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Abstract Objective: To develop an electronic health record that facilitates rapid capture of detailed
narrative observations from clinicians, with partial structuring of narrative information for integration and reuse.

Design: We propose a design in which unstructured text and coded data are fused into a single model called
structured narrative. Each major clinical event (e.g., encounter or procedure) is represented as a document that is
marked up to identify gross structure (sections, fields, paragraphs, lists) as well as fine structure within sentences
(concepts, modifiers, relationships). Marked up items are associated with standardized codes that enable linkage to
other events, as well as efficient reuse of information, which can speed up data entry by clinicians. Natural
language processing is used to identify fine structure, which can reduce the need for form-based entry.

Validation: The model is validated through an example of use by a clinician, with discussion of relevant aspects

of the user interface, data structures and processing rules.

Discussion: The proposed model represents all patient information as documents with standardized gross
structure (templates). Clinicians enter their data as free text, which is coded by natural language processing in real
time making it immediately usable for other computation, such as alerts or critiques. In addition, the narrative
data annotates and augments structured data with temporal relations, severity and degree modifiers, causal

connections, clinical explanations and rationale.

Conclusion: Structured narrative has potential to facilitate capture of data directly from clinicians by allowing
freedom of expression, giving immediate feedback, supporting reuse of clinical information and structuring data
for subsequent processing, such as quality assurance and clinical research.
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Introduction

Electronic health records have been a major objective of
research in biomedical informatics for decades.*** This
research seeks to improve the legibility, accessibility and
quality of health records to support patient care. Tremen-
dous effort has been expended in representing health infor-
mation in highly structured ways that support subsequent
computer processing, such as decision support and quality
assurance.>®789191112 This vision of electronic health
records transcends the basic function of communication
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among providers, and enables computers to support and
augment care processes in myriad ways.

Despite these efforts, electronic health records have rela-
tively low penetration into health care delivery.'>'*'> Ac-
quisition of data directly from clinicians remains one of the
largest potential obstacles.’® As a result, many electronic
health records often lack key pieces of documentation, such
as progress notes or admission notes. Low utilization is
caused in part by the difficulty of capturing data in struc-
tured form.'"” While effective in narrow, predictable do-
mains, structured data entry can be quite slow when events
are broad in scope and exhibit high variation.'®'****! Cli-
nicians are pressed for time, and cannot assume the burden
of data entry without significant returns for their ef-
forts.'**** Diffusion of electronic health record technology
will remain low until these barriers are addressed.

Clinicians have a long tradition of using paper forms and
dictation services, and are beginning to adopt direct entry of
text and speech recognition.** This abiding preference for
narrative data (clinical text written in a natural language
such as English) deserves further consideration. Narrative
has the advantage of familiarity, ease of use and freedom to
express anything the clinician wishes. But more than this,
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clinicians need a way to interpret raw data, synthesize the
facts and weave them into a coherent narrative.”?° Natural
language provides many mechanisms that augment or en-
rich simple facts, for example to qualify their severity or
degree, convey temporal relationships, indicate patterns of
causality, provide rationale, propose hypotheses, and sug-
gest alternatives.””*®

This paper proposes a new model for electronic health
records called structured narrative, in which unstructured
text and coded data are fused into a single representation
combining the advantages of both. Each major clinical event
(e.g., encounter or procedure) is represented as a document
to which Extensible Markup Language (XML) is added to
indicate gross structure (sections, fields, paragraphs, lists) as
well as fine structure within sentences (concepts, modifiers,
relationships). This form of representation is known as
semi-structured because the gross structure imposes restric-
tions on the clinician (standard fields for data entry), while
allowing freedom of expression within those units (free text
paragraphs). However, unlike traditional structured docu-
mentation, the free text paragraphs are marked up (using
natural language processing) to yield a fine structure that
identifies facts within the free text (diseases, medications,
procedures, etc.), as well as modifiers (severity, certainty,
etc.), and ways of connecting these facts (temporally, caus-
ally, etc.). All of these structured elements are associated
with standardized codes that enable them to be reused for
various computational purposes. At the same time, the extra
verbiage in the narrative helps to weave the facts together,
conveying temporal, causal, and reasoning relationships
among the facts that are essential to contextualize, interpret,
and synthesize the information. The structured narrative
model is intended to be convenient for data entry, highly
synthesized, and amenable to computer processing.

