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Cross-Topic Learning for Work Prioritization in Systematic
Review Creation and Update

AARON M. COHEN, MD, MS, KYLE AMBERT, MARIAN MCDONAGH, PHARMD

A b s t r a c t Objective: Machine learning systems can be an aid to experts performing systematic reviews
(SRs) by automatically ranking journal articles for work-prioritization. This work investigates whether a topic-
specific automated document ranking system for SRs can be improved using a hybrid approach, combining topic-
specific training data with data from other SR topics.

Design: A test collection was built using annotated reference files from 24 systematic drug class reviews. A
support vector machine learning algorithm was evaluated with cross-validation, using seven different fractions of
topic-specific training data in combination with samples from the other 23 topics. This approach was compared to
both a baseline system, which used only topic-specific training data, and to a system using only the nontopic data
sampled from the remaining topics.

Measurements: Mean area under the receiver-operating curve (AUC) was used as the measure of comparison.

Results: On average, the hybrid system improved mean AUC over the baseline system by 20%, when topic-
specific training data were scarce. The system performed significantly better than the baseline system at all levels
of topic-specific training data. In addition, the system performed better than the nontopic system at all but the two
smallest fractions of topic specific training data, and no worse than the nontopic system with these smallest
amounts of topic specific training data.

Conclusions: Automated literature prioritization could be helpful in assisting experts to organize their time when
performing systematic reviews. Future work will focus on extending the algorithm to use additional sources of
topic-specific data, and on embedding the algorithm in an interactive system available to systematic reviewers
during the literature review process.
� J Am Med Inform Assoc. 2009;16:690–704. DOI 10.1197/jamia.M3162.
Introduction and Background
Systematic reviews (SRs) locate, appraise, and synthesize the
best available evidence from clinical studies of diagnosis,
treatment, prognosis, or etiology, to provide informative
empiric answers to specific research questions.1 They also
provide input to medical recommendations and often form
the basis for many Health Technology Reports, formal
decision analyses, clinical practice guidelines, and economic
analyses. Furthermore, SRs are an essential component of
evidence-based medicine (EBM), guiding both practice and
policy.2–4 Several groups coordinate the creation of SRs,
such as the Cochrane Collaboration and the Evidence-based
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Practice Centers (EPCs) of the Agency for Healthcare Re-
search and Quality (AHRQ).3,5 Many SRs focus on specific
classes of pharmacological therapies, or on treatments re-
lated to a specific disease.

Systematic Reviews leverage the time and experience of
independent experts on SR who use the latest scientific and
statistical techniques to construct a summary of the best
information and practices in an area of medicine with as
little bias as possible. This approach has many strengths, but
one particularly motivating aspect of this process is that it
frees individual physicians from having to review all the
available literature themselves, thus enabling them to focus
on administering the best possible care to their patients. In
constructing an SR, the review team attempts to synthesize
all the available evidence about a class of drugs or medical
conditions into a set of conclusions that reflect the highest-
quality knowledge and the highest level of care available at
the time of the review. Some SRs include a meta-analysis,
which is an aggregation of the results obtained in specific
individual studies by pooling data from similar studies for a
specific outcome and performing subsequent statistical anal-
yses on the pooled data.6 Meta-analyses can make important
contributions to our understanding of the true effectiveness
of a medical intervention, improving our confidence in a
finding by extending the precision and consistency beyond

that of a single study. Selection of appropriately similar
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trials during the SR literature review is an important first
step in constructing a meta-analysis.

The SRs make important contributions to improving the
quality of health care and making better informed use of
available resources. Because medicine is constantly chang-
ing, an SR on a given topic is not simply written, published
once, and considered permanently completed. To correctly
represent the best available medical knowledge at any given
time, reviews must undergo periodic updates—although
when and exactly how often this should happen is currently
an active topic of research.7–9 Although one study estimated
the median time before a SR review becomes out of date to
be 5.5 years, many areas of medicine are prone to frequent
change (e.g., cardiovascular disease), and information is
thought to become out of date within as little as 2.7 years.10

The Cochrane Collaboration estimates that, to cover most
health care problems, at least 10,000 total SRs are needed.
Less than half this number has been published, even after 10
years of concerted effort by the EBM community.11 New
clinical trials are published at a rate in excess of 15,000/yr,
therefore the evidence supporting EBM is constantly grow-
ing and changing. The SRs must expand to cover this new
evidence, as well as other current health care problems and
future interventions. The creation of a new SR, or the
updating of an existing one, can take several months,
making the workload of SR teams grow at an exponential
pace. Therefore, new tools and methods of keeping up with
this expanding workload are necessary.

In this work we address how the creation and update of SRs
can be made more efficient with machine learning (ML)
techniques.12,13 Specifically, we have examined how incorpo-
ration of ML-based techniques into the initial literature review
step can increase the efficiency of the SR process, allowing the
team to focus their time and attention on tasks that will most
benefit from their experience and expertise. In accordance with
the “5S” hierarchical view of medical knowledge and systems
proposed by Haynes, this work investigates automated means
of reducing the workload for taking medical knowledge from
the raw level of individual studies to the more refined level of
synopses of the best available evidence.14 This is a very time-
and expertise-intensive step in the process of medical knowl-
edge distribution.

Once the review topic and key questions are defined, the
process of creating or updating an SR begins with a three-
stage process in which the biomedical literature relevant to
that review is identified. In the first stage, a medical librarian
creates a set of literature database queries using, for exam-
ple, PubMed Clinical Queries or Ovid to search MEDLINE,
and other electronic databases such as EMBASE and
PsycInfo. In the next step, abstract triage, experts review the
abstracts for each of the retrieved articles, identifying those
that are most likely to meet the inclusion criteria for full text
review. Finally, in the full text triage step, these articles are
read in full, and decisions are made on which articles
contain sufficient quality of evidence to warrant inclusion in
the SR. If the SR includes a meta-analysis, an additional step
is included, in which data from groups of studies that are
sufficiently similar, of adequate quality, and provide suit-
able data, are pooled together. The system that we present

here aims to increase the efficiency of abstract and full text
triage by reducing the number of documents requiring
manual human expert review in these steps.

The procedures for creating and updating SRs are similar.
One important difference, however, is that an SR update
already has a base collection of included/excluded article
judgments that are based on previous reviews. Once a
review topic has been updated several times, a set of associated
included/excluded article judgments accumulates. These judg-
ments can serve as input to an ML algorithm, whether they be
the relatively few initial judgments performed during the
creation of a first review for a given topic with a small set of
applicable literature (e.g., anti-platelet drugs, as of 2008), or a
large set of judgments that have accumulated over the second
or third update for a topic with a large literature base (e.g.,
ACE inhibitors). This knowledge, along with other information
about the subject domain amenable to knowledge engineering,
can be used as a training set for an ML system. Once trained,
the system can make predictions on the appropriateness of an
article for inclusion in the updated SR. The predictions can be
used in multiple ways to improve the process of creating or
revising the SR.

In an information-intensive era such as the current one, it is
common for humans to need to engage in repetitive, labor-
intensive processes, such as reviewing large amounts of text.
Text processing and ML can be an aid in these and similar
situations, such as the creation and update of SRs. Genomics
curators continually review the published literature, anno-
tating the accumulated knowledge about genes and gene-
gene interactions into scientifically accessible databases.15,16

Clinical researchers read hundreds of discharge summaries,
trying to determine the smoking status of the individuals in
their study population.17 Specific to the work presented
here, experts in evidence-based medicine review hundreds
or thousands of articles on specific classes of drugs to
synthesize the evidence, leading to recommendations that
direct the standard of practice, and continually improve the
standard of care and its cost-effectiveness. In all of these
tasks, text processing and machine learning can help to
identify the most promising documents, reducing the hu-
man workload, and allowing more time to be spent on other,
more analytic parts of tasks.

