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A b s t r a c t Objective: The use of spatially based methods and algorithms in epidemiology and surveillance
presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing
individuals in public health data sets by transposing their spatial locations through a process informed by the un-
derlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured
by a spatial scanning statistic.

Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with
artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed
using a de-identification algorithm that accounts for the local underlying population density.

Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with
control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured.

Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set
k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection
sensitivity by less than 4% and lowers the detection specificity less than 1%.

Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify indi-
viduals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These
findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance.
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The use of spatially based methods and algorithms in epide-
miology and surveillance poses privacy challenges for
researchers and public health agencies. The emerging science
of spatial outbreak detection1–3 is based on the recognition of
unexpected clustering among cases. There is an inherent ten-
sion between the requirement for precise patient locations to
accurately detect an outbreak and the need to protect patient
privacy. Case locations that are identified using a home
address or a portion of that address, such as the zip code or
census tract, increase the risk of breaching patient confidenti-
ality. While identifiable data can be shared for public health

activities, the barriers to and inherent risks of such exchange
could be minimized if privacy preservation were optimized
with respect for the intended use of the information.

Background
Patient re-identification from purportedly de-identified data
can be accomplished with surprising ease. For example,
87% of individuals in a publicly available database were
re-identified using zip code, date of birth, and gender alone.4

There are well-described techniques for protecting the
anonymity of individuals whose information resides in data-
bases. Using these techniques, de-identification systems have
been developed that remove personal data from database
fields (for example, converting a date of birth to a year)5 or
from textual notes.6

A metric for the ability to re-identify a patient in a data set is
k-anonymity, where k refers to the number of people among
whom a specific de-identified case cannot be reversely identi-
fied.5 Location information, whether stored as classic plain
text address data or as geocoded longitude and latitude
values, can potentially identify an individual. A common
approach to de-identifying such data has been to use census
tract or zip code rather than home address to protect anonym-
ity. There are two main drawbacks to using location data that
has been transformed to a count of points within an adminis-
trative region. First, the loss of precise location may reduce
sensitivity to detect clustering. Second, the ability to detect
clustering may be diminished when some of the points cross
administrative boundaries.
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Previous investigators have attempted to mask geographic
data by spatially skewing cases using, among others, affine
and randomizing transformations.7,8 We describe a spatial
anonymization algorithm based on skewing precise geocoded
case locations using knowledge of local population character-
istics. Skewing these patient addresses directly decreases the
ability to re-identify, and thus increases the k-anonymity, of a
case in a data set, as it will be much more difficult to determine
what the actual patient’s identity is once it has been altered.
Masking the identity of an individual in a densely populated
urban area, for example, does not require as great a skew as
one in a sparsely populated rural setting. Next, we measure
the effect of anonymization intensity on outbreak detection,
focusing on the sensitivity of spatial cluster detection. The
goal is to provide individuals, institutions, and public health
authorities a comfort level with the sharing of skewed, and
hence, anonymized data, rather than using raw, fully identifi-
able data. Further, we aim to provide transparent information
about the resulting diminution of spatial clustering detection.

Methods
Overview
Cases were emergency department (ED) visits for respiratory
illness from an urban, academic, pediatric, tertiary care hospi-
tal over a five-week period from 12/30/2001 to 02/02/2002.
Institutional Review Board approval at Children’s Hospital
Boston was granted. Home addresses of patients were
cleaned to correct data entry errors using software (ZP4,
Semaphore Corp., Aptos, CA) and then converted to geo-
graphic coordinates using geocoding software (ArcGIS 8.1,
Environmental Systems Research Institute, Inc., Redlands,
CA). Emergency department visit data were injected with
artificially created clusters that varied in magnitude, shape,
and location.9 The geocoded locations of all points (real
addresses and artificial cluster points) were then transposed
using a de-identification algorithm that skews the location
based on the underlying population density. The impact on
detection of spatial clustering as identified by a spatial scan
statistic10 was measured.

Population Density–Based Gaussian Spatial Skew
We blurred the spatial location of patient home addresses by a
distance informed by the underlying population density near
the home of each patient. The patient’s home address, repre-
sented by latitude/longitude coordinates, was skewed using
a random offset based on a Gaussian distribution whose stan-
dard deviations are inversely correlated to the local area’s
population density. The use of local demographic data en-
ables our anonymization system to transpose patients in
densely populated areas by a smaller distance than patients
who live in more rural areas. Hence addresses can be skewed
minimally while maintaining a specified k-anonymity.