Background

Our interest in developing the structured narrative model
for electronic health records is based on a variety of findings
in the research literature that contrast the strengths and
weaknesses of structured and unstructured clinical data.
Van Ginnegan provides an excellent comprehensive re-
view.? Several of these studies point toward some kind of
hybrid model that could combine advantages of both. The
follow sections summarize background in these two areas.

Structured and Unstructured Data

® Despite evidence of positive effects such as document
completeness®>' and ease of billing,>** documentation
approaches based solely on coded data entry also have
significant limitations, including clinician time for note
completion,®*?*3> difficulty ascertaining medical rele-
vance,?®?” and loss of information.>®
® Narrative is a critical factor in evaluating medical evidence,
making management decisions, and communicating medi-
cal knowledge®***! and is often more accurate,*> more
comprehensive,*® and provides data complementary to
other sources.** Medical narrative captures multiple pieces
of data that, when used effectively, can reduce length of
stay® and diminish unnecessary tests.*® Well-written
narrative can be easier to comprehend, more edifying,
and even more convincing than structured data.*”
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® Natural language is by far the most expressive carrier of
medical information while also permitting fairly rapid
data entry.***° However, when the entry of text data is
completely free, there is potential for omission errors.>
Unlimited freedom of data entry can also lead to incon-
stancies between different parts of the electronic health
record.”’

Semi-structured Data

® Imposing a certain degree of structure on documents can
improve completeness and accuracy of clinical narra-
tive.>>°>°*%° Physicians prefer reading such standard-
ized documents.***”® Displaying documents in labeled
chunks or paragraphs helps to locate data efficiently.>

® While some electronic medical systems have attempted
to separate structured data entry from free text entry,
several prominent researchers advocate for some kind of
combination of the two.°*®"* A key factor in effective-
ness is to allow clinicians to switch smoothly between the
two types of entry.®®

® When the gross structure of a document (sections, fields,
paragraphs, lists, etc.) is represented explicitly, a number
of useful functions can be supported that facilitate access
to information and communication among providers
such as the construction of new documents by reusing
information from designated paragraphs of existing doc-
uments.®*

® Representation of the fine structure (concepts, modifiers,
etc.) is crucial to enable computer systems to carry out
tasks such as decision support. In addition, representa-
tion of the fine structure of documents has several
important uses in electronic health records. For example,
highlighting can be used to draw attention to particular
portions of text, e.g., sentences describing abnormal
conditions.®®

® XML was developed to support what is known as self-
describing data or semi-structured data—data that has an
irregular structure not known in advance, and that can
change frequently and without notice.®®®” Thus, XML
markup is ideal for representing both the gross document
structure of documents and the fine structure of medical
sentences. XML standards have emerged to represent
medical documents.®®%%707!

® XML representations can be enhanced through markup
of individual medical terms using codes from a suitable
dictionary”® and through integration of the results of
natural language processing with the document struc-
ture.” This feature enables semi-structured documents to
be linked with an ontology of document types and
sections, enabling subsequent processing.

Formulation Process

The structured narrative model presented below is part of a
larger program of research on electronic health records at
Columbia University Medical Center (CUMC). A few years
ago, our existing electronic web-based clinical information
system (WebCIS)”® provided an abundance of structured
clinical data (e.g., laboratory results), but a dearth of narra-
tive data (in particular, admission and progress notes). At
the same time, our studies of medical narrative revealed an
incredible richness of information. To close this gap, we
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decided to explore new paradigms for data capture, with an
eye toward increasing direct entry by physicians and nurses.

We developed the structured narrative model described
here through two parallel efforts: extension of our existing
production system and development of an entirely new
prototype system.

Beginning in 2003, one of the authors (PDS) led an effort to
extend our electronic health records system (WebClIS). They
developed and deployed a documentation module that
allows physicians to write admission notes, progress notes
and discharge summaries. Physicians at CUMC began using
the module in February 2004 and have generated over
100,000 notes.

