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Monitoring Device Safety in Interventional Cardiology

MICHAEL E. MATHENY, MD, LUCILA OHNO-MACHADO, MD, PHD, FREDERIC S. RESNIC, MD, MS

A b s t r a c t Objective: A variety of postmarketing surveillance strategies to monitor the safety of medical
devices have been supported by the U.S. Food and Drug Administration, but there are few systems to automate
surveillance. Our objective was to develop a system to perform real-time monitoring of safety data using a variety
of process control techniques.

Design: The Web-based Data Extraction and Longitudinal Time Analysis (DELTA) system imports clinical data in real-
time from an electronic database and generates alerts for potentially unsafe devices or procedures. The statistical
techniques used are statistical process control (SPC), logistic regression (LR), and Bayesian updating statistics (BUS).

Measurements: We selected in-patient mortality following implantation of the Cypher drug-eluting coronary stent to
evaluate our system. Data from the University of Michigan Consortium Bare-Metal Stent Study was used to calculate
the event rate alerting boundaries. Data analysis was performed on local catheterization data from Brigham and
Women’s Hospital from July 1, 2003, shortly after the Cypher release, to December 31, 2004, including 2,270 cases with
27 observed deaths.

Results: The single-stratum SPC had alerts in months 4 and 10. The multistrata SPC had alerts in months 5, 10, and 18
in the moderate-risk stratum, and months 1, 4, 7, and 10 in the high-risk stratum. The only cumulative alerts were in the
first month for the high-risk stratum of the multistrata SPC. The LR method showed no monthly or cumulative alerts.
The BUS method showed an alert in the first month for the high-risk stratum.

Conclusion: The system performed adequately within the Brigham and Women’s Hospital Intranet environment based
on the design goals. All three cumulative methods agreed that the overall observed event rates were not significantly
higher for the new medical device than for a closely related medical device and were consistent with the observation
that the initial concerns about this device dissipated as more data accumulated.

j J Am Med Inform Assoc. 2006;13:180–187. DOI 10.1197/jamia.M1908.

Minimizing harm to patients and ensuring their safety are
cornerstones of any clinical research effort. Safety monitoring
is important in every stage of research related to a new drug,
new medical device, or new therapeutic procedure. This type
of monitoring of medical devices, under the auspices of the
U.S. Food and Drug Administration (FDA), has undergone
major changes over the past several decades.1–4 These
changes have largely been due to a small number of highly
publicized adverse events.5–13 The FDA’s task is complex;
the agency regulates more than 1,700 types of devices,

500,000 medical device models, and 23,000 manufac-
turers.3,6,14–18 In premarketing clinical trials, rare adverse
events may not be discovered due to small sample sizes
and biases toward healthier subjects.19 The FDA must balance
this concern with the need to deliver important medical ad-
vances to the public in a timely fashion. In response to this,
the FDA has shifted some of its device evaluation to the post-
market period, allowing new devices to reach the market
sooner.20 This creates the potential for large numbers of
patients to be exposed to a new product in the absence of
long-term follow-up data and emphasizes the need for careful
and thorough postmarketing surveillance.21

The current FDA policies in this area include a heterogeneous
mix of voluntary and mandatory reporting.1,6,14,15,17,19,22–24

Voluntary reporting of adverse events creates limitations in
significant event-rate recognition through underreporting
bias, and highly variable reporting quality.25 Several state
and federal agencies have implemented mandatory reporting
for medical devices for specific clinical areas, and national
medical societies are making strides to standardize data ele-
ment definitions and data collection methods within their
respective domains.26,27 Continued improvements in the
quality and volume of reported data have created opportuni-
ties for timely and efficient analysis and reporting of alarming
trends in patient outcomes.

Nonmedical industries (Toronado, HGL Dynamics, Inc.,
Surrey, GU; WinTA, Tensor PLC, Great Yarmouth, NR) have
been using a variety of automated statistical process control
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(SPC) techniques for quality control purposes for many
years.28–30 These systems rely on automated data collection
and use standard SPC methods of varying rigor.31

However, automated SPC monitoring has not been widely
deployed in the medical domain due to a number of
constraints: (a) historically, automated data collection could
usually only be obtained for objective data such as laboratory
results and vital signs; (b) much of the needed information
about a patient’s condition is subjective and may be available
only in free text in the medical record; and (c) medical source
data, due to heterogeneity of clinical factors, typically has
more noise than industrial data, and standard industrial
SPC metrics may not be directly applicable to medical safety
monitoring.

