
760 Buckeridge et al., Modeling Aberrancy-detection Algorithms
Model Formulation �

Understanding Detection Performance in Public Health
Surveillance: Modeling Aberrancy-detection Algorithms

DAVID L. BUCKERIDGE, MD, PHD, ANNA OKHMATOVSKAIA, PHD, SAMSON TU, MS,
MARTIN O’CONNOR, MS, CSONGOR NYULAS, MS, MARK A. MUSEN, MD, PHD

A b s t r a c t Objective: Statistical aberrancy-detection algorithms play a central role in automated public
health systems, analyzing large volumes of clinical and administrative data in real-time with the goal of detecting
disease outbreaks rapidly and accurately. Not all algorithms perform equally well in terms of sensitivity,
specificity, and timeliness in detecting disease outbreaks and the evidence describing the relative performance of
different methods is fragmented and mainly qualitative.

Design: We developed and evaluated a unified model of aberrancy-detection algorithms and a software
infrastructure that uses this model to conduct studies to evaluate detection performance. We used a task-analytic
methodology to identify the common features and meaningful distinctions among different algorithms and to
provide an extensible framework for gathering evidence about the relative performance of these algorithms using
a number of evaluation metrics. We implemented our model as part of a modular software infrastructure
(Biological Space-Time Outbreak Reasoning Module, or BioSTORM) that allows configuration, deployment, and
evaluation of aberrancy-detection algorithms in a systematic manner.

Measurement: We assessed the ability of our model to encode the commonly used EARS algorithms and the
ability of the BioSTORM software to reproduce an existing evaluation study of these algorithms.

Results: Using our unified model of aberrancy-detection algorithms, we successfully encoded the EARS
algorithms, deployed these algorithms using BioSTORM, and were able to reproduce and extend previously
published evaluation results.

Conclusion: The validated model of aberrancy-detection algorithms and its software implementation will enable
principled comparison of algorithms, synthesis of results from evaluation studies, and identification of surveillance
algorithms for use in specific public health settings.
� J Am Med Inform Assoc. 2008;15:760 –769. DOI 10.1197/jamia.M2799.
Introduction
New threats and advances in the capture and transmission
of electronic health data are transforming public health
surveillance. Many public health agencies now have real-
time access to large volumes of data from clinical and other

Affiliations of the authors: Department of Epidemiology and Bio-
statistics (DLB, AO), McGill Clinical and Health Informatics (DLB,
AO), McGill University, Montreal, Canada; Stanford Center for
Biomedical Informatics Research, Stanford University (ST, MO, CN,
MAM), Palo Alto, CA.

This research was supported by a grant from the Centers for Disease
Control and Prevention under the BioSense Initiative to Improve
Early Event Detection (5R01PH000027) and the Protégé Resource
Grant from the National Institutes of Health (NLM LM007885).
David Buckeridge is supported by a Canada Research Chair in
Public Health Informatics.

The authors thank Howard Burkom and Ken Kleinman for their
contribution to the general direction of the research and Lori
Hutwagner for her contribution to the interpretation of previously
published studies evaluating the EARS algorithms.

Correspondence: David Buckeridge, MD, PhD, McGill Clinical and
Health Informatics, 1140 Pine Avenue West, Montreal, QC, H3A
1A3; e-mail: �david.buckeridge@mcgill.ca�.
Received for review: 03/19/08; accepted for publication: 07/25/08.
settings. While these data offer great potential to address
public health threats, they pose new challenges for analysis.
For example, clinical data, such as patients’ initial chief
complaints as recorded by emergency departments, are
noisy and of much higher volume than the data historically
available to public health.1,2

To take advantage of these novel data sources, many public
health agencies now operate automated surveillance sys-
tems that monitor clinical data with the goal of detecting
disease outbreaks rapidly and accurately.3–5 Due to the
volume of data, surveillance analysts are not able to manu-
ally review all data, so aberrancy-detection algorithms play
a key role, screening large volumes of data and issuing alerts
to draw an epidemiologist’s attention to statistical anoma-
lies, or aberrations, that may indicate a localized outbreak.6,7

Aberrancy-detection algorithms, therefore, provide impor-
tant input into public health decision-making around out-
break detection and management.

The last decade has seen the introduction of many aberran-
cy-detection algorithms. Some were developed specifically
for surveillance, though most were adapted from other
fields, such as econometrics,8,9 industrial process con-
trol,10,11 and cancer epidemiology.12,13 Theoretical consider-

ations and empirical results suggest that not all algorithms

mailto:david.buckeridge@mcgill.ca

Journal of the American Medical Informatics Association Volume 15 Number 6 November / December 2008 761
perform equally well in terms of desirable characteristics
such as accuracy and timeliness.14 Researchers and practi-
tioners have noted variations in performance when two
different algorithms are applied to the same data, and when
the same algorithm is applied to different data sets.15

While performance differences are acknowledged, the evi-
dence for describing how surveillance algorithms differ is
fragmented and difficult to interpret due to the absence of a
conceptual framework to support a consistent synthesis of
the reasons for performance variations.7,16 This fragmented
evidence hinders research, leads to confusion and variation
in surveillance practice,17 and threatens to reduce the return
on the considerable investment in surveillance systems and
aberrancy-detection algorithms.18

Our present work addresses the need to consistently identify
the precise reasons for variations in algorithm performance
by developing an explicit model of aberrancy-detection
algorithms and by developing a software infrastructure for
rapidly conducting evaluations. The model clarifies the
common features of, and meaningful distinctions among,
algorithms and provides an extensible framework for gath-
ering evidence about the relative performance of these
algorithms. In this paper, we describe our model and
validate it by using it to encode commonly used algorithms.
We also review briefly the software implementation of our
model, and validate the implementation by replicating and
extending a study assessing the performance of the Early
Aberration Reporting System (EARS) algorithms developed
at the Centers for Disease Control and Prevention (CDC).19