During the same period, another author (SBJ) led an effort to
experiment with new techniques not available on our cur-
rent platform. We convened a interdisciplinary biomedical
informatics research group with core investigators consist-
ing of a linguist, nurse, physician, and system analyst, with
significant participation by another nurse, a surgeon, two
internists, and multiple software experts. We conducted an
extensive review of the literature to identify key studies of
narrative and its role in patient care. The model of struc-
tured narrative emerged through a long series of white
board discussions.

These two efforts are highly synergistic. New design ideas
suggested by the model can be tested in a system which real
providers use for real patients. Observing the use of the
production system by real users in turn helps to inform and
enhance the model. The templates used by physicians in the
production system adhere to the guiding principles of
structured narrative as outlined in the Introduction above,
but do not yet incorporate all aspects of the structured
narrative model. For example, the production system does
not yet embed natural language processing capability. A
series of related studies of these users”® and the production
system”” confirmed several of our design principles for the
structured narrative model.

Model Description

Structured Narrative is a model for electronic health records
designed to capture and manage documents from many
different kinds of clinicians (physicians, nurses, therapists,
social workers, etc.). Figure 1 depicts a general system
architecture using structured narrative, which comprises
several distinct modules. The arrows in the figure indicate
how information flows between the modules. The main
functions performed by the system appear in bold: import
(acquisition of documents from an external system), author-
ing (creation of new documents by a clinician), browsing
(search and presentation of documents in a patient’s elec-
tronic health record), and export (transmission of documents
to an external system). The sections below provide a concise
description of each of these modules; this is followed by an
extended example illustrating how the system is designed to
be used by clinicians.

Clinical Document Database

and Structured Narrative

All data in the structured narrative model are represented as
documents in XML. Clinical documents are represented
using the Health Level Seven (HL?7) clinical document

NLP Inference
- T -
ﬂImpm’t Authoring Browsing Export -
‘I'Storage l’ ' %trieval)
l’ ' ‘l '
’ ’/

New old Document Ontology /

Document Documents Controlled

(CDA) (CDA)
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Figure 1. An electronic health record using structured
narrative consists of four primary modules that communi-
cate with supporting modules (arrows indicate the flow of
information): Import (acquisition of documents from an
external system); Authoring (creation of new documents by
a clinician); Browsing (search and presentation of docu-
ments in a patient’s electronic health record); and Export
(transmission of documents to an external system). Import
and Authoring use the Storage module to create new clinical
documents, and use NLP to semantically annotate the doc-
ument. Authoring, Browsing and Export use the Retrieval
module to extract documents from a patient’s electronic
health record. These modules also use Retrieval to access
concepts in the document ontology and the Inference mod-
ule to reason about concepts.

architecture (CDA) standard.”® The proposed model uses
CDA for clinical notes (e.g., progress notes), clinical reports
(e.g., radiology and pathology reports), as well as for non-
narrative data (e.g., laboratory or pharmacy data). Each
document comprises structured information giving circum-
stances of the document and a body containing the narrative
information. The structured information (Figure 2) includes
a code specifying the type of document, effective time (date
and time of creation), author, and record target (patient).
The representation of the body (Figure 3) is called structured
narrative because the text is divided into named sections that
contain reusable units of clinical information. Each section
has a code that specifies its type, a title that describes its
content, text containing one or more paragraphs and zero or
more entry items that convey structured data. In addition, a
section may contain one or more sections, to any level of
nesting.

Document Ontology and Controlled Terminology

The codes for documents and their sections are managed in
a classification system or document ontology. The HL7/
Logical Observation Identifiers, Names, and Codes (LOINC)
document ontology is used to classify clinical documents
along several axes, including subject matter domain (e.g.,
surgery), professional role (e.g., resident), type of service
(e.g., evaluation and management) and setting (e.g., inpa-
tient).”” In addition to the axes of the HL7/LOINC docu-
ment ontology, our document ontology also manages the
codes for sections, and indicates whether they contain text
(e.g., physical exam or impression) or structured data (date
of birth or blood pressure), as well as whether they have
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Figure 2. The CDA Header (shown as an XML Schema diagram) contains structured information about a document, including
(but not limited to) a code specifying the type of document, effective time (date and time of creation), author, and record target

(patient).

subsections (e.g., physical exam may contain sections for
different body systems). Each document has an associated
template, which specifies the order of sections and their
properties (e.g., required during data entry). In this model a
section can be defined once and used many times in differ-
ent types of documents. For example, Family History may
appear in the attending physician’s admission note and in
the nurses” admission document.