Work prioritization is a promising application of automated
text processing and machine learning. Rather than treating a
problem as a binary classification task, in which the system
predicts the documents that the reviewers are likely to
include or exclude in the final SR, in work prioritization, the
ML algorithm uses past inclusion decisions to prioritize
documents based on the likelihood that SR reviewers would
judge them as necessary to include in an SR. The inclusion
assessments can then be used by reviewers to organize and
prioritize their manual review work. This is useful for
several reasons. By identifying the most likely to-be-in-
cluded documents first, human reviewers can obtain this set
of full-text documents sooner, move these articles through
the review process first, and assign reviewing the less-likely
documents a lower priority. The processes of article
retrieval, data abstraction, quality assessment and finally
qualitative and quantitative synthesis take considerable time
and effort, such that prioritizing the set of most likely to be
included articles to be managed first could be a distinct

advantage in the setting of practical time and budget limi-
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tations. In reviews with searches that result in a large
number of citations to be screened for retrieval, reviewing
the documents in order of their likely importance would be
particularly useful. The remainder of the citations could be
screened over the following months, perhaps by the mem-
bers of the team with less experience, while the work of
reviewing the includable studies is on-going. Lastly, a
system incorporating a trained ML algorithm could be set
up to monitor newly published literature, and determine
whether it is likely to be included in the review topic. This
could serve as an aid to answering the question of when a
review topic requires an update.

In this work, we extend our prior work in applying ML and
automated document classification to literature screen-
ing for SRs. We apply our previously described optimized
feature representation, and again use support vector ma-
chine (SVM) margin-based techniques to perform rank-
prioritization of domain-specific documents across a range
of SR topics.12 We extend simple topic-specific training and
classification/ranking by incorporating general and topic-
specific SR inclusion judgments into the ML model. In the
absence of topic-specific data, we propose a method that
creates a model by training on data from a combination of
other SR topics. As increasing amounts of topic-specific
training data become available, our system preferentially
incorporates these data into the model, reducing the influ-
ence of data from other topics.

In addition to being able to update existing SR topics, our
proposed method allows for a very flexible system that can
be used for the creation and updating of SR reports. When
an SR topic is first created, no data specific to this topic is
available for training the ML algorithm. In this situation, our
method can only use general, or nontopic-specific data, and
incorporate topic-specific training data as expert judgments
become available. Furthermore, since our method is capable
of combining topic-specific and general nontopic-specific
training data, it can be easily applied to topics in domains
having a slow publication rate which may not have a large
enough base for building an effective training set. Once
sufficient topic-specific training data becomes available, the
influence of the nontopic-specific data decreases, thereby not
impeding performance, compared to a model trained solely
on sufficient topic-specific data. The shift in influence from
general to topic-specific training data occurs automatically,
without human intervention, and does not require any hard
threshold or manual decision to change over from a strictly
general to strictly topic-specific model.

Methods
We present our methods in three sections. In the first, we
describe the data set used to evaluate our system. In the
second, we describe the machine learning rationale and
approach used for work prioritization. Finally, in the third,
we describe our evaluation process.

Data Corpus
In all the experiments described here, the corpus used is
based on SR inclusion/exclusion judgments collected by the
expert reviewers of the Oregon Evidence-based Practice
Center for the Drug Effectiveness Review Project (DERP),
during the process of performing initial SRs, and SR up-

dates, on 24 separate topics. The DERP uses a consistent
process for collecting the initial literature set and performing
and recording the literature review process. This process
results in a set of included articles for a given SR, each of
which covers a different drug class or drug therapy for a
specific disease. For a given article, reviewers base initial
inclusion judgments on abstract-level information alone.
Citations that are judged “excluded” after reviewing the
abstract do not have the associated full-texts retrieved; these
are considered excluded at the full text level as well. Those
articles that are retrieved after abstract review are read in
full, and subsequently given a final inclusion judgment. This
process is described in greater detail in our earlier study.13

Our previous work collected and normalized expert re-
viewer data by hand, with the aid of regular expression-
based processing scripts. We have since expanded our
research program to include an automated system (the System-
atic Review Information Automated Collection or “SYRIAC”
system) for collecting, normalizing, and storing reviewer judg-
ments.18 The 24 review topics studied in this work, along with
the number of articles included and excluded in each study, are
shown in Table 1. Over 50,000 inclusion/exclusion judgments
are included in the full dataset used in the research reported
here. Note that the range of both total number of articles and
included article percentage varies greatly between studies. The
topic HyperlipidemiaCombinationDrugs has the fewest total sam-
ples (299), 6.4% of which are included in the SR. The topic
ACEinhibitors has the greatest number of total samples (5,558),
2.5% of which are included in the final review. The percentages
of included articles also have a wide range. The topic NSAIDs
includes 73% of the total 371 articles, while the Opioids topic
includes just 0.2%, or seven articles, of the total 4,602 reviewed.
As can be seen in Table 1, it is typical for SR topics to vary
greatly in the both the amount of literature available, as well as
in the proportion and absolute number of articles meeting the
inclusion criteria. There is no typical number or proportion for
these values.

The data used in the present experiments represents a snap
shot of the SYRIAC database as of March 6, 2008. Automated
data collection has continued since that time, and, as of this
writing, the system contains over 65,000 inclusion/exclusion
judgments. By collecting data on an ongoing basis, the system
supports both continued refinement and improvement of our
ML approach, as well as future prospective evaluations.

Machine Learning Approach and System
The ML system presented here was motivated by an
interesting result observed in our earlier studies on work
prioritization for SRs.12 There, we noticed that using SR topic-
specific, rather than a mix of general (termed the nontopic-
specific or general training data) and topic-specific training data,
led to improved classification performance, as measured by the
area under the receiver operating curve (AUC) in 14 out of 15
topics. It turned out that the one topic for which we did not
observe this improved performance (SkeletalMuscleRelaxants)
had a dataset with unique characteristics, namely that it only
included 9 positive (Included, as opposed to Excluded) samples
out of 1643 total samples, or 0.5%. This percentage is compa-
rable to the smallest number of positive samples for the topics
shown in Table 1. With so few positive samples, there is
inadequate information on which to base future predictions.
Furthermore, many ML techniques, including the ones inves-

tigated here, attempt to minimize error, and with very few
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positive samples, this approach may result in a model very
biased towards negative prediction.

With such sparse topic-specific positive training data,
an AUC of only 0.73 was achieved, while the mean per-
formance across all topics was 0.86. Furthermore, the
system using the nontopic-specific training data on
SkeletalMuscleRelaxants achieved an AUC of about 0.84, an
improvement of 0.11. In addition, while the system
trained on topic-specific data consistently outperformed
the nontopic system on the other 14 topics, overall, the
performance of the nontopic system was encouraging,
averaging about 0.73. Keeping in mind that no topic-
specific data were used to train the classifiers to achieve
this performance, it is clear that there is value in using the
relatively voluminous nontopic training data when insuf-
ficient topic-specific training data are available.

Initial Cross-Topic Analysis
To better understand the role that training on nontopic data
could have across the 24 topics in our current dataset, we
systematically analyzed the utility of using one topic to
create a predictive model for another. We did this by
selecting a test topic, and then training our algorithm with
the data from the 23 remaining topics separately, and
evaluating the AUC performance of each trained model on
the test topic. Throughout the rest of this work, we refer to
the process of using nontopic-specific training data to create
a machine learning model for a different specific topic as
cross-topic learning.

In the present work, our basic ML system is the same as the

Table 1 y Absolute and Relative Percentages of Includ
Topics, and Across the Collection as a Whole

Topic Included

AceInhibitors 137
ADHD 264
Antiemetics 149
Antihistamines 99
AtypicalAntipsychotics 507
BetaAgonistInhaled 99
BetaBlockers 189
CalciumChannelBlockers 220
Diabetes 37
DiabetesCombinationDrugs 26
HepatiticC 92
HormoneReplacementTherapy 181
HyperlipidemiaCombinationDrugs 19
MSDrugs 131
NeuropathicPain 94
NSAIDs 269
Opioids 7
OralHypoglycemics 6
OveractiveBladder 96
ProtonPumpInhibitors 173
Sedatives 133
Statins 171
Thiazolidinediones 227
Triptans 141
TOTALS 3467

ACE � acetylcholinesterase; ADHD � attention deficit hyperactiv
matory drug.
best-performing system in our prior work.12 Briefly, the
system is support vector machine-based (SVM),19 and uses
one- and two-token n-grams from article titles and abstracts,
along with the associated MeSH terms, as a feature set. We
use the SVMLight implementation of the SVM algorithm,
with a linear kernel and default settings.20 No feature
selection is performed, and articles are ranked using the
signed margin distance—the distance in front of, or behind,
the SVM separating hyperplane. Articles having the greatest
positive margin distance are placed at the top of the ranking,
while articles having the most negative margin distance are
placed at the end. As in our prior research, AUC is com-
puted using a varying cutoff parameter which is based on
the margin distance.21

Table 2 presents the results of these initial cross-topic
learning experiments. The topic used for training is shown
in columns across the top of Table 2; the topic used as the
test collection is shown across the rows. For comparison, the
5 � 2-way cross validation performance on individual topics
(no cross-topic learning) is shown along the diagonal. This is
done because otherwise the test and training collections
would be the same for the entries, leading to overfitting and
overestimation of the performance. A 5 � 2-way cross
validation consists of five repetitions of a stratified, ran-
domly split twofold cross-validation. Performance results of
these repetitions are then averaged together.

