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Understanding Detection Performance in Public Health
Surveillance: Modeling Aberrancy-detection Algorithms

DAVID L. BUCKERIDGE, MD, PHD, ANNA OKHMATOVSKAIA, PHD, SAMSON TU, MS,
MARTIN O’CONNOR, MS, CSONGOR NYULAS, MS, MARK A. MUSEN, MD, PHD

A b s t r a c t  Objective: Statistical aberrancy-detection algorithms play a central role in automated public
health systems, analyzing large volumes of clinical and administrative data in real-time with the goal of detecting
disease outbreaks rapidly and accurately. Not all algorithms perform equally well in terms of sensitivity,
specificity, and timeliness in detecting disease outbreaks and the evidence describing the relative performance of
different methods is fragmented and mainly qualitative.

Design: We developed and evaluated a unified model of aberrancy-detection algorithms and a software
infrastructure that uses this model to conduct studies to evaluate detection performance. We used a task-analytic
methodology to identify the common features and meaningful distinctions among different algorithms and to
provide an extensible framework for gathering evidence about the relative performance of these algorithms using
a number of evaluation metrics. We implemented our model as part of a modular software infrastructure
(Biological Space-Time Outbreak Reasoning Module, or BioSTORM) that allows configuration, deployment, and
evaluation of aberrancy-detection algorithms in a systematic manner.

Measurement: We assessed the ability of our model to encode the commonly used EARS algorithms and the
ability of the BioSTORM software to reproduce an existing evaluation study of these algorithms.

Results: Using our unified model of aberrancy-detection algorithms, we successfully encoded the EARS
algorithms, deployed these algorithms using BioSTORM, and were able to reproduce and extend previously
published evaluation results.

Conclusion: The validated model of aberrancy-detection algorithms and its software implementation will enable
principled comparison of algorithms, synthesis of results from evaluation studies, and identification of surveillance
algorithms for use in specific public health settings.
� J Am Med Inform Assoc. 2008;15:760 –769. DOI 10.1197/jamia.M2799.
Introduction
New threats and advances in the capture and transmission
of electronic health data are transforming public health
surveillance. Many public health agencies now have real-
time access to large volumes of data from clinical and other
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settings. While these data offer great potential to address
public health threats, they pose new challenges for analysis.
For example, clinical data, such as patients’ initial chief
complaints as recorded by emergency departments, are
noisy and of much higher volume than the data historically
available to public health.1,2

To take advantage of these novel data sources, many public
health agencies now operate automated surveillance sys-
tems that monitor clinical data with the goal of detecting
disease outbreaks rapidly and accurately.3–5 Due to the
volume of data, surveillance analysts are not able to manu-
ally review all data, so aberrancy-detection algorithms play
a key role, screening large volumes of data and issuing alerts
to draw an epidemiologist’s attention to statistical anoma-
lies, or aberrations, that may indicate a localized outbreak.6,7

Aberrancy-detection algorithms, therefore, provide impor-
tant input into public health decision-making around out-
break detection and management.

The last decade has seen the introduction of many aberran-
cy-detection algorithms. Some were developed specifically
for surveillance, though most were adapted from other
fields, such as econometrics,8,9 industrial process con-
trol,10,11 and cancer epidemiology.12,13 Theoretical consider-

ations and empirical results suggest that not all algorithms
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perform equally well in terms of desirable characteristics
such as accuracy and timeliness.14 Researchers and practi-
tioners have noted variations in performance when two
different algorithms are applied to the same data, and when
the same algorithm is applied to different data sets.15

While performance differences are acknowledged, the evi-
dence for describing how surveillance algorithms differ is
fragmented and difficult to interpret due to the absence of a
conceptual framework to support a consistent synthesis of
the reasons for performance variations.7,16 This fragmented
evidence hinders research, leads to confusion and variation
in surveillance practice,17 and threatens to reduce the return
on the considerable investment in surveillance systems and
aberrancy-detection algorithms.18

Our present work addresses the need to consistently identify
the precise reasons for variations in algorithm performance
by developing an explicit model of aberrancy-detection
algorithms and by developing a software infrastructure for
rapidly conducting evaluations. The model clarifies the
common features of, and meaningful distinctions among,
algorithms and provides an extensible framework for gath-
ering evidence about the relative performance of these
algorithms. In this paper, we describe our model and
validate it by using it to encode commonly used algorithms.
We also review briefly the software implementation of our
model, and validate the implementation by replicating and
extending a study assessing the performance of the Early
Aberration Reporting System (EARS) algorithms developed
at the Centers for Disease Control and Prevention (CDC).19