In the structured narrative model, the document ontology is
part of a larger controlled terminology system, a knowledge
base for integrating standard and local controlled terminol-
ogies (our local implementation uses the Medical Entities

Dictionary).?’ This strategy allows each document and sec-
tion code to be associated with any number of coding
systems, whether locally defined (e.g., vendor-specific
codes), or standardized (e.g., LOINC). It also allows a degree
of independence when adapting to changes in these termi-
nologies over time. In addition, other codes are required in
documents to represent structured data elements, whether
entered by the user or identified through natural language
processing.

The controlled terminology (which includes the document
ontology) can also be represented in XML, for example,
using OWL (Web Ontology Language).®' This enables the

hT:POCD_MT000020.Componentt

(Sttuc‘turedBody [T']—(—--—E—I hiT:component E.' == =
1.0

"hIT:POCD_MT000020.Section
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]
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...........

Figure 3. The CDA Body (shown as an XML Schema diagram) is divided into named sections, each of which contains a code
that specifies its type, a title that describes its content, text containing one or more paragraphs, and zero or more entry items
that convey structured data. A section may contain one or more sections, to any level of nesting.
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Figure 4 The CDA model allows any stretch of text (e.g.
a phrase) to be marked by a content tag (here identified as A,
B and C), which may be nested to any depth (B contains a
stretch of text B1). Following the text, one or more entry
elements are used to define concepts and link them back to
the marked items using these identifiers (references indi-
cated by arrows).

system to use common XML technologies for both patient-
specific and ontology information.

Natural Language Processing

In the structured narrative model, text can be marked up
with coded information at any level of detail, down to
sentences, phrases, and words. This function is performed
by the natural language processing (NLP) module, which
takes text as input and returns XML, marking up medical
concepts and their modifiers. The principal innovation of the
proposed system is to apply NLP in real time, and use it to
improve the entry of documents. The NLP system analyzes
medical text and identifies semantic structures consisting of
core concepts (e.g., demographics, diseases, symptoms,
medications, and procedures) and their modifiers (e.g.,
anatomic location, time, frequency, degree, and certainty). In
exploring our model, we focused on a system called
MedLEE (Medical Language Extraction and Encoding),®*
but similar systems can be used.

MedLEE can produce output in XML format, which is easily
transformed into HL7 CDA. Significant phrases in the text
are marked by a content tag, which is given a unique
identification number. Following the text, one or more entry
elements are used to define concepts and link them back to
the marked items; these may be nested to any depth. Figure
4 illustrates this linked structure: three regions in the text are
identified as A, B, and C, with B having a subregion
identified as B1; the three entry items refer back to the text
using these same identifiers. Entries can be nested to repre-
sent complex semantic structures (a detailed example ap-
pears below). Each entry has a code that links it with
standardized coding schemes, e.g., Unified Medical Lan-
guage System (UMLS), International Classification of Dis-
eases 10 (ICD-10) or SNOMED CT. Using this approach,
documents can represent coded information at the gross
structural level (sections and fields), as well as the fine
structural level (medical concepts and their modifiers).

Inference Engine
The inference module enables the system to reason about
controlled terminology elements. A separate module for this

purpose helps to simplify the software functions for import-
ing, authoring, browsing and exporting by enabling the
system to reason about types of documents, sections and
coded entries identified by NLP. Basic inference functions
include translating from one controlled terminology to an-
other (e.g., between our local terminology and national
standards), and determining whether concepts are members
of given classes. For example, to determine whether the
document mentions antibiotics, medication codes can be
extracted from the text using MedLEE, located in the ontol-
ogy, and tested to see whether they are descendents of the
antibiotic class or not.