The mean score for using a given topic for training and
classifying on all the other topics is shown in the bottom
row, and the mean score on a given topic, over using each of
the other topics for cross-topic learning is shown in the

d Excluded Articles Across 24 Separate Review

ded Excluded %Excluded Total

% 5421 97.5% 5558
% 2265 89.6% 2529
% 2068 93.3% 2217
% 720 87.9% 819
% 2439 82.8% 2946
% 4858 98.0% 4957
% 4229 95.7% 4418
% 2758 92.6% 2978
% 843 95.8% 880
% 454 94.6% 480
% 610 86.9% 702
% 342 65.4% 523
% 280 93.6% 299
% 1672 92.7% 1803
% 401 81.0% 495
% 102 27.5% 371
% 4595 99.8% 4602
% 943 99.4% 949
% 776 89.0% 872
% 766 81.6% 939
% 1522 92.0% 1655
% 6516 97.4% 6687
% 2179 90.6% 2406
% 701 83.3% 842
% 47460 93.2% 50927

rder; MS � multiple sclerosis; NSAID � nonsteroidal antiinflam-
ed an

%Inclu

2.5
10.4
6.7

12.1
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Table 2 y AUCs for Cross-Topic Training and Testing Across All 24 Systematic Review Topics. The Mean AUC on the Far Right Represents How
Well Models Built on Other Topics Were Able to Classify a Given Topic. The Mean AUC on the Bottom Row Shows How Well Models Built on that
Topic Were Able to Classify Other Topics
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AceInhibitors 0.91 0.80 0.75 0.81 0.79 0.71 0.84 0.84 0.77 0.65 0.76 0.73 0.73 0.85 0.70 0.57 0.49 0.69 0.73 0.76 0.74 0.81 0.82 0.72 0.74
ADHD 0.65 0.90 0.59 0.72 0.64 0.66 0.61 0.66 0.66 0.63 0.61 0.67 0.65 0.63 0.68 0.48 0.60 0.65 0.67 0.63 0.64 0.54 0.59 0.59 0.63
Antiemetics 0.79 0.78 0.90 0.79 0.80 0.66 0.76 0.70 0.82 0.75 0.80 0.78 0.82 0.80 0.81 0.56 0.42 0.78 0.82 0.81 0.79 0.80 0.76 0.82 0.76
Antihistamines 0.72 0.76 0.73 0.86 0.80 0.66 0.73 0.79 0.76 0.67 0.72 0.69 0.72 0.75 0.71 0.65 0.57 0.71 0.72 0.79 0.75 0.70 0.72 0.71 0.72
AtypicalAntipsychotics 0.69 0.69 0.66 0.76 0.85 0.65 0.65 0.72 0.75 0.73 0.76 0.68 0.74 0.75 0.71 0.61 0.53 0.69 0.74 0.73 0.70 0.66 0.72 0.71 0.70
BetaAgonistsInhaled 0.63 0.67 0.64 0.63 0.67 0.91 0.59 0.61 0.62 0.57 0.65 0.59 0.67 0.64 0.70 0.57 0.46 0.63 0.65 0.69 0.64 0.68 0.58 0.71 0.63
BetaBlockers 0.77 0.69 0.62 0.70 0.63 0.65 0.89 0.71 0.64 0.52 0.60 0.71 0.54 0.68 0.65 0.58 0.44 0.54 0.65 0.65 0.71 0.66 0.67 0.70 0.64
CalciumChannelBlockers 0.74 0.65 0.62 0.72 0.70 0.64 0.72 0.88 0.67 0.57 0.66 0.60 0.61 0.72 0.59 0.60 0.56 0.64 0.62 0.66 0.61 0.66 0.68 0.64 0.65
Diabetes 0.82 0.94 0.89 0.94 0.93 0.63 0.74 0.79 0.98 0.94 0.95 0.85 0.90 0.97 0.92 0.64 0.71 0.92 0.95 0.90 0.93 0.85 0.95 0.90 0.87
DiabetesCombinationDrugs 0.55 0.73 0.65 0.74 0.79 0.56 0.53 0.61 0.76 0.86 0.77 0.71 0.88 0.68 0.73 0.57 0.55 0.66 0.69 0.64 0.65 0.58 0.71 0.75 0.67
HepatiticC 0.69 0.79 0.79 0.80 0.84 0.60 0.48 0.69 0.91 0.82 0.92 0.68 0.84 0.89 0.88 0.52 0.66 0.81 0.86 0.79 0.85 0.71 0.81 0.82 0.76
HormoneReplacementTherapy 0.60 0.67 0.54 0.60 0.64 0.51 0.70 0.55 0.62 0.58 0.60 0.89 0.60 0.65 0.67 0.58 0.48 0.55 0.67 0.59 0.65 0.62 0.55 0.68 0.60
HyperlipidemiaCombinationDrugs 0.68 0.80 0.81 0.78 0.83 0.72 0.54 0.64 0.74 0.89 0.81 0.65 0.92 0.77 0.68 0.54 0.55 0.74 0.75 0.83 0.69 0.74 0.72 0.79 0.73
MSDrugs 0.82 0.86 0.73 0.85 0.85 0.74 0.74 0.81 0.87 0.79 0.88 0.73 0.83 0.91 0.80 0.52 0.59 0.82 0.82 0.83 0.82 0.80 0.85 0.82 0.79
NeuropathicPain 0.76 0.88 0.73 0.80 0.82 0.73 0.83 0.76 0.81 0.80 0.86 0.85 0.72 0.82 0.92 0.62 0.57 0.80 0.89 0.87 0.88 0.82 0.73 0.88 0.79
NSAIDs 0.55 0.61 0.49 0.69 0.73 0.59 0.63 0.64 0.63 0.66 0.67 0.58 0.65 0.65 0.63 0.82 0.38 0.65 0.59 0.52 0.67 0.67 0.63 0.69 0.62
Opioids 0.53 0.60 0.58 0.61 0.51 0.58 0.50 0.72 0.63 0.62 0.67 0.49 0.60 0.65 0.54 0.48 0.78 0.68 0.67 0.56 0.53 0.61 0.48 0.58 0.58
OralHypoglycemics 0.67 0.89 0.87 0.88 0.75 0.79 0.62 0.77 0.88 0.72 0.86 0.59 0.90 0.89 0.88 0.68 0.68 0.94 0.94 0.74 0.83 0.85 0.84 0.80 0.80
OveractiveBladder 0.77 0.83 0.80 0.79 0.82 0.65 0.77 0.76 0.83 0.71 0.84 0.79 0.76 0.83 0.86 0.67 0.60 0.84 0.88 0.82 0.82 0.73 0.75 0.82 0.78
ProtonPumpInhibitors 0.71 0.78 0.75 0.73 0.79 0.63 0.72 0.77 0.73 0.64 0.75 0.73 0.75 0.79 0.79 0.63 0.55 0.69 0.81 0.89 0.77 0.75 0.65 0.82 0.73
Sedatives 0.69 0.77 0.68 0.66 0.76 0.60 0.78 0.67 0.72 0.62 0.77 0.66 0.62 0.74 0.77 0.63 0.51 0.66 0.72 0.71 0.91 0.70 0.69 0.78 0.69
Statins 0.78 0.82 0.83 0.80 0.84 0.72 0.70 0.74 0.84 0.72 0.85 0.76 0.80 0.86 0.83 0.64 0.62 0.80 0.82 0.83 0.83 0.91 0.78 0.84 0.79
Thiazolidinediones 0.70 0.81 0.75 0.77 0.84 0.62 0.53 0.70 0.85 0.72 0.85 0.68 0.79 0.83 0.82 0.52 0.54 0.77 0.82 0.81 0.81 0.71 0.88 0.78 0.74
Triptans 0.79 0.83 0.85 0.75 0.81 0.64 0.86 0.70 0.83 0.79 0.84 0.85 0.85 0.85 0.86 0.56 0.54 0.77 0.86 0.88 0.86 0.85 0.75 0.91 0.79
MEAN 0.70 0.77 0.71 0.75 0.76 0.65 0.68 0.71 0.75 0.70 0.76 0.70 0.74 0.77 0.75 0.58 0.55 0.72 0.76 0.74 0.75 0.72 0.71 0.75

ACE � acetylcholinesterase; ADHD � attention deficit hyperactivity disorder; AUC � area under the curve; MS � multiple sclerosis; NSAID � nonsteroidal antiinflammatory drug.
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It is clear from the right-most column of Table 2 that some
topics are “easier” than others, that is, with a large fraction of
the available training topics, cross-topic learning results in
decent performance. For example, Diabetes is an “easy”
topic—it averages 0.87 in cross-topic learning, and has a range
of 0.64–0.96 (NSAIDs and MSDrugs, respectively); the perfor-
mance at the top of this range is similar to Diabetes’ cross-
validation performance (0.98). Conversely, Opioids appears to
be a difficult topic. Here, cross-topic learning averages about
0.58, with a low of 0.48 using, again, NSAIDs for training, and
a high of 0.68 using OralHypoglycemics.

