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Automated Acquisition of Disease–Drug Knowledge from
Biomedical and Clinical Documents: An Initial Study
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CAROL FRIEDMAN, PHD

A b s t r a c t Objective: Explore the automated acquisition of knowledge in biomedical and clinical
documents using text mining and statistical techniques to identify disease-drug associations.

Design: Biomedical literature and clinical narratives from the patient record were mined to gather knowledge
about disease-drug associations. Two NLP systems, BioMedLEE and MedLEE, were applied to Medline articles
and discharge summaries, respectively. Disease and drug entities were identified using the NLP systems
in addition to MeSH annotations for the Medline articles. Focusing on eight diseases, co-occurrence statistics were
applied to compute and evaluate the strength of association between each disease and relevant drugs.

Results: Ranked lists of disease-drug pairs were generated and cutoffs calculated for identifying stronger
associations among these pairs for further analysis. Differences and similarities between the text sources (i.e.,
biomedical literature and patient record) and annotations (i.e., MeSH and NLP-extracted UMLS concepts) with
regards to disease-drug knowledge were observed.

Conclusion: This paper presents a method for acquiring disease-specific knowledge and a feasibility study of the
method. The method is based on applying a combination of NLP and statistical techniques to both biomedical and
clinical documents. The approach enabled extraction of knowledge about the drugs clinicians are using for
patients with specific diseases based on the patient record, while it is also acquired knowledge of drugs frequently
involved in controlled trials for those same diseases. In comparing the disease-drug associations, we found the
results to be appropriate: the two text sources contained consistent as well as complementary knowledge, and
manual review of the top five disease-drug associations by a medical expert supported their correctness across the
diseases.
� J Am Med Inform Assoc. 2008;15:87–98. DOI 10.1197/jamia.M2401.
Introduction
Clinical knowledge is constantly evolving as new discover-
ies are made and practices change. This knowledge is
valuable but often buried in text within a range of sources
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such as journal articles and clinical narratives in the patient
record. Through automated approaches, information associ-
ated with diseases can be extracted and integrated from
these disparate text sources for understanding the various
characteristics of diseases (e.g., treatment or symptoms1–3)
and how they may change over time. The availability of
up-to-date disease profiles may be valuable for a variety of
applications including decision support (e.g., recommending
treatments), quality assurance (e.g., inter- and intra-institu-
tional review), clinical information needs (e.g., answering
clinical questions), information retrieval (e.g., classifying doc-
uments), and data mining (e.g., hypothesis discovery).

Literature on randomized controlled trials (RCTs) reports on
the results of testing one or more treatments such as drugs,
devices, or procedures that are studied for diagnostic, ther-
apeutic, or prophylactic effectiveness.4 Patient records reflect
practices within an institution and provide patient-specific
information such as past and present diseases or medications.
Given these contrasting roles, these text sources may offer
valuable complementary disease-specific knowledge. Natu-
ral language processing (NLP) has been shown to facilitate
the tasks of extracting information and relations between
information captured within text.5–7 While Medline articles
are indexed by manually-assigned MeSH headings to list
some important biomedical concepts in the articles, tech-

niques such as NLP could automatically extract biomedical
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concepts as well as their relations in a high throughput
manner.

Towards the goal of acquiring, integrating, and managing
disease-specific knowledge from disparate sources, we ap-
plied a text mining approach for the automated acquisition
of disease-drug associations in Medline articles for RCTs
and discharge summaries in the electronic medical record at
NewYork-Presbyterian Hospital (NYP). This paper de-
scribes the annotation of these text sources by MeSH and
two NLP systems (BioMedLEE7,8 and MedLEE5,6,9) to ex-
tract disease and drug entities, and the use of statistical
techniques to identify strong disease-drug associations for a
subset of eight diseases. While a number of studies have
explored the use of text mining methods either for the
literature or patient record, to the best of our knowledge,
this study presents a first attempt to acquire and compare
disease-specific associations from both.

In this paper, we first provide some background on the NLP
systems used in this study and related work on knowledge
acquisition from biomedical and clinical text. Next, we
describe the approach involving NLP and statistical tech-
niques to identify disease-drug associations from RCTs and
discharge summaries. We then present a subset of associa-
tions derived for each of the eight study diseases and
highlight the commonalities and differences. Finally, we end
with a discussion about issues encountered and potential
solutions, implications of this work, and future directions.

Background
The acquisition and management of disease-drug knowl-
edge is challenging due the continuous growth of clinical
knowledge, range of sources offering such knowledge (e.g.,
human experts, literature, or patient record), and the variety
of manual or automated methods that can be applied.
Knowledge acquisition techniques using text mining have
been adapted and applied for numerous studies in the
biomedical domain.10–14 As part of the text mining process,
NLP has come to play an increasing role for knowledge
acquisition through its ability to automatically extract enti-
ties and relations within documents in a high throughput
manner.

Natural Language Processing
Through Natural Language Processing (NLP) techniques, in-
formation can be extracted from text for applications including
patient management, decision support, quality assurance, and
clinical research. To support these various applications, NLP
systems have emerged to identify, extract, and encode infor-
mation within biomedical literature and clinical narratives.
These systems include MPLUS,15 MEDSYNDIKATE,16

MetaMap17 and SemRep,18 and MedLEE and BioMedLEE.

MedLEE (Medical Language Extraction and Encoding) is a
natural language processing system at NYP that has been
used to extract and encode information in clinical narratives
for a number of applications and studies.5,6,9 BioMedLEE
(BioMedical Language Extraction and Encoding) is an adap-
tation of MedLEE focused on extracting and structuring
biomedical entities and relations in biomedical literature,7,8

including phenotypic and genotypic information. Both NLP
systems produce a set of primary findings (e.g., problem,
procedure, device, and medication) along with associated

modifiers (e.g., certainty, change, body location, and fre-
quency) for a given document (e.g., discharge summary or
Medline article). An additional feature of BioMedLEE is the
ability to capture relations between findings (e.g., entity1
treats entity2 or entity1 complicated by entity2). In this work,
we did not look at the relations and instead explored
statistical co-occurrence methods as an initial study.