Import and Export

The structured narrative model is designed to interoperate
with other clinical information systems, such as ancillaries
(radiology, pathology, laboratory, pharmacy, etc), health
information management systems (e.g., chart deficiency),
order entry, and billing. The model represents all clinical
information in the form of documents. Structured data
acquired from systems such as laboratory and pharmacy
data can be managed using the same techniques as those
used for reports and notes. For example, a laboratory panel
(e.g., complete blood count) can be represented as a docu-
ment, with sections for each laboratory test (e.g., red blood
cell count). This approach makes it easy to incorporate
structured data into our structured narrative documents.

The import module acquires documents from external
sources using standard messaging services. NLP is applied
to the text to identify gross structural elements (e.g., header
information and section names), and to markup the fine
structure (e.g., important medical concepts and their modi-
fiers). Different kinds of document formats are converted
into CDA. The export module retrieves designated types of
documents from the database, and transforms them from
CDA into formats required by other systems. The inference
module may be needed to translate between controlled
terminologies or to simplify the logic for certain complex
transformation operations.

Storage and Retrieval

In our model, XML documents are managed by a database
system that enables storage of XML in its native form and
retrieval through the XQuery language (an emerging stan-
dard for XML queries). In exploring our model, we selected
Tamino,® which can support very large collections of doc-
uments, but other systems with similar functionality could
be used. By managing native XML in this manner, the space
overhead of the markup is minimized. Designated elements
can be indexed to make retrieval rapid. For example, all
documents are indexed by medical record number to sup-
port browsing and authoring documents of a single patient.

Browsing

The purpose of browsing is to assist a clinician in locating
information within the vast collection of documents in a
patient’s electronic health record, usually by narrowing
down to a single document and then focusing on a particular
section or content item (terms in bold refer to elements of
the CDA model in Figures 2-4, and axes of the LOINC
document ontology). Browsing involves querying the
database of existing documents using the CDA elements
recordTarget (patient), effectiveTime (when the docu-
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ment was written), and code (the type of document). The
document ontology and inference module are used to filter
the document code according to its properties domain (area
of health care), service (clinical activity being documented),
and setting (location of activity).

The order in which these features are specified determines
the model of browsing. As each feature is restricted, the set
of relevant documents narrows for the clinician, allowing
selection of the information of interest. These conceptual
models can be rendered graphically in a variety of ways (see
examples below). For temporal browsing, the order of
document features is recordTarget, effectiveTime, and do-
main. For content browsing, the order is recordTarget,
domain, and effectiveTime. Either sequence of narrowing
can be then optionally followed by further restrictions on
service and setting.

Once a document is selected, the clinician needs assistance
in locating appropriate sections and content items. To drill
down into documents, the codes associated with these
elements are interpreted using the inference module and
document ontology. Different sections and content codes
have different display characteristics governing amount of
screen space allocated, emphasis, layout, highlighting, etc.

Authoring

The purpose of the authoring function in the structured
narrative model is to assist the clinician in creating new
documents. The first challenge is to narrow down the type of
document to be created from the thousands of potential
types. The same document features used in browsing are
employed, but the sequence of features used to narrow the
space differs. For document authoring, the primary order is
recordTarget (patient) and professional level. This can be
further restricted by a combination of domain and service.
In many cases, professional level and domain are fixed
characteristics of the user that can be retrieved from the user
profile.

Once a document type is selected, the template associated
with the document is retrieved from the document ontology,
which specifies the display and entry characteristics of
sections, e.g., how big the entry box is for a section and
whether it requires data or not. Another important property
of a section is whether it is automatically filled with text
extracted from old documents (pre-fill rules). The rules used
to pre-fill are implemented with database queries similar to
those described above for document browsing, but typically
pull information from individual sections (or parts of sec-
tions) rather than whole documents.

Sections may also have associated post-fill rules, which spec-
ify processing actions that occur after the clinician has
finished entering text into the section. These include natural
language parsing that marks up the text with semantic
content codes, and validation rules that check the content
codes accordingly to pre-specified logic.