Background
Evaluating Aberrancy-detection Algorithms in
Public Health Surveillance
Surveillance is a core public health activity that measures
population health status to inform health protection and
promotion efforts. Procedurally, surveillance involves col-
lecting data, analyzing data, interpreting results, and
conveying information to guide action.20 Automated sur-
veillance systems are a recent innovation in public health.1

These systems monitor in real-time electronic data collected
in clinical (e.g., emergency departments) and other (e.g.,
call-in advice centers) settings. While a variety of factors can
be considered when evaluating automated surveillance sys-
tems,21 evaluation guidelines developed by the CDC focus
on outbreak detection.22

Researchers who evaluate aberrancy-detection algorithms
for use in automated surveillance systems rely upon histor-
ical or simulated outbreaks14,21 and tend to evaluate only
one or two algorithms at a time,15 mainly because of the
extensive resources required to concurrently evaluate mul-
tiple algorithms. More recently, some researchers have con-
ducted evaluation studies that compare the performance of
multiple algorithms systematically within a single study,
applying each algorithm to a common data set.19,23,24 Such
controlled comparisons are more valuable than single-algo-
rithm studies because they provide direct evidence about
the relative performance of algorithms. Still, authors of these
multi-algorithm studies do not explicitly attribute observed
performance differences to properties of the algorithms, so

generalizations cannot be made regarding the performance
characteristics of other algorithms in the same class. For
example, if a particular regression method performs poorly
in a certain setting, it is important to understand if all
regression methods are likely to perform poorly in the same
setting.

Previous Work in Describing Aberrancy-detection
Algorithms: Existing Limitations
No universally recognized classification of public health sur-
veillance algorithms exists, although a few researchers have
attempted to develop informal groupings of data-analytic
techniques used in public health.25–27 Existing groupings dis-
agree about algorithm inclusion, naming, and how algorithms
are categorized. Among the most commonly described algo-
rithm classes are control charts, regression models, time-series
methods, and scan statistics. Not surprisingly, algorithms
within each class may vary considerably in terms of both their
behavior and performance, while members of different classes
may occasionally exhibit very similar characteristics. Classifi-
cation schemes based on the historical origins of algorithms
that do not consider how these algorithms function are not
very helpful in understanding and describing the factors that
underlie their performance.

Despite the lack of a universally recognized classification
scheme, some authors have used functional and procedural
distinctions between algorithms to explain their relative
performance. For instance, researchers have emphasized
the distinction between adaptive and non-adaptive algo-
rithms,28 the use of theoretical versus empirical alerting
thresholds,16 and the amount of historical data required by
an algorithm.19 While none of these distinctions is sufficient
for classification, they suggest that a comprehensive model
of aberrancy-detection algorithms can be built using these
and other characteristics, and that various aspects of perfor-
mance can be linked to these characteristics.

Previous attempts to identify the meaningful functional
characteristics of aberrancy-detection algorithms have
tended to view these algorithms as atomic, indivisible units.
However, such a “black-box” representation makes it diffi-
cult to understand the relationships among different algo-
rithms because it obscures their procedural structure. The
study by Murphy and Burkom24 is a notable exception to
this tendency. The authors identify two major stages in the
procedure of temporal aberrancy detection and demonstrate
that decomposing algorithms into steps, even at a coarse
level of granularity, allows for meaningful conclusions
about the general determinants of performance.24

Task-analytic Methodology for Modeling Algorithms
While the surveillance community has not focused on mod-
eling aberrancy-detection algorithms explicitly, several ar-
eas within computer science, most notably the knowledge
modeling community, have developed approaches to de-
claratively represent the procedural structure of algo-
rithms.29 –32 These approaches model knowledge about
systems with respect to their goal or the task that they
perform, and most share a methodology referred to as task
analysis.33 This methodology has been used successfully to
model such complex processes as medical diagnosis34 and
design problem-solving,35 and is also used extensively in

software engineering.36
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Within the task-analytic methodology, a task defines “what
has to be done.” Tasks are accomplished by application of a
method, which defines “how to perform a task.” A method
can either perform a task directly (a primitive method), or
decompose a task into subtasks with constraints on their
execution order, and delegate their execution to other meth-
ods (a task-decomposition method, or TDM). This recursive
decomposition process creates a tree-like structure repre-
senting the modeled process (Figure 1). Since there can be
many ways to accomplish a task there can be multiple
eligible methods that may decompose the same task into
different sets of subtasks. Also, a single method may be
reused to accomplish multiple tasks. Methods are typically
described in terms of their operators (steps), the objects they
operate on, the specification of their preconditions and
effects, and any additional knowledge that is required to
accomplish the task.33