Within the medical domain, the most closely related clinical
systems that have been developed to date are those in clinical
trial monitoring for new pharmaceuticals. A variety of soft-
ware solutions (Clinitrace, Phase Forward, Waltham, MA;
Oracle Adverse Event Reporting System [AERS], Oracle,
Redwood Shores, CA; Trialex, Meta-Xceed, Inc., Fremont,
CA; Netregulus, Netregulus, Inc., Centennial, CO) have
been created to monitor patient data relevant to these trials.
These systems rely on standard SPC methodologies and
can provide real-time data monitoring and analysis through
internal data standardization and collection for the trial.
However, the focus of these systems is on real-time data
aggregation and reporting to the FDA.

The increasing availability of detailed electronic medical rec-
ords and structured clinical outcomes data repositories may
provide new opportunities to perform real-time surveillance
and monitoring of adverse outcomes for new devices and
therapeutics beyond the clinical trial environment. However,
the specific monitoring methodologies that balance appropri-
ate adverse event detection sensitivity and specificity remain
unclear.

In response to this opportunity, we have developed the Data
Extraction and Longitudinal Time Analysis (DELTA) system
and explored both standard and experimental statistical tech-
niques for real-time safety monitoring. A clinical example
was chosen to highlight the functionality of DELTA and to
provide an overview of its potential uses. Interventional car-
diology was chosen because the domain has a national data
field standard,32 a recent increase in mandatory case report-
ing from state and federal agencies, and recent device safety
concerns publicized by the FDA.

Methods
System General Requirements
The DELTA system was developed to provide real-time moni-
toring of clinical data during the course of evaluating a new
medical device, medication, or intervention. The system
was designed to satisfy five principal requirements. First,
the system should accept a generic data set, represented as
a flat data table, to enable compatibility with the broadest
possible range of sources. Second, the system should perform
both prospective and retrospective analyses. Third, the sys-
tem should support a variety of classical and experimental
statistical methods to monitor trends in the data, configured
as analytic modules within the system, allowing both unad-
justed and risk-adjusted safety monitoring. In addition, the
system should support different methodologies for alerting

the user. Finally, DELTA should support an arbitrary number
of simultaneous data sets and an arbitrary number of ongoing
analyses within each data set. That is, DELTA should ‘‘track’’
multiple outcomes from multiple data sources simulta-
neously, thus making it possible for DELTA to serve as a
single portal for safety monitoring for multiple simultaneous
analyses in an institution.

Source Data and Internal Data Structure
A flat file representation of the covariates and clinical out-
comes serves as the basis for all analyses. In addition, a static
data dictionary must be provided to DELTA to allow for pars-
ing and display of the source data in the user interface.
Necessary information includes whether each field is going
to be treated as a covariate or an outcome and whether it is
discrete or continuous.

The system uses an SQL 2000 server (Microsoft Corp., Red-
mond, WA) for internal data storage, importing all clinical
data and data dictionaries from source databases at regular
time intervals. This database also stores system configura-
tions, analysis configurations, and results that are generated
by DELTA at the conclusion of a given time period. The user
interface is Web-based and uses a standard tree menu format
for navigation. DELTA’s infrastructure and external linkages
are shown in Figure 1.

Security of patient data is currently addressed through record
de-identification steps32 performed to the fullest extent possi-
ble while maintaining the necessary data set granularity for
the risk adjustment models. The system is hosted on the
Partners Healthcare Intranet, a secure multihospital network,
accessible at member sites or remotely through a virtual
private network.

Statistical Methods
DELTA uses a modular approach to statistical analysis that
facilitates further expansion. DELTA currently supports three
statistical methodologies: statistical process control (SPC), logi-
stic regression (LR), and Bayesian updating statistics (BUS).
Discrete risk stratification is supported by both SPC and BUS.
Periodic and cumulative analysis of data is supported by SPC
and LR, and only cumulative analysis is supported by BUS.

Risk Stratification
Risk stratification is a process by which a given sample is sub-
divided into discrete groups based on predefined criteria.