Census Block Groups
Producing de-identified data sets based on local population
densities requires statewide, location-specific population den-
sity data, which are readily available from the U.S. Census
Bureau. Our de-identification system identifies each patient’s
census block group for which the total population per square
kilometer by age is available.11 Due to variability in the avail-
able Census 2000 block group data set, data were preprocessed
to constrain maximum and minimum population density
values and correct missing or improperly formatted values.

Gaussian Randomization
Optimally, individual points will be skewed by a minimal dis-
tance to obscure identity, while preserving spatial informa-
tion. Transforming a data set using a Gaussian probability
distribution function results in most cases being moved
only a small distance because the Gaussian probability distri-
bution function is strongly weighted about its mean (center)
value. We have developed a bivariate Gaussian anonymiza-
tion scheme that uses two randomly selected values, sx and
sy, the standard deviations of normal distributions, that are
used to select the distance and direction of patient displace-
ment. Two displacement values, dx and dy, are then randomly
generated according to the Gaussian distributions described
above,12 to determine how far a specific point is moved.
When cases are moved dx, dy, they may be moved outside
the boundaries of their original census block groups. This
Gaussian randomization is used in concert with population-
density and age-based multipliers in the anonymization
algorithm described in the following section.

Anonymization Algorithm
To achieve a similar k-anonymity between high- and low-
density population areas, the amount a specific patient in a
spatial data set is skewed should be inversely related to the
local population density; patients in rural areas need to be
moved a greater distance than those in cities. Additionally,
age-based adjustments were integrated to compensate for
spatial age-group population density variations, as regions
may have markedly different age distribution patterns. To
do this, we create multipliers reflecting the relative magnitude
needed to move a specific point from its original location.

First, we calculate the average population density for all U.S.
Census Blocks in the region of interest, both for Census Block
Group age ranges and for the total population density. Next,
we calculate multipliers for each case that vary with the
inverse of the population density in the census block group
below.

Anonymization Multipliers and Factors

Age Based Pop: Dens: Multiplier

5
average age group population density

patient0s block group age density

Total Pop: Dens: Multiplier

5
average total population density

patient0s block group population density

These multipliers allow the anonymization system to move
patients with large population multipliers farther than those
with smaller multipliers on average in a data set.

Age Population Density versus Total Population Density

Combined Multiplier5Age Multiplier * Age Based Pop: Dens:

Multiplier 1 ð12Age MultiplierÞ
* Total Pop: Dens: Multiplier

Additionally, users may wish to control the relative impor-
tance of the age-based population density multiplier in
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comparison with the total population density multiplier. The
age multiplier ranges from 0 to 1 where a value of 1 uses only
age population density and 0 means only the total population
density will be considered when choosing appropriate anon-
ymization magnitude.

Overall Anonymization Multiplier

Overall Multiplier 5 c * ½Age Multiplier

* Age Based Pop: Dens: Multiplier

1 ð12Age MultiplierÞ
* Total Pop: Dens: Multiplier�

The additional parameter c is a scaling factor that easily
adjusts the magnitude of the overall skew applied to a specific
latitude–longitude pair. The overall degree of anonymization
is altered by changing this value, although it should be noted
that the relationship between the degree of anonymization
and the anonymization multiplier is nonlinear.

Test Data Sets
To determine whether spatial detection performance is ad-
versely affected by transformation of a data set using this
anonymization algorithm, we created a set of test data sets
that varied with several parameters. Five separate weeks of
ED visit data were categorized into syndrome using chief
complaint and ICD-9-CM diagnosis codes, as previously de-
scribed,13 to identify visits for respiratory illness. Each week
of this respiratory visit data set was injected with 252 artifi-
cially generated clusters14,15 to create 1,260 data sets with
one week of encounter data and one artificial cluster per
data set. The 252 clusters contain 10, 25, or 40 extra points
placed randomly within circles with a radius of 250, 500,
1,000, or 3,000 m. These data sets were located 8.05, 24.14,
or 80.47 km (5, 15, 50 miles) away from a center point (the
hospital location) at seven evenly spaced angles. Each of the
1,260 data sets was then processed using the anonymization
algorithm at ten different anonymization skew levels (magni-
tudes of anonymization), creating a total of 12,600 test data
sets (Fig. 1). Noninjected patient data are assumed to have
no existing clustering; however, this is a conservative as-
sumption. If this assumption is false, it will likely lower the
number of false positives that are identified.