The output from MedLEE and BioMedLEE is based on
frames in the form Type-Value-Modifiers where Type and
Value refer to the primary finding followed by Modifiers,
which are also frames following the same format, thereby
allowing for nesting of modifiers and representing highly
specific information. For example, in the sentence “His past
medical history is significant for asthma” from a discharge
summary, MedLEE extracts asthma as a primary finding
with type problem where modifiers include certainty and
status with values high certainty and past history, respectively
(Figure 1). Codes may be available for the primary finding as
well as certain modifiers and are represented as additional
modifiers called code. In this work, MedLEE primarily
assigns UMLS19,20 codes to findings (e.g., C0004096 corre-
sponding to asthma) while BioMedLEE assigns codes from
the UMLS as well as other sources including the Mammalian
Phenotype Ontology21 and Cell Ontology.22

Knowledge Acquisition from Biomedical
and Clinical Text
Several groups have focused on the development of text
mining approaches for identifying specific types of co-
occurring concepts, particularly concept pairs such as dis-
ease-drug, based on MeSH headings and subheadings in
Medline.23–28 Many of these studies involved use of knowl-
edge sources such as the UMLS Metathesaurus (Meta)19,20

and comparison with established clinical knowledge
sources. Srinivasan et al. have focused on the creation of
MeSH-based profiles for purposes such as generating hy-
potheses and providing information useful to health care
providers and researchers.2,29–34 Other studies have used
concept-based approaches involving NLP and the Meta.
Rindflesch et al. have developed linguistically-based sys-
tems such as SemRep and SemGen for identifying rela-
tionships between entities extracted by MetaMap (e.g.,
gene-drug, disease-gene, and disease-drug).18,35 In a recent
study, Hristovski et al. explored the use of SemRep and
BioMedLEE for integrating semantic relation extraction with
co-occurrence based literature-based discovery systems.36 In
another study by Duda et al., both MeSH and a concept-
oriented approach were explored to assist with the classifica-
tion of drug-drug interaction articles in Medline.37 Other
studies have looked at using knowledge within the UMLS
Knowledge Sources such as the MRCOC table that contains the

F i g u r e 1. Example NLP XML Output. Simplified
MedLEE XML output for asthma in a sentence from a

discharge summary.
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frequency of co-occurring concepts for sources including
Medline.25,38

NLP and text mining have also been applied to clinical
documents for a range of applications including detecting
clinical conditions and medical errors, coding and billing,
tracking physician performance and resource utilization,
improving provider communication, and monitoring alter-
nate courses of treatment.39–43 Heinze et al. have discussed
the use of NLP to mine free-text medical records for the
creation of disease profiles based on demographic informa-
tion, primary diseases, and other clinical variables.44 To
validate inferences produced by SemRep about drug treat-
ments for diseases, Rindflesch et al. constructed a repository
of drug-disorder co-occurrences based on a large collection
of clinical notes from the Mayo Clinic using MetaMap.1

Previous work has primarily focused on studying either the
biomedical literature (particularly, Medline) or the patient
record for identifying co-occurring concepts. In a recent
survey, Collier et al. observed the advances in text mining
applied to molecular biology and biomedical literature, and
discussed the need for studies focused on clinical corpora
and electronic patient records in order to bring together the
domains.45

Statistical Approaches to Acquiring
Disease-specific Associations
In recent studies, Cao et al. used NLP and statistical meth-
ods to discover disease-finding associations in discharge
summaries for the automated generation of medical prob-
lem lists.3,46 Such associations are generally not explicitly
stated in the patient record and the chi-square (�2) statistic
offers a measure of significance for association rules based
on co-occurrence.47 However, large sample sizes create
problems in the simple �2 analysis as the sheer volume of
data is sufficient to make any hypothesis test significant
thereby observing statistical significance versus scientific
significance.

The discovery of association rules that reflect the relation-
ships between data items is among the basic data mining

F i g u r e 2. Overview of Methods. (A) Documents are col
controlled trials) and the patient record at NewYork-Presbyte
descriptors are obtained for the RCT articles and UMLS conc
for the RCT articles and discharge summaries, respectively.
UMLS Knowledge Sources), disease and drug entities are filt

(D) Co-occurrence statistics are applied to discover associations b
tasks. The typical methods used to measure the quality of
these rules are support and confidence; however these
measures do not take into account both the presence and
absence of items in sets. As a result, the �2 statistic has been
proposed as a measure of significance for correlation rules (a
form of association rules).47 Cao et al. proposed a statistical
methodology to analyze co-occurrence data from a large
sample.3,46,48 In this work, the �2 statistic is used to compute
an adjustment of its p-value, the volume test adjustment,
�(�2), that measures the distance between the 2�2 contin-
gency table under study from the surface of independence.
A graphical device (that adjusts for multiple comparisons) is
then used to estimate the number of true null hypotheses.
This graphical device, called the p-value plot, is used to
calibrate the �2 statistic by providing a heuristic cutoff point
for the adjusted p-values that estimates the number of true
associations. For a detailed description of the method see
Cao et al.3,46,48 Here we only note that it is a computationally
easy and fast procedure to implement.

The present study is motivated by the work of Cao et al. that
was focused on disease-finding associations in the patient
record and seeks to build upon this work by applying the
combination of NLP and statistical methods for acquiring
disease-drug relationships in both the biomedical literature
and patient record.

Study Design
Design
The approach we applied for identifying disease-drug asso-
ciations from text sources involves four major phases (Fig-
ure 2):

a. Collect relevant documents from the biomedical litera-
ture and patient record (specifically, Medline RCT articles
and discharge summaries in this study)

b. Process the documents to extract entities
c. Filter and normalize disease and drug entities using

external knowledge sources

from the 2006 Medline baseline database (i.e., randomized
ospital (i.e., 2003 and 2004 discharge summaries). (B) MeSH

re extracted by the NLP systems, BioMedLEE and MedLEE,
ing external knowledge sources (i.e., MeSH Thesaurus and

nd normalized from the MeSH- and NLP-based annotations.
lected
rian H
epts a
(C) Us
ered a
etween the study diseases and drugs.
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d. Apply statistical methods to reveal associations between
diseases and drugs

This approach was applied separately to the Medline RCTs
annotated by MeSH, Medline RCTs annotated by
BioMedLEE with UMLS concepts, and discharge summaries
from 2003 and 2004 annotated by MedLEE with UMLS
concepts (henceforth referred to as RCT/MeSH, RCT/UMLS,
DSUM/UMLS 2003, and DSUM/UMLS 2004 where DSUM/
UMLS will be used as shorthand to represent both years).
Comparisons of the disease-drug associations were per-
formed to provide insight on the similarities and differences
between the text sources and annotation methods.