F i g u r e 1 . Overall DELTA infrastructure and an example
external data source. IT, information technology; VPN, virtual
private network; SPC, statistical process control; LR, logistic
regression; BUS, Bayesian updating statistics.
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This process is used to allow providers to quickly estimate the
probability of an outcome for a patient. Statistically, the goal
of this process is to create a meaningful separation in the data
to allow concurrent and potentially different analyses to be
performed on each subset. Criteria are selected based on prior
data, typically derived from a logistic regression predictive
model, and the relative success of this stratification can be
determined by a stepwise increase in the incidence of the
outcome in each risk group. The LR method does not offer
discrete risk stratification because it incorporates risk stratifi-
cation on a case level.

Data Aggregation
Retrospective data analyses traditionally use the entire data
set for all calculations. However, in real-time data analysis,
it is of interest to monitor both recent trends and overall
trends in event rates. Evaluation of recent trends will
intrinsically have reduced power, because of the reduced
sample size, to detect true, significant shifts in event rates.
However, such monitoring may serve as a very useful ‘‘first
warning’’ indicator when the cumulative event rate may
not yet cross the alerting threshold. This type of alert is not
considered definitive but can be used to encourage increased
monitoring of the intervention of interest and heighten
awareness of a potential problem. In DELTA, these recent
data analyses are termed periodic and can be configured to
be performed on a monthly, quarterly, or yearly basis.

Statistical Process Control
Statistical process control is a standard quality control
method in nonmedical industrial domains. This method
compares observed event rates to static alerting boundaries
developed from previously published or observed empirical
data. Each industry typically requires different levels of
rigor in alerting, and selection of confidence intervals (CIs)
(or number of standard errors) establishes this benchmark.
In the medical industry, the 95% CI is considered to be
the threshold of statistical improbability to establish a true
difference. In DELTA, the 95% CI of proportions by the
Wilson method is used to calculate the alerting boundaries
for all statistical methods.33 The proportion of observed
events is then compared to these static boundaries, and
alerts are generated if they exceed the upper CI boundary.
DELTA’s SPC module is capable of performing event rate
monitoring on multiple-risk strata provided that criteria
for stratification and benchmark event rates are included
for each risk stratum. This method supports comparison
of benchmark expected event rates with cumulative and
periodic observed event rates.

While simple and intuitive, the SPC methodology does not
support case-level risk adjustment. It is also dependent on ac-
curate benchmark data, which may be limited for new proce-
dures or when existing therapies are applied to new clinical
conditions.

Logistic Regression
Logistic regression34 is a nonlinear modeling technique used
to provide a probability of an outcome on a case-level basis.
Within DELTA, the LR method allows for continuous risk-
adjusted estimation of an outcome at the case level. The LR
model must be developed prior to the initiation of an analysis
within DELTA and is mostly commonly based on previously
published and validated models.

Alerting thresholds are established by using the LR model’s
expected mortality probability for each case. These probabil-
ities are then summated in both periodic and cumulative
time frames to determine the 95% CI of the event rate pro-
portion by the Wilson method. Alerts are generated if the
observed event rate exceeds the upper bounds of the 95%
CI of a given boundary. This method provides accommoda-
tion for high-risk patients by adjusting the alerting boundary
based on the model’s expected probability of death. This
can be very useful when outcome event rates vary widely
with patient comorbidities. A limitation of this method is
that the alerts become dependent on the discrimination
(measure of population prediction accuracy) and calibration
(measure of small group or case prediction accuracy) of that
model.

Bayesian Updating Statistics
Bayesian updating statistics is an experimental methodology
pioneered in non-health care industries.35 This method incor-
porates Bayes’ theorem36 into a traditional SPC framework by
using prior observed data to evolve the estimates of risk.
Alerting boundaries are calculated by two methods, both of
which are considered cumulative analyses only. The first
method includes previous current study data with the prior
data used in the SPC method to calculate the 95% CI of the
event rate proportion by the Wilson method. This means
that the alerting boundary shifts during the course of real-
time monitoring due to the influence of the earlier study data.

The other alerting method is based on the evolution of the up-
dated risk estimates represented as probability density func-
tions (PDFs). In each period, a new PDF is generated based
on the cumulative study event rate and baseline event rate.
Alerting thresholds are generated by the user specifying a
minimum percentage of amount of overlap of the two distri-
butions (by comparison of central posterior intervals).37 The
first comparison PDF is the initial prior PDF, and the second
is the previous period’s PDF. BUS supports discrete risk
stratification.