Validation through Example

The primary function of the structured narrative model is to
facilitate the capture of rich clinical data directly from
clinicians. Accordingly, this section will illustrate the model
described above by focusing on the authoring function and
how the other modules support it. Our principal concern is
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to make the acquisition of data as natural and rapid as
possible.

We will use as an example a common clinical scenario—
admitting a patient to the hospital. The steps articulated
below will illustrate how the structured narrative model
might augment existing workflow for reviewing and author-
ing clinical documents. Consider the following use case:

A general medicine attending physician working in the hospital
receives notification of a new admission from the Emergency Room.
The patient is being admitted for an asthma exacerbation. The
attending physician accepts the admission and begins to work up
the patient.

A typical workflow for this scenario is as follows:

1. Review the patient’s history in the electronic health
record, focusing on summary-level descriptions of the
patient.

2. Visit with the patient, take the history, and conduct the
physical examination.

3. Review available clinical data in more detail using the
electronic health record.

4. Author a new note documenting the initial encounter,
assessment, and plan.

The clinician uses the Browsing function in the structured
narrative model to complete Steps 1 and 3 and the Author-
ing function to create a new note (Step 4).

Browsing

After logging into the system, the user’s profile is retrieved,
which provides some basic knowledge about the user re-
lated to the document ontology, such as professional level,
domain, and setting (in this use case, the values are attend-
ing, internal medicine, and inpatient, respectively). For some
users these characteristics will be fixed for long periods,
others may change over time (e.g., a resident rotating
through different services), while some may have multiple
roles at a given time. Next, the clinician selects a patient to
focus on, by specifying a medical record number or name
(recordTarget).

The document ontology and inference engine support multiple
ways to browse the patient’s collection of documents. The
clinician first browses from the temporal view (effectiveTime)
to determine how frequently the patient has been admitted
over the last year with asthma exacerbations (Figure 5). She
next browses by domain to retrieve the most recent pul-
monology note. In addition, she browses the document
collection by content to determine if the patient’s asthma
was ever severe enough to warrant intubation and mechan-
ical ventilation support.

Authoring

The clinician selects Admission Note from a list that has
been filtered based upon her professional level (Attending),
domain (Internal Medicine), and setting (Inpatient) as rep-
resented in the user profile. Using these default constraints,
the resulting list will largely reflect the different kinds of
services that the clinician can document (in this case, initial
visit—evaluation and management). All of these values are
default restrictions that the user can alter (e.g., if document-
ing a service in a different setting or domain).

Once the clinician selects the type of document, the header
portion of the document is filled with information about the
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context of creation, such as the patient’s identifying informa-
tion, the date and time, information about the author and
institution. The content of the body is determined by a docu-
ment template represented in CDA (Figure 6). The empty
patient-specific document is then rendered into graphical ob-
jects with which the clinician interacts. Section names are
arranged in the window, with input boxes sized accordingly;
these expand automatically when nearly full of text. The
clinician adds ad hoc sections and subsections as needed.

Through pre-fill rules enabled by XQuery (Figure 7), the
laboratory data that the clinician ordered in the emergency
room are automatically integrated into the note. She adds
narrative to annotate the abnormal values. In addition, she
browses relevant documents and highlights certain acts to
import them into the current document, saving considerable
time through reducing data entry, while ensuring the con-
tinuity of information across documents.

After she has written a section and moved on to the next, a
variety of post-fill functions process and validate the content.
Short fields containing relatively structured data (e.g., blood
pressure, temperature, birth date) are validated to make sure
they are in range and sensible. In addition, misspelled words
and inappropriate abbreviations are highlighted.

Natural language processing is invoked as soon as the
clinician has completed a field, and carried out without
interfering with her workflow. Figure 8 shows how the text
There is a history of asthma is marked up to encode a disease
(asthma), a modifier (history of) and the composite concept
(history of asthma). In general, this detailed semantic markup
is entirely transparent to users. However, the availability of
rich clinical data in real time makes possible a wide range of
functions that interpret the data, and interact with the user
in various ways. A simple example is the use of highlighting

to identify particular kinds of information, such as clinical
problems. A more interactive use is to trigger various
decision support rules to provide alerts, warnings, etc. A
novel use is to critique the document in various ways to
improve quality. For example, abnormal lab results that are
not mentioned in the assessment section may have been
missed. Similarly, problems identified in the assessment
section that are not addressed in the plan section may be
untreated.

