-
tion of related queries by exploiting cached aggregates.
ActiveProxy-G requires integration of user-defined operators
in the system to enable caching of application-specific inter-
mediate results and searching of cached results.

In our work, we address the metadata and data management
issues using a generic, distributed, XML-based data manage-
ment system. This system, called Mobius,>* is designed as
a set of loosely coupled services with well-defined protocols.
Building on Mobius, GridPACS allows for modeling and stor-
age of image data and workflows as XML schemas and XML
documents, enabling use of well-defined protocols for storing
and querying data. A client can define and publish data mod-
els to efficiently store, query, reference, and create virtualized
XML views into distributed and interconnected databases.
Support for image data processing is an integral part of
GridPACS. The image processing component builds on a com-
ponent-based middleware’ that provides combined task- and
data-parallelism through pipelining and transparent compo-
nent copies. This enables combined use of distributed storage
and compute clusters. Data operations that carry out data
subsetting and filtering operations can be pushed to storage
nodes to reduce the volume of network traffic, whereas com-
pute-intensive operations can be instantiated on high-perfor-
mance compute clusters. Complex image analysis workflows
can be formed from networks of individual data processing
Components.2

The Distributed Parallel Storage Server (DPSS)'> project de-
veloped tools to use distributed storage servers to supply
data streams to multiuser applications in an Internet environ-
ment. The DPSS was used in the implementation of a remote,
large scale data visualization system prototype.'® Our middle-
ware has similarities to DPSS in that it is used for storing and
retrieving data. However, DPSS is designed as a block-server,
whereas data in our system is managed as semistructured
documents conforming to schemas. This allows for more com-
plex data querying capabilities, schema validation, and data-
base creation from complex schemas.

There are a number of projects that target development of
infrastructures for shared access to data and computation
in various areas of medicine, science, and engineering.
The Biomedical Informatics Research Network (BIRN)
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(<http:/ /www.nbirn.net>)""'® initiative focuses on support
for collaborative access to and analysis of datasets generated
by neuroimaging studies. The BIRN project uses the Storage
Resource Broker (SRB),'® which provides a distributed file
system infrastructure as a distributed data management mid-
dleware layer. MammoGrid®>** is a multi-institutional pro-
ject funded by the European Union (EU). The objective of
this project is to apply Grid middleware and tools to build
a distributed database of mammograms and investigate
how it can be used to facilitate collaboration between re-
searchers and clinicians across the EU. eDiamond**** targets
deployment of Grid infrastructure to manage, share, and an-
alyze annotated mammograms captured and stored at multi-
ple sites. One of the goals of MammoGrid and eDiamond is
to develop and promote standardization in medical image
databases for mammography and other cancer diseases.
MEDIGRID*># is another project initiated recently to inves-
tigate application of Grid technologies for manipulating large
medical image databases. These large scale and multi-institu-
tional projects share the same goal of deploying an infrastruc-
ture, building on Grid technologies, to facilitate sharing of
medical image data across institutions, even countries. A ma-
jor requirement of these projects is the capability to support
storage, management, integration, and analysis of large im-
age datasets and associated metadata. Our system is designed
to address these needs through customization of two generic
middleware tools in an integrated package; a distributed,
XML-based data and metadata management system and
a distributed data processing engine. In that respect,
GridPACS provides a core, Grid-enabled technology that can
be employed by those projects.

Design Objectives

The GridPACS architecture is designed to support a wide
range of biomedical imaging applications encountered in
translational research projects, basic science efforts, and clin-
ical medicine. These applications have in common the need to
store, query, process, and visualize large collections of related
images. In this section, we briefly describe two biomedical
imaging applications with which our group has direct experi-
ence and how these application scenarios motivate the re-
quirement for GridPACS.

Dynamic Contrast Enhanced MRI Studies

Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRD)**?* is a powerful method for cancer diagnosis
and staging and for monitoring cancer therapy. It aims to de-
tect differences in the microvasculature and permeability of
abnormal tissue as compared with healthy tissue. After an ex-
tracellular contrast agent is injected in the subject, a sequence
of images are obtained over some period of time. The time-de-
pendent signal changes acquired in these images are quanti-
fied by a pharmacokinetic model to map out the differences
between tissues. State-of-the-art research studies in DCE-
MRI make use of large datasets, which consist of time-depen-
dent, multidimensional collections of data from multiple
imaging sessions. Although single images are relatively small
(2D images consists of 128 to 5127 pixels, 3D volumes of 64
to 512 2D images), a single study carried out on a patient
can result in an ensemble of hundreds of 3D image datasets.
A study that involves time-dependent studies from different
patients can involve thousands of images.