Scope
Our main objective for this study was to explore the acqui-
sition of knowledge in biomedical and clinical documents
using a combination of text mining and statistical techniques
to identify disease-drug associations. The motivation for
limiting the scope was to highlight the feasibility and bring
to light challenges in applying this automated approach to
disparate text sources for acquiring disease-specific knowl-
edge. Additionally, the initial results provide insight on the
characteristics of disease-drug knowledge captured within
Medline RCT articles and discharge summaries.

At the start of the study, we performed several preliminary
analyses of the text sources of interest (i.e., Medline articles
and discharge summaries) and available annotations (i.e.,
MeSH and UMLS concepts extracted by the NLP systems).
Several potential challenges in comparing disease-specific
knowledge across RCT/MeSH, RCT/UMLS, and DSUM/
UMLS became apparent at this time and we therefore
limited the scope of this study as follows:

• Though these methods were developed to be generaliz-
able across diseases and to other types of associations, we
have initially focused on a subset of diseases and disease-
drug associations. Based on results from a previous study
that identified the 100 most frequent diseases described
in discharge summaries at NYP, a medical expert in our
group selected eight diseases representing a range of
conditions and body systems for this study: acquired
immunodeficiency syndrome, asthma, breast neoplasms,
congestive heart failure, diabetes mellitus, Parkinson’s
disease, pneumonia, and schizophrenia.

Table 1 y MeSH and UMLS Concepts for Study Disea
MeSH ID and Descriptor (2006)

D000163 Acquired immunodeficiency syndrome
D001249 Asthma
D001943 Breast neoplasms

D003920 Diabetes Mellitus
D003922 Diabetes Mellitus, Type 1

D003924 Diabetes Mellitus, Type 2
D006333 Heart failure, congestive
D010300 Parkinson disease
D011014 Pneumonia
D012559 Schizophrenia
• MeSH annotations for the Medline literature include
descriptors (also referred to as main headings), qualifiers,
and supplementary concepts. While qualifiers further
specify descriptors and supplementary concepts include
chemical substances, we initially only used MeSH de-
scriptors.

• MeSH generally includes broader classes whereas
MedLEE and BioMedLEE detect more specific concepts.
For example, the MeSH hierarchy for Asthma consists of
‘Asthma,’ ‘Asthma, Exercise-Induced,’ and ‘Status Asth-
maticus’; the BioMedLEE and MedLEE UMLS codes that
are generated include over 50 asthma-related concepts
including mild asthma, acute asthma, and asthma childhood.
While this indicates the need for disease classes in order
to group relevant disease concepts, we initially use the
broadest form of the disease by selecting the single
highest-level MeSH descriptor to represent the eight
diseases. The only exception was Diabetes Mellitus where
we found that the more specific descriptors, ‘Diabetes
Mellitus, Type 1’ and ‘Diabetes Mellitus, Type 2’, are
often used to index RCT articles related to diabetes
mellitus. Table 1 presents the MeSH descriptor and
unique identifier (for the descriptor and its entry terms)
from 2006 MeSH for the set of diseases and the corre-
sponding UMLS concepts from both the 2005AA version
(used by BioMedLEE and MedLEE at the start of this
study) and 2006AB version (available at the start of this
study).

• Similar to the granularity issue with diseases, while the
MeSH descriptors for RCT articles primarily include
drug classes or generic names, UMLS concepts identified
by MedLEE for the discharge summaries consist more of
trade name (or brand name) drugs because these are
frequently mentioned in the patient record. In order to
resolve these differences, we leveraged drug knowledge
within MeSH and the Meta to characterize the drug
entities (e.g., class, generic name, or trade name). For this
study, the focus was on mapping trade names to generic
names (e.g., Retrovir is a brand name equivalent for the
generic drug Zidovudine) in order to facilitate compari-
sons of generic drugs across RCT/MeSH, RCT/UMLS,
and DSUM/UMLS.

UMLS CUI and Term (2005AA and 2006AB)

C0001175 Acquired Immunodeficiency Syndrome
C0004096 Asthma
C0006142 Malignant neoplasm of breast
C0006149 Breast Neoplasms (2005AA only)
C1257930 Mammary Carcinoma, Human
C1257931 Mammary Neoplasms, Human
C1458155 Mammary Neoplasms (2006AB only)
C0011849 Diabetes Mellitus
C0011854 Diabetes Mellitus, Insulin-Dependent
C0205734 Diabetes, Autoimmune
C0011860 Diabetes Mellitus, Non-Insulin-Dependent
C0018802 Congestive heart failure
C0030567 Parkinson Disease
C0032285 Pneumonia
C0887898 Experimental Lung Inflammation
ses
C0036341 Schizophrenia
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• In order to perform direct comparisons between RCT/
MeSH and RCT/UMLS, we used the same set of Medline
RCT articles (although the BioMedLEE annotations may
have identified additional documents containing the per-
tinent diseases).

Materials and Methods
Collecting Document Sets
Documents were collected from two major sources: Medline
and the electronic medical record at NYP. For this study, we
focused on randomized controlled trials (RCTs) and dis-
charge summaries from the respective sources.

Medline
Medline is the United States National Library of Medicine’s
biomedical bibliographic database containing citations dat-
ing back to the mid-1960s.49 For this study, we used the 2006
Medline baseline files consisting of 15,433,668 articles. The
PubMed Clinical Query for ‘therapy’ and ‘narrow, specific
search’ was adapted to identify PubMed identifiers (PMID)
for RCTs pertaining to drug therapy resulting in the follow-
ing query (performed in June 2006):50

“(drug therapy[sh]) AND (randomized controlled trial[Pub-
lication Type] OR (randomized[Title/Abstract] AND con-
trolled[Title/Abstract] AND trial[Title/Abstract]))”

Only PMIDs retrieved by this query that were also in the 2006
Medline baseline were maintained resulting in a document set
of 81,828 RCT articles. For each PMID, the following informa-
tion was extracted from the baseline XML files: publication
month and year, title, abstract, and MeSH annotations (in this
study, we focused on the MeSH descriptors).51

Patient Record
The clinical data repository at NYP maintains a wide range of
clinical narratives for patient care and research including
discharge summaries, operative reports, and reports from

F i g u r e 3. MeSH and NLP Annotations for RCT Arti
abstract (obtained from PubMed in January 2007). The sour
MI, Newman RP, Foster N, Dambrosia JM, Calne DB. Comp
Neurology. 1983 Aug; 33(8):1009-14.56 (B) MeSH descriptors
topic) identified as diseases, drugs, or other based on UMLS s
concepts with problem, finding, or substance as the primar
semantic type (specified in italics for others).
numerous ancillary services (e.g., radiology and pathology).52
Patient-specific information, such as diseases or conditions
and related medications, can be present within a single
section or across sections; however, most importantly, the
relationships between these types of information are gener-
ally not explicitly stated. For this study, we obtained IRB
approval and used de-identified discharge summaries from
the years 2003 and 2004 totaling 22,609 and 25,751 reports,
respectively.