Background
Evaluating Aberrancy-detection Algorithms in
Public Health Surveillance
Surveillance is a core public health activity that measures
population health status to inform health protection and
promotion efforts. Procedurally, surveillance involves col-
lecting data, analyzing data, interpreting results, and
conveying information to guide action.20 Automated sur-
veillance systems are a recent innovation in public health.1

These systems monitor in real-time electronic data collected
in clinical (e.g., emergency departments) and other (e.g.,
call-in advice centers) settings. While a variety of factors can
be considered when evaluating automated surveillance sys-
tems,21 evaluation guidelines developed by the CDC focus
on outbreak detection.22

Researchers who evaluate aberrancy-detection algorithms
for use in automated surveillance systems rely upon histor-
ical or simulated outbreaks14,21 and tend to evaluate only
one or two algorithms at a time,15 mainly because of the
extensive resources required to concurrently evaluate mul-
tiple algorithms. More recently, some researchers have con-
ducted evaluation studies that compare the performance of
multiple algorithms systematically within a single study,
applying each algorithm to a common data set.19,23,24 Such
controlled comparisons are more valuable than single-algo-
rithm studies because they provide direct evidence about
the relative performance of algorithms. Still, authors of these
multi-algorithm studies do not explicitly attribute observed
performance differences to properties of the algorithms, so

generalizations cannot be made regarding the performance
characteristics of other algorithms in the same class. For
example, if a particular regression method performs poorly
in a certain setting, it is important to understand if all
regression methods are likely to perform poorly in the same
setting.

Previous Work in Describing Aberrancy-detection
Algorithms: Existing Limitations
No universally recognized classification of public health sur-
veillance algorithms exists, although a few researchers have
attempted to develop informal groupings of data-analytic
techniques used in public health.25–27 Existing groupings dis-
agree about algorithm inclusion, naming, and how algorithms
are categorized. Among the most commonly described algo-
rithm classes are control charts, regression models, time-series
methods, and scan statistics. Not surprisingly, algorithms
within each class may vary considerably in terms of both their
behavior and performance, while members of different classes
may occasionally exhibit very similar characteristics. Classifi-
cation schemes based on the historical origins of algorithms
that do not consider how these algorithms function are not
very helpful in understanding and describing the factors that
underlie their performance.

Despite the lack of a universally recognized classification
scheme, some authors have used functional and procedural
distinctions between algorithms to explain their relative
performance. For instance, researchers have emphasized
the distinction between adaptive and non-adaptive algo-
rithms,28 the use of theoretical versus empirical alerting
thresholds,16 and the amount of historical data required by
an algorithm.19 While none of these distinctions is sufficient
for classification, they suggest that a comprehensive model
of aberrancy-detection algorithms can be built using these
and other characteristics, and that various aspects of perfor-
mance can be linked to these characteristics.

Previous attempts to identify the meaningful functional
characteristics of aberrancy-detection algorithms have
tended to view these algorithms as atomic, indivisible units.
However, such a “black-box” representation makes it diffi-
cult to understand the relationships among different algo-
rithms because it obscures their procedural structure. The
study by Murphy and Burkom24 is a notable exception to
this tendency. The authors identify two major stages in the
procedure of temporal aberrancy detection and demonstrate
that decomposing algorithms into steps, even at a coarse
level of granularity, allows for meaningful conclusions
about the general determinants of performance.24

Task-analytic Methodology for Modeling Algorithms
While the surveillance community has not focused on mod-
eling aberrancy-detection algorithms explicitly, several ar-
eas within computer science, most notably the knowledge
modeling community, have developed approaches to de-
claratively represent the procedural structure of algo-
rithms.29 –32 These approaches model knowledge about
systems with respect to their goal or the task that they
perform, and most share a methodology referred to as task
analysis.33 This methodology has been used successfully to
model such complex processes as medical diagnosis34 and
design problem-solving,35 and is also used extensively in

software engineering.36

ligible

762 Buckeridge et al., Modeling Aberrancy-detection Algorithms
Within the task-analytic methodology, a task defines “what
has to be done.” Tasks are accomplished by application of a
method, which defines “how to perform a task.” A method
can either perform a task directly (a primitive method), or
decompose a task into subtasks with constraints on their
execution order, and delegate their execution to other meth-
ods (a task-decomposition method, or TDM). This recursive
decomposition process creates a tree-like structure repre-
senting the modeled process (Figure 1). Since there can be
many ways to accomplish a task there can be multiple
eligible methods that may decompose the same task into
different sets of subtasks. Also, a single method may be
reused to accomplish multiple tasks. Methods are typically
described in terms of their operators (steps), the objects they
operate on, the specification of their preconditions and
effects, and any additional knowledge that is required to
accomplish the task.33

The task-analytic methodology is desirable for modeling
aberrancy detection because it makes explicit the structural
similarities and differences among algorithms that may have
implications for their performance, and it also clarifies the
roles of different individual methods in the overall detection
process. It identifies, for example, when a single method can
be used for multiple tasks. In the following section, we
describe how we use task analysis to extend our previous
work modeling surveillance methods37,38 and to develop an
explicit representation of aberrancy-detection algorithms.
We have focused our modeling efforts on temporal aberrancy-
detection algorithms. The proposed model, however, is exten-
sible to include other algorithms.