There are a wide variety of computational techniques used to
quantitatively characterize DCE-MRI results.”®*° These stud-
ies can be used to aid tumor identification and staging and to
assess efficacy of cancer treatments. Systematic development
and assessment of image analysis techniques require an abil-
ity to efficiently invoke candidate image quantification meth-
ods on large collections of image data. A researcher might use
GridPACS to iteratively apply several different image analy-
sis methods on data from multiple different studies to assess
ability to predict outcome or effectiveness of a treatment
across patient groups. Such a study would likely involve mul-
tiple image datasets containing thousands of 2D and 3D im-
ages at different spatial and temporal resolutions.

Digital Microscopy

Digital microscopy’ is being increasingly used in basic re-
search studies as well as in cooperative studies that involve
anatomic pathology. For instance, both the Cancer and
Leukemia Group B (CALGB) and the Children’s Oncology
Group are making use of fully digitized slides to support slide
review. Researchers in both groups are developing computer-
based methods to assist anatomic pathologists in quantifying
histologic features for disease grading. Digital microscopy is
also used for basic science applications. One such example in-
volves the characterization of the effects of gene knock-outs
through phenotypical and microanatomic change, including
differences in cellular and tissue organization, in mouse pla-
centa. These studies involve digitizing roughly 1,000 sequen-
tial thin sections of mouse placenta that are stained with
H&E.

These applications target different goals and make use of dif-
ferent types of datasets. Nevertheless, they exhibit several
common requirements that motivate the need for a system
like GridPACS. First, in all of these application scenarios, it
is anticipated that data will be generated by distributed
groups of researchers and clinicians. For instance, researchers
from different institutions can generate various portions of
mouse placenta datasets. In most cases it is not practical to
allocate a single, very large storage system for a project.
Instead, several sites associated with a project will contribute
storage. These requirements motivate distributed storage and
virtualized data access. Second, they all involve significant
processing on large volumes of data. This characteristic re-
quires the ability to push data processing near data sources.
Third, we also expect each such application to be in a position
to make use of computing capacity located at multiple sites.
Hence, a system should support combined use of distributed
storage and compute resources to rapidly access data and
pass it to relevant processing functions.

System Description

We have designed GridPACS to support distributed storage,
retrieval, and querying of image data and descriptive meta-
data. Queries can include extraction of spatial subregions, de-
fined by a bounding box and other user-defined predicates;
requests to execute user-defined image analysis operations
on data subsets; and queries against metadata. These queries
may span datasets across multiple sites. For example, a re-
searcher may want to perform a statistical comparison of im-
ages from two datasets located at two different institutions.

GridPACS can use clusters of storage and compute machines
to store and serve image data. It manages the distributed
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storage resources on the server and encapsulates efficient
storage methods for image datasets. In addition, GridPACS
can maintain metadata describing image analysis workflows
and can checkpoint intermediate results during execution of
a workflow. It supports efficient execution of image analysis
as a network of image processing components on commodity
clusters and multiprocessor machines. The network of com-
ponents can consist of multiple stages of pipelined opera-
tions, parameter studies, and interactive visualization.

Descriptive metadata, workflows, and system metadata are
modeled as XML schemas. The close integration of image
data and metadata makes it straightforward to maintain
detailed provenance®® information about how imagery has
been acquired and processed; the framework manages anno-
tations and data generated as result of data analysis. In the
rest of this section we provide a more detailed description
of the GridPACS architecture. We first present the two mid-
dleware systems, Mobius** and DataCutter,” that provide
the underlying runtime support.

Mobius and DataCutter Middleware
Mobius

Mobius provides a set of generic services and protocols to
support distributed creation, versioning, and management
of data models and data instances; on-demand creation of da-
tabases; federation of existing databases; and querying of data
in a distributed environment. Its design is motivated by the
requirements of Grid-wide data access and integration®*>>
and by earlier work done at General Electric’s Global
Research Center.** Mobius services employ XML schemas to
represent metadata definitions (data models) and XML docu-
ments to represent and exchange data instances. A more de-
tailed description of Mobius can be found in Hastings et al.®
and Langella et al.* We briefly describe the functionality of
core services used for GridPACS implementation.