Extracting Entities from Documents
Two methods were applied for identifying entities (specifi-
cally those referring to diseases and drugs) in the RCT
articles. First, all MeSH descriptors associated with each
article were extracted. Second, BioMedLEE was applied for
extracting and encoding both entities and relations within
the title and abstract of each article (this study focuses on
only the extracted entities). Figure 3 presents the MeSH
descriptors and UMLS concepts assigned to an article with
the respective methods. For the discharge summaries,
MedLEE was used to extract and encode clinical informa-
tion. Findings were extracted from the XML output of both
NLP systems and filtered based on primary type (i.e.,
problem, finding, med, and substance), certainty modifier (e.g.,
values not indicating a negated finding such as no), and
status modifier for MedLEE output (e.g., values not indicat-
ing a past finding like past history) leaving only present
disease and drug findings.

Filtering and Normalizing Extracted Entities

Identifying Diseases and Drugs
UMLS semantic types for each of the entities extracted in the
previous phase were identified in order to select disease and
drug entities. Disease entities were considered those with the
following semantic types: Disease or Syndrome (T047), Mental
or Behavioral Dysfunction (T048), or Neoplastic Process (T191);
the semantic types Pharmacologic Substance (T121) or Antibi-

) Excerpt from Medline citation that includes title and
he citation is: LeWitt PA, Ward CD, Larsen TA, Raphaelson
n of pergolide and bromocriptine therapy in parkinsonism.
ed to the article (with subheadings and ‘*’ indicating a major
tic type (specified in italics for other). (C) BioMedLEE UMLS
differentiated as diseases, drugs, or other based on UMLS
cle. (A
ce of t

ariso
assign
eman

y type
otic (T195) were used to identify drug entities.
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Characterizing Drug Entities
Knowledge in MeSH and the Meta were used as an initial
attempt to characterize each drug entity as a class, generic
name, and trade name. While MeSH was primarily used to
infer drug classes through its knowledge of pharmacologic
actions, several sources in the Meta were used to map trade
name drugs to their generic names. In the latter case, the
tradename_of and has_tradename relationships in the 2006AB
version were leveraged for RxNorm (RxNorm Vocabulary at
the National Library of Medicine),53 NCI (National Cancer
Institute), and PDQ (Physician Data Query). An example
mapping for the generic name Zidovudine would result in the
trade name drugs, Combivir, Retrovir, and Trizivir. In cases
where there is a one-to-many mapping between trade name
and generic name, all mappings are used. For example,
Sinemet is the combination of Carbidopa and Levodopa and
therefore will map to both these generic name drugs. Where
possible, all trade name drugs were mapped to their generic
names leaving primarily drug classes and generic name
drugs. In cases where a mapping could not be found
through the techniques used (e.g., loviride), the drug entity
was marked as unknown.

Generating Disease–Drug Associations
The definition from the study by Cao et al. for diseases
and findings was adapted to disease-drug associations to
produce the following characterization.3 For a document
set, a disease and drug are considered to co-occur if they
appear in the same document (and both are considered
present findings based on the status and certainty modi-
fiers extracted by the NLP systems). Disease-drug pairs
can be characterized by S � {start year, sample size,
frequency of disease, frequency of drug, frequency of
disease and drug co-occurrence}, where start year refers to
the year the drug first appeared in the document set (for
discharge summaries, this would either be 2003 or 2004)
and sample size is the number of documents since the start
year. Based on this definition, 2�2 tables for each disease-
drug pair can be generated where the disease is either
present or absent and the drug is similarly present or
absent. Figure 4 presents a graphical representation of the
2�2 table definition and example table for asthma and
albuterol for DSUM/UMLS. To test the hypothesis of no
association between the disease and drug, the �2 statistic
and the adjustment to its p-value, �(�2) are used and
appropriate cutoff identified.3,46 A method for cutoff
identification for “true” disease-drug associations is de-
scribed by Cao et al.;3,46 the present study uses a variation
of this method where we fit, on sequentially defined
ranges of the �(�2) values, a no-intercept regression model
and stop the algorithm when the highest R2 value is
observed.

All relevant information including PMID, publication year,
MeSH descriptors, and UMLS concepts was used to create
the 2�2 tables, and co-occurrence statistics were applied to
calculate the strength of association between the eight dis-
eases under investigation (represented by the MeSH descrip-
tors and UMLS concepts in Table 1) and respective normalized
drugs based on the document collection. The cutoffs for “true”

disease-drug associations derived for RCT/MeSH, RCT/
UMLS, and DSUM/UMLS were identified and corresponding
associations compiled for further analysis.

Comparing Disease–Drug Associations
As part of a preliminary assessment, associations acquired
from RCT/MeSH, RCT/UMLS, and DSUM/UMLS were
compared to gain insight on the similarities and differences.
Based on the cutoffs applied to the sets of associations, in
addition to understanding overall agreement, several analyses
can be performed to compare and contrast: MeSH and NLP-
extracted UMLS annotations for the biomedical literature,
findings in the biomedical literature and patient record, and
associations for different time periods of the patient record.