Looking at Table 2 across the other axis, the best general
topics for cross-topic learning are ADHD and MSDrugs, each
of which has a mean AUC of about 0.77 when used as
training for other topics. This is interesting, because ADHD
is not one of the easier test topics when using the other
topics for training–it is not simply that ADHD has a lot of
commonality in either vocabulary or domain with the
other topics. The features learned from ADHD may apply
well to other topics, but the converse is not true. Note that
the cross-validation performance of ADHD is about 0.90,
so ADHD is readily classifiable when topic-specific train-
ing data are available.

Certain topics are consistently bad for cross-topic learning.
Both NSAIDs and Opioids do not perform well as training
topics for cross-topic learning, as they have low mean AUCs
when used as training topics. They are also not easy topics to
predict when using the other topics for cross-topic learning.
Predicting NSAIDs and Opioids with other topics, are, on
average, two of the lowest scoring test topics (0.62 and 0.58,
respectively), along with HormoneReplacementTherapy. There-
fore, not all topics are equivalent in terms of their potential for
cross-topic learning, nor in the ease with which they can be
predicted based on data from other topics. There are topics that
perform well when used for cross-topic learning for some
topics, but not for others. For example, MSDrugs is the best
cross-topic for learning when testing on ACEinhibitors, but it
performs poorly on HyperlipidemiaCombinationDrugs (AUC �
0.77), whereas DiabetesCombinationDrugs performs much better
(AUC � 0.89).

Therefore, while it is clear that cross-topic learning has the
potential to aid automated machine learning when inclu-
sion/exclusion data specific to a topic is sparse or lacking,
it is not obvious how these data are best used. There is no
single topic, nor small set of topics, that is the best overall
predictor. Furthermore, in the absence of inclusion/exclu-
sion data for test topics, it is unclear how to select a
training topic that is “similar enough” to the test topic to
achieve good performance. After experimenting with in-
formation gain- and KL-divergence-based measures on
the topic-specific feature distributions, and abandoning
these approaches due to complexity and discouraging
results, we decided to apply the cross-topic training data
in a manner independent of matching up test topics with
good predictive topics.

Cross-Topic Learning Algorithm
The hybrid algorithm we present here is intended to com-
bine nontopic and topic-specific training data in an auto-

matic and flexible manner. It is an enhancement to the
baseline topic-specific trained SVM-based classification al-
gorithm described above. We extend this algorithm with
nontopic data using a property of SVM—only samples that
lie on the boundary of the hyperplane margin have an effect
on the location and orientation of the separating hyperplane.
Given an SVM model built from a set of training data, the
exact same model would be constructed if only the samples
lying on the margin boundary (the support vectors) are used
to train a subsequent model.

We apply this idea to improving classification with sparse
amounts of topic-specific training data in the following
manner. First we build a general classification model for a
given topic, using the nontopic data (the data samples from
the other topics). Next, we extract out the support vectors,
and combine them with the available topic-specific training
data to build the final predictive model. A diagrammatic
representation of the overall process is shown in Figure 1.
The amount of topic-specific training data can range from
none, if this topic has never been seen before (i.e., it is a new
SR topic), to quite a bit, if this is a review topic’s second or
third update.

Supplementing a small amount of topic-specific training
data with the support vectors from the general model
primes the SVM hyperplane to start off in a reasonable
configuration for classifying SR articles. Limiting the nonto-
pic data to the support vectors alone decreases the amount
of nontopic data used to train the model, which limits the
bias introduced by nontopic influences. The basic idea of
priming an SVM using support vectors from related data are
taken from the adaptive learning literature, where it is used
for tasks which change over time, such as identifying
particular kinds of news stories.22 Instead, here we use it to
allow general nontopic training data to compensate some-
what for a lack of topic-specific data.

Several other enhancements are required to make SVM
priming work in the present setting. Since we do not have a

F i g u r e 1. Process flow model diagram representation of
the hybrid topic-specific � nontopic training sample system-

atic review ranking algorithm.
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single topic that changes over time, but instead have a
number of partially related topics, we need a method to
determine which data to use for creating the priming vec-
tors. As can be seen in Table 1, some topics have many more
data samples than others. Simply using all the data from the
nontopics to create the priming vectors for the model could
substantially bias the SVM in the direction of the most
common topics. This could subsequently lead to decreased
performance, and therefore could be an issue with the
reliability of the approach. For example, ACEInhibitors, the
topic with the largest number of training samples, creates a
poorly performing model for classifying BetaAgonistsInhaled,
which is better modeled by several other topics, including
Statins and Triptans (see Table 2).

To avoid this problem, rather than simply combining all the
nontopic data together, we resample it on a topic-by-topic
basis, with the goal of including approximately the same
number of samples from each topic. This means that the
probability of including any individual sample from, say,
ACEInhibitors, is much lower than the probability of including
any individual sample from HyperlipidemiaCombinationDrugs,
the sparsest topic. This, however, raises another issue–since we
are resampling over the nontopic data, we are subsequently
excluding a large proportion of the total samples. Any given
resampling may poorly represent the specific target topic, and
adversely affect performance. To address this, we sample the
nontopic data, creating several different priming SVM models,
and extract the support vectors from each of these models to
use as priming vectors. The nontopic data are rejection sam-
pled, that is, sampled without replacement. The probabilities of
inclusion for each sample within a given nontopic are adjusted
so that approximately the same number of samples from each
nontopic is included. This is done using an inverse topic count
weighting:

wt �
�t�all non�topics ct

ct
, pt �

wt

�t�all non�topics wt

Where ct is the number of samples available for a given
nontopic, wt is the unnormalized relative nontopic sampling
rate for a given nontopic, and pt is the sample inclusion
probability for a given nontopic, with the sum of the pt

across all nontopics equal to one.

For each of these sets of priming vectors we train a new
hybrid model using the combined priming and topic-spe-
cific samples, and then combine the predictions of the
individual hybrid models by summing the signed margin
distances from each model hyperplane. The final topic
rankings are created by ranking the summed signed margin
distances. Note that for each of the primed SVM models, the
topic-specific training data remains the same—it is only the
nontopic data that is sampled. Initial experiments showed
that the number of resamplings should be at least 5, and that
20 resamples was sufficient to minimize variability of the
results. This number agrees with our previous work using
resampling with SVMs. Therefore, we use 20 resamplings
for our experiments here.23

Because the two topics NSAIDs and Opioids both performed
so poorly across-the-board when used to cross-train models
for SRs, samples from these topics are excluded from the

resampling pool. On average, both these topics perform
close to random (AUC � �0.50) for cross-topic learning; it
appears that they have little general information to contrib-
ute to the primed SVM model. We do, however, include
both topics in our evaluation of this algorithm, presented in
the Results section.

Another important issue needing to be addressed is the
relative importance of a nontopic priming vector sample,
compared to the topic-specific samples in the SVM opti-
mization procedure. Clearly, if the SVM hyperplane can
perfectly separate all training samples (nontopic and topic
together), it will do so without needing to make a tradeoff
between making training errors on topic and nontopic
data samples. In general, however, this is not the case, and
the optimal separating hyperplane will have to accept
training errors on some samples, misclassifying these
samples because they fall on the wrong side of the
hyperplane. Because, for SR, models trained on topic-
specific data perform better than those trained on nonto-
pic data, it is clearly preferable to have the hyperplane
make training errors on the nontopic priming samples,
and correctly classify the topic-specific ones. The imple-
mentation of SVM that we use in this work, SVM-
Light,20,24 allows placing a misclassification cost on each
training sample individually. This value is used directly
in the per-sample loss function optimized by SVMLight.
We use this capability to apply a lower cost to misclassi-
fying nontopic training samples, in favor of correctly
classifying those that are topic-specific. Our initial exper-
iments showed that the cost factor–the ratio of nontopic
priming to topic sample error cost—should be fairly
narrow, within the range of 0.20 – 0.50.