Mobius GME: global model exchange. For any application it is
essential to have models for the data and metadata. By creat-
ing and publishing a common schema for data captured and
referenced in a collaborative study, research groups can en-
sure that applications developed by each group can correctly
interact with the shared data sets and interoperate. The
Global Model Exchange (GME) is a distributed service that
provides a protocol for publishing, versioning, and discover-
ing XML schemas. Because the GME is a global service, it is
implemented as an architecture, in which there are multiple
GMEs, each of which is an authority for managing schemas
defined within a set of namespaces. Namespaces provide
a mechanism for differentiating common terminology be-
tween multiple markup vocabularies. Other services such as
storage services can use the GME to match instance data
with their data type definitions.

Mobius Mako: distributed data storage and retrieval. The Mako is
a distributed data storage service that provides users the abil-
ity to create on-demand databases; store, retrieve, and query
instance data; and organize instance data into collections.
Mako exposes data resources as XML data services through
a set of well-defined interfaces based on the Mako protocol.
The initial Mako distribution contains an implementation to
expose XML databases that support the XMLDB API
(<http:/ /www.xmldb.org>). It also contains the implemen-
tation of MakoDB, an XML database optimized for interact-

ing in the Mako framework. To meet its data storage
demands, the GridPACS system is composed of several clus-
ters, with each machine in a cluster running a MakoDB imple-
mentation of a Mako. Mako client interfaces enable clients to
communicate with Makos over a network. Databases that
store XML instance documents can be created by using the cli-
ent interfaces to submit the XML schema that models the in-
stance data to a Mako. Once submitted, the client interfaces
can be used to perform operations on instance data, such as
submit, retrieve, delete, and query using XPath.

DataCutter

DataCutter” supports a filter-stream programming model for
developing data-intensive applications. In this model, the ap-
plication processing structure is implemented as a set of com-
ponents (referred to as filters) that exchange data through
a stream abstraction. Filters are connected via logical streams,
which denote a unidirectional data flow from one filter (i.e.,
the producer) to another (i.e., the consumer). The overall pro-
cessing structure of an application is realized by a filter group,
which is a set of filters connected through logical streams.
Processing of data through a filter group can be pipelined.
Multiple filter groups can be instantiated simultaneously
and executed concurrently. In GridPACS, DataCutter streams
are strongly typed with types defined by XML schemas man-
aged by GMEs. The current runtime implementation pro-
vides a multithreaded execution environment and uses TCP
for point-to-point stream communication between two filters
placed on different machines.

GridPACS Implementation

GridPACS has been realized as four main components in an
integrated system; frontend client, backend metadata and data
management, image storage, and distributed execution. The client
application can be used by a user to upload, query, and in-
spect the data at the server. The backend metadata and data
management service is implemented as a collection of feder-
ated Mobius Mako servers to manage distributed image
databases.

Figure 1 shows a sample environment of frontend clients and
backend image data servers. The image storage component
allows declustered data storage and parallel access of image
chunks. The distributed execution component allows image
processing operations to be performed on the images by mul-
tiple compute servers simultaneously.

GridPACS Frontend and Client Component

The GridPACS client frontend, shown in Figure 2, provides an
intuitive, centralized view of the GridPACS backend. It cre-
ates a local workspace for the user by hiding the details of re-
trieving and locating datasets within the backend. The results
of queries are displayed in a browser, which provides mech-
anisms for traversing both volumetric and single image data-
sets via thumbnails and a metadata viewer.

Accessing and displaying large datasets over a network of
distributed servers can quickly become problematic for cli-
ents because of issues such as network delays, large data sizes
and quantities, and multiple servers. The GridPACS client ap-
plication uses several techniques to overcome these adver-
sities. The first important feature is the intelligent use of
background threading for tasks that communicate with net-
work resources. The client application uses an active thread
pool that allows sequences of tasks to be performed in the
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background, whereas the main application thread continues
to process user inputs and refresh the display. Another pow-
erful feature is the use of on-demand, lazy data loading. All
data within datasets are left on the backend until it is abso-
lutely needed. Only a reference to the data is stored in the cli-
ent. The dataset object model abstracts this concept by
presenting get methods that cache and immediately return
data if it is present and transparently load the needed data
from the backend when it is not. This allows the application
components to work with the datasets as though they are
all locally present, and the object model handles the requests
and local storage when they are not. The dataset browser
takes full advantage of this feature and is able to present
a large amount of data quickly.

GridPACS Clients in the Grid
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Figure 1.