One question of interest is whether the approaches are in
agreement over all diseases examined in this study and the
extent to which they agree in terms of the number of most
associated drugs. To answer this question, we formulated
the hypothesis of no agreement and computed Kendall’s
coefficient of concordance.54 Another question pertains to
whether the proportion of common drugs that are identified
by the various approaches is significantly different. In total,
there are 4 different sources of 2�2 tables, thus the number
of discrete pairs is 6 for: (RCT/MeSH, RCT/UMLS), (RCT/
MeSH, DSUM/UMLS 2003), (RCT/MeSH, DSUM/UMLS
2004), (RCT/UMLS, DSUM/UMLS 2003), (RCT/UMLS,
DSUM/UMLS 2004), and (DSUM/UMLS 2003, DSUM/
UMLS 2004). A drug that is identified by both sources is
called common. To compute the proportion of common drugs
in each source, and thus to measure agreement between the
sources, we count the number of common drugs in each source
and divide these numbers by the total number of drugs
identified by each source. For example, if the pair (RCT/MeSH,
RCT/UMLS) produces lists of 22 and 20 drugs, respectively
and the number of drugs common to both sources is 13, then
the proportion of common drugs in RCT/MeSH is 13/22�0.59

F i g u r e 4. Disease-Drug 2�2 Table. (A) General disease-
drug 2�2 contingency table where cells represent the num-
ber of documents in which the disease is either present or
absent and the drug is similarly present or absent. (B) Table
for asthma and albuterol generated from UMLS concepts
extracted by MedLEE for discharge summaries from 2004
(DSUM/UMLS). In this table, A�897 represents the number
of documents including both asthma (C0004096) and albu-
terol (C0001927), start year is the year the disease is first
mentioned in the document set, and �2 and �(�2) are
calculated from the table and indicate the strength of the
association between asthma and albuterol.
and in RCT/UMLS is 13/20�0.65.
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Results
Descriptive Statistics
The document collection used in this study included a total
of 81,828 RCT articles from Medline and 48,360 discharge
summaries from patient records at NYP. Within the set of
RCT articles and discharge summaries, those pertaining to
the eight diseases of interest were identified (based on the
highest-level MeSH descriptor or UMLS concept). Table 2
presents the total number of documents, number of 2�2
tables generated representing the disease-drug associations
(excluding drug classes), and cutoffs representing the num-
ber of “true” associations considered for further analysis.
Table 3 highlights the 5 most associated generic name drugs
for each disease as determined by RCT/MeSH, RCT/UMLS,
and DSUM/UMLS based on sorting by �(�2) adjustment
values in descending order.

Overall Agreement Between RCT/MeSH,
RCT/UMLS, and DSUM/UMLS
The measurement of agreement over all diseases results in a

Table 2 y Distribution of Documents and Disease-Dru

Disease Source/Annotation

Acquired immunodeficiency syndrome RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Asthma RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Breast neoplasms RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Congestive heart failure RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Diabetes mellitus RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Parkinson’s disease RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Pneumonia RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

Schizophrenia RCT/MeSH
RCT/UMLS
DSUM/UMLS 2003
DSUM/UMLS 2004

This table presents several statistics for the text sources and annotat
Documents” represents the number of disease-specific documents, “
for each disease and respective generic name drugs, and “True Disea
cutoff used for comparison.
The same set of documents was used for RCT/MeSH and RCT/UM
For comparison, entities in RCT/MeSH represented by MeSH identi
numbers are presented in the “True Disease-Drug Associations” co
value of 0.653 (p � 0.02), which indicates that the null
hypothesis is rejected. Thus, RCT/MeSH, RCT/UMLS, and
DSUM/UMLS agree in the number of drugs associated
more closely with the different diseases.

The number of drugs identified by RCT/MeSH, RCT/
UMLS, and DSUM/UMLS varies. For example, 75 drugs
were identified by RCT/MeSH, 106 by RCT/UMLS, and
724 and 755 by DSUM/UMLS for the two years as
mentioned together with acquired immunodeficiency syn-
drome. From those, 22 medications were identified as
highly associated by RCT/MeSH, 20 by RCT/UMLS, 35
by DSUM/UMLS for 2003, and 37 by DSUM/UMLS for
2004. These lists were used to compute the proportions
that appear in Table 4. Given that the confidence intervals
for the median differences in the proportions all include
0, the hypothesis of equality over all diseases cannot
be rejected; however, there may be disease-dependent
differences. In looking at the Spearman correlations54 for
each pair of approaches reported in Table 4, a high degree
of agreement is noticed between (RCT/MeSH, RCT/

ociations
Total

Documents
Disease-Drug
Associations

“True”
Disease-Drug Associations

270 75 20 (22)
270 106 20
685 724 35
805 755 37

3,349 215 13 (18)
3,349 425 29
1,332 889 23
1,457 956 18
1,931 191 8 (8)
1,931 210 2

350 610 4
391 679 8

1,521 246 10 (11)
1,521 433 16
1,817 1,157 13
1,916 1,212 22
2,202 172 26 (27)
2,202 241 47
3,926 874 4
4,407 894 7

494 80 10 (11)
494 135 5
211 450 5
275 525 11
273 116 37 (40)
273 198 105

1,610 962 31
1,794 1,036 30
1,098 186 8 (10)
1,098 241 10

213 479 23
232 463 24

thods with respect to the eight diseases under investigation. “Total
e-Drug Associations” refers to the number of 2�2 tables generated
g Associations” are the number of associations above the identified

ere mapped to UMLS concepts. Due to one-to-many mappings, two
one before mapping and one after.
g Ass

ion me
Diseas
se-Dru

LS.
fiers w
UMLS) and (DSUM/UMLS 2003, DSUM/UMLS 2004) as
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expected while the agreement between the other pairs is
weaker.

Characterizing Associations, Annotations,
and Text Sources
With regard to characteristics of the data in the document
collection, this study deals with a large data set. The smallest
sample size corresponding to the RCTs equals 3,394 (i.e.,
articles since 2005, the latest start year identified for drugs in
this study) and the largest sample size is 81,828 (i.e., all
articles in the document set). Thus, p-values associated with
�2 are not informative and an adjustment, �(�2), can be used
to address this. A problem of imbalance in 2�2 tables

Table 3 y Top 5 Disease–Drug Associations
RCT/MeSH

Disease Drug
Start
Year �(�2)

Acquired
immunodeficiency
syndrome

zidovudine 1987 0.63153 zido
didanosine 1992 0.25971 dida
zalcitabine 1989 0.25482 lam
foscarnet 1986 0.22152 stav
pentamidine 1976 0.19434 rito

Asthma albuterol 1972 0.80320 albu
budesonide 1980 0.50067 salm
beclomethasone 1973 0.48950 met
terbutaline 1973 0.43036 bud
methacholine chloride 1983 0.42112 mon

Breast neoplasms tamoxifen 1976 0.90979 tam
cyclophosphamide 1966 0.58549 cycl
fluorouracil 1967 0.55386 fluo
methotrexate 1965 0.39540 ana
epirubicin 1984 0.38076 tore