The task-analytic methodology is desirable for modeling
aberrancy detection because it makes explicit the structural
similarities and differences among algorithms that may have
implications for their performance, and it also clarifies the
roles of different individual methods in the overall detection
process. It identifies, for example, when a single method can
be used for multiple tasks. In the following section, we
describe how we use task analysis to extend our previous
work modeling surveillance methods37,38 and to develop an
explicit representation of aberrancy-detection algorithms.
We have focused our modeling efforts on temporal aberrancy-
detection algorithms. The proposed model, however, is exten-
sible to include other algorithms.

Model Formulation
There are an infinite number of ways to use a task-analytic
methodology to model a particular process. In our work, we
were guided by four requirements: generality, modularity,
extensibility, and human readability. Generality implies that
the model must be able to describe multiple algorithms
using the same core representation. This requirement im-
poses constraints on identifying subtasks at each level of
task decomposition and on grouping of methods into cate-
gories. Modularity is important to support the reuse and
parallel execution of the software components that imple-
ment the model. The implication of modularity for model
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can serve as a conceptual framework for gathering, inter-
preting, and synthesizing evidence about the performance of
aberrancy detection algorithms. The model must therefore
be compact and strike a balance between depth and breadth
of decomposition structure while being intuitively clear to
statisticians, epidemiologists and public health practitioners.

Our task-analytic model of aberrancy-detection algorithms
includes three major parts. First, we identify the hierarchical
task structure of the aberrancy-detection process and show
how it applies to algorithms used in public health surveil-
lance. We then augment this structural representation with
control and data flow concepts, which are used to specify
subtask ordering, repetitions and input-output relations
among tasks. Finally, we identify the properties that char-
acterize individual methods used to accomplish various
tasks in our model.

Task Structure of Aberrancy-detection Algorithms
The surveillance literature consistently describes temporal
aberrancy-detection algorithms as algorithms that sequen-
tially evaluate the departure of the observed rate of health
events from what would be expected based on previous
experience.2,7,16,20,26 In task-analytic terms, these algorithms
can be viewed as instances of a single task-decomposition
method, which performs the task of detecting aberrations in
surveillance data. We refer to this task-decomposition
method as the Temporal Aberrancy Detection method. Spatial
and spatiotemporal algorithms are examples of other task-
decomposition methods.

Following from the general definition above, aberrancy
detection necessarily involves at least three key steps: ob-
taining the measure of expectation, obtaining data pertinent
to the current rate of the health event, and evaluating
whether the current rate deviates from expectation enough
to indicate an alarm. These steps constitute three subtasks of
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Temporal Aberrancy Detection method. We include one addi-
tional subtask, since many algorithms compute a test value
or detection statistic from the current observation instead of
using the observation directly. For example, an exponen-
tially weighted moving average computes a test value that is
a weighted average of the current and previous observa-
tions. Thus the four generic subtasks of aberrancy detection
within our model are: Compute Expectation, Obtain Current
Observation, Compute Test Value, and Evaluate Test Value*
(Figure 2).

*The subtask order listed in the text and depicted in Figure 2 does
not imply the order of their execution by task-decomposition
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To represent an algorithm, a single method must be selected
for each task from the list of eligible methods, producing a
sub-tree of the general structure depicted in Figure 2. These
differences in method selection allow one to model the
observed variety in aberrancy-detection algorithms: all of
the algorithms perform similar steps, but may perform these
steps using different methods. Theoretically, a large number
of structurally different algorithms can be constructed using
all possible bindings between tasks and eligible methods. In
practice, however, the choice of a method for one task often
imposes constraints on the method selection for other tasks,
which limits the number of possible meaningful combina-
tions. For example, in regression-based approaches, “match-
ing” methods must be used for Estimate Model Parameters
and Forecast tasks (Figure 2).