A sample GridPACS instance.
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Distributed Metadata and Data Management
Image data are modeled using XML schemas that are man-
aged by the GME. An instance of the schema corresponds
to an image dataset with images and associated image attri-
butes stored across multiple storage systems running data
management servers (i.e., Makos). In a cluster environment,
multiple Mako servers can be instantiated on each node,
and one or more GMEs can be instantiated to manage
schemas.

Our image model is made up of two components: the image
metadata and the image data. The image metadata compo-
nent contains a few basic attributes and a detail set entity
that allows a collection of user-defined key value pair meta-
data. This allows application-specific metadata to be attached
to an image while maintaining a common generic model. The
image data component contains either a Base64 encoded ver-
sion of the image data or a reference to a binary submitted
with the XML instance. The Mako protocol supports the at-
tachment of binary objects to XML documents, which is
much more efficient than the Base64 encoding of binary
objects.

We have designed a number of core models that any user can
extend with specific versions that are more relevant to their
domain. Figure 3 shows the basic single image type. The
basicImageType is a simple data model that has four main ele-
ments: the image data or a pointer to it, a thumbnail, an id,
and a generic set of key-value metadata. It also defines three
required attributes: the image data encoding type, the height,
and the width. This model is the basic starting point for rep-
resenting an image in storage system. All images in the stor-
age system are of this type or its extensions.

A simple extension to the 2D image model, shown in
Figure 3, is the wvolumelmageType shown in Figure 4a.
The volumelmageType extends the basiclmageType and adds
a few more descriptive attributes that are relevant to the im-
age if it belongs to a volume. The new attributes xloc, yloc,
and zloc are attributes that describe the image starting loca-
tion with respect to the volume container. Figure 4b shows
the volumeType, which is the container for a set of volume-
ImageTypes. This type contains a set of volumelmageTypes as

AW Medical Data Sets Browser - COMPLETED
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(A) GridPACS client screen shot. (B) Medical datasets browser screen shot.
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Figure 3. Basic image model.

well as some required metadata, which describe the dimen-
sions of the volume.

To handle medical image data, the basic image and volume
models described above are used in a new model, which is
more specific to medical image data sets. This model, shown
in Figure 5, contains two basic elements, the image as defined
by basicImageType or a volume as defined by volumeType and
a set of medical image data set specific metadata. This model
can be used to describe medical images or volumes and can
be queried using the attached medical metadata and the
metadata of the image data.

Image Data Storage
To process data, a number of XML instances must be created
and stored that adhere to the models defined by users and
registered in the system. When input data sets are ingested,
they are registered and indexed so that they can be referenced
by clients in queries. To maximize the efficiency of parallel
storage and data accesses for image data, GridPACS uses
the Mako/MakoDB framework of Mobius and data declus-
tering techniques. The goal of declustering®* is to distribute
the data across as many storage units as possible so that data
elements that satisfy a query can be retrieved from many

encoding | =asfing regquired
width | xsinkeger required
hieight | ®sinieger | required
Zioc | x=integer required
yioc | x=:intoger required
ET xS beger required

Figure 4. (A Volumewi_mage model. (B) Volume model.

sources in parallel. An application programming interface
(API) is provided by the system that can be used by an appli-
cation to partition a large byte array into smaller pieces
(chunks) and associate metadata description with each piece
(represented by a schema). For example, if the byte array cor-
responds to a large 2D image, each chunk can be a rectangular
subsection of the image. The metadata associated with
a chunk can be the bounding box of the chunk, its location
within the image, etc.

The system currently supports several data distribution poli-
cies. These policies take into account the storage capacity and
I/0 performance of the storage systems that host the backend
Mako databases, as well as the network performance. An ap-
plication can specify a preferred declustering mechanism
when it requests a distribution plan.

Distributed Execution

The distributed execution service builds on the runtime sys-
tem developed by Hastings et al.? This runtime system con-
sists of four pieces: (1) an image processing toolkit, (2)
a visualization toolkit, (3) a runtime system for execution in
a distributed environment, and (4) an XML-based schema
for process and workflow description. An image analysis ap-
plication is represented as a filter group consisting of filters
that process the data in a pipelined fashion. That is, the func-
tions constituting the processing structure of the applica-
tion are implemented as application components using
DataCutter filter support.5 The system implements a simple
abstraction layer for executing image processing operations
implemented using functions from the Insight Segmenta-
tion and Registration Toolkit (ITK)* and the Visualization
Toolkit (VTK).*