Although the labels that are used to train our system are
the set of include/exclude judgments made by expert
reviewers after reading the full text of an article, it is
important to note that most of the information contained
in the full text of the article is not available to our system.
Instead, our system uses only the titles, abstracts, and
National Library of Medicine assigned MeSH (Medical
Subject Headings) terms for a collection of articles to
generate a ranking of the likelihood each will be included
in an SR after full text review by an expert.

Evaluation Methods
To evaluate our method for automatically combining topic-
and nontopic-specific training data, we used a variation of
repeated cross-validation, in which all the topic-specific data
are split into partitions, some of which are used for training,
and the rest for evaluation. The AUC is calculated for each
constructed model, and the process is repeated a number of
times. All the computed AUCs are averaged together to give
a final performance estimate.

To simulate the effect of having variably reduced amount of
training data, we applied N-way cross-validation (with
varying N), and, instead of training on most of the data
partitions and testing on the remaining partition (as is
typically done), we did the opposite—training on a single
N-way partition and testing on the combined samples of the
remaining partition. By varying N, we controlled the
amount of topic-specific training data available to the SVM
model, which was equal to 1/N times the total number of

topic-specific samples, with (N-1)/N of the samples used to
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evaluate the model. To have an adequate number of individual
AUC measurements to average together, we repeated the
process 128/N times. This resulted in a final mean AUC for
each topic at each level of N, composed of the average of
performance of 128 evaluated models. We used 2, 4, 8, 16, 32,
64, and 128 as the values for N, allowing us to measure the
performance of our system using a range of training data—
from 1/128th of the available data, up to one half of the
available data (corresponding to a standard two-way cross-
validation). We call this the reversed cross-valuation method.

Two-way cross-validation tends to produce more accurate
predictions of true performance than does leave-one-out
cross-validation, or a single 10-way cross-validation, since
both of these methods test a given model on a relatively
small amount of the data. In two-way cross-validation, each
model is tested on a randomly selected half of the data,
which leads to more robust estimates, as compared with
cross-validation using a higher N.25 We tried to emulate the
positive characteristics of the 2-way cross-validation using
our reversed cross-valuation method. For example, at n �
64, the topic-specific data are randomly divided up into 64
partitions, stratified by inclusion/exclusion class to keep the
class proportions as constant as possible. One partition
(1/64th of the data) was used for training a model which was
tested on the remaining 63. This process was repeated for
each of the other 63 partitions, and then the entire process
was repeated one more time, finally generating 128 AUC
measurements that were then averaged together to compute
a final mean AUC for that topic at that N-level of topic-
specific training data. See Figure 2 for an illustration of the
overall reversed cross-validation procedure.

The amount of nontopic-specific priming data are held
constant in this process, a characteristic that is accomplished
as described in the previous section. In particular, the 20�
nontopic data resampling mentioned in the algorithm de-
scription above is performed inside each iteration of the
cross-validation. This nesting of the resampling inside the
iteration made generation of the results presented here
somewhat computationally intensive to evaluate. However,

F i g u r e 2. Diagrammatic representation of the reversed
cross-validation procedure used to sample and estimate
classification performance using different fractions of topic-

specific training data.
this is mostly an artifact of the evaluation process, and not
the algorithm itself.

We generated two more sets of results, for the purpose of
having a standard of comparison for our algorithm. The first
set was simply the average performance of the 20�
resampled nontopic model without using any of the
topic-specific data for subsequent training. This is equiv-
alent to just summing the signed margin distances from
SVMs trained on the nontopic data, without extraction of
the priming support vectors or training again with the
addition of topic-specific data. Since no topic-specific data
are needed to build these models, performance is constant
with respect to the cross-validation N used above. In the
results presented below, we refer to this as the nontopic
performance.

We generated a second set of comparison results by reduc-
ing the training set size without using the priming support
vectors generated from the nontopic samples. In this case,
the resulting AUC shows the effect of a reduced amount of
available topic-specific training data. For these tests, we
used the same range of N as above, generating mean AUCs
for having ½, ¼, etc of the available training data, all the way
down to having only 1/128th of the data available for
training. In our experimental results we refer to these scores
as the baseline performance.

Results
For completeness, we performed the experiments described
above for a range of cost factors (0.10–1.0) for each SR topic.
The full performance curves across this range of cost factors
are shown for ACEInhibitors in Figure 3, along with the
nontopic and baseline scores. The performance curve spread
across the cost factors for the other topics is similar. It is clear
from these figures that extreme cost factor values (e.g.,
�0.10, and �1.0) are not associated with as good a level of
performance as are those values in the middle. At cost
factors of 0.10, the priming vectors do not appear to have
enough influence on the SVM model, leading to perfor-
mance that is much lower than those at settings where
topic-specific training data are sparse (128 and 64 way
cross-validation). In the 0.10 cases, performance is still better
than baseline, but not as good as can be achieved by
allocating more influence to the priming vectors.

At the other end of the curves, when the cost factor is set
between 0.50–1.0, the priming vectors have too much influ-
ence in the presence of sufficient topic-specific training data
(2- and 4-way cross-validation). In these cases, a cost factor
of 1.0 leads to the worst performance, while a cost factor of
0.1 results in the highest performance for the system. This
makes sense, since, when adequate topic-specific data are
available, the nontopic data are more likely to detract from
performance, since the nontopic samples contribute less
information that is specific to the topic in question.

There is little difference in the performance at cost factors in
the middle of the 0.10–0.50 range, and a value somewhere in
this range appears to be appropriate. We compared the
performance between cost factors using paired Wilcoxon
signed rank tests, and found no statistically significant
difference among the cost factors between 0.20 and 0.50 (p �

0.05 for all comparisons). Therefore, for our experiments we
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selected 0.35 as the cost factor in the middle of this range.
We use this cost factor for our subsequent results and
analysis. We made no attempt to select or identify the
optimal performing cost factor for our datasets, as our tests
showed that optimization of the cost factor was not neces-
sary, with values in the range of 0.20–0.50 performing
equally well.

Figure 4, available as an online data supplement at www.
jamia.org, shows the performance curves for all 24 SR topics
using a cost factor of 0.35, which is in the middle of the
equivalently performing range. As the graphs make clear,
our approach gives a good performance boost over the
baseline system to almost all topics when topic-specific
training data are sparse, and leads to little or no perfor-
mance penalty when adequate topic-specific training data
are available. Table 3 shows the AUC in numeric form for all
three systems across all levels of reverse cross-validation for
each topic.

In many cases, the performance boost with very sparse
training data (i.e., at 128-way cross-validation) is quite large
(Table 4). On average, the hybrid system we propose here
gives almost a 20% boost in performance, with a median of
16.4% and a maximum of 56%. The only negatively perform-
ing topic, thiazolidinediones, suffers a small 1.7% decline in
AUC. Furthermore, when there is a lot of topic-specific
training data, the cost factor of 0.35 does not typically result
in a significant performance reduction. For some topics, the
performance of our hybrid system continues to be better
than that of a system trained only on the baseline topic-
specific system. This is the case for antihistamines, NSAIDs,
and Opioids. Statins seems to be the only topic where
performance on the 2-way cross-validation test decreased a

little. For all other topics, the 2-way cross-validation AUC
using the hybrid system is about the same as the baseline
system trained with topic-specific data.

Table 5 shows the results of statistically comparing of our
system with the baseline and nontopic systems. The com-
parisons were performed using nonparametric paired Wil-
coxon signed rank tests on the individual topic mean AUC
values. The overall average mean AUC across all topics is
also shown for each level of cross-validation. As the table
makes clear, the performance of the hybrid system is better
than the baseline system at all levels of reverse cross-
validation, at a statistical significance level of alpha � 0.05.
Furthermore, the hybrid system is significantly better than
the nontopic system at reverse cross-validation levels of 2
through 32. The hybrid system is no worse, and statistically
not different from the nontopic system at reverse cross-
validation levels of 64 and 128.