The eligible methods noted in Figure 2 do not constitute an
exhaustive list. Moreover, it is conceivable that newly de-
veloped aberrancy-detection algorithms may use previously
undocumented methods for performing the tasks identified
in our model. The extensible nature of task-decomposition
representation allows for inclusion of such methods.

We also note that not all identified tasks are explicitly
present in every aberrancy-detection algorithm. For in-
stance, some algorithms use raw observations as a detection
statistic, and thus omit the Compute Test Value task. In these
cases, the output of Obtain Current Observation task is
directed as an input to Evaluate Test Value task. Another
example of an “optional task” is the Transform Data task, part
of Compute Expectation.

Representation of Data and Control Flow
The structure depicted in Figure 2 is an incomplete repre-
sentation of aberrancy detection, as it does not specify data
flow or subtask ordering. We therefore extend our model to
include concepts for encoding data and control flow. These
concepts are applicable only to task-decomposition methods
(TDMs): although primitive methods also have internal
algorithmic flow, we do not model it.

A key concept in representing flow inside of TDMs is an
algorithm†—a collection of tasks and control elements in the

†Here, the term “algorithm” is used in a more specific sense than
when referring to aberrancy-detection algorithms in the surveillance
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Configuration properties, or parameters, provide control
over how the task should be performed by a method. These
properties can characterize both primitive and task decom-
position methods, but they apply only to methods that allow
variations in their internal procedures. Finally, some non-
functional properties can be useful, such as those describing
method performance characteristics (time and space require-
ments, etc.) or any helpful meta-information.39

Model Validation through Example
We illustrate the representation of aberrancy-detection algo-
rithms within our model by encoding the C-family algo-
rithms from the CDC Early Aberration Reporting System
(EARS). The algorithms C1, C2 and C3 are adaptive algo-
rithms based on a CUSUM control chart concept.6 These
algorithms are encoded in the EARS software developed by
the CDC and used widely for public health surveillance. All
three algorithms have identical task structures (Figure 4a),
and the differences are limited to variations in two config-
uration parameters used by primitive methods.

The C-algorithms compute expected values by analyzing a
short sliding period of historical data, which is characteristic
of an Empirical Forecasting method. This method decomposes
the Compute Expectation task into several subtasks. First,
seven consecutive observations from the recent history are
retrieved to serve as baseline data. For C1, these are obser-
vations immediately preceding the current observation; C2
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property (depth-of-memory) to specify how many values are
considered.

Finally, a primitive Binary Alarm method is used to make an
alerting decision in the Evaluate Test Value task. This method
compares the previously computed detection statistic (par-
tial sum) to the value of the alerting threshold, specified as
the number of standard deviations above the expected
mean.

Figure 4b shows a data-flow diagram representing how
subtasks of aberrancy detection using C-algorithms are
interconnected. The knowledge required by the higher-level
task decomposition method (Aberrancy Detection (Temporal))
to sequence the subtasks can be unambiguously inferred
from this diagram by analyzing data dependencies. For
instance, there are no ordering constraints between the
Estimate Model Parameters task and the Obtain Current Obser-
vation task; however both tasks must be completed before
the Compute Test Value task can be accomplished.

As adaptive algorithms, C1, C2, and C3 repeat all the steps
listed above at each observation period. Figure 4b displays
flow within a single step of execution and does not reflect
the adaptive nature of the algorithms. To represent step
repetition in C-algorithms, we place all five tasks into an
iteration container, a control structure responsible for sup-
plying dynamically changing data and configuration infor-
mation to the enclosed tasks and their methods. In this
particular case, current date, which is needed by data query
methods of both the Obtain Current Observation and the
Obtain Baseline Data tasks, must change at each execution
step.

Software Implementation: BioSTORM Infrastructure
We have implemented our surveillance model in a modular
system called BioSTORM, which provides a software infra-
structure for deployment of aberrancy-detection algorithms.
The software incorporates: (1) an ontology that formally
encodes our model of aberrancy-detection algorithms, and
(2) several ontology-driven software components to support
the automated deployment and execution control of aber-
rancy-detection algorithms.

The BioSTORM Ontology
We have encoded our model of aberrancy-detection algo-
rithms in an ontology—a formal, reusable description of the
surveillance domain in a machine-interpretable form. This
ontology was represented in the Web Ontology Language
(OWL).41 The ontology: a) defines a typology of tasks and
methods as a hierarchy of classes; b) identifies eligible
methods for each task; c) describes salient characteristics of
individual methods as their properties; and, d) includes
concepts related to control and data flow to represent
algorithms, iterations and input-output connections among
the tasks. In order to integrate aberrancy-detection algo-
rithms with other operational components of the system we
have extended our ontology to include concepts describing
properties of the surveillance data and the configuration of
an evaluation analysis.