In this version of GridPACS, we have adapted the workflow
schema developed by Hastings et al.,2 which was based on the
process modeling of the Distributed Process Management
System (DPM).* The Grid Service communities are defining
standards to describe, register, discover, and execute work-
flows. We ultimately plan to adopt a model based on these
emerging workflow standards. GridPACS describes work-
flows in a way that is comparable to systems such as
Pegasus*>*! and Condor’s DAGMan.** The execution of an
application is modeled by a directed acyclic task graph of fil-
ters. We have extended the earlier implementation2 to use the

25ue | xsinfeger |_required
ysge | xsCinteger required
xsize xsinteger required
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Mako service structure for managing workflow descriptions,
querying input datasets, and storing both intermediate
results and image analysis output. As discussed earlier, the
Mako allows a document to be comprised of other document
pieces stored in the data grid. We use this functionality to sup-
port nested workflows. That is, a workflow can consist of fil-
ters and other workflows. A process in a workflow document
can be a reference to another process description enabling one
researcher’s process model to be comprised of references to
other process model instances. GridPACS currently supports
internal and external filter definitions. An internal filter repre-
sents a process or function that adheres to an interface,
DataCutter in this case, and is implemented as an applica-
tion-specific filter in the system. An external filter represents
a self-contained executable that exists outside the system
and communicates with other filters through files.

To use the distributed metadata and data management ser-
vice, the runtime system has two system-level filters,
MakoReader and MakoWriter. These filters provide interfaces
between Mako servers and other filters in the workflow. The
MakoReader filter retrieves images from Mako servers, con-
verts them into VTK/ITK data structures, and passes them
to the first stage filters in the workflow. The MakoWriter filter
can be placed between two application filters, which are con-
nected to each other in the workflow graph, when the output
of a filter needs to be check-pointed. The last-stage filters in
the workflow also connect to Mako Writer filters to store output
in Mako servers. The execution of a workflow and check-
pointing can be done stage by stage (i.e., all the data are pro-
cessed by one stage and stored on Mako servers before the
next stage is executed) or pipelined (i.e., all stages execute con-
currently; the MakoWriter filters interspersed between stages
both send data to Mako servers and pass it to the next filter
in the workflow).

Status Report

In this section, we present a performance evaluation of
GridPACS. In this evaluation we used datasets generated
by time-dependent magnetic resonance imaging (MRI) scans
and digitized microscopes. A group of three PC clusters with
a total of 35 nodes were used to run GridPACS servers. One
cluster (OSUMED) consists of 24 Pentium III nodes, with
512 MB memory and 300 GB disk space per node. The nodes
of this cluster are connected to each other over a Fast Ethernet
Switch. The second cluster (DC) has five dual-processor
nodes, each with Xeon 2.4GHz CPUs, 2GB memory, and

seriesiD

Figure 5. Medical image dataset model.

250GB disk space. The third cluster (MOB) consists of 6 nodes
with dual AMD Opteron CPUs. Each node of this cluster has
8GB memory and 1.5TB RAID disk array. The OSUMED clus-
ter is connected to the MOB and DC clusters via a shared
100-Mbps wide-area network, whereas MOB and DC are con-
nected to each other via a 1-Gbps network.

To obtain insight into how GridPACS performs with regard to
creating an image database, we grouped five nodes of the
MOB cluster into a federated database server using a virtual
Mako instance running on one of these nodes. The client com-
municates with the virtual Mako, which delegates requests to
the Mako servers running on the individual MOB nodes. The
virtual Mako also served as a metadata server. The client
machine was connected to the image database server over
a 100-Mbps network. When submitting an image, the inges-
tion client first creates an XML document, based on the
XML schema that contains the metadata information about
the image, which includes patient name, study id, imaging
modality, and date of acquisition. This document is then sub-
mitted with the actual image data as a binary attachment.
Upon receiving the document, the virtual Mako server redi-
rects the document to a Mako server based on a predefined
distribution strategy. The Mako server stores the attachment
locally on the file system, and ingests the metadata into the
metadata server for registration and indexing.

In our experimental setup, the size of each radiology image
was on average 100 KB, whereas digitized microscopy images
ranged from 400 MB to 5 GB in size. The client partitioned
each microscopy image into 512 X 512 pixel tiles and submit-
ted each tile separately. Again, an XML document was cre-
ated for each image. However, this document contained
pointers to all the tiles as well as other metadata information.
Each tile was associated with a bounding box and location
within the original image. This information is encoded in an
XML file, to which the tile is attached. Figure 6 shows the tim-
ing results for creating image databases of 100 MB, 1 GB, and
10 GB in size. For both the small images (i.e., radiology im-
ages) and large images (i.e., digitized microscopy images),
as the size of the datasets increases, the time to create the
databases increases linearly.