Model Formulation
There are an infinite number of ways to use a task-analytic
methodology to model a particular process. In our work, we
were guided by four requirements: generality, modularity,
extensibility, and human readability. Generality implies that
the model must be able to describe multiple algorithms
using the same core representation. This requirement im-
poses constraints on identifying subtasks at each level of
task decomposition and on grouping of methods into cate-
gories. Modularity is important to support the reuse and
parallel execution of the software components that imple-
ment the model. The implication of modularity for model

Top-level
Task

T

T

T
Method 2

Method 1

F i g u r e 1. Example Task Decomposition Tree
Tasks (shown as ellipses) are accomplished by application of
each task. Methods can be either primitive (dark rectangle
task-decomposition methods) break down a task into subtasks.
(AND-relationship); dashed lines connect tasks with their e
formulation is that the atomic units of decomposition must
be chosen without unnecessarily complicating the model
and negatively affecting configurability and the execution of
the model’s implementation. Extensibility is essential be-
cause public health surveillance is an actively evolving field
with new aberrancy-detection algorithms reported regu-
larly. The task model must be extensible with new subtasks
and methods, while maintaining a compact representation.
Finally, human-readability is necessary so that the model
can serve as a conceptual framework for gathering, inter-
preting, and synthesizing evidence about the performance of
aberrancy detection algorithms. The model must therefore
be compact and strike a balance between depth and breadth
of decomposition structure while being intuitively clear to
statisticians, epidemiologists and public health practitioners.

Our task-analytic model of aberrancy-detection algorithms
includes three major parts. First, we identify the hierarchical
task structure of the aberrancy-detection process and show
how it applies to algorithms used in public health surveil-
lance. We then augment this structural representation with
control and data flow concepts, which are used to specify
subtask ordering, repetitions and input-output relations
among tasks. Finally, we identify the properties that char-
acterize individual methods used to accomplish various
tasks in our model.

Task Structure of Aberrancy-detection Algorithms
The surveillance literature consistently describes temporal
aberrancy-detection algorithms as algorithms that sequen-
tially evaluate the departure of the observed rate of health
events from what would be expected based on previous
experience.2,7,16,20,26 In task-analytic terms, these algorithms
can be viewed as instances of a single task-decomposition
method, which performs the task of detecting aberrations in
surveillance data. We refer to this task-decomposition
method as the Temporal Aberrancy Detection method. Spatial
and spatiotemporal algorithms are examples of other task-
decomposition methods.

Following from the general definition above, aberrancy
detection necessarily involves at least three key steps: ob-
taining the measure of expectation, obtaining data pertinent
to the current rate of the health event, and evaluating
whether the current rate deviates from expectation enough
to indicate an alarm. These steps constitute three subtasks of

Method 5

Method 4

Method 6

Method 3

Method 3

Method 6

ds (rectangles). More than one eligible method may exist for
complex (light rectangles). Complex methods (also called

ines on the graph read as “method decomposes a task into”
methods (OR-relationship).
ask 3

ask 1

ask 2

metho
s) or

Solid l
the top-level aberrancy-detection task as performed by the

tives

Journal of the American Medical Informatics Association Volume 15 Number 6 November / December 2008 763
Temporal Aberrancy Detection method. We include one addi-
tional subtask, since many algorithms compute a test value
or detection statistic from the current observation instead of
using the observation directly. For example, an exponen-
tially weighted moving average computes a test value that is
a weighted average of the current and previous observa-
tions. Thus the four generic subtasks of aberrancy detection
within our model are: Compute Expectation, Obtain Current
Observation, Compute Test Value, and Evaluate Test Value*
(Figure 2).

*The subtask order listed in the text and depicted in Figure 2 does
not imply the order of their execution by task-decomposition

Obtain
Current

Observation

Binary Alarm

Compute
Test Value

Evaluate
Test Value

Compute
Expectation

Empirical
Forecasting

Moving Average

Database
Query

Temporal
Aberrancy
Detection

Residual-Based

Layered Alarm

EWMA

Cumulative Sum

P-Value

. . . .

Theory-based
Forecasting

Signal Process

F i g u r e 2. General Task Structure of Temporal Aberran
Temporal algorithms are represented as instances of a task-d
Detection) that performs the task of detecting aberrations in
(ellipses). Each subtask can be accomplished by different meth
methods shown as dark rectangles), and some further decompos
rectangles). For instance, the Compute Expectation task, which con
be decomposed into four subtasks, if Empirical Forecasting meth
a primitive method—Theory-based Forecasting. Similar alterna
methods. Task sequencing will be discussed later in this section.
In addition to aberrancy detection subtasks, Figure 2 displays
methods eligible to perform each subtask. For readers unfamil-
iar with these methods, we recommend recent reviews.7,16,27

Obtain Current Observation is a straightforward step that is
typically performed by querying a database. For the three other
high-level subtasks, multiple primitive and complex eligible
methods exist. For example, the Evaluate Test Value task, which
is responsible for generating alarms, can be accomplished
directly by comparing an observed value to an expected value
using some predefined threshold (primitive method Binary
Alarm), or by passing the residual of such a comparison
through a control chart (task-decomposition method Residual-
Based). The Compute Expectation task and Evaluate Test Value

Transform
Data

Forecast

Estimate
Model

Parameters

Obtain
Baseline

Data

Mean, StDev

Database Query

Outlier Removal

Smoothing

. . . .

GLM Model Fitting

Trend Estimation

. . . .

. . . .

GLM Forecasting

Compute
Residual

Evaluate
Residual

Binary Alarm

Aberrancy Detection
(Control Chart)

Layered Alarm

Raw Residual

Z-Score

. . . .

EWMA

Generalized Exponential Smoothing

ARIMA Model Fitting

er ARIMA Forecasting

tection Algorithms
osition method (denoted on the graph as Temporal Aberrancy
rveillance data by decomposing this task into four subtasks
ectangles), some of which perform the task directly (primitive
ask into subtasks (task-decomposition methods shown as light
es one of the steps (subtasks) of aberrancy detection, can in turn
sed. Alternatively, this task can be accomplished directly by
exist for Evaluate Test Value task.

ing Filt

cy-de
ecomp
the su
ods (r
e the t
stitut

od is u
task can be further decomposed into subtasks.

nted b

764 Buckeridge et al., Modeling Aberrancy-detection Algorithms
To represent an algorithm, a single method must be selected
for each task from the list of eligible methods, producing a
sub-tree of the general structure depicted in Figure 2. These
differences in method selection allow one to model the
observed variety in aberrancy-detection algorithms: all of
the algorithms perform similar steps, but may perform these
steps using different methods. Theoretically, a large number
of structurally different algorithms can be constructed using
all possible bindings between tasks and eligible methods. In
practice, however, the choice of a method for one task often
imposes constraints on the method selection for other tasks,
which limits the number of possible meaningful combina-
tions. For example, in regression-based approaches, “match-
ing” methods must be used for Estimate Model Parameters
and Forecast tasks (Figure 2).