This method was included in DELTA because it tends to re-
duce the impact of early outliers in data and complements
the other monitoring methods used in the system. It also
may be particularly helpful in situations in which limited
preexisting data exist. However, the method is dependent on
accurate risk strata development and on the methods used
for weighting of the prior data in the analysis.

User Interface
The user interface is provided via a Web browser and was
developed in the Microsoft.NET environment, running
Microsoft IIS 5.0 Web Server (Microsoft Corp.). Each data
set is represented as a separate folder on the main page,
and all analyses for that set are nested under that folder
(Fig. 2). At the initiation of an analysis, the user designates
the analysis period and starting and stopping dates and
selects the statistical module and the outcome of interest.
Data filters can be applied to restrict the candidate cases for
analysis. Covariates used for risk stratification are selected.
Last, periodic and cumulative alerts for the statistical method
selected can be activated or suppressed based on user pre-
ferences. An analysis configuration can be duplicated and
modified for convenience in configuring multiple statistical
methods to concurrently monitor a data source.
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The results screen of DELTA serves as the primary portal to all
tables, alerts, and graphs generated from an analysis. Tabular
and graphical outputs of the data and specific alerting thresh-
olds by risk strata are available, and an export function is
included to allow researchers to perform further evaluation
of the data.

Clinical Example
As an example of the application of DELTA to real-world
data, an analysis of the in-hospital mortality following the im-
plantation of a drug-eluting stent was performed. The cardiac
catheterization laboratory of Brigham and Women’s Hospital
has maintained a detailed clinical outcomes database since
1997 for all patients undergoing percutaneous coronary
intervention, based on the American College of Cardiology
National Cardiovascular Data Repository data elements.32

For risk stratification, the University of Michigan risk predic-
tion model38 was used since it provides a concise method of
comparing all three of DELTA’s statistical methods using
one reference for previous experience. The previous experi-
ence of event rates for all risk strata from this work is listed
in Appendix 1. A logistic regression model with risk stratifi-
cation scores is listed in Appendix 2. The logistic regression
model developed from the data was used to create a discrete
risk scoring model. Based on the mortality of patients in the
study sample at various risk scores, these data were divided
into three discrete risk categories, and the compositions of
those categories are listed in Appendix 2.

A total of 2,270 drug-eluting stent cases were performed from
July 1, 2003, to December 31, 2004, at our institution, and the
outcome in terms of in-hospital mortality was analyzed.
These data were retrospectively evaluated in monthly periods
for each of the three statistical methodologies. There was a
total of 27 observed deaths (unadjusted mortality rate of
1.19%) during the study. Local institutional review board ap-
proval was obtained. Risk stratification of these cases by the
University of Michigan model is listed in Table 1 and demon-
strates increasing in-hospital mortality risk with 0%, 0.9%,
and 23% mortality risk in the low-, medium-, and high-risk
strata, respectively.

An alternative data set was generated by taking the clinical
data above and changing the procedure date from the eight
cases with the outcome of interest in the last five periods.

The procedure dates were changed by random allocation
into one of the first 13 periods. The duration of the monitoring
was then shortened to 13 periods. This was done to illustrate
alerts when cumulative event rates clearly exceeded estab-
lished thresholds. The overall event rate for this data set is
1.71% (27/1,583), and the risk stratified event rates were 0%
(0/446), 1.3% (14/1,095), and 31% (13/42) for the low-,
medium-, and high-risk strata, respectively.

Results
Statistical Process Control

Single Risk Stratum
The single risk stratum SPC was configured with no risk strat-
ification covariates. The static alert boundary was a 2.07%
(upper 95% CI of 100/5,863). Periodic evaluations ranged
from 0% to 4.5%. Period 4 exceeded the boundary with a
3.4% (5/148) event rate and period 10 with a 4.5% (5/110)
event rate. Cumulative event rates ranged from 0.9% (2/
213) to 1.7% (10/587). No cumulative evaluations had an
event rate that exceeded the boundary. The cumulative eval-
uation is depicted graphically in Figure 3.