Discussion

Significance

Our model proposes a new vision of electronic health
records as collections of rich, interrelated narratives rather
than lists of isolated facts. We believe that this representa-
tion is more in accord with the cognitive models of clini-
cians, and will therefore serve as a more accurate reflection
of a patient’s health and a more effective source of knowl-
edge for clinical decision making. This model provides a
platform from which to test important, yet unanswered,
questions related to provider data entry and reuse. First, we
will be able to assess whether a more natural mode of data
input (narrative) is more efficient for providers. Addition-
ally, this model enables the assessment of whether capture
of coded data through natural language processing facili-
tates subsequent analysis and interpretation operations. For
example, the use of NLP may allow a much more precise
method to carry text forward from previous notes, which
may alleviate some problems caused by uncontrolled cut-
ting and pasting of text.

The long-term objective of this work is to enhance the
electronic health record by capturing documentation of
clinician’s thought processes and decisions. The Structure



Journal of the American Medical Informatics Association Volume 15 Number 1 Jan / Feb 2008

<ClinicalDocument [Namespace and schema information| >

<typeld root="[HL7 models|" extension="[CDA model|"/>
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<id root=“brganization Identifieﬂ" extension=”bocument Identifieﬂ"/>

<code code="[pocument type code|' codeSystem="[Terminology Identifier|" />

<effectiveTime value="kreation time of Documenﬂ"/>

<confidentialityCode code="[Normal access|" codeSystem="

[eodes]" />

<recordTarget>

<patientRole>

<id extension="[Patient Identifier" root="[0rganization Identifiez]"/>

[Patient Information|

Figure 6. XML representa- </patientRole>
tion of a CDA document </recordTarget>
showing header information:

<author>

id (unique identifier), code
(type of document), record-
Target (patient information),

<time value="fiuthor Timd'/>

<assignedAuthor>
<id extension="Ruthor 1d" root="prganization Identifiezd"/>

author and custodian (institu-

[Author Information]|

tion). The structured body </assignedAuthor>
shown here has one section </author>

which has a code (type of sec-

tion) and its text (narrative senstodian> )
data) <assignedCustodian>

<representedCustodianOrganization>
<id root="[rganization Identifier]"/>
</representedCustodianOrganization>
</assignedCustodian>

</custodian>

<component>

<structuredBody>

<section>

<code code="|Section Code|" codeSystem="

<text>

Terminology Identifier]" />

</text>

</section>

</structuredBody>

</component>

</ClinicalDocument>

Narrative model supports the following functions to reach
that goal:

Maintaining continuity of the electronic health record: A lengthy
electronic health record requires significant time to re-
view and digest. Many facts from past narratives remain
true in the present or persist with minor changes. By
automatically bringing these facts forward into the cur-
rent narrative, the system can reduce the time to enter
the document. There is also potential to improve the
completeness of documentation by maintaining continu-
ity of what is known about a patient.

Integrating the electronic health record: Electronic health
records contain vast amounts of data. However, most
data are raw facts. By helping the clinician to connect,
interpret and summarize these facts, the system can
improve the usefulness of the information in the elec-
tronic health record. There is also potential to reduce the
time to enter documents by performing some syntheses
automatically.

Harmonizing the electronic health record: The multidisciplinary
nature of health care creates the potential for the differ-

ing perspectives and interpretations in the electronic
health record, and even contradictions. By bringing
possible discrepancies to the attention of the responsible
clinician, the system can help resolve or at least docu-
ment the inconsistencies.