The eligible methods noted in Figure 2 do not constitute an
exhaustive list. Moreover, it is conceivable that newly de-
veloped aberrancy-detection algorithms may use previously
undocumented methods for performing the tasks identified
in our model. The extensible nature of task-decomposition
representation allows for inclusion of such methods.

We also note that not all identified tasks are explicitly
present in every aberrancy-detection algorithm. For in-
stance, some algorithms use raw observations as a detection
statistic, and thus omit the Compute Test Value task. In these
cases, the output of Obtain Current Observation task is
directed as an input to Evaluate Test Value task. Another
example of an “optional task” is the Transform Data task, part
of Compute Expectation.

Representation of Data and Control Flow
The structure depicted in Figure 2 is an incomplete repre-
sentation of aberrancy detection, as it does not specify data
flow or subtask ordering. We therefore extend our model to
include concepts for encoding data and control flow. These
concepts are applicable only to task-decomposition methods
(TDMs): although primitive methods also have internal
algorithmic flow, we do not model it.

A key concept in representing flow inside of TDMs is an
algorithm†—a collection of tasks and control elements in the

†Here, the term “algorithm” is used in a more specific sense than
when referring to aberrancy-detection algorithms in the surveillance

tas

Task

is accomplished
by a method

Method (TDM)

has steps in a form
of an algorithm

con
ta

method
algorithm

F i g u r e 3. Relationship among Tasks, Methods, Iteratio
When a task is accomplished by a task-decomposition method
particular order, i.e., the method has an algorithm associate
(these are the subtasks of the original, higher-level task) and
(or other, nested iterations); this sequence is, again, represe
literature; thus the two usages of this term should not be confused.
form of a directed graph. For the purpose of modeling
aberrancy-detection, we distinguish between two types of
graph nodes: subtasks and iterations. Subtasks are basic steps
that the task-decomposition method performs to accomplish
a higher-level task. Iteration is introduced to represent
control flow when a set of subtasks in a TDM should be
repeated multiple times. For example, the same sequence of
computations and alerting decisions are usually repeated
daily in a surveillance time series. A sequence of subtasks
inside an iteration generates a set of intermediate results that
are aggregated with the intermediate results from other
repetitions of the same subtasks. Figure 3 illustrates the
relations among algorithms, tasks, iterations, and methods.

The arcs of a graph are called connectors, and they represent
data flow throughout tasks and iterations. More specifically,
a connector between two nodes indicates that the output of
the predecessor node is used as input by the successor node.
Even though connectors are not intended to model control
flow directly, they do represent data dependencies between
tasks and iteration units, and thus provide the information
necessary for inferring control flow knowledge.

Characteristics of Individual Methods
To complete the representation, we encode additional
knowledge about individual methods performing various
tasks as properties of methods. One important property of a
method is its role in the overall aberrancy-detection process.
This role can be inferred directly from the location of the
method in the task-decomposition structure. While some
methods are relatively specialized, others may have multi-
ple roles. An example of a method capable of accomplishing
multiple tasks is the exponentially-weighted moving aver-
age (EWMA) method, which may function as a forecasting
technique, or as a means to transform raw observations into
test values.

Another group of properties relates to the objects and data
that the method operates on, the results of method compu-
tations and, sometimes, internal state information. For ex-
ample, the primitive method Cumulative Sum (CUSUM)
takes an observation as an incoming data object and uses it
and the sum from the previous step to compute the values of
the upper and lower running sums; it thus operates on four

iteration

rithm Iteration

 of connected
nd iterations

repeats steps, which
form an algorithm

algorithm
. . .

d Algorithms
), this implies that the method performs several steps in a
it. An algorithm, in turn, consists of interconnected tasks

tions. An iteration specifies repetition of a sequence of tasks
y an algorithm.
k

Algo

sists
sks a

ns an
(TDM

d with
itera
objects.

Journal of the American Medical Informatics Association Volume 15 Number 6 November / December 2008 765
Configuration properties, or parameters, provide control
over how the task should be performed by a method. These
properties can characterize both primitive and task decom-
position methods, but they apply only to methods that allow
variations in their internal procedures. Finally, some non-
functional properties can be useful, such as those describing
method performance characteristics (time and space require-
ments, etc.) or any helpful meta-information.39

Model Validation through Example
We illustrate the representation of aberrancy-detection algo-
rithms within our model by encoding the C-family algo-
rithms from the CDC Early Aberration Reporting System
(EARS). The algorithms C1, C2 and C3 are adaptive algo-
rithms based on a CUSUM control chart concept.6 These
algorithms are encoded in the EARS software developed by
the CDC and used widely for public health surveillance. All
three algorithms have identical task structures (Figure 4a),
and the differences are limited to variations in two config-
uration parameters used by primitive methods.