Examining the topic specific graphs in Figure 4, it is clear
that, on most individual topics, the performance of our
hybrid system with very little topic-specific (128 or 64-way
cross validation) training data are equal to, or better than,
the nontopic system. As more topic-specific training data
becomes available, the performance consistently improves,
asymptotically approaching the performance of each of
the topics when much topic-specific training data are
available. The performance of the hybrid system sur-
passes that of the nontopic system somewhere between
the 128-way and 16-way level of cross-validation for all
the 24 topics studied.

With very sparse topic-specific training data, the perfor-
mance of the nontopic system on individual topics is often
better than the baseline system, and is, at times, better than

F i g u r e 3. Performance measured by mean
area under the receiver operating curve (mean
AUC) of the nontopic primed SVM algorithm
across seven levels of topic-specific training
data for the ACEInhibitors systematic review
topic, using a range of cost factors varying
between 0.10 and 1.0. The baseline (no nontopic
priming) and nontopic only performance is also
shown. The x axis numbers represent (N) the
partition factor, where higher N means that a
smaller amount (1/N of the available topic sam-
ples) of topic-specific data were used for train-
ing. Here, SYSTEM refers to either the baseline
or nontopic system, or the use of the hybrid
system where the number listed in the system
name is the relative training error cost of a
nontopic sample compared to a topic-sample.
that of our proposed hybrid system. This can be seen in the

http://www.jamia.org
http://www.jamia.org


Table 3 y Mean AUC Performance Comparison of the Three Systems Studied on Each Individual Topic, at Each Level of Reverse Cross-Validation
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ACE inhibitors 0.91 0.92 0.86 0.90 0.91 0.859 0.90 0.89 0.86 0.89 0.87 0.86 ACEinhibitors 0.91 0.92 0.86 0.9 0.91 0.859 0.90 0.89
ADHD 0.90 0.90 0.70 0.89 0.89 0.697 0.88 0.87 0.70 0.87 0.85 0.70 ADHD 0.9 0.9 0.7 0.89 0.89 0.697 0.88 0.87
Antiemetics 0.90 0.90 0.86 0.89 0.89 0.857 0.89 0.88 0.86 0.88 0.87 0.86 Antiemetics 0.9 0.9 0.86 0.89 0.89 0.857 0.89 0.88
Antihistamines 0.86 0.85 0.78 0.84 0.82 0.779 0.82 0.80 0.78 0.80 0.77 0.78 Antihistamines 0.86 0.85 0.78 0.84 0.82 0.779 0.82 0.80
AtypicalAntipsychotics 0.85 0.85 0.76 0.84 0.83 0.762 0.82 0.82 0.76 0.81 0.80 0.76 AtypicalAntipsychotics 0.85 0.85 0.76 0.84 0.83 0.762 0.82 0.82
BetaAgonistsInhaled 0.90 0.91 0.67 0.86 0.87 0.668 0.82 0.82 0.67 0.77 0.76 0.67 BetaAgonistsInhaled 0.9 0.91 0.67 0.86 0.87 0.668 0.82 0.82
� blockers 0.90 0.90 0.76 0.88 0.87 0.758 0.86 0.85 0.76 0.84 0.81 0.76 � blockers 0.9 0.9 0.76 0.88 0.87 0.758 0.86 0.85
CalciumChannelBlockers 0.88 0.88 0.72 0.86 0.86 0.723 0.83 0.82 0.72 0.80 0.78 0.72 CalciumChannelBlockers 0.88 0.88 0.72 0.86 0.86 0.723 0.83 0.82
Diabetes 0.99 0.98 0.97 0.99 0.98 0.967 0.98 0.98 0.97 0.98 0.97 0.97 Diabetes 0.99 0.98 0.97 0.99 0.98 0.967 0.98 0.98
DiabetesCombinationDrugs 0.87 0.87 0.75 0.84 0.83 0.751 0.80 0.77 0.75 0.76 0.71 0.75 DiabetesCombinationDrugs 0.87 0.87 0.75 0.84 0.83 0.751 0.80 0.77
HepatiticC 0.93 0.93 0.90 0.92 0.92 0.895 0.91 0.91 0.90 0.90 0.89 0.90 HepatiticC 0.93 0.93 0.9 0.92 0.92 0.895 0.91 0.91
Hormone replacement therapy 0.89 0.89 0.65 0.86 0.84 0.649 0.83 0.81 0.65 0.81 0.76 0.65 Hormone replacement therapy 0.89 0.89 0.65 0.86 0.844 0.649 0.83 0.81
HyperlipidemiaCombinationDrugs 0.91 0.90 0.84 0.87 0.84 0.842 0.84 0.78 0.84 0.83 0.71 0.84 HyperlipidemiaCombinationDrugs 0.91 0.9 0.84 0.87 0.84 0.842 0.84 0.78
MSDrugs 0.91 0.90 0.89 0.89 0.89 0.89 0.88 0.88 0.89 0.86 0.86 0.89 MSDrugs 0.91 0.9 0.89 0.89 0.89 0.89 0.88 0.88
NeuropathicPain 0.93 0.93 0.87 0.91 0.91 0.871 0.89 0.90 0.87 0.87 0.88 0.87 NeuropathicPain 0.93 0.93 0.87 0.91 0.911 0.871 0.89 0.90
NSAIDs 0.85 0.82 0.64 0.82 0.79 0.643 0.80 0.76 0.64 0.78 0.73 0.64 NSAIDs 0.85 0.82 0.64 0.82 0.794 0.643 0.80 0.76
Opioids 0.88 0.84 0.64 0.80 0.75 0.54 0.75 0.65 0.64 0.70 0.57 0.64 Opioids 0.88 0.84 0.64 0.8 0.747 0.64 0.75 0.65
OralHypoglycemics 0.95 0.94 0.83 0.91 0.88 0.829 0.87 0.78 0.83 0.85 0.64 0.83 OralHypoglycemics 0.95 0.94 0.83 0.91 0.883 0.829 0.87 0.78
OveractiveBladder 0.89 0.88 0.85 0.88 0.87 0.849 0.87 0.87 0.85 0.86 0.86 0.85 OveractiveBladder 0.89 0.88 0.85 0.88 0.874 0.849 0.87 0.87
Proton pump inhibitors 0.90 0.89 0.82 0.88 0.87 0.821 0.87 0.86 0.82 0.85 0.84 0.82 Proton pump inhibitors 0.9 0.89 0.82 0.88 0.873 0.821 0.87 0.86
Sedatives 0.91 0.91 0.76 0.90 0.88 0.763 0.88 0.85 0.76 0.87 0.83 0.76 Sedatives 0.91 0.91 0.76 0.9 0.882 0.763 0.88 0.85
Statins 0.91 0.91 0.86 0.90 0.90 0.862 0.88 0.88 0.86 0.87 0.86 0.86 Statins 0.91 0.91 0.86 0.9 0.899 0.862 0.88 0.88
Thiazolidinediones 0.89 0.89 0.81 0.89 0.88 0.805 0.87 0.87 0.81 0.86 0.86 0.81 Thiazolidinediones 0.89 0.89 0.81 0.89 0.884 0.805 0.87 0.87
Triptans 0.91 0.91 0.89 0.91 0.90 0.891 0.90 0.90 0.89 0.90 0.89 0.89 Triptans 0.91 0.91 0.89 0.91 0.902 0.891 0.90 0.90

ACE � acetylcholinesterase; ADHD � attention deficit hyperactivity disorder; BASE � Baseline System; HYBR � Hybrid System, MS � multiple sclerosis; NONT � Nontopic System; NSAID �
nonsteroidal antiinflammatory drugs.
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plots for the topics DiabetesCombinationDrugs, Hyperlipidemia-
CombinationDrugs, MSDrugs, HepatiticC, NSAIDs, Neuropathic-
Pain, Statins, and Thiazolidinediones. In all these cases, except
MSDrugs, the hybrid system improves upon the performance of
the nontopic system across the range of N-way cross-validation,
as more topic-specific data becomes available. Interestingly, for
Thiazolidinediones, the hybrid system is better than the nontopic
system throughout most of the range, but the system trained only
on the topic-specific data consistently outperforms the other
systems; this is the only topic for which this is the case. Neverthe-
less, at worst, the performance hit is only about 0.02 units of

Table 4 y Performance for Proposed Hybrid System C
Available Topic-Specific Training Data. These Results
1/128th of the Topic-specific Data are Available for Tr

Topic Hybrid

Ace Inhibitors 0.86
ADHD 0.82
Antiemetics 0.86
Antihistamines 0.77
AtypicalAntipsychotics 0.77
BetaAgonistsInhaled 0.68
BetaBlockers 0.79
CalciumChannelBlockers 0.72
Diabetes 0.96
DiabetesCombinationDrugs 0.70
HepatiticC 0.86
HormoneReplacementTherapy 0.71
HyperlipidemiaCombinationDrugs 0.78
MSDrugs 0.85
NeuropathicPain 0.85
NSAIDs 0.69
Opioids 0.63
OralHypoglycemics 0.81
OveractiveBladder 0.84
ProtonPumpInhibitors 0.81
Sedatives 0.82
Statins 0.85
Thiazolidinediones 0.79
Triptans 0.89
MEAN 0.80

ACE � acetylcholinesterase; ADHD � attention deficit hyperactivity d
tory drugs.