Congestive heart
failure

digoxin 1971 0.31366 digo
enalapril 1982 0.26417 frus
captopril 1979 0.25010 dob
furosemide 1965 0.23694 ena
milrinone 1985 0.22112 cap

Diabetes mellitus insulin 1965 1.00000 insu
glyburide 1974 0.51144 glyb
metformin 1969 0.44713 met
insulin, isophane 1982 0.35043 insu
glucagon 1970 0.31428 rosi

Parkinson’s disease levodopa 1971 1.00000 levo
carbidopa 1975 0.62779 carb
selegiline 1980 0.53362 enta
bromocriptine 1976 0.42983 sele
benserazide 1976 0.32870 pram

Pneumonia cefamandole 1978 0.19196 ceft
cefoperazone 1983 0.15708 azit
ceftazidime 1983 0.14577 telit
erythromycin 1966 0.14514 ceft
roxithromycin 1990 0.13789 imip

Schizophrenia haloperidol 1970 0.88813 halo
risperidone 1989 0.62936 olan

clozapine 1978 0.58340 risp
fluphenazine 1967 0.46367 cloz
pirenzepine 1980 0.37131 que

This table presents the generic name drugs most associated with th
UMLS concepts with BioMedLEE) and discharge summaries (annot
the start year indicates the year the drug first appeared in the litera
is the year of discharge summaries (in this case, 2004).
(created if the marginal row and column probabilities are
away from 0.5) is usually met when one attempts to analyze
tables generated from large samples.3,46 The imbalance
associated with the tables for five of the diseases (acquired
immunodeficiency syndrome, asthma, breast neoplasms,
congestive heart failure, and diabetes mellitus) is negligible.
In contrast, a greater amount of imbalance was observed for
the other three diseases: Parkinson’s disease, pneumonia,
and schizophrenia. Certain degrees of imbalance can be
addressed by modification of �2 and use of this modified
value to compute �(�2). Further analyses, however, are
needed when the degree of imbalance is extreme.

Through individual �(�2) adjustment values, characteristics

RCT/UMLS DSUM/UMLS 2004

rug
Start
Year �(�2) Drug �(�2)

e 1987 0.90564 ritonavir 0.74390
1992 0.53224 lamivudine 0.74145

e 1994 0.50146 lopinavir 0.64139
1993 0.47512 lopinavir-ritonavir 0.63180
1995 0.42316 zidovudine 0.63027
1971 0.64084 albuterol 0.78789
1988 0.47005 montelukast 0.55013

ine 1976 0.46152 montelukast sodium 0.54505
e 1980 0.43908 ipratropium 0.41305
st 1996 0.40051 fluticasone 0.40265

1973 0.71016 tamoxifen 0.40440
hamide 1966 0.36420 anastrozole 0.34439

il 1969 0.30104 letrozole 0.30108
e 1996 0.25993 trastuzumab 0.23170

1990 0.23456 exemestane 0.22265
1971 0.28106 frusemide 0.74348
1965 0.17439 carvedilol 0.50234

e 1979 0.17096 digoxin 0.49833
1982 0.16701 lisinopril 0.38617
1979 0.15419 spironolactone 0.32166
1965 0.95470 metformin 0.69717
1970 0.44653 insulin isophane 0.63515
1970 0.40722 metformin hydrochloride 0.49561

ular, human 1982 0.35550 glipizide 0.47934
ne 1999 0.34800 glyburide 0.43595

1970 1.00000 carbidopa 1.00000
1973 0.58552 levodopa 1.00000

e 1994 0.46421 pramipexol 0.36856
1987 0.45679 entacapone 0.29354

l 1995 0.42478 ropinirole 0.27994
e 1983 0.19061 azithromycin 0.61668
cin 1990 0.18618 ceftriaxon 0.48426
cin 2000 0.16826 ipratropium 0.34349

1981 0.16452 albuterol 0.34127
1983 0.15372 ipratropium bromide 0.33408

l 1970 0.75683 benztropine 0.32158
1996 0.75337 benzatropine

methanesulfonate
0.30715

e 1992 0.65631 olanzapine 0.27719
1978 0.59956 risperidone 0.24228
1996 0.37114 fluphenazine

hydrochloride
0.23775

ses as identified in Medline RCT articles (annotated by MeSH and
UMLS concepts with MedLEE). For RCT/MeSH and RCT/UMLS,

sed on the respective annotations; for DSUM/UMLS, the start year
D

vudin
nosine

ivudin
udine

navir
terol
eterol

hachol
esonid
teluka

oxifen
ophosp
rourac
strozol
mifene
xin
emide
utamin
lapril
topril
lin
uride

formin
lin, reg
glitazo
dopa
idopa
capon
giline

ipexo
azidim
hromy
hromy
riaxon
enem
perido
zapine

eridon
apine
tiapine

e disea
ated by
ture ba
of certain disease-drug associations may be revealed. For
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some diseases, these values come closer to 1 indicating
highly associated drugs (e.g., values for Parkinson’s dis-
ease and Carbidopa range from 0.59 to 1.00 in Table 3).
While for others, the values are relatively distant from 1
(e.g., values for pneumonia and Ceftazidime range from
0.15 to 0.19 in Table 3). This finding could indicate that the
former types of drugs are particular to a disease, while the
latter are more general drugs and can be given for a
variety of diseases (Ceftazidime is an antibiotic for treating
infections and possibly used to treat commonly co-occur-
ring conditions).

In reviewing specific drugs identified by RCT/MeSH and
RCT/UMLS, the top drug was found to be the same across
all diseases (e.g., levodopa for Parkinson’s disease). Examina-
tion of disease-drug associations from the RCT articles
compared with those from discharge summaries reveals
several interesting findings. DSUM/UMLS (for both 2003
and 2004) appears to include more recent drugs than the
literature. In some cases, an association was found only in
the literature or only in the patient record. For example, in
the RCT articles, methacholine is found to be associated with
asthma and benserazide with Parkinson’s disease. This
former finding can be explained by the fact that methacholine
is used to diagnose asthma (which is specified in some
citations with the MeSH subheading diagnostic use) and the
discharge summaries have a focus on stating drugs used to
treat a disease. Alternatively, in looking at results for pneu-
monia, ipratropium and albuterol appear as associated drugs
for pneumonia in the patient record, but not in the literature.
These drugs are typically given for other lung diseases such
as asthma, thus indicating the presence of other diseases or
frequent co-morbidities within the discharge summaries
leading to these potentially “false positives.” These findings
support the complementary nature of the two text sources
emphasizing the focus of RCT literature on testing of ther-
apies over a long time span and the discharge summaries
conveying current practice with respect to prescribing med-
ications for certain conditions.