The C-algorithms compute expected values by analyzing a
short sliding period of historical data, which is characteristic
of an Empirical Forecasting method. This method decomposes
the Compute Expectation task into several subtasks. First,
seven consecutive observations from the recent history are
retrieved to serve as baseline data. For C1, these are obser-
vations immediately preceding the current observation; C2

Obtain
Current

Observation

Binary
Alarm

Transform
Data

Forecast

Compute
Test Value

Estimate
Model

Parameters

Obtain
Baseline

Data

Evaluate
Test Value

Compute
Expectation

Empirical
Forecasting

Partial
Summation

Database
Query

(single day)

Aberrancy
Detection

(Temporal)

 erutcurts ksaT .a
F i g u r e 4. Representation of EARS C-family Algorithm
a) The task structure of C-family algorithms is based on the
(see Fig. 2). A single eligible method is selected for each ta
C-family algorithms are connected to each other so that the o
the current date is not produced by any task and must be spe
structure (not shown here), which increments the date at ea
by any other task—this is a final result of the detection algor
a vector by the iteration structure.
and C3 use baseline data separated from the current obser-
vation by two days. This difference can be encoded by
manipulating the value of a configuration property of the
Database Query method used to perform Obtain Baseline Data
task, and these manipulations do not change the overall task
structure, method selection, or procedural flow. The Estimate
Model Parameters task for the C-algorithms entails computing
a seven-day mean and standard deviation. None of the
C-algorithms performs any data transformation, such as
outlier removal, so the Transform Data task is not performed.
The same is true for the Forecast task, since the baseline mean
computed by a previous task is used directly as the expected
value. The Obtain Current Observed Data task retrieves a
single observation from the current test period.

C-algorithms are defined as variants of single-sided cumu-
lative summation,10,11 which implies that the current obser-
vation is replaced with the value of a cumulative sum by the
Compute Test Value task. However, the computation of a test
statistic for these algorithms is different from traditional
cumulative summation: C1 and C2 use only the current
observation, which makes them more similar to Shewhart
charts40 than to a true CUSUM;11 the C3 algorithm sums two
previous observations and the current one. A true cumula-
tive sum, on the other hand, can be influenced by an infinite
number of prior observations.11 To reflect this important
distinction and to avoid confusion, we have labeled the
method for computing a test statistic in C-family algorithms

Mean,
StDev

tabase
uery

 days) Obtain
Current

Observation

Compute
Test

Value

Estimate
Model

Parameters

Obtain
Baseline

Data

Evaluate
Test

Value

baseline
mean, SD

current
observation

7 days
baseline data

current date

partial sum

alarm value

wolf cimhtiroglA .b

l task structure of temporal aberrancy detection algorithms
mitted tasks are grayed out. b) The five tasks constituting
s from one task are used as inputs by other task(s). Note that
externally; in our case it is provided by a containing iteration
p of algorithm execution. The alarm value is not consumed
or a single day. Individual alarm values are aggregated into
Da
Q

(7

s
genera
sk. O
utput
cified
ch ste
ithm f
as Partial Summation and supplied it with a configuration

766 Buckeridge et al., Modeling Aberrancy-detection Algorithms
property (depth-of-memory) to specify how many values are
considered.

Finally, a primitive Binary Alarm method is used to make an
alerting decision in the Evaluate Test Value task. This method
compares the previously computed detection statistic (par-
tial sum) to the value of the alerting threshold, specified as
the number of standard deviations above the expected
mean.

Figure 4b shows a data-flow diagram representing how
subtasks of aberrancy detection using C-algorithms are
interconnected. The knowledge required by the higher-level
task decomposition method (Aberrancy Detection (Temporal))
to sequence the subtasks can be unambiguously inferred
from this diagram by analyzing data dependencies. For
instance, there are no ordering constraints between the
Estimate Model Parameters task and the Obtain Current Obser-
vation task; however both tasks must be completed before
the Compute Test Value task can be accomplished.

As adaptive algorithms, C1, C2, and C3 repeat all the steps
listed above at each observation period. Figure 4b displays
flow within a single step of execution and does not reflect
the adaptive nature of the algorithms. To represent step
repetition in C-algorithms, we place all five tasks into an
iteration container, a control structure responsible for sup-
plying dynamically changing data and configuration infor-
mation to the enclosed tasks and their methods. In this
particular case, current date, which is needed by data query
methods of both the Obtain Current Observation and the
Obtain Baseline Data tasks, must change at each execution
step.

Software Implementation: BioSTORM Infrastructure
We have implemented our surveillance model in a modular
system called BioSTORM, which provides a software infra-
structure for deployment of aberrancy-detection algorithms.
The software incorporates: (1) an ontology that formally
encodes our model of aberrancy-detection algorithms, and
(2) several ontology-driven software components to support
the automated deployment and execution control of aber-
rancy-detection algorithms.

The BioSTORM Ontology
We have encoded our model of aberrancy-detection algo-
rithms in an ontology—a formal, reusable description of the
surveillance domain in a machine-interpretable form. This
ontology was represented in the Web Ontology Language
(OWL).41 The ontology: a) defines a typology of tasks and
methods as a hierarchy of classes; b) identifies eligible
methods for each task; c) describes salient characteristics of
individual methods as their properties; and, d) includes
concepts related to control and data flow to represent
algorithms, iterations and input-output connections among
the tasks. In order to integrate aberrancy-detection algo-
rithms with other operational components of the system we
have extended our ontology to include concepts describing
properties of the surveillance data and the configuration of
an evaluation analysis.

The BioSTORM Software Components
Most aberrancy-detection evaluations have significant pro-
cessing requirements due to the need to analyze multiple

data sets, often over a range of algorithm settings. These
evaluations often contain many tasks that can be executed in
parallel, and surveillance evaluations can often benefit from
task distribution.

To meet these processing requirements, we have imple-
mented a software system that supports the distributed
deployment of tasks in an evaluation. We implemented this
system using the Java Agent Development Framework
(JADE),42 an open source platform for developing distrib-
uted applications. The basic unit of distribution in the JADE
platform is an agent, which is typically a standalone module
that performs a particular job. Agents are assigned to a plat-
form, which is a logical space that can be distributed across
machines, and communicate with each other using messages.