Measuring Clustering Detection Performance
The method used to measure clustering was the SaTScan
Spatial Bernoulli Model scanning algorithm.3,10 After the
test data sets were created, each was analyzed with 999
Monte-Carlo replications to establish a probability value for
the most likely cluster identified by the SaTScan algorithm.
Because these data sets each contained an artificially gener-
ated cluster of patients, we used SaTScan to determine
whether at least 50% of the artificially injected cluster points
were identified with a p-value # 0.05. If the cluster was
identified, we also recorded what proportion of the total iden-
tified cluster points were from the artificial cluster.

Estimate of k-Anonymity
It is possible to estimate the expected level of k-anonymity for
an individual skewed case by multiplying the local popula-
tion density [(population)(area21)] by a circular ring area ap-
proximation of the Gaussian probability distribution function
(Fig. 2). Since 68.26% of patients should fall, on average,
within the first standard deviation, s miles in radius from
where they were originally located, we can multiply the local
population density by the area, ps2 and by the probability
that the patient would have been moved into that region,
0.6826. We can add to this the next ring’s population density
multiplied by its area and its probability that a patient would
be transplanted into that area, 0.2718. Finally, we can add the
area of the last ring multiplied by its local population density
by its probability density, 0.0428. The sum of these three num-
bers provides a computationally tractable expectation of
k-anonymity achieved for a specific case in a data set.

The circular areas used in these calculations may contain
several census block groups, so estimate accuracy can be
increased by multiplying the fraction of area comprised by
each census block by the population density of that block.
The sum of those partitioned values can then be multiplied
by the above probability distribution values. This estimate of
k-anonymity relies on the probability density distribution of
the 2D Gaussian. Sufficient numbers of patients are needed
to statistically ensure that the central limit theorem has been
satisfied, a reasonable assumption given the size of most pub-
lic health surveillance data sets.

Outlier Assessment and Percentage of Points
Meeting Anonymity Thresholds
To determine whether a subset of patients (those potentially
in rural areas) might not have attained anonymity at the level
specified by the user, the skew distance cumulative distribu-
tion functions for different user-specified k-anonymity values
can be inspected to easily determine the quantity of cases in
a large data set that have not been sufficiently individually
de-identified. In aggregate form, most of these data are
still sufficiently anonymized from a user with no external
information; however, some rural cases may still pose risk
of information disclosure. An outlier analysis allows users
to determine which cases in a specific data set should be
re-anonymized or excluded and what fraction of cases have
been successfully anonymized.

Client Tool and Graphical User Interface (GUI) for
Remote De-identification of Data
The source code and binary installation tool kits have
been made available in an open source repository at http://
sourceforge.net/projects/patientanon/. This stand-alone

F i g u r e 1 . Experiment description: five weeks of Chil-
dren’s Hospital Boston visit data are each individually
combined with 252 different artificially generated spatial
clusters. Each of the resulting 1,260 data sets was then anony-
mized at ten different levels for a total of 12,600 experimental
data sets.
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tool kit implements the de-identification algorithm explored
in this article. Data sets are accepted in either a CSV or
XML format, and the anonymization tool kit allows the
user to specify the order of the required variables to suit al-
most any previously created data set. Special care was taken
to make this anonymization system deployable as a stand-
alone application by extracting all the necessary census block
group data and storing them in a local database. In the stand-
alone version, this information is stored as a set of local XML
files to remove complexity from the setup of the program, so
that no database software or connections are necessary to
anonymize patient data. For better performance, we allow
users to load their choice of state census block group data
into memory. Hash tables are also used to improve lookup
speed for identifying a subset of candidate census block
groups for each patient record.

Results
Distribution of Location Skew
The distance from the original address to the transformed ad-
dress for each patient was calculated (Fig. 3) for four sample
anonymized data sets with different skew magnitudes. This
illustrates empirical anonymization distributions with respect
to skew level. The normal probability distribution function
has the greatest density centered about the mean value,
where the mean value represents no positive or negative lin-
ear skew. Nearly all cases were moved at least some distance
due to the bivariate nature of this Gaussian blurring algo-
rithm. As expected, only a small portion of patients were
moved a large distance from their original addresses.