Table 5 y Mean AUC Performance Comparison of the T
Statistical Significance Shown for Pairs of Systems at the
Differing Levels of Reverse Cross-Validation. p Values C
Comparing Pairs of System Performance on Each of the

Average Mean AUC
Across All Topics Topic Pairwise Wilcoxon

XVAL Hybrid Baseline p-value

2 0.900 0.896 0.020
4 0.879 0.870 0.002
8 0.860 0.841 0.000

16 0.841 0.807 0.000
32 0.826 0.773 0.000
64 0.811 0.727 0.000

128 0.796 0.675 0.000

AUC � area under the curve; SR � systematic review.

A p-value of 0.0000 Indicates p � 0.00005.
AUC—small, compared to the performance gains on the other
topics across the range of available topic-specific training data.

Discussion, Limitations, and Related Work
Overall, the hybrid system significantly outperforms the
baseline system when topic-specific training data are sparse.
Using 1/128th of the available topic-specific data for training
resulted in improved performance for 23 of the 24 topics.
There is a performance decline for only one topic, and it is
minimal. With increases in the amount of topic-specific
training data, the advantage of the hybrid algorithm grad-

red to the Baseline System of Training Only on the
rom the 128-Way Cross-Validation, Where Only
g

AUC

Baseline Delta %Gain

0.77 0.09 12.30%
0.76 0.05 6.60%
0.80 0.06 7.60%
0.62 0.15 24.90%
0.73 0.04 5.10%
0.61 0.07 11.50%
0.67 0.12 18.40%
0.64 0.08 13.10%
0.62 0.33 53.20%
0.53 0.18 33.40%
0.70 0.13 17.50%
0.61 0.10 15.50%
0.52 0.26 49.80%
0.77 0.09 10.10%
0.71 0.14 19.70%
0.59 0.10 17.30%
0.51 0.12 23.10%
0.52 0.29 56.20%
0.70 0.14 19.60%
0.73 0.09 12.60%
0.69 0.13 19.10%
0.75 0.10 13.30%
0.80 �0.01 �1.70%
0.81 0.08 9.90%
0.67 0.12 19.50%

; AUC � area under the curve; NSAID � nonsteroidal antiinflamma-

ystems Studied Averaged Across All Topics.
rent Amounts of Training Data Represented by

uted Using the Nonparametric Paired Wilcoxon Test,
Topics

Average Mean AUC
Across All Topics Topic Pairwise Wilcoxon Test

Hybrid Non-Topic p-value

0.900 0.795 0.000
0.879 0.795 0.000
0.860 0.795 0.000
0.841 0.795 0.000
0.826 0.795 0.005
0.811 0.795 0.160
0.796 0.795 0.574
ompa
are f
ainin

isorder
hree S
Diffe
omp
24 SR

Test
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ually decreases to the point where, given an adequate
amount of topic-specific training data, the performance of
the hybrid and baselines systems is almost identical. How-
ever, for at least two of the topics, Opioids and NSAIDs, the
hybrid system noticeably outperforms the baseline system,
even at 2-way cross-validation. This indicates that for these
two topics, even at the level of 2-way cross-validation, the
topic-specific data are inadequate for producing the best
possible model, and the nontopic data still plays a large role
in creating an optimal decision surface.

These observations show that there is no significant down-
side to using the hybrid system with any amount of avail-
able topic-specific training data as compared to the baseline
system. The hybrid system will either improve performance,
sometimes greatly, or not make much difference. This is
important because, in a real-world deployment of a system
using our hybrid algorithm, users would not have a-priori
knowledge of where their data puts them on the topic-
specific training data-versus-performance curve. The differ-
ent topics “saturate” performance at different levels and
absolute amounts of training data. Therefore, without per-
forming extensive cross-validation studies as we have done
here, users would not know how much topic-specific train-
ing data they have, nor would they know how that amount
influences performance. This is a great advantage of our
proposed approach: it does not rely on the user knowing in
advance whether adequate topic-specific training data are
already available. As more topic-specific training data be-
comes available, the user does not need to decide when to
stop using the nontopic data, as the system takes care of this
automatically, without human intervention.

Although the nontopic system achieves good performance
for some topics, it is not nearly as reliable as the hybrid
system. The performance of the nontopic system on Diabetes
is very good, almost as high as the hybrid system at the level
of 2-way cross-validation. For MSDrugs, the performance of
the nontopic system surpasses that of the baseline and
hybrid systems, up until 4-way cross-validation. However,
for many of the topics, the performance of the nontopic system
is poor, and incorporating even a little topic-specific data leads
to improved performance in the hybrid algorithm (e.g., see
the graphs for ADHD, Antiemetics, AtypicalAntipsychotics,
BetaAgonistsInhaled, HormoneReplacementTherapy, NSAIDs, and
Thiazolidinediones). It is not clear how one would predict the
performance characteristics of the topic-specific and nontopic
systems on a topic, short of extensive testing such as we have
done here. It is unnecessary, with our approach, to try to make
this distinction.

Furthermore, the performance of the nontopic system is
always surpassed by both the baseline and hybrid system at
some level of training data. To use separate nontopic and
topic-specific systems, instead of a hybrid approach such as
ours, users would have to decide for themselves when to
switch over to the baseline (all topic-specific training data)
system. As can be seen from the performance curves in
Figure 4, this is not always an easy decision. For example,
antihistamines has 819 total samples, and the performance of
the baseline system surpasses the nontopic system during
8-way cross-validation, or, using approximately 100 training
samples, 12 (12%) of which are positive. In contrast, for

Sedatives, this point occurs earlier, during 32-way cross-
validation, where 50 training samples are being used, only
�4 (8%) of these samples being positive.

Another interesting aspect of the performance curves is their
asymptotic form. For most of the topics, it does not appear
that the performance of the system (either hybrid or base-
line) has completely leveled off—the ability of the algorithm
to improve from additional topic-specific training data has
not saturated. Only for Diabetes is the performance curve is
very flat; it does not appear that more training data would
result in further improvement. Even for topics with high
mean AUCs (over 0.90), the slope of the curve is fairly steep
between 4-way and 2-way cross-validation (e.g., BetaBlock-
ers, CalciumChannelBlockers, and Opioids). This further sub-
stantiates the point that topic-specific data are essential for
maximum performance, and that it is necessary to incorpo-
rate all topic-specific training data that becomes available
during SR creation and updates.

To summarize, the nontopic system performs fairly well
with no topic-specific training data, but increasing the
amount of topic-specific training data used to build the
model results in consistent improvements in performance. It
is not clear how one would decide to switch over from the
nontopic to the general system, but, with our system, it is not
necessary to do so at all, as it does this automatically, and
maintains top performance across a wide range of available
topic-specific training data.

Why does this technique work? Our explanation for this is
based on the idea that every SR topic dataset is composed of
a mixture of general-SR and topic-specific SR predictive
features. That is, there are some features that are predictive
of article inclusion that are specific to the topic of the SR,
while there are other features that are more generally
predictive of SR inclusion without regard for topic. For
example, in our previous work, we noticed that “CI” (an
abbreviation for confidence interval) was a strong, positive
predictor for some topics.13 It is likely that this term is
general enough that it applies to many SR topics. However,
in a small random sample of training data, there may not be
enough samples to support the ML algorithm to identify,
quantify and model the predictive value of such terms.
Combining the nontopic and topic-specific data together, as
we have done here, allows the ML algorithm to more readily
identify these generally predictive terms.

By contrast, for each topic there are topic-specific predictive
terms. These are terms that do not simply imply a high
quality of evidence or correct methodology, but instead
are terms that predict fitness for the specific inclusion
criteria for a given SR. For example, the key questions
created by the SRs for ADHD make it clear that studies
including both children and adults are necessary, and, in
fact, the term “adult” is a strong positive predictive term
for this topic. It is not a good predictor for the other
topics, however.