We have implemented the tasks involved in the aberrancy-
detection algorithms as JADE agents. These task agents are
created during an evaluation run and are configured to use
a particular implementation of a method to perform their
respective tasks. We developed an extensible software li-
brary of methods in Java to be used in our system. The
BioSTORM methods use the R open-source statistical soft-
ware43 for any non-trivial statistical computations. A con-
troller agent was developed to deploy an aberrancy-detec-
tion algorithm by creating and configuring all the relevant
task agents. We also developed a variety of data integration
and communication agents to deal with the raw surveillance
data and the flow of information between tasks.

Empirical Validation
To operationally validate our work, we used BioSTORM to
replicate and extend a published study of aberration detec-
tion methods. This work entailed encoding the algorithms in
our model; configuring and running the evaluation study
using BioSTORM; and comparing our results to the study
results. The goal was to demonstrate that our model can
faithfully represent a typical evaluation study and that
BioSTORM can deploy that study automatically and pro-
duce results that agree with published figures.

Study Design
We replicated and extended a study by Hutwagner, et al.,
who compared three algorithms from the CDC’s Early
Aberration Reporting System (EARS): C1, C2, and C3.19 The
original study used simulated data to estimate the sensitiv-
ity, specificity, and time to detection for the C algorithms. In
our study, we used the same simulated surveillance data
and followed the same evaluation steps as the original
study. Briefly, we applied each of the C algorithms to each
simulated data series and calculated the sensitivity, specific-
ity, and timeliness of each algorithm by comparing the
timing of algorithm alarms to the true timing of the out-
breaks. One important change in our study was that, for
selected data sets, we computed a receiver operating char-
acteristics (ROC) curve for each algorithm by systematically
varying the value of the alerting threshold and applying the
algorithm at each threshold to the selected data sets. In the
original study, only a single alerting threshold was used,
and calculating the ROC curve allowed us to characterize
the relative performance of not just three configurations, but
the whole family of algorithms using a more general metric.
The original simulated data included 56 distinct sets with
varying baseline characteristics. We evaluated our perfor-

mance against a randomly selected subset of 10 datasets. We

Journal of the American Medical Informatics Association Volume 15 Number 6 November / December 2008 767
further randomly sampled 2 of these datasets to compute the
full ROC curve.

Results of Empirical Validation
The comparative results for sensitivity, specificity, and
time to detection for selected datasets are presented in
Figure 5. The absolute deviations between the values
computed using BioSTORM and those reported in the
original study do not exceed 0.006 for sensitivity and
specificity and 0.01 days for time to detection. A manual
comparison of selected alarm vectors revealed that dis-
crepancies in generated alarms occurred around missing

F i g u r e 5. Differences between CDC and BioSTORM R
The plots display the absolute differences between the sens
CDC study and those obtained in our validation study using
differences for each of the algorithms across selected datase
the outliers by circles.

Data Set 3
(no trend, low seasonal, mean 1, SD 6)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.2

False Positive rate

T
ru

e
 P

o
s

it
iv

e
 R

a
te

C1
C2
C3

F i g u r e 6. ROC Plots for Data Sets 3 and 15
The ROC curves were obtained in an extended analysis us

reported in the original CDC study for each of the algorithms are
data points. Discussion with the authors of the original
study revealed minor differences in the handling of
missing values between our implementation and the
EARS implementation (Personal Communication with L.
Hutwagner).

The ROC curves obtained in an extended analysis using 11
threshold values for two data sets are shown in Figure 6,
which demonstrates the close match between the originally
reported results and our corresponding results. The ROC
curve also suggests that the current operating threshold
used in the EARS software may not be the optimal operating

for Selected Datasets
, specificity and time to detection computed in the original
ORM. The boxes display median, upper and lower quartile
imal and maximal differences are shown by whiskers, and

Data Set 15
(trend, low seasonal, mean 6, SD 4)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

False Positive rate

T
ru

e
 P

o
s

it
iv

e
 R

a
te

C1
C2
C3

threshold values. The points corresponding to the results
esults
itivity
BioST

ts. Min
0

ing 11

added to the plots as bold dots.

768 Buckeridge et al., Modeling Aberrancy-detection Algorithms
point for all types of data, which has direct implications for
public health surveillance practice.

Discussion
We have developed and validated a model of aberrancy-
detection algorithms used in public health surveillance and
software that enables evaluation of algorithms encoded in
terms of our model. The model and the software form an
extensible framework for generating, gathering, and synthe-
sizing evidence about the performance characteristics sur-
veillance algorithms. This type of evidence is currently
limited, but is crucial for ensuring effective public health
practice and for guiding research in surveillance systems. In
our validation study, we demonstrated that we can encode
widely used algorithms in our model, and match published
results with high precision.

The current work represents the foundation of a unified
model of aberrancy-detection algorithms, in which distinct
classes of algorithms share the same core representation
schema, and thus can be analyzed and compared in a
formal, systematic way. By clarifying the structural and
procedural similarities and distinctions among algorithms,
this model addresses an existing lack of understanding
about how different aberrancy-detection algorithms are re-
lated to each other. Our choice of the task-analytic method-
ology for modeling purposes has allowed us to explicate the
complex structure of aberrancy-detection algorithms and to
clarify the roles of individual components in the overall
aberrancy-detection process. We believe that the resulting
modular representation facilitates understanding of the
functional aspects of aberrancy detection and is extensible to
accommodate a broad range of detection algorithms.