The results show that the time to insert the same amount of
image data is significantly less for the larger images than
the smaller ones. This is expected, because approximately
the same amount of metadata is used to describe both large
and small images. Radiology images typically are small;
therefore, they have higher metadata density per megabyte
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Figure 6. Performance numbers for creation of an image
database. Red bars represent large images, and blue bars
represent small images.

than digitized microscopy images. For the same amount of
image data, radiology images may result in 300 times the
metadata overhead compared with a microscopy image
dataset.

A query into the GridPACS system is executed in two phases.
In the first phase, the list of images (or image tiles) that satis-
fies the query is retrieved from the metadata server. Then, the
image tiles and their metadata are retrieved from the image
servers. To evaluate the querying capabilities, we have up-
loaded 1,200 digitized microscopy images, equivalent to 1
Terabyte of data, to the system. Each image was divided
into 512 X 512 pixel tiles, which were stored across 30 nodes,
24 of which were grouped into a single Virtual Mako server.
The metadata associated with images is stored on a cluster
of five Mako servers. The experiments are carried out using
a client program connected to GridPACS via a 100-Mbps
Ethernet connection. The client submitted queries that se-
lected rectangular regions of a 40,000 X 40,000 pixel image
in the database. The tests were run with and without multi-
threading at the client side. For the multithreaded test, eight
concurrent active threads were used. Figure 7 shows that
the throughput for large dataset retrieval is twice as high
for the multithreaded version (threaded retrieval in the fig-
ure) compared with the unthreaded version and achieves bet-
ter usage of available network bandwidth.

To evaluate the basic functionality of data retrieval paired
with on-demand image analysis, we implemented an image
analysis scenario that classifies and segments nuclei in digi-
tized microscopy images. The image analysis algorithm as-
sumes that each pixel represents a mixture of actual
materials, nucleus, cytoplasm, red blood cells, and back-
ground.*® The complete image is then processed in chunks,
and pixels are classified based on shortest distance to each
of the cluster centers in feature space. The resulting classifica-
tion is then segmented into components that represent indi-
vidual nuclei. This image analysis scenario is implemented
as a set of two filters: a data retrieval filter that interacts

with Mako servers to query for images and retrieve image
chunks and a processing filter that implements the image
analysis function. The client query specifies an image and
a set of computation nodes for image processing. The data re-
trieval filters and processing filters execute on these nodes, re-
trieve portions of the image dataset (as defined in the query),
apply the image analysis operation, and send the results to
the client. The performance results are shown in Figure 8,
where 10 parallel nodes are used to process image chunks.
In this experiment, the size of the image was varied (as
shown in the x-axis as “Data Chunks”). The Mako servers
run on five of these nodes, and each image is distributed
across these nodes. The graph also shows the timing results
for data retrieval only. As expected, the execution time
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Figure 7. Multithreaded tile retrieval (threaded retrieval)
outperforms single-threaded (unthreaded) retrieval.
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Figure 8. Performance numbers when image analysis is
performed as part of data retrieval in GridPACS. The image
size is varied in these experiments so that the number of
chunks for the image ranged from 1 to 4,096.1. Blue bars
represent retrieval results with analysis, and red bars
represent retrieval results without analysis.
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increases when data analysis is performed. However, the
increase is not substantial, mainly due to the capability of
GridPACS to pipeline the processing of image chunks.

Conclusions

We presented a distributed image archival and processing
system, called GridPACS. The salient features of GridPACS
are the following. (1) Manifested databases can be stored
and accessed at distributed sites. (2) GridPACS infrastructure
allows image servers to be added to or deleted from the sys-
tem easily and efficiently and can distribute individual im-
ages across multiple image servers. (3) GridPACS provides
support for active storage. Remote invocation of procedures
on ensembles of images is supported. These procedures can
be executed on a distributed collection of storage and com-
pute platforms. New procedures can be added to the system.
(4) Application-defined metadata types and image datasets
can be manifested automatically as custom databases at run-
time, and image data adhering to these data types can be
stored in these databases. These features extend traditional
PACSs, which use centralized repositories for image archival,
to a Grid-enabled system that addresses the distributed stor-
age, querying, and processing requirements of large biomed-
ical image projects in an integrated system.
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