Through its facilitation of these electronic health record
goals, the structured narrative model has the potential to
support delivery of health care that is “safe, effective,
patient-centered, timely, efficient, and equitable.”%*

Limitations

Our development team is large in comparison to most
informatics research projects, but it is small by the standards
of software companies engaged in this area. We can there-
fore develop only a limited number of interface features and
assess their impact on clinician workflow. In addition, all
members of the team are present at the same institution, and
familiar only with the local information systems, practice
patterns and clinical culture. Although paper narrative
records are universal, it remains to be seen whether their
electronic form will be embraced widely. Most crucially, the
project is founded on the assumption that natural language
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for $d in collection(*EHR”")/ClinicalDocument[ /record Target//id/@extension = $MRN]
for $c in collection(“MED")/entity[loincDomain = “laboratory”]
let $labTime := dateTime($d/effectiveTime/@value)
let $oneday := current-dateTime() — dayTimeDuration(*PT24H")
where $d[code=$c/@id]
and $labTime > $oneday
return $d

Figure 7. Example of XQuery used to pre-fill the labora-
tory results section of a progress note. The query looks for
documents with id matching a given medical record number
(MRN), where the type of document (code) is defined in the
medical entities dictionary (MED) as having a LOINC do-
main of Iaboratory. The creation time of the document
(effectiveTime) must be within the last 24 hours. This query
can be refined to extract the test values from the laboratory
reports in order to embed them into the current note.

processing can eventually identify the fine structure of
clinical narratives. While no existing NLP system has com-
plete coverage, we believe that a real-time approach that
enables the immediate intervention of the clinician can
address the inadequacies of this approach. For example, the
codes assigned by NLP might trigger an alert inappropri-
ately. The clinician could respond by rejecting the alert,
which could provide feedback to the developers, or with
more experience, could rephrase text to enable a correct
parse to be obtained. In any case, the semi-structured
representation allows fine-tuning of the data entry tem-
plates, permitting the use of structured entry when auto-
mated methods fail.

One of the primary goals of the proposed model is to reduce
the effort required by physicians to enter data. A key

<section>
<code code="10153-2" codeSystem="2.16.840.1.113883.6.1"
codeSystemName="LOINC"/>
<title>Past Medical History</title>
<text>
There is a <content ID="p1"><content ID="p2">history of </content><content
ID="p3">asthma</content>
</content>
</text>
<entry>
<Observation>
<code code="C0455544"
codeSystem="2.16.840.1.113883.6.56"
codeSystemName=" UMLS"
displayName="H/Q: asthma"/>
<reference value="p1"/>
<qualifier>
<name code="C0332119"
codeSystem="2.16.840.1.113883.6.56"
codeSystemName="UMLS"
displayName="Past history of"/>
<reference value="p2"/>
</qualifier>
<value xsi:type="CD" code="C0004096"
codeSystem="2.16.840.1.113883.6.56"
codeSystemName="UMLS"
displayName="Asthma">
<reference value="p3"/>
</value>
</Observation>
</entry>
</section>

Figure 8. CDA representation of past medical history
section with NLM markup for the text There is history of
asthma. The phrase history of asthma is marked as content
with identifier p1, history of as p2 and asthma as p3. The text
is followed by an entry for pl given a UMLS code for the
phrase, with value p3 and modifier p2.

mechanism in this model is the use of pre-fill rules that carry
forward information from previous documents. A potential
risk of this technique is that data that is incorrect or no
longer valid might be propagated. To reduce this risk, the
model supports the use of document templates that define
which fields are pre-filled and which require new entry.
Additional constraints can be implemented in the model
using NLP, allowing a much more precise identification of
text to carry forward. However, these methods are experi-
mental and require further evaluation.

Conclusion

Electronic health records currently offer two major represen-
tations of clinical data with complementary strengths. Nar-
rative data (captured through typing, transcription services
or speech technology) is flexible and expressive but cannot
be reused for other computational purposes. Coded data
(captured through template systems or acquired automati-
cally from devices) permits subsequent processing but lacks
ease of use and the ability to record key aspects of clinician
thought processes. The structured narrative model integrates
these approaches: guiding clinician entry with broad tem-
plates, allowing full freedom of expression within sections
and applying natural language processing to analyze this
text for further computer processing. The coded information
obtained through this model may enable efficient reuse of
narrative material in subsequent documents to reduce clini-
cian effort, and the ability to intervene during the authoring
process to improve the quality of clinical documentation and
patient care processes.
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