Average Distance Moved versus Estimate
of k-Anonymity
Using the population-density estimate of k-anonymity de-
scribed above, the average k-anonymity for each anonymized
data set was calculated (Fig. 4). As the magnitude of anony-
mization increases (as the average distance from original
points in the data set increases), the k-anonymity increases

F i g u r e 3 . Distribution of distance from original location.
Each case was moved from an original home address to a new
de-identified location. Each data series represents the percent-
age of patients who were displaced plotted against distance
(km) displaced from original location. Average distances
moved: 0.0587, 0.1168, 0.1762, and 0.2354 km.

F i g u r e 2 . Estimating expected k-anonymity. Using the
data set standard deviation of the distance each patient is
moved in the anonymization, s, an estimate of achieved k-an-
onymity is calculated, assuming no other external knowledge
of specific patient information. The local population density
(people/km2) is multiplied by each area (km2) and then mul-
tiplied by the probability that the patient would have been in
that area, from the Gaussian probability distribution function.

F i g u r e 4 . Average k-anonymity achieved versus average
distance moved. As the average distance (km) moved in a
given data set increases, the anonymity achieved also in-
creases in a quadratic fashion.
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quadratically. The method to estimate k-anonymity in these
data sets uses the area around each patient circumscribed
by a radius that is the standard deviation of distance from
original address in each data set. These areas may contain
multiple census block groups, each with a different popula-
tion density, so we chose to use a conservative estimate, using
the smallest population density in the relevant area. As these
standard deviations increase linearly (as the magnitude of
Gaussian blurring that is applied to each data set increases),
the area enclosed by the radius around the patients increases
as a second-order polynomial. An average distance value of
0.25 km corresponds to an average k-anonymity value of
250, such that in this sample data set, a patient is not reversely
identifiable among a group of 250 people.

Sensitivity of Spatial Clustering Detection
The SaTScan purely spatial Bernoulli model was used to iden-
tify whether at least 50% of artificially injected test cluster
points were identified in 12,600 spatial data sets in a cluster
with a p-value #0.05. As the magnitude of the spatial skew
increased (as the average distance from original point in-
creased), the rate of spatial detection performance decreased
(Fig. 5). The average sensitivity and average specificity are
graphed for each skew magnitude. The sensitivity and speci-
ficity values are defined for each cluster with artificially
injected cases counted as true positives and noninjected pa-
tients counted as false positives. De-identification with a
data set average distance to original point of 0.25 km lowers
the spatial cluster detection sensitivity ,4% and lowers detec-
tion specificity ,1%. This result demonstrates that this
approach has a minimal negative effect on spatial clustering
detection sensitivity and specificity.

Outlier Assessment and Percentage of Points Not
Meeting Anonymity Thresholds
We describe the k-anonymity of results in our anonymization
experiments using the average k-anonymity achieved in

aggregate transformed data sets. To determine whether a sub-
set of patients (those potentially in rural areas) might not have
attained adequate anonymity, the cumulative distribution
functions for user-specified k-anonymity values are presented
with respect to average distance from original address
(Fig. 6). As the average data set distance from original point
increases, the percentage of points that do not achieve a given
k-anonymity value decreases. In this example, it is possible to
calculate that a k-anonymity value of 20 has been reached in
99% of all patients in this sample data set when the average
distance to original point is 0.25 km. Points that do not
meet a user-specified threshold can either be removed from
a data set or re-anonymized. It is important to note, however,
that re-anonymization of a subset of points will alter the char-
acteristic output described above.

Discussion
Population-based Gaussian skew represents a novel anony-
mization method that can provide a user-defined level of
k-anonymity. Further, this method can readily anonymize
public health surveillance data sets containing identifiable,
protected health information with minimal impact on the per-
formance of an outbreak detection system. We have explored
the use of population density and age-based population den-
sity data for de-identification in this article, but we do believe
the principles explored here are generally applicable to other
types of patient and demographic data.