Periodic evaluations of the alternative data set ranged from
0% to 4.7%. Period 4 exceeded the boundary with a 4.7%
(7/150) event rate, period 7 with a 2.6% (3/117) event rate,
period 8 with a 2.6% (3/117) event rate, and period 10 with
a 4.5% (5/110) event rate. Cumulative event rates ranged
from 0.9% (2/213) to 2.4% (12/490). Periods 4 through 11
had event rates exceeding the 2.07% threshold and generated
alerts and ranged from 2.1% to 2.4%.

Multiple Risk Strata
Alerting thresholds were calculated for the low-, medium-,
and high-risk strata by using the upper 95% CI of the propor-
tion of the event rates of each stratum in the University of

F i g u r e 2 . DELTA screenshot showing the results menu
screen of the statistical process control (SPC) clinical example
described in text. The main menu is displayed on the left, and
the analysis menu is displayed above the viewing area.

Table 1 j Multiple Risk Strata SPC Statistical Process
Control

Risk Stratum Sample Events Events Rate

Low 641 0 00.00%
Moderate 1573 14 00.89%
High 56 13 23.21%

F i g u r e 3 . Single-stratum statistical process control (SPC)
graph showing the cumulative observed event rates versus
the static alerting threshold (expected rates) with 95% confi-
dence intervals.
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Michigan data. The thresholds were 0.3% (1/1,820), 1.7% (50/
3,907), and 44% (49/136), respectively.

There were no events in the low-risk stratum, and no alerts
were generated. In the moderate-risk stratum, the periodic
observed event rates ranged from 0% to 2.7%. The alerting
boundary was exceeded with rates of 2.7% (2/75) in period
5, 2.6% (2/78) in period 10, and 1.9% (2/108) in period 18.
The cumulative observed event rates ranged from 0.7% to
1.3% and never exceeded the upper alert boundary. In the
high-risk stratum, the periodic observed event rates ranged
from 0% to 100%. The alerting boundary was exceeded
with rates of 100% in periods 1 (1/1), 7 (1/1), and 10 (3/
3), and by a rate of 50% (4/8) in period 4. The cumulative
observed event rates ranged from 16.7% to 100%. The
alerting boundary was exceeded by a rate of 100% (1/1) in
period 1.

Evaluation of the alternative data set was performed periodic
and cumulative alerts. There were no events in the low-risk
stratum, and no alerts were generated. In the moderate-risk
stratum, the periodic observed event rates ranged from 0%
to 3.6%. The alerting boundary was exceeded with rates of
3.6% (3/84) in period 3, 2.1% (2/95) in period 4, 2.7% (2/
75) in period 5, 2.5% (2/81) in period 7, and 2.6% (2/78)
in period 10. The cumulative observed event rates ranged
from 0.7% to 2.0% and exceeded the alerting boundary in
periods 3 through 11. In the high-risk stratum, the periodic
event rates ranged from 0% to 100%. The alerting boundary
was exceeded with rates of 100% in periods 1 (1/1), 7 (1/),
and 10 (3/3) and by a rate of 55.6% (5/9) in period 4. The
cumulative observed event rates ranged from 16.7% to
100%. The alerting boundary was exceeded by a rate of
100% (1/1) in period 1.

Logistic Regression
Alerting thresholds were calculated on a periodic basis using
the expected probability of death for the cases in their respec-
tive periods, and the 95% upper CI ranged from 4.9% (1.02/
112) to 7.1% (2.51/110). Cumulative-based upper alerting
boundaries ranged from 2.3% (29.86/1,835) to 5.7% (1.66/
115). The overall expected cumulative event rate was 1.75%
(39.7/2,270).

Periodic event rates ranged from 0% to 4.5%, and no alerts
were generated. The two highest periodic event rates of
3.4% (5/148) in period 4 and 4.5% (5/110) in period 10 had
upper alerting boundaries of 5.8% (2.98/148) and 7.1%
(2.51/110), respectively. Cumulative event rates ranged from
a 0.9% (2/213) to 1.7% (10/587) event rate, and the cumula-
tive upper 95% CI was well above the observed event rate
throughout the evaluation and shown in Figure 4.

Alerting thresholds for the alternative data set based on the
upper 95% CI ranged from 4.9% (1.02/112) to 7.5% (3.2/
117) in the periodic analysis and from 2.6% (28.17/1,583) to
5.7% (1.66/115) in the cumulative analysis. The overall ex-
pected event rate was 1.78% (28.17/1,583).