In addition to extending our own earlier work in this
area,37,38 our research builds on work by others. A small
number of researchers have performed systematic eva-
luation studies of multiple aberrancy-detection algori-
thms,19,23,44 but they have tended to view algorithms
monolithically and not report results in a manner that allows
attribution of performance to specific algorithm
characteristics. Others have decomposed algorithms into
sub-components in an attempt to better understand the
determinants of algorithm performance. In particular, Mur-
phy and Burkom divided a selection of algorithms into two
component methods, forecasting and detection, and then
evaluated the performance of different combinations of the
methods.24 This high-level, informal decomposition allowed
them to identify promising new combinations of methods.
Our approach is distinct from earlier work due to our
greater depth of decomposition of the aberrancy-detection
task and our specification of a formal model that distin-
guishes between fundamental characteristics of methods
and parameters of methods. Both of these features increase
the precision with which it is possible to explain differences
in method performance, and we believe that our deeper
decomposition using a formal modeling approach is an
important advance over earlier studies. The additional detail
included in our model should enable the identification of the
precise characteristics of algorithms that determine their
performance and thereby support the generation of evidence

about detection performance.
The present work is necessarily limited in scope, focusing on
temporal aberrancy-detection methods, and leaving model-
ing of spatial and space-time algorithms for future work. A
key requirement of our modeling effort, however, is to
develop a model that can be extended to include other
classes of algorithms. For example, space–time detection
algorithms can be added naturally to our current model as a
new task-decomposition method for aberrancy detection,
using, as appropriate, the tasks and methods already de-
fined for use in temporal aberrancy detection. Due to space
limitations, we have been able to provide a detailed example
of how only one type of aberrancy-detection algorithm can
be represented using our model. We have, however, also
successfully modeled several other algorithms (e.g., regres-
sion-based forecasting, hybrid regression and control-chart
algorithms, and Holt-Winters forecasting) and these exam-
ples are available from the authors. We have also presented
empirical validation of the model for only one published
study, although this validation did entail examining our
results for multiple types of data sets and outbreak signals.
Finally, there are aspects of the BioSTORM software infra-
structure, such as efficiency, robustness and usability, which
we have yet to analyze. The software is built on a well-
understood approach to scalable and distributed data pro-
cessing, however, so it is reasonable to expect that it will
scale well to larger volume of data processing.

In the future, we intend to make the BioSTORM software
freely available and to use this system to populate a data-
base with evaluation results that describe the relative per-
formance of aberrancy-detection algorithms operating on
different types of data sources in different surveillance
contexts. Development of this database will entail encoding
a number of algorithms in BioSTORM and then performing
a large number of evaluations. Researchers, including us,
will then be able to mine the results systematically to
identify fundamental characteristics of the data and the
methods that determine aberrancy detection performance,
thereby producing empirical evidence to guide public health
practitioners and researchers. We have begun this work for
the C algorithms.45 This evidence may also be used in the
future to guide automated algorithm selection. For example,
it may be possible to use classification or planning algo-
rithms in conjunction with the evidence about algorithm
performance to suggest the best possible algorithm for a
specific surveillance context.

References y

1. Lombardo JS, Buckeridge DL, Lombardo JS. Disease surveil-
lance: A public health informatics approach. Hoboken, NJ: John
Willey & Sons, 2007.

2. Wagner MM, Moore AW, Aryel RM. Handbook of biosurveil-
lance. Burlington, MA: Elsevier, 2006.

3. Heffernan R, Mostashari F, Das D, et al. New York City
Syndromic Surveillance System. In: Sydromic Surveillance: Re-
ports from a National Conference. New York, NY: CDC; 2003,
pp 25–27.

4. Lombardo J, Burkom H, Elbert E, et al. A systems overview of
the Electronic Surveillance System for the Early Notification of
Community-Based Epidemics (ESSENCE II). J Urban Health
2003;80 i32–42.

5. Loonsk JW. BioSense—a national initiative for early detection
and quantification of public health emergencies. MMWR. Mor-

bidity and Mortality Weekly Report 2004;53(Suppl):53–5.

Journal of the American Medical Informatics Association Volume 15 Number 6 November / December 2008 769
6. Hutwagner L. The bioterrorism preparedness and response
Early Aberration Reporting System (EARS). J Urban Health
2003;80:89–96.

7. Le Strat Y. Overview of temporal Surveillance. In: AB Lawson,
K Kleinman (eds). Spatial and syndromic surveillance for public
health. Chichester: Wiley; 2005, pp 13–18.

8. Helfenstein U. Box-Jenkins modelling in medical research. Stat
Meth Med Res 1996;5:3–22.

9. Reis BY, Pagano M, Mandl KD. Using temporal context to
improve biosurveillance. Proc Nat Acad Sci U.S.A. 2003;100:
1961–5.

10. Hutwagner LC, Maloney EK, Bean NH, Slutsker L, Martin SM.
Using laboratory-based surveillance data for prevention: an
algorithm for detecting Salmonella outbreaks. Emerg Infect Dis
1997;3:395–400.

11. Page E. Continuous inspection schemes. Biometrika 1954;41:
100–15.

12. Kulldorff M. A spatial scan statistic. Communications in Statis-
tics. Theory and Methods 1997;26:1481–96.

13. Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR. Evaluat-
ing cluster alarms: a space-time scan statistic and brain cancer in
Los Alamos, New Mexico. Am J Pub Health 1998;88:1377–80.

14. Kleinman K, Abrams A. Metrics for assessing the performance
of spatial surveillance. Stat Methods Med Res 2006 Oct;15(5):
445–64.

15. Buckeridge DL. Outbreak detection through automated surveil-
lance: A review of the determinants of detection. J Biomed
Inform 2007;40:370–9.

16. Burkom H. Alerting algorithms for biosurveillance. In: JS Lom-
bardo, DL Buckeridge (eds.), Disease surveillance: A public
health informatics approach. Hoboken, NJ: Wiley; 2007, pp
143–92.

17. Henning KJ. Overview of Syndromic Surveillance: What is
Syndromic Surveillance? Morbidity and Mortality Weekly Re-
port l2004;53(Suppl):5–11.

18. United States Government Accountability Office. Information
Technology. Federal Agencies Face Challenges in Implementing
Initiatives to Improve Public Health Infrastructure. United
States Government Accountability Office, 2005.