There are also features that lie somewhere in the middle,
both strongly predictive for one topic, and weakly predictive
general (but still useful) features for others. The MeSH term
Quality of Life is the top predictive feature (measured by
information gain) for CalciumChannelBlockers, however, it is
not included in the top 200 predictive features for any other

topic. It is at best, a weakly predictive feature for some of the
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other topics, such as ACEInhibitors and BetaBlockers, where
Quality Of Life falls among the top 300 features.

Both topic-specific and general SR features need to be
used together to achieve maximum performance with a
classification algorithm. With adequate amounts of topic-
specific training data, both the topic-specific and general
features can be extracted and quantified from the training
set. When there is inadequate topic-specific training data,
the system can get a performance boost by including
nontopic data, which will help to model the general SR
features and increase the likelihood of recognizing and
including weakly predictive features. This does not
help much with the strongly topic-specific features, how-
ever, and so performance will increase further if addi-
tional topic-specific training samples are made avail-
able.

Even though the hybrid system was statistically at least as
good as or better than the nontopic system at all levels of
reverse cross-validation, nontopic learning can sometimes
outperform hybrid learning on individual topics when the
topic training sizes are especially small. Determining when
to use one of these methods versus the other is not straight-
forward, and the hybrid method we propose here provides
a robust means of avoiding this issue. However, achieving
optimal performance may be dependent upon a more topic-
specific means of resolving this issue. Investigation of means
to predict when one method is preferable to the other, as
well as modeling topic-specific features with inadequate
training data, is an open area for future exploration.

The practical implications of a SR citation classification
system with consistent high performance can be significant.
For example, the topic ADHD has had 2,529 articles re-
viewed to identify the 259 that were included in the final
review. The positive prevalence is about 0.10. Our approach
produces an AUC of 0.85 at a cross-validation fold of 32,
which corresponds to about 80 training samples. Assuming
that we have 80 manually classified samples for training
leaves 2,449 unclassified samples, including about 245 pos-
itives. On the ADHD ROC curve for the classifier with an
AUC of 0.85 (data not shown) there is a FPR (false positive
rate), TPR (true positive rate) operating point of (0.70, 0.98).
Using this as the decision threshold results in 245 � 0.98 �
240 of the positives being correctly identified, missing 5,
along with filtering out 660, or about 30%, of the negative
articles. Since only 80 training � 240 positive � 1543
remaining negative � 1,863 of the original total 2,529 articles
now require manual review, this results in a work savings of
about 26%, at a cost of missing about 3% of the positive
articles.

There is extensive work in the informatics and ML literature,
both in applying ML techniques to literature review for
EBM, as well as in using related topic-data for training when
inadequate topic-specific data exists. However, none of this
work combines the elements in a manner such as we have
done here, nor does it improve topic-specific ML perfor-
mance for SR, as we have here using a combination of
topic-specific and nontopic specific training data.

There has been a significant amount of work on optimized
clinical queries and automated ML for high quality articles

in general for EBM. Haynes et al. and the HEDGES team are
among the most published authors in this area. Their
optimized clinical queries for EBM are a set of query
templates for retrieving a higher proportion of high quality
articles from PubMed. This work forms the basis of the
Clinical Queries facility in PubMed (http://www.ncbi.nlm.nih.
gov/entrez/query/static/clinical.shtml).26–29 Recently, the
HEDGES team has expanded their work to incorporate ML
techniques.30 While this work is certainly useful, it is distinct
from the research presented here, as the models are focused
on clinical users, rather than on systematic reviewers, and
they are not specific to an individual review topic. Similarly,
Aphinyanaphongs et al. have studied applying SVM-based
and other automated classification ML methods to the
identification of high-quality articles for EBM in a nontopic-
specific manner, based on using selection for inclusion in the
ACP Journal Club as a gold standard.31–34

Most of the significant previous work in cross-topic learning
for text classification appears in the ML literature, where it is
also called cross-training. These methods usually focus on
pairs of similar topics35—they do not create a general model
from a group of specific topics and then apply an integrated
general � specific model to a new topic, as we have done
here. However, Zhai et al. has published work on automat-
ically discovering latent common themes across a set of text
collections, which they term comparative text mining.36 In the
bioinformatics literature, Gupta has published work using
cross-training to integrate knowledge about protein struc-
ture and function to improve the performance of SVM
models predicting structure using function annotations and
vice-versa.37 We were unable to find any published work on
cross-topic learning or cross-training in the medical infor-
matics literature, except as it relates to cross-language que-
rying and translation.38,39

There are several limitations to our evaluation. While the
data set includes 24 topics and over 50,000 individual
citations and expert judgments, by necessity this is a small
fraction of the total number of SRs needed, and therefore
represents a small fraction of the total amount of literature
that might be reviewed in total for all potential SRs. Never-
theless, we think that the range of topics and the size of the
data set are large enough to for us to infer that our algorithm
will perform well on many additional SR topics.

All the data used in this study was generated by a single
SR-producing organization. The DERP uses the most rigor-
ous processes available to maximize quality and consis-
tency. While there may be some differences in the processes
used among SR-producing organizations, among groups
that produce high quality reviews, by necessity, these pro-
cesses should be more alike than different. We expect that
our system would perform similarly on data from other
groups that use rigorous SR methods.40

All the SR topics studied here relate to classes of pharma-
cological interventions. Etiology, diagnosis, prognosis, and
non-pharmacological therapy are also important areas need-
ing SRs. Evaluation of our approach on these kinds of SRs is
an area for further study.

Extensive cross-validation was used to accurately estimate
the performance of our method under a large number of
conditions. This resampling required ignoring the temporal

publication sequence of the individual articles. A deployed

http://www.ncbi.nlm.nih.gov/entrez/query/static/clinical.shtml
http://www.ncbi.nlm.nih.gov/entrez/query/static/clinical.shtml
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system would of course be limited to using prior publica-
tions to predict later ones. Whether or not this has implica-
tions for the performance of our system depends upon how
stable the feature distribution of the literature for a given
topic is over time. This topic or conceptual drift can be an
important factor in automated Web and news classification
systems using on-line learning.41,42 SRs do on occasion have
changes in scope. While some studies have found that, in
general, the feature distribution of biomedical literature
does change,43,44 this may or may not be a significant factor
in applying ML to individual SR topics. This remains an area
for further study.

Finally, we should contrast our approach with another
popular ML framework—that of active learning.45 While
active learning also attempts to increase performance using
a reduced amount of topic-specific training data, it does so
in a very different manner than what we have proposed
here. With active learning, the amount of labeled training
data that is required is decreased by having the system
request labeling for the samples on which it can learn the
most, and the rest of the data samples remain unlabeled.
Active learning has been proposed for situations in which
the definition of a true-positive for a topic changes over
time.46 In these situations, there is usually a continuous flow
of data samples, and it is reasonable to expect that experts
are available and willing to manually annotate a small
number of machine-chosen samples on a regular basis. This
is a much more interactive approach than our hybrid clas-
sifier, and requires the workflow of the users to be organized
around the requirements of the active learning framework.
While this is certainly possible for some users, for systematic
reviewers at this time, it would negate the usefulness of the
system. One of the main benefits of ranking the literature is
to allow the reviewers to do work prioritization based on
which articles are most likely to be included in the final
study. Based on this, the reviewers choose which articles
they wish to read, and in which order. But in active learning,
the system chooses which articles the reviewers read, at least
until the system is fully trained. This reversal of the control
over which articles are read first currently makes active
learning a less attractive ML approach for SR creation and
update than the one that we have proposed here. However,
an active learning system that determines which papers to
be reviewed based on both its own needs and the needs of
the reviewers at a given moment in time is at least possible
in principle, and is an interesting area for future research.

Conclusions
We have presented and evaluated a robust and effective
method for improving the performance of automated topic-
specific ranking on articles for SRs. On average, the method
improves performance by about 20%, when the amount of
topic-specific training data are scarce. The algorithm works
by integrating predictive features from both the available
topic-specific training samples and from a large pool of
nontopic-specific data sampled from many other topics that,
together, result in a large amount of training data. The
algorithm maintains effectiveness throughout a wide range
in the amount of available topic-specific training data, and
therefore no human intervention is necessary to decide

when to shift between general nontopic and topic-specific
machine learning models. Future work will focus on extend-
ing the algorithm to use additional sources of topic-specific
data and embedding the algorithm in an interactive system
available to systematic reviewers during the literature re-
view process.
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