The BioSTORM Software Components
Most aberrancy-detection evaluations have significant pro-
cessing requirements due to the need to analyze multiple

data sets, often over a range of algorithm settings. These
evaluations often contain many tasks that can be executed in
parallel, and surveillance evaluations can often benefit from
task distribution.

To meet these processing requirements, we have imple-
mented a software system that supports the distributed
deployment of tasks in an evaluation. We implemented this
system using the Java Agent Development Framework
(JADE),42 an open source platform for developing distrib-
uted applications. The basic unit of distribution in the JADE
platform is an agent, which is typically a standalone module
that performs a particular job. Agents are assigned to a plat-
form, which is a logical space that can be distributed across
machines, and communicate with each other using messages.

We have implemented the tasks involved in the aberrancy-
detection algorithms as JADE agents. These task agents are
created during an evaluation run and are configured to use
a particular implementation of a method to perform their
respective tasks. We developed an extensible software li-
brary of methods in Java to be used in our system. The
BioSTORM methods use the R open-source statistical soft-
ware43 for any non-trivial statistical computations. A con-
troller agent was developed to deploy an aberrancy-detec-
tion algorithm by creating and configuring all the relevant
task agents. We also developed a variety of data integration
and communication agents to deal with the raw surveillance
data and the flow of information between tasks.

Empirical Validation
To operationally validate our work, we used BioSTORM to
replicate and extend a published study of aberration detec-
tion methods. This work entailed encoding the algorithms in
our model; configuring and running the evaluation study
using BioSTORM; and comparing our results to the study
results. The goal was to demonstrate that our model can
faithfully represent a typical evaluation study and that
BioSTORM can deploy that study automatically and pro-
duce results that agree with published figures.

Study Design
We replicated and extended a study by Hutwagner, et al.,
who compared three algorithms from the CDC’s Early
Aberration Reporting System (EARS): C1, C2, and C3.19 The
original study used simulated data to estimate the sensitiv-
ity, specificity, and time to detection for the C algorithms. In
our study, we used the same simulated surveillance data
and followed the same evaluation steps as the original
study. Briefly, we applied each of the C algorithms to each
simulated data series and calculated the sensitivity, specific-
ity, and timeliness of each algorithm by comparing the
timing of algorithm alarms to the true timing of the out-
breaks. One important change in our study was that, for
selected data sets, we computed a receiver operating char-
acteristics (ROC) curve for each algorithm by systematically
varying the value of the alerting threshold and applying the
algorithm at each threshold to the selected data sets. In the
original study, only a single alerting threshold was used,
and calculating the ROC curve allowed us to characterize
the relative performance of not just three configurations, but
the whole family of algorithms using a more general metric.
The original simulated data included 56 distinct sets with
varying baseline characteristics. We evaluated our perfor-

mance against a randomly selected subset of 10 datasets. We
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further randomly sampled 2 of these datasets to compute the
full ROC curve.

Results of Empirical Validation
The comparative results for sensitivity, specificity, and
time to detection for selected datasets are presented in
Figure 5. The absolute deviations between the values
computed using BioSTORM and those reported in the
original study do not exceed 0.006 for sensitivity and
specificity and 0.01 days for time to detection. A manual
comparison of selected alarm vectors revealed that dis-
crepancies in generated alarms occurred around missing

F i g u r e 5. Differences between CDC and BioSTORM R
The plots display the absolute differences between the sens
CDC study and those obtained in our validation study using
differences for each of the algorithms across selected datase
the outliers by circles.
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F i g u r e 6. ROC Plots for Data Sets 3 and 15
The ROC curves were obtained in an extended analysis us

reported in the original CDC study for each of the algorithms are
data points. Discussion with the authors of the original
study revealed minor differences in the handling of
missing values between our implementation and the
EARS implementation (Personal Communication with L.
Hutwagner).

The ROC curves obtained in an extended analysis using 11
threshold values for two data sets are shown in Figure 6,
which demonstrates the close match between the originally
reported results and our corresponding results. The ROC
curve also suggests that the current operating threshold
used in the EARS software may not be the optimal operating
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point for all types of data, which has direct implications for
public health surveillance practice.