Discussion
Our overall goal was to explore the feasibility of the auto-

Table 4 y Pairwise Comparison and Agreement of Dis

Disease
(RCT/MeSH,
RCT/UMLS) D

Acquired immunodeficiency syndrome (0.59, 0.65)
Asthma (0.72, 0.45)
Breast neoplasms (0.25, 1.00)
Congestive heart failure (0.66, 0.38)
Diabetes mellitus (0.72, 0.50)
Parkinson’s disease (0.27, 0.60)
Pneumonia (0.83, 0.31)
Schizophrenia (0.40, 0.40)
Spearman correlation across diseases � � 0.9345

(a, b) � (proportion of common drugs in a, proportion of common d
2003, or DSUM/UMLS for 2004); a common drug is one that is ide
In total, there are 4 different sources of 2�2 tables, giving 6 discre
2004). A drug that is identified by both sources is called common.
agreement between the sources, the number of common drugs in ea
by each source. This table presents 4 of the 6 pairs—for (RCT/MeSH
� � 0.4226.
mated detection and validity of disease-specific knowledge
from the biomedical literature and patient record. As an
initial step, this study examines an approach involving NLP
and statistical techniques for identifying disease-drug asso-
ciations in Medline RCT articles and discharge summaries.
The results presented demonstrate the potential value of
using NLP to enhance existing annotations (e.g., MeSH for
Medline) as well as the consistent and complementary
nature of the biomedical literature and patient record. Phy-
sician review of the top five disease-drug associations also
determined that they were appropriate.

Limitations and Future Work
Analysis of the disease-drug associations obtained in this
study demonstrates that the text sources offer complemen-
tary knowledge and that the combination of NLP and
statistical techniques could play a valuable role in extracting
relevant information within these sources. Several issues
were encountered and initial attempts were made to resolve
those related to drug names, but further work is needed to
thoroughly interpret the findings (e.g., studying all associa-
tions compared with those above the cutoff as done in this
study), refine the techniques (e.g., exploring other methods
for identifying the cutoff), learn other aspects of diseases
(e.g., comorbidities or symptoms), handle the various chal-
lenges to integration (e.g., concepts at different levels of
granularity), and explore other sources and techniques for
extracting disease-specific knowledge (e.g., association rule
mining). Subsequent studies could include using established
clinical knowledge sources (e.g., Micromedex and UMLS),
knowledge bases (e.g., QMR and PharmGKB), and NLP
systems (e.g., MetaMap) for comparison and verification.
Additional statistical techniques (e.g., sensitivity and speci-
ficity) may also be used to further assess the effectiveness of
the text mining approach.

The comparison and integration of knowledge from dispar-
ate text sources such as the biomedical literature and patient
record presents several challenges. Given these challenges,
we limited the scope at the start of this study to address
issues related to the varying levels of granularity among
entities where MeSH provides more general terms and the
NLP systems studied present more specific UMLS concepts.

Drug Associations
/MeSH,

UMLS 2004)
(RCT/UMLS,

DSUM/UMLS 2004)
(DSUM/UMLS 2003,
DSUM/UMLS 2004)

5, 0.27) (0.65, 0.35) (0.94, 0.89)
2, 0.22) (0.28, 0.44) (0.78, 1.00)
5, 0.25) (0.50, 0.12) (1.00, 0.50)
5, 0.57) (0.01, 0.07) (1.00, 0.57)
5, 0.23) (0.43, 0.32) (1.00, 0.60)
6, 0.36) (1.00, 0.45) (1.00, 0.45)
0, 0.27) (0.11, 0.40) (0.74, 0.77)
0, 0.25) (0.70, 0.29) (0.78, 0.75)
0.2678 � � 0.2619 � � 0.9524

n b) where a and b � (RCT/MeSH, RCT/UMLS, DSUM/UMLS for
by both a and b for the disease.

s—e.g, (RCT/MeSH, RCT/UMLS) or (RCT/UMLS, DSUM/UMLS
pute the proportion of common drugs in each source to measure
rce is counted and divided by the total number of drugs identified

M/UMLS 2003), � � 0.4226 and (RCT/UMLS, DSUM/UMLS 2003),
ease–
(RCT

SUM/

(0.4
(0.2
(0.2
(0.1
(0.4
(0.3
(0.2
(0.6
� �

rugs i
ntified
te pair
To com
ch sou
, DSU
These limitations included using only the MeSH descriptor
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and certain relationships in the Meta for drug knowledge,
which resulted in some of the inconsistent associations
observed among the text sources and annotations. The
results presented in this study should thus be viewed as a
lower bound for agreement among the approaches and
further work is needed to address the challenges and
increase the power of the findings. The following sections
summarize the limitations and potential next steps with
respect to text sources, annotations, and disease and drug
entities.

Exploring Text Sources
The document collection used in this study consisted of titles
and abstracts for RCT articles focused on drug therapy and
two years of discharge summaries. One key difference
between the document sets was the use of all RCT articles in
Medline (spanning 1960s-present), but discharge summaries
for particular years. The rationale behind this selection was
that Medline articles for particular diseases might be sparse
within a single year. Other experiments would involve
processing articles at specific time intervals (e.g., every 3 or
5 years) and also analyzing discharge summaries in these
intervals or in aggregate (i.e., all discharge summaries
available at NYP) to determine how different timeframes
may affect the associations identified. Other criteria could be
used for creating the document sets such as considering
literature with particular characteristics (e.g., publication
type or MeSH subheading) and reviewing other types of
clinical narratives (e.g., radiology reports and cardiology
reports) to understand their impact on acquiring disease-
drug associations as well as other types of disease-specific
knowledge.