Periodic event rates ranged from 0% to 4.7%, and no alerts
were generated. The two highest periodic event rates of
4.7% (7/150) in period 4 and 4.5% (5/110) in period 10 had
upper alerting boundaries of 6.2% (3.56/150) and 5.1%
(2.51/110). Cumulative event rates ranged from 0.9% (2/
213) to 2.4% (12/490) and were well below the alert bound-
aries through the evaluation.

Bayesian Updating Statistics
The upper alert boundary varied from 0.2% to 0.3%, from
1.5% to 1.7%, and from 40.2% to 44.4% in the low-, me-
dium-, and high-risk strata, respectively. From all strata, the
only alert generated was in the high-risk stratum period
1 with an observed event rate of 100% and an upper alert
boundary of 44.4% (49/136).

There was a trend toward lower event rates in the PDFs of all
risk strata, as illustrated for the high-risk stratum cases in
Figure 5. At no time in any strata did the posterior CI overlap
fall below the user-specified 80% criteria.

The upper alert boundaries in the alternative data set were
the same as the real data set. However, in the moderate-risk
stratum, the observed event rates of 1.73% (4/231) in period
3, 1.84% (6/325) in period 4, 2.0% (8/400) in period 5,
1.73% (10/576) in period 7, and 1.71% (14/818) in period
10% exceeded the alert boundaries that ranged from 1.65%
to 1.74% for those periods.

The trend toward lower event rates in the PDFs of all risk
strata in the real data set was not found in the alternative
data set. At no time in any strata did the posterior CI overlap
fall below the user-specified 80% criteria.

Discussion
The DELTA system satisfied all prespecified design require-
ments and performed all analyses and graphical renderings
within two seconds each on the hospital Intranet.

F i g u r e 4 . Logistic regression graph showing the cumula-
tive observed event rate versus the cumulative expected
event rate with 95% confidence interval.

F i g u r e 5 . Bayesian updating statistics probability den-
sity function (PDF) evolution for high-risk cases by period.

184 MATHENY ET AL., Monitoring Device Safety in Interventional Cardiology



The SPC method triggered periodic alerts in both single- and
multiple-risk strata analyses. This method also triggered the
first period’s cumulative alert in the multiple-risk strata, but
this can be considered a periodic equivalent alert. Otherwise,
there were no cumulative event rate alerts detected by the
SPC method. The LR method generated no alarms in either
the periodic or cumulative evaluations. The BUS method gen-
erated an alert only in the first period of the high-risk stratum.
While all BUS alerts are considered cumulative, the alert was
generated from one case with a positive outcome for that
period.

The alternative data set event rate was elevated manually to
generate alarms. The single stratum SPC method alerted to
event rates exceeding the threshold for periods 4 through
11. The multistrata SPC method revealed that the event rate
increase of concern was in the moderate-risk group, alerting
from periods 3 through 11. The LR method generated no pe-
riodic or cumulative alerts in the alternative data set. The BUS
method agreed that the elevation was primarily of concern in
the moderate-risk stratum by generating cumulative alerts in
periods 3, 4, 5, 7, and 10.

Periodic alerts are very sensitive measures of elevated event
rates but generally lack the statistical power to make a con-
clusive decision about the safety of a device. These alerts
would serve to heighten surveillance and possibly reduce
the interval of evaluation for the new device but would
not, in and of themselves, be sufficient to recommend with-
drawal of the device. The discrepancy between SPC and LR
periodic alerting was because LR attempts to adjust the alert-
ing threshold based on the expected outcome of a given case.
If there were an increase in the event rate for a period, SPC
would trigger an alert as the rate exceeds the static thresh-
old. However, if the LR model expected the cases to have
that outcome, then the method would likely not alert be-
cause the alert threshold would be adjusted based on that
expectation. The cumulative alerts for this analysis were con-
sistent across statistical methods, and the alerts in the first
period were due to a very low number of examined cases.
In the alternative set, the LR method has no cumulative
alerts, and this could be due to the fact that the events
were expected by the model.

In phase 3 randomized controlled trials, there are no previous
data to use as a benchmark, and a common method of deter-
mining the threshold of stopping the trial is to initially place
the threshold at a very statistically improbable number (such
as five or six standard errors from an estimated allowable
rate) and gradually reduce the allowable error as the volume
of data grows. The allowable rates are generally established
by expert consensus and are manually generated on a trial-
by-trial basis.