We propose a public health use case for this anonymization
system. The data exchanged, for example, between a hospital
and a public health authority for use in a syndromic surveil-
lance system can contain skewed locations. As the anony-
mization system is completely abstracted from the spatial
detection systems that use it, there is no need to align the
use of this algorithm with a specific tool kit for cluster detec-
tion. If clustering is detected and an outbreak investigation
is required, the fully identified data could be subsequently
exchanged according to the Health Insurance Portability
and Accountability Act (HIPAA) regulations as applied to
public health.

F i g u r e 5 . Average cluster detection sensitivity/specific-
ity versus average distance to original point (average distance
increases as anonymization level increases). The average
sensitivity and specificity of spatial detection (using SaTScan
Bernoulli Spatial Model with p-value #0.05) of artificially
injected clusters of patients is displayed with respect to the
average distance that patients in a de-identified data set are
moved with respect to their original home addresses. Sensi-
tivity and specificity are calculated using cases from the clus-
ter and control data that were or were not identified properly.

F i g u r e 6 . Percentage of visits that meet specific k-ano-
nymity thresholds. For different user-specified k-anonymity
minimum thresholds, the percentage of visits in a data set
with a k-anonymity value below the minimum threshold
(and not sufficiently de-identified) decreases quickly as the
average distance moved increases. For over 99% of the visits
in all test data sets, a minimum k-anonymity value of 20 could
be achieved with an average distance moved of 0.25 km.
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One approach that might be considered is a Web-services par-
adigm, where a client wishing to anonymize spatial data
might send a data set containing only spatial data and pos-
sible de-identification requirements, such as minimum
k-anonymity or average k-anonymity, to a de-identification
server. The client could then reunite a returned data set
with other data that had been stored about those patients
without having transferred linked spatial data over the
Internet.

Moving forward, it will be necessary to determine what de-
gree of skew will provide sufficient anonymity for distribu-
tion of a patient data set to permit different levels of data
exchange. Determining what level of anonymity is required
for HIPAA compliance using an anonymization system is a
challenging and complex issue. A policy could be envisioned
under which patients volunteering their information for use
by public health agencies might be able to specify the desired
k-anonymity.

The skew method described here readily achieves far higher
degrees of k-anonymity than are generally considered accept-
able for public health data sets. It is important to be aware,
however, that k-anonymity can vary from case to case within
a data set. Consider the example of a data set containing one
case that is located in a rural town of 50 residents. Consider
further that the desired k-anonymity is 100. It is difficult to
achieve this de-identification level without increasing the
magnitude of anonymization for all cases in the data set to
a high level. Hence, a trade-off arises between keeping the
difficult-to-anonymize cases (maintaining the integrity of
the data set) versus discarding them as outliers, and thereby
enabling lower intensity anonymization for the other cases.
Cases may need to be removed from data sets to ensure
that k-anonymity thresholds are met for every patient in a
specific data set.

This algorithm randomizes the magnitude of the address
skew for each patient using randomly selected seed parame-
ters that inversely vary with the underlying population den-
sity values. Those seed values are then used to select a
random x and random y offset based on a Gaussian probabil-
ity distribution. Knowledge or disclosure of all the randomly
selected seed and offset values could aid a nefarious agent in
reversely identifying patients by lowering the data set ano-
nymity achieved; however, the seed and offset values are
calculated separately and are not stored anywhere in this
de-identification process.

The main limitation of this study is that measurements were
made in only one geographic area and only one approach to
detecting spatial clustering was investigated. However, the
urban setting is a common one for intensive public health sur-
veillance (such as syndromic surveillance) and SaTScan is a
widely employed method. Additionally, we have explored
the use of population density and age-based population den-
sity data for de-identification in this article, but we do believe
the principles explored here are generally applicable to other
types of patient and demographic data. De-identification that
attempts to accurately estimate k-anonymity is a function of
all the fields contained in a data set; for anonymity to be

achieved, it must be adequately achieved across all combina-
tions of attributes in a data set. For public health surveillance
data sets, this objective is tenable as the number and types of
data fields contained in these data sets are limited.

Conclusion
We present experimental results demonstrating that a popula-
tion-density–based Gaussian spatial blurring markedly de-
creases the ability to identify individuals in a data set while
only slightly decreasing the performance of a standard out-
break detection tool, SaTScan. These findings suggest new ap-
proaches to anonymizing data for the real-world application
of spatial epidemiology in public health practice.
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