Enhancing Annotations
The comparison of associations derived from MeSH and
BioMedLEE revealed both similarities and differences indi-
cating that NLP could play a valuable role in supporting and
supplementing MeSH indexing. Based on analysis of some
of the differences, possible solutions for resolving differ-
ences in associations include incorporating MeSH supple-
mentary concepts that provide chemical substances and
subheadings that refine the main heading. The use of
subheadings may also be valuable for identifying the type of
association (e.g., drug used to treat a disease or drug that
causes an adverse effect). Additionally, the ability of NLP
systems to extract relations may remove the need to perform
additional techniques (in this case, co-occurrence statistics)
for identifying associations or may prove to be a supplemen-
tary method. For example, the BioMedLEE output for arti-
cles related to Parkinson’s disease identified several types of
relationships with levodopa (e.g., associated with and treats)
indicating a “treats” relation, although finding relations was
not the focus of the current study.

The findings from this study indicate that while MeSH
could be used for identifying the primary disease and
drug entities in a paper, NLP could enhance the existing
MeSH annotations to find associations with other types of
entities such as symptoms or procedures, which are less
likely to be associated with a MeSH annotation. For
example, in a small experiment, we compared MeSH
descriptors in articles with UMLS concepts obtained using
BioMedLEE classified as a sign or symptom by semantic

type, and found that BioMedLEE on average found four
times more concepts related to signs or symptoms (or
findings) for each disease.

Resolving Issues with Disease and Drug Entities
With respect to disease entities, the MeSH hierarchy is
relatively shallow for the diseases in this study (containing 0
to 10 descendants) while the NLP systems produced a range
of both general and specific concepts for particular diseases.
Due to these varying levels of granularity and challenges
with performing accurate mapping, we focused on the
broadest MeSH descriptor and UMLS concept in this initial
study (as depicted in Table 1), thereby not taking advantage
of the specific disease concepts extracted by the NLP sys-
tems and producing associations limited to these high-level
entities. The use of hierarchical relationships present in the
Meta (e.g., has narrower relationship [RN]) or particular
vocabulary sources such as SNOMED could be explored for
building disease classes that would allow the specific con-
cepts to be grouped and used for determining disease-drug
associations at a class-level.

For drug entities, we briefly explored drug-specific knowl-
edge within the Meta and MeSH to characterize the entities
as trade name drugs, generic name drugs, or drug classes. In
some cases, a drug could not be mapped indicating the need
for additional techniques (e.g., use of other relationships in
RxNorm such as ingredient_of) or other drug sources. For
example, while Advair was found to be a highly associated
drug for asthma and is a known trade name drug for this
disease, its generic names could not be identified with the
techniques used. Another issue arises from the one-to-many
mapping of some trade name drugs and their generic names.
For instance, kaletra used to treat HIV infections is a combi-
nation of two drugs and therefore maps to multiple concepts
(i.e., lopinavir, ritonavir, and lopinavir-ritonavir). In this study,
all mappings were made; however, filtering techniques
could be applied to find the “best” match. Finally, while the
focus was on generic name drugs, we were able to use
knowledge from MeSH to identify drug classes and generate
co-occurrence statistics (e.g., Anti-Asthmatic Agents and Bron-
chodilator Agents are highly associated with asthma). Further
work on combining related drugs (e.g., methacholine and
methacholine chloride or montelukast and montelukast sodium
for asthma) and merging drugs into classes would be
valuable to understanding what drug classes are associated
with particular diseases.

Next steps include using sophisticated concept mapping
methods1,55 for both disease and drug entities to facilitate
the identification of associations at different levels of gran-
ularity (i.e., trade name, generic name, and classes for drugs
and specific and general classes for diseases) and comparing
the associations at each level.

Implications
The analysis of disease-drug associations from RCT/MeSH,
RCT/UMLS, and DSUM/UMLS provides some insight on
the potential power of the combined use of the literature and
patient record, types of comparisons possible, and implica-
tions of the findings. When the same disease-drug associa-
tion is found in both the literature and patient record, it
increases confidence in the validity of the association, and it
may be possible to accept it in a completely automated

process. Other inferences could also be possible based on
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assumptions about the patient record. For example, al-
though the statistical method we used for the literature did
not determine the type of association (e.g., treat, side effect, or
diagnosis), it is more likely that when a patient is prescribed
a particular drug for a particular disease over a sustained
time period, the patient is being treated with the drug or
being given the drug for preventative measures. Further
studies are needed to fully quantify the similarities and
differences between the text sources and annotation meth-
ods, explore use of their juxtaposition, and analyze the
acquired knowledge. Additionally, manual review of the
associations by clinical experts is needed to interpret
the clinical significance of each disease-drug pair; for this
study, a practicing physician who reviewed the top 5
associations in Table 3 found them to have relatively good
face validity and a next step includes having multiple
experts review all disease-drug associations above the cut-
off.

Disease-specific knowledge can be found within a range of
text sources offering different aspects of a disease. This work
presents an initial step to acquiring disease-drug knowledge
from the literature and patient record using a combination of
text mining and statistical techniques (i.e., MeSH, NLP, and
co-occurrence statistics). A framework for discovering pair-
wise associations was developed and applied to a subset of
diseases concentrating on disease-drug pairs. This frame-
work could be applied to additional sources and diseases,
other types of two-way associations such as disease-disease
and drug-drug, and eventually expanded to higher dimen-
sional associations (e.g., disease-drug-symptom for learning
symptoms that may result from giving a drug for a partic-
ular disease). Additionally, time series analysis or trend
analysis can be used to capture changes in diseases over
time and allow for time-oriented comparisons (e.g., studying
emerging or disappearing drugs).

Conclusions
Text sources such as biomedical literature and clinical nar-
ratives in the patient record are rich resources for learning
and tracking disease-specific knowledge (e.g., what drugs
are associated with a particular disease and how associa-
tions change over time). In this study, we applied an
automated approach involving NLP and statistical tech-
niques for identifying disease-drug associations within these
text sources. Comparison of the associations demonstrates
that Medline RCT articles and discharge summaries offer
consistent and complementary knowledge. Additionally, the
top five disease-drug associations were found to be appro-
priate based on physician review. Given these findings, the
use of automated annotations through NLP techniques
appears to enhance the perspective offered by existing
annotations such as MeSH. This study also reveals the
challenges in the comparison and integration of disease-
drug knowledge from disparate sources, and implications
for extending this approach towards the creation of compre-
hensive disease profiles that reflect both current and histor-
ical knowledge. The results achieved by the methodology
described in this paper demonstrate for the first time the
feasibility of automated acquisition of medical knowledge
by capture of information from both the biomedical litera-

ture and patient record.
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