Discussion
We have developed and validated a model of aberrancy-
detection algorithms used in public health surveillance and
software that enables evaluation of algorithms encoded in
terms of our model. The model and the software form an
extensible framework for generating, gathering, and synthe-
sizing evidence about the performance characteristics sur-
veillance algorithms. This type of evidence is currently
limited, but is crucial for ensuring effective public health
practice and for guiding research in surveillance systems. In
our validation study, we demonstrated that we can encode
widely used algorithms in our model, and match published
results with high precision.

The current work represents the foundation of a unified
model of aberrancy-detection algorithms, in which distinct
classes of algorithms share the same core representation
schema, and thus can be analyzed and compared in a
formal, systematic way. By clarifying the structural and
procedural similarities and distinctions among algorithms,
this model addresses an existing lack of understanding
about how different aberrancy-detection algorithms are re-
lated to each other. Our choice of the task-analytic method-
ology for modeling purposes has allowed us to explicate the
complex structure of aberrancy-detection algorithms and to
clarify the roles of individual components in the overall
aberrancy-detection process. We believe that the resulting
modular representation facilitates understanding of the
functional aspects of aberrancy detection and is extensible to
accommodate a broad range of detection algorithms.

In addition to extending our own earlier work in this
area,37,38 our research builds on work by others. A small
number of researchers have performed systematic eva-
luation studies of multiple aberrancy-detection algori-
thms,19,23,44 but they have tended to view algorithms
monolithically and not report results in a manner that allows
attribution of performance to specific algorithm
characteristics. Others have decomposed algorithms into
sub-components in an attempt to better understand the
determinants of algorithm performance. In particular, Mur-
phy and Burkom divided a selection of algorithms into two
component methods, forecasting and detection, and then
evaluated the performance of different combinations of the
methods.24 This high-level, informal decomposition allowed
them to identify promising new combinations of methods.
Our approach is distinct from earlier work due to our
greater depth of decomposition of the aberrancy-detection
task and our specification of a formal model that distin-
guishes between fundamental characteristics of methods
and parameters of methods. Both of these features increase
the precision with which it is possible to explain differences
in method performance, and we believe that our deeper
decomposition using a formal modeling approach is an
important advance over earlier studies. The additional detail
included in our model should enable the identification of the
precise characteristics of algorithms that determine their
performance and thereby support the generation of evidence

about detection performance.
The present work is necessarily limited in scope, focusing on
temporal aberrancy-detection methods, and leaving model-
ing of spatial and space-time algorithms for future work. A
key requirement of our modeling effort, however, is to
develop a model that can be extended to include other
classes of algorithms. For example, space–time detection
algorithms can be added naturally to our current model as a
new task-decomposition method for aberrancy detection,
using, as appropriate, the tasks and methods already de-
fined for use in temporal aberrancy detection. Due to space
limitations, we have been able to provide a detailed example
of how only one type of aberrancy-detection algorithm can
be represented using our model. We have, however, also
successfully modeled several other algorithms (e.g., regres-
sion-based forecasting, hybrid regression and control-chart
algorithms, and Holt-Winters forecasting) and these exam-
ples are available from the authors. We have also presented
empirical validation of the model for only one published
study, although this validation did entail examining our
results for multiple types of data sets and outbreak signals.
Finally, there are aspects of the BioSTORM software infra-
structure, such as efficiency, robustness and usability, which
we have yet to analyze. The software is built on a well-
understood approach to scalable and distributed data pro-
cessing, however, so it is reasonable to expect that it will
scale well to larger volume of data processing.

In the future, we intend to make the BioSTORM software
freely available and to use this system to populate a data-
base with evaluation results that describe the relative per-
formance of aberrancy-detection algorithms operating on
different types of data sources in different surveillance
contexts. Development of this database will entail encoding
a number of algorithms in BioSTORM and then performing
a large number of evaluations. Researchers, including us,
will then be able to mine the results systematically to
identify fundamental characteristics of the data and the
methods that determine aberrancy detection performance,
thereby producing empirical evidence to guide public health
practitioners and researchers. We have begun this work for
the C algorithms.45 This evidence may also be used in the
future to guide automated algorithm selection. For example,
it may be possible to use classification or planning algo-
rithms in conjunction with the evidence about algorithm
performance to suggest the best possible algorithm for a
specific surveillance context.
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