19. Hutwagner L, Browne T, Seeman MG, Fleischauer AT. Com-
paring aberration detection methods with simulated data.
Emerg Infect Dis 2005;11:314–6.

20. Teutsch SM, Churchill RE. Principles and practice of public
health surveillance. New York: Oxford University Press; 2000.

21. Buckeridge DL, Thompson MW, Babin S, Sikes ML. Evaluating
automated surveillance systems. In: JS Lombardo, DL Buck-
eridge (eds.), Disease surveillance: A public health informatics
approach. Hoboken, NJ: Wiley; 2007, pp 399–424.

22. Centers for Disease Control and Prevention. Updated guide-
lines for evaluating public health surveillance systems: rec-
ommendations from the guidelines working group. MMWR.
Morbidity and Mortality Weekly Report 2001;50:1–35.

23. Jackson ML, Baer A, Painter I, Duchin J. A simulation study
comparing aberration detection algorithms for syndromic sur-
veillance. BMC Med Inform Decis Mak 2007;7.

24. Murphy SP, Burkom H. Recombinant temporal aberration de-
tection algorithms for enhanced biosurveillance. J Am Med
Inform Assoc 2008;15:77–86.

25. Shmueli G, Fienberg SE. Current and potential statistical meth-

ods for monitoring multiple data streams for biosurveillance. In:
AG Wilson, GD Wilson, DH Olwell, (eds). Statistical Methods in
Counterterrorism. New York: Springer; 2006, pp 109–40.

26. Sonesson C, Bock D. A review and discussion of prospective
statistical surveillance in public health. J Royal Stat Soc: Series A
2003;166:5–21.

27. Wong W-K, Moore A. Classical time-series methods for biosur-
veillance. In: MM Wagner, A Moore, RM Aryel, (eds). Hand-
book of biosurveillance. Burlington, MA: Elsevier; 2006.

28. Burkom HS, Murphy SP, Shmueli G. Automated time series
forecasting for biosurveillance. Stat Med 2007;26:4202–18.

29. Chandrasekaran B, Johnson TR. Generic tasks and task struc-
tures: History, critique and new directions. In: JM David, JP
Krivine, (eds). Second generation expert systems. Berlin: Springer-
Verlag; 1993, pp 232–72.

30. Fensel D, Motta E, Benjamins RV, et al. The Unified Problem-
solving Method Development Language UPML. Knowledge
Inform Syst 2002;5:83–131.

31. Steels L. Components of expertise. AI Magazine 1990;11:30–49.
32. Wielinga BJ, Schriber AT, Breuker J. KADS: a modelling ap-

proach to knowledge engineering. Knowledge Acquis 1992;4:
5–53.

33. Chandrasekaran B, Johnson TR, Smith JW. Task-structure
analysis for knowledge modeling. Comm ACM 1992;35:
124 –37.

34. Benjamins R, Jansweijer W. Toward a competence theory of
diagnosis. IEEE Expert: Intelligent Systems and Their Applica-
tions 1994;9:43–52.

35. Chandrasekaran B. Design problem solving: A task analysis. AI
Mag 1990;11:59–71.

36. Hackos JT, Redish JC. User and task analysis for interface
design: John Wiley & Sons; 1998.

37. Buckeridge DL, Musen MA, Switzer P, Crubézy M. An analytic
framework for space-time aberrancy detection in public health
surveillance data. In: AMIA Annu Symp; 2003, pp 120–4.

38. Crubézy M, O’Connor M, Buckeridge DL, Pincus Z, Musen MA.
Ontology-centered syndromic surveillance for bioterrorism.
IEEE Intelligent Systems 2005;20:26–35.

39. Gennari JH, Ackerman M. Extra-Technical Information for
Method Libraries. In: KAW’99: Twelfth Workshop on Knowl-
edge Acquisition, Modeling and Management. Banff, Canada;
1999.

40. Shewhart WA. Statistical method from the viewpoint of quality
control: The Graduate School of the Department of Agriculture:
Washington DC [reprinted by Dover: Toronto, 1986]; 1939.

41. Web Ontology Language (OWL). Available at http://www.
w3.org/2004/OWL/. Accessed September 11, 2008.

42. Bellifemine FL, Caire G, Greenwood D. Developing multi-agent
systems with JADE: John Wiley & Sons; 2007.

43. R Development Core Team. R: A language and environment for
statistical computing. In: Vienna, Austria: R Foundation for
Statistical Computing; 2006.

44. Siegrist D, Pavlin J. Bio-ALIRT biosurveillance detection algo-
rithm evaluation. MMWR. Morbidity and Mortality Weekly
Report 2004;53(Suppl):152–8.

45. Buckeridge DL, Okhmatovskaia A, Tu SW, O’Connor M, Nyulas C,
Musen MA. Predicting outbreak detection in public health surveil-
lance: Quantitative analysis to enable evidence-based method selec-

tion. In: AMIA Annu Symp. Washington, DC; 2008. p. To appear.

http://www.w3.org/2004/OWL/
http://www.w3.org/2004/OWL/

	Understanding Detection Performance in Public Health Surveillance: Modeling Aberrancy-detection Algorithms
	Introduction
	Background
	Evaluating Aberrancy-detection Algorithms in Public Health Surveillance
	Previous Work in Describing Aberrancy-detection Algorithms: Existing Limitations
	Task-analytic Methodology for Modeling Algorithms

	Model Formulation
	Task Structure of Aberrancy-detection Algorithms
	Representation of Data and Control Flow
	Characteristics of Individual Methods

	Model Validation through Example
	Software Implementation: BioSTORM Infrastructure
	The BioSTORM Ontology
	The BioSTORM Software Components

	Empirical Validation
	Study Design
	Results of Empirical Validation

	Discussion
	Acknowledgment
	References