The benefits of incorporating previous information into the
development of alerting thresholds include the ability to
develop and establish explicit rules for alerting thresholds.
This methodology could then be applied in an objective man-
ner to a wide variety of monitoring applications. This re-
moves the need for an expert consensus to develop the
thresholds.

However, this objective methodology has limitations. The ac-
curacy of the alerting boundaries is dependent on the source
data. In the case of this clinical example, the University of

Michigan Bare-metal Stent Study mortality data and model
were established as the benchmark. DELTA then considered
mortality event rates statistically significantly above that
baseline to be abnormal and of concern. This becomes impor-
tant when assessing the external validity of the benchmark
data with regards to applicability in a different patient popu-
lation. In addition, applying multiple concurrent statistical
methodologies to a monitoring process is meant to guard
against specific vulnerabilities that one methodology might
have to these types of confounding.

Statistical process control is only concerned with the overall
event rate in the benchmark source population to establish
alerting boundaries, and these are static throughout the anal-
ysis. This is the least sensitive to subpopulation variations
between the study and baseline populations. Including
multiple-risk strata in the analysis increases the sensitivity
to finding problems in a specific risk group but requires the
user to ensure that the study subpopulations using the risk
stratification criteria are representative of the source subpop-
ulations. Similar proportions and relative event rate risks
between the source data and study data support the use
of stratification in this clinical example.

Logistic regression is the most susceptible method to popula-
tion differences because it provides a case-level estimation
based on a number of risk factors. In a number of studies,
these models have degraded predictive ability at the case
level in disparate populations and as the time from the
model’s development increases.39 In the example, the popula-
tion’s event rate was 1.19% and the LR model’s expected
event rate was 1.75%. This shows that the LR model overpre-
dicted mortality for this population.

Bayesian user statistics carries many of the same benefits and
drawbacks of using the aggregate source population’s event
rate to establish alerting thresholds but allows for the move-
ment of these thresholds by changing study event rates. This
method is the most capable in determining a significant shift
in a short period of time.

Overall, the results of the example analysis support that the
in-hospital mortality following implantation of a drug-eluting
stent was acceptably low over the time period studied
when compared with the University of Michigan Bare-
metal Stent Study benchmark data. The prototype system
currently in use at Brigham and Women’s Hospital Cardiac
Catheterization Laboratory is in a testing and evaluation
phase, and as such, clinicians do not consult the system
directly. An evaluation of the current user interface will be
conducted to assess DELTA’s acceptability in the clinical
environment by different health care providers. However,
the preliminary results of our testing are encouraging: the
DELTA system shows promise in filling a need for automated
real-time safety monitoring in the medical domain and may
be applicable to routine safety monitoring for hospital quality
assurance and monitoring of new drugs and devices.
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Appendix

Appendix 1 j Summary of the Sample Population and
Outcome of Interest (Death) per Risk Strata in the

University of Michigan Data Sample39

Appendix 2 j University of Michigan Covariates with
Beta Co-efficients for the Logistic Regression (LR) Model

and Risk Scores for the Discrete Risk Stratification39

Risk
Stratum Risk Score Sample Deaths % Death

Upper
95% CI

Low 0–1.49 1,820 1 0.015 0.03
Moderate 1.5–5.49 3,907 50 0.28 0.017
High 5.501 136 49 36.0 0.443
Total 5,863 100 1.71 0.0207

CI 5 confidence interval.

Covariate LR b Odds Ratio Risk Score

Myocardial infarction
within 24 hours

1.03 2.8 1

Cardiogenic shock 2.44 11.5 2.5
Creatinine .1.5 mg/dL 1.70 5.5 1.5
History of cardiac arrest 1.29 3.65 1.5
No. of diseased vessels 0.44 1.54 0.5
Age 70–79 yr 0.81 2.24
Age $80 yr 0.97 2.65
Age $70 yr 1.0
Left ventricular

ejection fraction ,50%
0.51 1.66 0.5

Thrombus 0.52 1.67 0.5
Peripheral vascular disease 0.46 1.57 0.5
Female gender 0.59 1.82 0.5
Intercept 27.20

Intercept is the logistic regression model equation intercept.
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